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ABSTRACT 
In this paper we propose a genetic programming approach to 
learning stochastic models with unsymmetrical noise 
distributions. Most learning algorithms try to learn from noisy 
data by modeling the maximum likelihood output or least squared 
error, assuming that noise effects average out. While this process 
works well for data with symmetrical noise distributions (such as 
Gaussian observation noise), many real-life sources of noise are 
not symmetrically distributed, thus this approach does not hold. 
We suggest improved learning can be obtained by including noise 
sources explicitly in the model as a stochastic element. A 
stochastic element is a random sub-process or latent variable of a 
hidden system that can propagate nonlinear noise to the 
observable outputs. Stochastic elements can skew and distort 
output features making regression of analytical models 
particularly difficult and error minimizing approaches inhibiting. 
We introduce a new method to infer the analytical model of a 
system by decomposing non-uniform noise observed at the 
outputs into uniform stochastic elements appearing symbolically 
inside the system. Results demonstrate the ability to regress exact 
analytical models where stochastic elements are embedded inside 
nonlinear and polynomial hidden systems.   

Categories and Subject Descriptors 
I.1.2 [Symbolic and Algebraic Manipulation]: Algorithms – 
Algebraic algorithms, Analysis of algorithms, nonalgebraic 
algorithms 

General Terms 
Algorithms 

Keywords 
Symbolic Regression, Dynamical Systems, Stochastic Elements 

1. INTRODUCTION 
Random noise is found in many natural and engineered systems, 
such as random diffusion, noisy actuators or sensors, and human 

input [4]. Most learning algorithms handle noise by fitting the 
maximum likelihood or least squares error of noisy data [2,4]. 
This approach works well when noise is distributed symmetrical 
about the true system output, such as white noise, Gaussian noise, 
and any zero mean noise superimposed over the output. 
When noise exists internally in the system, it can be coupled with 
nonlinear components of the system. In other words symmetric 
internal noise can be scaled, offset, and in general transformed to 
produce non-symmetric noise distributions on the output. In these 
situations, the noise has deformed the maximum-likelihood output 
from the theoretical noiseless system, and the regressed models 
may no longer describe the analytical structure of the system. 
We call this type of noise a stochastic element – a random process 
inherent to the system, affecting its behavior and observable 
output. Noise from stochastic elements can propagate nonlinearly 
to the system’s output and produce non-uniform variation. 
The most common approach to handling noise is to model its 
expectation, either through averaging or least-squares fitting [2,4]. 
While the expectation of a noisy system is valuable for finding a 
model with minimal error, it can be misleading when finding a 
descriptive analytical model of the system (e.g. symbolic 
regression). In the worst case, it can distort the observed output of 
the system, preventing the true system structure from being found 
[6]. 
In this paper, we aim to improve regression of a noisy system 
based on the notion that observed noise that is coupled to the 
system may itself provide additional information about the 
system’s analytical structure. For example, if the output noise 
appears to grow quadratically, there is likely to be some quadratic 
structure in the system. Our approach is to use symbolic 
regression to model the output noise explicitly, decomposing 
noise as uniform stochastic elements inside the system to produce 
a noisy model. We then compare the noise observed in candidate 
models to the variation in the training data to calculate fitness. 
The final analytical model is obtained by removing the stochastic 
terminals used. 
In the remaining sections, we discuss the distortion produced by 
stochastic elements, describe our approach in greater detail, show 
some simple results, and finish with concluding remarks. 

