
On the Constructiveness of Context-Aware Crossover

Hammad Majeed
Computer Science & Information Systems

University of Limerick,
Limerick, Ireland

hammad.majeed@ul.ie

Conor Ryan
Computer Science & Information Systems

University of Limerick,
Limerick, Ireland

conor.ryan@ul.ie

ABSTRACT
Crossover in Genetic Programming is mostly a destructive

operator, generally producing children worse than the par-
ents and occasionally producing those who are better. A re-
cently introduced operator, Context-Aware Crossover, which
implicitly discovers the best possible crossover site for a sub-
tree has been shown to consistently attain higher fitnesses
while processing fewer individuals.

It has been observed that context-aware crossover is sim-
ilar to Brood Crossover in that multiple children are pro-
duced during each crossover event. This paper performs a
thorough analysis of these crossover operators and compares
the performance of the two and demonstrates that, although
they do work similarly, context-aware crossover performs a
far better sampling of the search space and thus performs
much better.

We also demonstrate that context-aware crossover bene-
fits from a speed up of almost an order of magnitude when
using a simple and very small cache, which is over two orders
of magnitute smaller than caches typically used.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Problem Solving, Control Meth-
ods, and Search

General Terms
Performance

Keywords
context-aware crossover, context, constructive, crossover, cache,
fitness

1. INTRODUCTION
In the standard implementation of GP, the recombination

operator is considered to be a major driving force behind
the success or otherwise of a GP run. Many variants of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07 July 7-11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

recombination operator are introduced and used by differ-
ent researchers, but the most commonly used one is the one
point crossover operator due to its simplicity and ease of
implementation. This simplicity has a huge toll on its per-
formance and it acts destructively most of the time during
the run.

Many researches have tried to improve its performance.
The most commonly adpated one is the “context preserving”
approach [2][3][4]. In it, the order and number of the parent
nodes of a swapped subtree in its container parent tree are
preserved to the best possible extent in the other parent.
The reasoning behind this is that changing the (syntactic)
context of a subtree is likely to be more disruptive.

Altenberg, in his “soft brood selection” method [1], first
generated a brood by crossing over the selected patents N
times and then introduced the best of the brood in the next
generation by holding a tournament. Tackett refined this
idea and used the cheap “culling function” [10] to identify
the best of the brood. He introduced the best two offspring
in the next generation.

Other approaches [9][11] try to choose good subtrees to
swap, or good crossover points, depending on the approach,
by measuring the contribution of the subtree that is to be
replaced to the overall fitness of an individual.

Majeed and Ryan in their context-aware crossover [6] tried
to minimize the destructive effects of standard crossover by
placing the selected subtree in its best context in the parent
tree. It implicitly calculates the best context by using the
effect of the placement of the selected subtree on the overall
fitness of the parent tree and then selecting the placement
resulting in the maximum final fitness.

This paper discusses the constructiveness of context-aware
crossover and compares its performace with standard one
point crossover and with a tuned version of Brood Recom-
bination. The results reported demonstrate that context-
aware crossover is much more constructive than the other
crossover operators examined, and produces consierably more
fit individuals. We also demonstrate that the use of a very
simple cache, which is two orders of magnitude smaller than
standard caches, can dramatically reduce the number of
evaluations that need to be carried out with context-aware
crossover, because context-aware crossover can exploit a cache
very efficiently.

1.1 Use of caching in GP
In GP, the evaluation of a generation is widely accepted

to be the most expensive process. Many approaches have
been put forth to make it less expensive and more efficient.
The most promiment ones are subtree caching, vectorized

1659

evaluation [5] and removal of dead code [8]. Keijzer in [5],
introduced two types of caching, bottom-up and top-down

caching. The top-down approach encourages the caching of
big subtrees while the bottom-up approach encourages the
caching of small subtrees. The caching of big subtrees makes
the evaluation process more efficient (due to the number of
nodes saved) but the larger the size of the cached subtree
the less likely it is to be matched and used again during the
evaluation process. In his implementation the cache size was
varied from 20 to 5000 subtrees.

One possible implementation of the use of cache in tree
based GP is shown in figure 1.