2. BACKGROUND 
2.1 Distortion from Stochastic Elements 
Expected values of a noisy output can disguise and distort 
analytical structure when the system contains internal stochastic 
elements [5,6,9]. Noise can be multiplied into the system or pass 
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through a nonlinear operation to significantly change the expected 
output values. Figure 1 shows three simple examples where a 
stochastic element hides or distorts analytical features. 
Figure 1 (a) shows a sine function, f(x) = sin(x) with a stochastic 
element giving rise to a random phase offset, f(x) = sin(x + R). 
The noise does not change the magnitude of the sine wave but 
does shift data samples left or right. The expectation of the output 
shows a sine function with correct phase but with smaller 
amplitude than the target analytical model, f(x) = A*sin(x). 
The system in Figure 1 (b) is a simple linear function, f(x) = x, 
multiplied by a stochastic element, f(x) = x*R. The multiplied 
noise completely hides the linear growth from the expectation. 
The expected output becomes simply f(x) = 0. 
Figure 1 (c) is a quadratic function, f(x) = x2, with noise added to 
the input, f(x) = (x + R)2. This noise again shifts the data points 
left or right, but does not change the y-intercept. The expected 
output model however is quadratic with a y-offset, f(x) = x2 + A. 
Though these are simple examples, they give insight into how 
stochastic elements can distort expectation models from the exact 
analytical model, or even hide features. In the next section, we 
describe a simple approach to incorporating stochastic elements 
into models in order to recover exact analytical models despite 
this difficulty. 

2.2 Regressing Noising Data 
Noise is found in almost all experimental data and is a central 
focus in many areas of machine learning [13]. Here, we briefly 
overview how noise is traditionally handled in regression 
problems. 
Often experimental data is pre-processed to remove outliers [10], 
remove white noise [9], and more generally, smooth features. 
Common techniques for preprocessing include convolving with a 
low-pass-filter (e.g. box or sliding window, Gaussian filter), local 
least-squares fitting, and spline fitting. 
The aim of preprocessing is to transform the data set to be more 
representative of the expected outcome or maximum likelihood of 
the system through interpolation or statistical properties among 
neighboring data points. These processes make assumptions about 
the underlying system and its noise distribution but are still used 
frequently in practice to improve predictive performance. 

In contrast, we are interested in exploiting the existence of 
nonlinear noise to reveal internal structure of the unknown 
system. In this sense, the goal is broader and removing noise 
coupled to the system could remove information. 

2.3 Modeling Noise and Confidence 
One is often interested in the confidence of predictions made by a 
regressed model. Accurate models predict the maximum-
likelihood value, but the variance of outputs for this value may be 
large. 
The most common non-parametric approach to measure 
confidence is to examine the residual errors of the model on the 
training set. This leads to a natural two-step procedure:  

(1) Regress a best fit model 
(2) Derive a statistical model of the residual error 

In the case of white noise, residual errors appear uniformly 
distributed and can be modeled globally such as calculating its 
mean and variance. 
If noise is coupled to the system by an internal stochastic element, 
the residual error may vary greatly over the input space. In this 
case, local statistical models are used to model confidence among 
neighboring inputs [11]. 
Deriving a statistical model of the residual error in this fashion 
requires assuming a noise distribution model, such as the normal 
distribution. In nonlinear regression, where an analytical model of 
the system is assumed, the noise distribution can be derived 
automatically from the model. Most commonly, confidence 
intervals are calculated on the model fitting parameters [12]. 
Parameter confidences then translate into nonlinear output 
confidence ranges on the model output. 
In contrast, the method proposed in this paper models noise 
explicitly in the model parametrically without a predetermined 
model structure. 

2.4 Symbolic Regression 
Symbolic Regression is the problem of identifying the exact 
mathematical (analytical) description of a hidden system from 
experimental data [1,7,8]. Unlike polynomial regression or related 
machine learning methods which also fit data, symbolic 

 
(a) (b) (c) 