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

Parent 2 Parent 1

Child 1 Child 2

selected subtrees
for crossover

Needs to be re−evaluated

Cached Nodes

Figure 1: Use of cache in GP.

In figure 1, two parents along with the selected subtrees
for crossover are shown. The subtrees of both the parents
are cached during evaluation and these cached values are
reused while evaluating the generated children and results
in 9 and 6 times less nodes evalautions, respectively, than
the standard GP implementation without the use of cache.

The use of this approach in our implementation of context-
aware crossover has resulted in a dramatic improvement in
the peformance. These results are presented and discussed
in the following sections.

The paper is laid out as follows. Section 2 describes
context-aware crossover, while section 2 details the exper-
iments in the paper. Section 4 contains the the results of
the experiments and section 5, while section 6 draws some
conclusions on the performance of the systems examined in
the paper.

2. CONTEXT-AWARE CROSSOVER
Another study [6] into the destructive nature of standard

crossover introduced context-aware crossover. This works by
first selecting a random subtree from the first selected parent
and then tries to place it, exhaustively, at all the possible
locations in the second selected parent in an effort to find
its best place. After this, the generated pool of offsprings is
evaluated and the best of the lot is introduced in the next
generation. The same procedure is repeated for the second

parent. The main focus of this crossover is on minimizing the
randomness in the operation of standard one point crossover
which is believed to be the major cause of its destructiveness.

They showed that context-aware crossover performed best
when introduced after about 80% of a run was complete, as
it benefited from the mixing provided by standard crossover.
This is because the randomness inherent in standard crossover
is useful in the initial stages of a run to generate building
blocks which are then exploited by context-aware crossver
later in the run.

2.1 Performance boost by using caching
In context-aware crossover the evaluation of the gener-

ated pool of offsprings is the most expensive process and
the number of evaluations increases exponentially with the
increase in the average tree size of the population and results
in extended run time. Caching the evaluated values of each
subtree of the selected parents for all the fitness cases and
then using them during the re-evaluation phase of the gen-
erated pool can result in a dramatic decrease in the number
of nodes evaluations.

The number of evaluated nodes strictly depends on the
placement of the selected subtree in the parent tree. The
number of evaluations will be quite small if a subtree is
placed high up in the selected parent because the number of
the parent that have to be evaluated are small. Conversely,
if the evaluated node count will be quite high if it is placed
down below in the parent tree.

The performance of a cache depends on its size. The larger
a cache is, the more likely a cache look up is produce a hit
(the node or item is present in the cache). However, the
larger the cache is, the more expensive it is to search for
items in it.

Context-aware crossover is particularly suited to the use
of a cache, because the evaluation of multiple children from
the same crossover involves the re-evaluation of the same
group of nodes. This means that the cache size can be tiny,
as it only needs to contain the nodes of the new subtree and
the existing parent, and can be emptied at the start of each
crossover.

2.2 Constructiveness
The constructive nature of the crossover operator(s) used

during a GP run has a big impact on the final outcome of
the run. Standard one point crossover is widely accepted as
a destructive operator due to its ignorance of the context of
the exchanged subtrees and the randomness in its operation
(because it only samples a tiny fraction of the space of pos-
sible offspring for each crossover). Context-aware crossover
on the other hand, implicitly searches for the best context
of the exchanged subtree before placing it.

One way to look at the constructiveness of a crossover
is to compare the fitness of the generated children com-
pared to their parents. A constructive crossover should pro-
duce fit children more frequently compared to a destruc-
tive crossover. The fitness of the overall population in gen-
eral and the fitness of the selected parents in particular,
has a huge impact on the constructiveness or otherwise of a
crossover. The selection of highly fit parents makes it dif-
ficult for the crossover operator to generate children of the
same fitness due to the availability of the small room for
improvement. We believe that context-aware crossover has
the power to improve over highly fit parents due to its high

1660

exploratory power and we shall investigate this in the rest
of the paper.

3. EXPERIMENTAL SETUP
In this study, five different sets of experiments were con-

ducted and for all the experiments Koza’s Quartic Polyno-
mial Symbolic Regression problem was examined. All the
runs were allowed to complete 50 generations. Fitness pro-
portionate selection was used for all the studied crossover
operators and the initial population was generated using
ramped half and half method with tree size varying from 2-
6, with the maximum tree depth was set to 17. Results are
averaged over 50 runs and presented in the following section.
The reproduction operator was also used in the extended-
brood and standard crossover setups, and the probability of
its usage was set to 0.1. For the context-aware crossover
setup, the initial generations were generated by using only
standard one point crossover and context-aware crossover
was switched on after 80% completion of the run.

The first experiment was designed to check the construc-
tiveness of each crossover operator. In this experiment, the
percent gain or loss in the fitness of the generated children
compared to its parents was noted.

The second experiment keeps the generational count of
the children better than both, better than one or worse than
both the parents. This gives us an insight into the genetic
pool generated by brood and context-aware crossover oper-
ators and in their consistency of re-generating them. Recall
that brood and context-aware crossover operators first gen-
erate a pool of offsprings and then select the best of them
for the introduction into the next generation, and that the
difference in the way they operate is that context-aware
crossover systematically evaluates every possible crossover
point, and so generates many offspring.

Although the previous test keeps the count of the gener-
ated children on the basis of their fitness it tells us little
about the fate of the each crossover event. A crossover
event has different meaning for each crossover studied. In
the case of standard crossover it is the generation of two chil-
dren, while in case of context-aware and brood crossovers it
is the generation of the whole brood or pool of offsprings. In
this study, one crossover event for context-aware and brood
crossover operators was compared against multiple standard
crossover events to make the evaluations count same and
comparison fair. This is because the total number of eval-
uations varies from run to run, as it depends on the size of
the trees.

Note that one very fit crossover event can generate a
high percentage of the total count of the better-than-both-
parents individuals generated during a generation. There-
fore, the count of the fit individuals generated during a gen-
eration alone does not tell us the complete picture and needs
further investigation. To investigate this, we labeled each
crossover event and then counted its frequency. This tells us
the frequency of the successful crossover events generated by
each crossover operator during a generation. The crossover
event was labeled as constructive if it generated at least one
individual fitter than both the parents, semi-constructive if
it generated at least one individual fitter than either of the
parents and otherwise labeled as destructive.

The fourth experiment looked into the average fitness of
the selected parents of each generation. This is helpful in
fully understanding the first experiment, as only the gain

or loss in the fitness of the generated child hides its abso-
lute fitness and poor parents can show positive results by
generating marginally better children than them.

The fifth experiment recorded the average and best fitness
values of the generated population. This was to compare the
performance of each crossover.

4. RESULTS
As the crossover operators used in this study work differ-

ently and generate different numbers of indivduals during
each crossover event the total number of individuals pro-
cessed varies across runs and generations. Thus, the graphs
below count the total number of evaluations rather than
generations.

For context-aware crossover, a population size of 200 was
used and the initial 80% of the run was completed using
only standard one point crossover and rest of the time only
context-aware crossover was used. This setting was in con-
formance with the strategy devised in [7] and helped us
to understand the interactions between the standard and
context-aware crossover operators during a run. The results
generated by the use of standard one point crossover can
be easily identified in all the graphs (prior to 9,000 evalu-
ations) as there is a dramatic change in performance from
that point on.

For brood crossover, the population size was also set to
200. In the original implementation of brood crossover, the
brood size varied from 2 to 5 and was set before starting the
runs, but in our implementation it varied with the parent
size and was set to the 20% of the parent size. The same
procedure was repeated for the second parent. This makes
brood crossover behave more like context-aware crossover
and improves its chances of producing more fit offspring by
increasing the size of the sample it takes from the space of
possible children. Due to this alteration in the implemen-
tation, we shall refer to it as “extended-brood crossover” in
this paper.

An oversized population size of 2000 was used for exper-
iments involving standard one point crossover. This was to
make the evaluations count comparison fair with the other
crossover operators. All results are shown below.