Figure 1. Three basic examples where a stochastic element hides or distorts analytical features of the system to different extents.
Blue dots show the observed system output, the red line shows the expectation of the output, and the green line show the target 
analytical model with stochastic elements removed. 
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regression is a system identification method which explicates 
behavior. Symbolic regression is an important problem because it 
is related to general machine learning problems but is an open-
ended discrete problem that cannot be solved greedily, thus 
requiring non-standard methods. 
For experiments in this paper, we represent algebraic expressions 
(candidate solutions) as a procedural list of algebraic operations 
on local variables [1], effectively a graph encoding.  Empirically, 
the graph encoding has comparable performance to tree encodings 
but has significant computational advantages. 
The operations can be unary operations such as abs, exp, and log, 
or binary operations such as add, mult, and div. If some a priori 
knowledge of the problem is known, the types of operations 
available can be narrowed ahead of time [1,8]. The terminal 
values available consist of the function's input variables and the 
function's evolved constant values.  
Mutation in a symbolic expression can change an operation type 
(eg. change add to sub), change the arguments of an operation 
(eg. change x+1 to x+x), delete an operation (eg. change x+x to x), 
or add an operation (eg. change x+x to x + (x*x)). 

Crossover of a symbolic expression exchanges sub-trees, or in the 
graph encoding used here two sub-graphs, from two parents. For 
example, crossing f1(x) = x2 + 1 and f2(x) = x4 + sin(x) + x could 
produce a child f3(x) = x2 + sin(x). In this example, the leaf node 
+1 was exchanged with the sin(x) term. 
The fitness objective in symbolic regression, traditionally, is to 
minimize error on the training set [1,7,8]. Later in this paper 
however, we define a new objective geared specifically to reward 
candidate solutions with noise distributions that match the noise 
observed in the training set. 

3. OUR APPROACH 
The basic idea of our approach is to include behavior of stochastic 
elements inside the analytical model. Instead of using an error 
minimization objective, we attempt to find a model of stochastic 
elements with the simplest distribution explaining all features and 
noise in the training data. The final analytical model identifies the 
origin of noise as well as its effect on out observations. 
Much research has been done on bounding noise error and 
modeling error distributions [3,11,12]. The distinction here is that 
we are modeling individual noise components explicitly inside a 
system. The analytical model is regressed from scratch, rather 
than relying on an assumed system model or distribution model. 
We use symbolic regression to find an analytical model which 
incorporates uniform random variables to explain residual error 
parametrically in addition to finding a best fit. In the next two 
sections, we describe how we incorporate stochastic elements into 
candidate models and describe a new objective function to explain 
observed noise. 

3.1 Decomposing Stochastic Elements 
 Our basic building block for a stochastic element is a uniform 
random variable with range [-1,1], that returns a random value 
every time it is read or evaluated by the model. Symbolic 
regression can incorporate this random variable anywhere in its 
models to help explain the noise distribution.  

R() = uniform random value [-1, 1] 

Nearly all types of random variables and distributions can be 
derived from this uniform random variable. Symbolic regression 
treats this variable like it would any other attribute variable, and 
can derive combinations and transformations to non-uniform 
distributions. For example, the Normal distribution can be derived 

 Individual ind = { encoding E, stochastic elements S } 
 Input variables X 

 Function evalute() 

  For each s in S 
   s = random value [-1, 1] 
  End 
  … 
  val = evaluate ind normally 
  … 
  Return val 

 End 

 Individual ind 
 Training data D of (x,y) pairs 
 Number of samples N 

 Function fitness() 
  fitness = 0 
  For each d in D 
   yin, ymax 
   Repeat N times 
    y = ind.evaluate(d.x) 
    If (y < ymin) ymin = y 

    If (y > ymax) ymax = y 

   End 

   If (ymin < d.y < ymax) 
    fitness += 1/(ymax - ymin) 
   Else 
    fitness += – min(|d.y - ymax|, |d.y - ymax|) 
   End 

  End 

  Return fitness 

 End 

 
(a) 

 
(b) 

Figure 2. An example binary expression tree (a) for the 
function f(x)=exsin(x), and a similar tree modeling a 
stochastic element (b) for the function f(x)=exsin(x+R()). 
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from querying the uniform random variable twice: 

Normal  =  )()cos()1()ln()2ln( π⋅⋅+−⋅− RRA  

Symbolic regression most commonly represents candidate 
solutions as expression trees (Figure 3.a). 
We treat stochastic elements as a new variable in the terminal set 
that can be used anywhere in the expression tree to model the 
noise in experimental data (Figure 3.b). The new terminal value is 
special however in that it is randomized every time it is evaluated, 
even when appearing multiple times in the same expression tree. 