4.1 Fitness of the generated children
Figures 2, 3 and 4 show the number of the children gener-

ated depending on their fitness compared to their parents for
the studied crossover operators. A generated child can be
labeled as “better-than-both”, “better-than-one” or “worse-
than-both”, if it is better than both the parents, better than
one or worse than both the parents, respectively. The y-
axis shows the percent count of the generated children in
the three categories. In figure 2, both the initial phase of
context-aware and the phase where context-aware crossover
is used show a drop in the better-than-both and better-than-
one categories throughout the run barring a brief initial pe-
riod in which standard crossover is shows an improvement
in the better-than-one parent count. It is widely accepted
that in the initial stages of a run it is easy for a crossover to
generate better children than its parents than in the later
stages, this is due to the poor initial fitness of the selected
parents. Later on, once context-aware crossover is turned
on, we also see a drop in the better-than-both and better-
than-one counts. We believe this is due to the production of
the fit parents which makes it difficult for the context-aware

1661

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

P
er

ce
nt

Evaluations(x1000)

Percent count of the generated children

Better than both
Better than one

Worse than both

Figure 2: Fitness plots of the generated children

relative to their parents for context-aware crossover.

crossover to generate better children than their fit parents.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160

P
er

ce
nt

Evaluations(x1000)

Percent count of the generated children

Better than both
Better than one

Worse than both

Figure 3: Fitness plots of the generated children rel-

ative to their parents for extended-brood crossover.

Figure 3 shows the results for extended-brood crossover.
The counts of children better than both the parents and
children better than one of the parents drops with time and
this drop is significant in the initial stages of the run.

In case of standard crossover (see figure 4), there is a drop
in the count of the better-than-both the parents in the initial
stages of the run and remains above the zero mark in the
latter part of the run. The other two counts remain arround
50% mark with little deviation.

4.2 Fitness of the selected parents
Figures 5, 6 and 7 show the fitness of the selected parents

and the mean average and best fitness of the population dur-
ing the run for the studied crossover operators. These plots
help us to interpret the figures shown in the section 4.1 bet-
ter. Figure 5 shows the results for context-aware crossover.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

Evaluations(x1000)

Statistics for all the children produced

Better than both
Better than one

Worse than both

Figure 4: Fitness plots of the generated children

relative to their parents for standard crossover.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45

F
itn

es
s

Evaluations(x1000)

Mean average, best and parent fitness plots

Average
Best

Parent 1
Parent 2

Figure 5: The fitness of the selected parents along

with the mean average and best fitness plots for

context-aware crossover.

The selected parents become increasingly more fit over time
making it difficult for both the standard and context-aware
crossovers to improve upon them and generate fitter chil-
dren than them. The best and average fitness plots show
a dramatic improvement in the fitness after switching on of
context-aware crossover and at the end of the run the mean
best fitness and mean average fitness are as high as 0.78 and
0.66, respectively.

Figure 6 shows the results for extended-brood crossover.
The parents selected are inferior in fitness to the ones se-
lected by context-aware crossover, and this makes it easier
to generate children that are more fit than their parents.
Extended-brood recombination does not show any improve-
ment over context-aware crossover and the count for worse-
than-both the parents is higher and count for the better-
than-either of the parents is significantly lower than the cor-
responding counts for context-aware crossover.

1662

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160

F
itn

es
s

Evaluations(x1000)

Mean average, best and parent fitness plots

Average
Best

Parent 1
Parent 2

Figure 6: The fitness of the selected parents along

with the mean average and best fitness plots for

extended-brood crossover.

There is a dramatic difference in the best and average fit-
ness values of extended-brood and context-aware crossovers
at the end of 35,000 evaluations. Extended-brood crossover
turns out to be more than three times less fit and much less
contrutive after 35,000 evaluations.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

F
itn

es
s

Evaluations(x1000)

Mean average, best and parent fitness plots

Average
Best

Parent 1
Parent 2

Figure 7: The fitness of the selected parents along

with the mean average and best fitness plots for

standard crossover.

Figure7 shows the results for standard crossover. The se-
lected parents are not very fit in the initial stage of the run
and leaves much room for improvement. Surprisingly, stan-
dard crossover performs marginally better than extended-
brood crossover but is way behind the performance of context-
aware crossover.

4.3 Statistics of the generated crossover events
Figures 8, 9 and 10 show the statistics of the crossover

events take place during the run for the studied crossover
operators. Recall that an event is called a constructive one

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

P
er

ce
nt

Evaluations(x1000)

Statistics for all the crossover events

Constructive
Semi-Constructive

Destructive

Figure 8: The percent count of constructive, semi-

constructive and destructive crossover events for

context-aware crossover.

if it generates at least one child better than both the parents,
and its called semi-constructive if it generates at least one
child better than either of the parents, otherwise it is termed
as a destructive. In figure 8, standard one point crossover
events are mostly destructive and beyond 7,000 evaluations,
their number increases over time while the constructive and
semi-constructive events are decreasing with time. As soon
as context-aware crossover is switched on the plots change
dramatically. The percent count of destructive crossovers
drops from 58% to 2% while the percent counts of construc-
tive and semi-constructive crossovers improve to 50% and
48% from 4% and 42% respectively. Interestingly, after a
slight increase in the number of destructive crossovers, it
shows a downward trend and remains below 10% mark. The
number of constructive crossovers drops over time due to the
presence of the fit selected parents. Surprisingly, at the lat-
ter part of the run the semi-constructive count is as high
as 80%, which is a good indication of the constructiveness
of context-aware crossover even in the face of a highly fit
population.

Figure 9 shows the results for extended-brood crossover.
The destructive events are 5% higher than the destructive
events reported by context-aware crossover and semi-constructive
events are 25% less than the ones generated by context-
aware crossover. The constructive count for extended-brood
crossover is signigicantly higher than context-aware crossover
at the end of 35,000 evaluations but context-aware crossover
is far more constructive throughout the run than extended-
brood crossover.

As expected, standard crossover (see figure 10) generates
very few constructive crossover events during the run and
most of the crossover turns out to be destructive due to its
randomness.

4.4 Constructiveness of the crossovers
Figures 11, 12 and 13 show the percent gain of the chil-

dren over their parents for the studied crossover operators.
In figure 11, the children generated by standard crossover
are not much better than their parents and have the same

1663

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160

P
er

ce
nt

Evaluations(x1000)

Statistics for all the crossover events

Constructive
Semi-Constructive

Destructive

Figure 9: The percent count of constructive, semi-

constructive and destructive crossover events for

extended-brood crossover

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

Evaluations(x1000)

Statistics for all the crossover events

Constructive
Semi-Constructive

Destructive

Figure 10: The percent count of constructive, semi-

constructive and destructive crossover events plots

for standard crossover.

fitness as their parents. Note that at this early stage of
the run, there is much room for improvement and it is easy
for the selected parents to generate children that are fitter
than them. When started, context-aware crossover on the
other hand shows a huge gain in the fitness of the generated
children compared to their parents and keeps on generating
fit children for some time before falling down to zero mark.
Interestingly, even in the later stages of the run it never
becomes destructive and acts neutrally at the worst.

In figure 12, the behavior shown by extended-brood crossover
is similar to context-aware crossover, earlier in the run it
about 25% of offspring are more fit than their parents, and
this gradually falls, but, like context-aware crossover, never
falls below the 0% mark and at the worst remains neutral.

Most of the time, the children generated by standard
crossover are inferior to their parents (see figure 13). The

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35 40

P
er

ce
nt

 G
ai

n

Evaluations(x1000)

Constructiveness of Context-aware Crossover

Gain on parent 1
Gain on parent 2

Figure 11: The percent count of constructive, semi-

constructive and destructive crossover events plots

for context-aware crossover.

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140 160

P
er

ce
nt

 G
ai

n

Evaluations(x1000)

Constructiveness of Brood Crossover

Gain on parent 1
Gain on parent 2

Figure 12: The percent count of constructive, semi-

constructive and destructive crossover events plots

extended-brood crossover

main reason for its destructiveness is considered to be its
random placement of subtrees.

4.5 Use of cache in context-aware crossover
The use of cache in context-aware crossover results in a

considerable improvement in the system’s performance by
reducing the number of evaluated nodes. The presented re-
sults in figure 14 show the difference in the number of eval-
uated nodes by using cache after the activation of context-
aware crossover during the run.