3.2 The Noise Distribution Objective 
Now that candidate models can include random variables, their 
output predictions will have some distribution. Our goal for this 
distribution is to explain all variation found in the training data, 
and do so in the narrowest and simplest way. 

A distribution explains a training data point if the data point falls 
inside the model’s distribution at that point. For example if 
f(x=10) has a distribution between [-9,-3], it explains the training 
data point if its value is -6, but not if it is 4. 

We can approximate the distribution of a candidate model at a 
training point by sampling it. In our experiments, we find the 
range of output for a training input by storing the minimum and 
maximum output from 100 model evaluations.  

Note however that a trivial solution would be a large (or perhaps 
infinite) distribution where all training data lies inside the 
distribution. Therefore, we must introduce a second objective to 
minimize the size of the distribution. 

If a training data point lies inside the model’s distribution, we 
want to minimize the height of the distribution at that point. If the 
point is not covered by the distribution, we want to minimize the 
distance of that point from the distribution. We can combine these 
two objectives into a single fitness criterion: 

∑
⎩
⎨
⎧

∈
∉−−

=
),(  ))((1

|)((|min
)(

yx )range(f(x)yifxfrange
)range(f(x)if yxfrangey

ffitness  

This is a two-step fitness objective, summarized in Figure 3. The 
model must first cover the point with its distribution, and then it 
must minimize the area of its distribution. As shown in Figure 3 
(b), training points not explained by the distribution contribute 
negatively to the fitness, and points that are explained contribute 
positively. 

Psuedocode for evaluating a model that contains stochastic 
elements, and for evaluating the distribution fitness of a model is 
shown on Page 3.  

4. EXPERIMENTS 
We modify a symbolic regression algorithm [1] to include 
stochastic elements and regress based on distributions rather than 
error minimization. This algorithm utilizes adaptive sampling of 
the training set to reduce computational cost, which is particularly 
high for finding the output distribution of candidate models 
during regression.  

Table I. Summary of Experiment Setup 

Solution Population Size 64 
Selection Method Deterministic Crowding 
P(mutation) 0.05 
P(crossover) 0.75 
  
Solution Encoding Operation List (graph) 
Operations 16 
Local Variables 4 
Evolved Constants 4 
Inputs 1 
Operator Set { +, -. *, /, sin, cos } 
Terminal Set { x, c1, c2, c3, c4 } 
Crossover variable, single point 
  
Fitness Sample Size 4 

Distribution Samples 100 

(a) (b) 
Figure 3. The fitness objective for explaining training data with a with model that has stochastic elements and output distribution. If a
training point falls inside the model distribution, the objective is to minimize the height of the distribution. If the point falls outside,
the objective is to minimize the distance of the point to the distribution. 
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Parameters for all experiments are summarized in Table I. In 
deterministic crowding, offspring replace their most similar parent 
if they have equal or higher fitness and are discarded otherwise. 
Population size, mutation probability, and crossover probability 
have been tuned empirically. Crossover produces a higher fit 
child approximately 20% of the time with these setting on the 
operation list encoding. 

The candidate solutions (algebraic expressions) are lists of 
operations on local variables. The number of operations and local 
variables were tuned for computational performance. The 
encoding size, terminal set, and operator set are over-represented 
(no experiments requires all for convergence). Single point 
crossover is used on the operation list at a variable offset. 

To measure fitness, the output distribution is measured on four 
inputs from the training set, one hundred times. The minimum and 
maximum values are then used to calculate the fitness described 
earlier. 