The non-cached node plot shows a significant increase in
the count of the evaluated nodes with time, mostly due to
the generation of larger trees in the later generations. The
use of a cache reduces the evaluated nodes count signifi-
cantly and keeps it steady around 20,000 mark. At the
end of 35,000 evaluations the evaluated nodes count using

1664

-20

-15

-10

-5

 0

 5

 10

 15

 0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

 G
ai

n

Evaluations(x1000)

Constructiveness of standard one point crossover

Gain on parent 1
Gain on parent 2

Figure 13: The percent count of constructive, semi-

constructive and destructive crossover events plots

for standard crossover.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 5 10 15 20 25 30 35 40

N
od

es
 E

va
lu

at
ed

 (
x1

00
00

)

Evaluations(x1000)

Effect of cache on the number of nodes evaluated

Without Cache
With Cache

Figure 14: Number of nodes evaluated by context-

aware crossover with and without the use of cache.

cache is 10 times less than its counterpart. This performance
gain makes context-aware crossover a lot more efficient and
the increased number of evaluations, due to generation of a
brood of offsprings, less noticeable.

The cache size used for context-aware crossover was vari-
able (the size depends on the size of the selected parents) and
much smaller than the cache size used by the commonly used
generation level caching techniques, varying in size from 8
to 25 during the run. This is much smaller than that used
in [5], where it varied from 25 to 10,000. The use of a small
sized cache reduces the evaluated node count, memory usage
and lookup time during the evaluation phase and is possible
beacuse of the way individuals are created and evaluated
repeatedly.

5. DISCUSSION
The experimental results demonstrate that there is a clear

difference between context-aware and brood crossovers. Context-
aware crossover, through its systematic search through the
space of possible children, consistently operates more con-
structively and produces runs that are considerably more fit
than brood (and standard crossover) both in terms of the
best individuals found and in terms of the quality of indi-
viduals in general.

The number of children better-than-both and better-than-
one parents drops over time for context-aware crossover and
this is due to the generation of increasingly more fit parents.
At the end of the run, even though the fitness of the parents
is as high as .78, there is still the production of 20% of the
population involving individuals better than at least one of
the parents and the percent generation of the worst-than-
both the parents individuals becomes steady at 80%. This
shows the exploratory and constructive power of context-
aware crossover and its ability to generate fit individuals
even in the presence of very fit and converged population.
Extended-brood crossover generates the same number of
better-than-both, better-than-one and worse-than-both in-
dividuals but does so in the presence of quite inferior parents
and more room for improvement, which makes it less con-
structive.

The use of context-aware crossover during the run has a
dramatic effect on the fitness and the number of construc-
tive, semi-constructive and destructive crossovers previously
shown by standard crossover. The instant it was switched
on, it resulted in an exponential gain for the fitness of the
population and made all the crossover events constructive,
this is evident from the drop of destructive count to zero
in figure 8. On most of the occasions it has resulted in
the generation of children better than at least one of the
parents, again showing its ability to generate fit individu-
als in the presence of fit parents. Extended-brood crossover
maintains the number of constructive, semi-constructive and
destructive crossovers in the presence of increasingly more
fit parents. This makes it consistent in its performance
but less constructive than context-aware crossover. Stan-
dard crossover generates mostly destructive crossover events
throughout the run and managed to improve the fitness of
the population due to small number of constructive and
semi-constructive crossover events.

The use of context-aware crossover during the run has
resulted in the generation of the children with twice the
fitness of their parents, although with time this gain has
reduced due to the convergence of the population and selec-
tion of the fit parents but has never fallen below zero mark.
Extended-brood crossover has shown similar behavior but
for this crossover the fitness gain of the generated over their
parents is significantly low, which is due to the less construc-
tive nature of this crossover, nonetheless, like context-aware
crossover it also never has become destructive throughout
the run. Standard crossover on the other hand has proved
to be the most destructive as pointed out in [7], due to tiny
sample size it takes from the space of children.