We test on three simple example systems each with a uniform 
stochastic element coupled in the system: 

 f1(x) = 10 sin(x + R) 
 f2(x) = x2 sin(x + R) 
 f3(x) = (x + R) - 1.5 x3 

These experiments demonstrate the finding the exact structure and 
parameters of the system despite internal stochastic noise which 
offset the expected output. 

5. RESULTS 
This section gives results on three simple examples of regressing 
stochastic elements embedded in a hidden system to demonstrate 
our approach. We show screen captures of different stages during 
regression to show the progress toward the analytical model. 

The time to regress each system successfully ranged from one to 
five minutes. The primary computation time consists in 
computing the candidate model distribution at each training point. 
We use random sampling to determine the output ranges at each 
point, but a more intelligent sampling method could be used to 
scale the application to higher complexity systems. 

Figure 4 shows three stages during regression of the function 
f(x)=10*sin(x+R), where R is a stochastic element variable that 
returns a uniformly random number in the range [-1,1] each time 
it is read. 

Early on, candidate solutions are linear with distributions that 
cover all the training points – shown in Figure 4 (a). In Figure 4 
(b), the solutions have inferred the sine function in the system, but 
the noise distribution is just added linearly to the output. In the 
next stage, Figure 4 (c), the solution has converged on the sine 

f(x) = 10R 

 
(a) 

f(x) = 10 sin(x) + 5R 

 
(b) 

f(x) = 10 sin(x + R) 

(c) 
Figure 4. The best model found at three points during regression of f(x) = 10 sin(x + R). The green points are the training data, the 
grey area is the model’s distribution, and the blue line is the analytical model with stochastic elements removed. 
 

 
(a) 

f(x) = x2 R 

 
(b) 

f(x) = x2 sin(x + R) 

(c) 
Figure 5. The best model found at three points during regression of f(x) = x2 sin(x + R). The green points are the training data, the 
grey area is the model’s distribution, and the blue line is the analytical model with stochastic elements removed. 
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function with the stochastic element located inside the sine 
function. 

Figure 5 shows the regression of the function f(x)=x2*sin(x+R) 
which is similar to the first experiment but now has a variable 
amplitude sine wave. Candidate solutions converge on quadratic 
amplitude noise very quickly – Figure 5 (b). Shortly after, the sine 
function is found and the analytical model converges in Figure 5 
(c). 

The third experiment uses a polynomial function but with noise 
simply added linearly to the output. This is a case where the 
minimum error model is the same as the analytical model but it is 
important that we can differentiate this type of noise as well.  

Figure 6 (a) shows early candidate solutions are linear with an 
additive noise range. In Figure 6 (b), the analytical model has 
been found but the noise distribution has not yet explained all 
data points. Figure 6 (c) shows the converged solution identifying 
the correct analytical model and its distribution. 

6. CONCLUSIONS 
Stochastic elements existing inside a hidden system can produce 
nonlinear and non-uniform noise at the observable outputs. There 
are many cases where the expected value output or minimum 
error regression can be deceiving toward finding an exact 
analytical model as done in symbolic regression. 
We have presented a simple approach to model stochastic 
elements directly as uniform random features using symbolic 
regression. The objective for candidate models with stochastic 
elements is to explain (overlap) all training data points in its 
distribution and minimize the area of the distribution used. 
Results show this approach can find the exact analytical model 
despite misleading nonlinear and non-uniform output noise.  In 
three basic experiments, regression of the output distribution 
found the correct system structure and location of the stochastic 
elements with parameters existing in the hidden system. 
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f(x) = -1.5 x + 3R 

 
(a) 

f(x) = x R - 1.5 x3 

(b) 

f(x) = (x + R) - 1.5 x3 

(c) 
Figure 6. The best model found at three points during regression of f(x) = (x + R) - 1.5 x3. The green points are the training data, the 
grey area is the model’s distribution, and the blue line is the analytical model with stochastic elements removed. 
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