The overall constructiveness of context-aware crossover
has resulted in a dramatic improvement in the final fitness
of the population and generated a very fit population as
compared to other two crossovers.

The use of cache has reduced many times the expensive-
ness of the evaluation process of context-aware crossover as
awell as having reduced its run time. The use of individual
level cache in context-aware crossover has turned out to be

1665

very effective by making each crossover event less resource
hungry and efficient as context-aware crossover evaluates the
same individual many times with a little variation.

6. CONCLUSION
We have compared context-aware crossover to standard

GP crossover as well as to an extended version of brood
crossover. We have demonstrated the context-aware crossover
is consistently more constructive than the others, and that,
even when the population is very fit, it can still find indi-
viduals better than their parents.

Clearly, finding the best context for the incoming sub-
tree dramatically improves the performance of GP. In the
absence of a method that explicitly discovers this context,
an exhaustive search is the only alternative. However, be-
cause context-aware crossover is so constructive, it is much
cheaper than the other crossover methods, and so far smaller
populations can be used. Not only that, we have demon-
strated that it can be optimized further through the use
of a very simple cache. The cache is simple because it is
very small, two orders of magnitude smaller than a stan-
dard cache, and is reset for each crossover event. The man-
ner in which context-aware crossover repeatedly evaluates
the same sub-trees makes this possible, and we demonstrate
that the simple cache gives almost an order of magnitude
speed up.

7. REFERENCES
[1] Lee Altenberg. The evolution of evolvability in genetic

programming. In Kenneth E. Kinnear, Jr., editor,
Advances in Genetic Programming, chapter 3, pages
47–74. MIT Press, 1994.

[2] Patrik D’haeseleer. Context preserving crossover in
genetic programming. In Proceedings of the 1994

IEEE World Congress on Computational Intelligence,
volume 1, pages 256–261, Orlando, Florida, USA,
27-29 June 1994. IEEE Press.

[3] S. Hengproprohm and P. Chongstitvatana. Selective
crossover in genetic programming. In ISCIT ,
ChiangMai Orchid, ChiangMai Thailand, 14-16
November 2001.

[4] Takuya Ito, Hitoshi Iba, and Satoshi Sato.
Non-destructive depth-dependent crossover for genetic
programming. In Proceedings of the First European

Workshop on Genetic Programming, volume 1391 of
LNCS, pages 71–82, Paris, 14-15 April 1998.
Springer-Verlag.

[5] Maarten Keijzer. Alternatives in subtree caching for
genetic programming. In Genetic Programming 7th

European Conference, EuroGP 2004, Proceedings,
volume 3003 of LNCS, pages 328–337, Coimbra,
Portugal, 5-7 April 2004. Springer-Verlag.

[6] Hammad Majeed and Conor Ryan. A less destructive,
context-aware crossover operator for GP. In
Proceedings of the 9th EuroGP, volume 3905 of LNCS,
pages 36–48, Budapest, Hungary, 10 - 12 April 2006.
Springer.

[7] Hammad Majeed and Conor Ryan. Using
context-aware crossover to improve the performance of
GP. In GECCO 2006, volume 1, pages 847–854,
Seattle, Washington, USA, 8-12 July 2006. ACM
Press.

[8] Hammad Majeed, Conor Ryan, and
R. Muhammad Atif Azad. Evaluating GP schema in
context. In GECCO 2005, volume 2, pages 1773–1774,
Washington DC, USA, 25-29 June 2005. ACM Press.

[9] Riccardo Poli and William B. Langdon. On the search
properties of different crossover operators in genetic
programming. In Genetic Programming 1998:

Proceedings of the Third Annual Conference, pages
293–301, University of Wisconsin, Madison,
Wisconsin, USA, 22-25 July 1998. Morgan Kaufmann.

[10] Walter Alden Tackett. Recombination, Selection, and

the Genetic Construction of Computer Programs. PhD
thesis, University of Southern California, Department
of Electrical Engineering Systems, USA, 1994.

[11] Chi Chung Yuen. Selective crossover using gene
dominance as an adaptive strategy for genetic
programming. Msc intelligent systems, University
College, London, UK, September 2004.

1666

