
Improving the Human Readability of Features Constructed
by Genetic Programming

Matthew Smith
Faculty of Computing, Engineering &

Mathematical Sciences,
University of the West of England,

Bristol BS16 1QY, U.K.
matthew.smith@thinkinglogic.com

Larry Bull
Faculty of Computing, Engineering &

Mathematical Sciences,
University of the West of England,

Bristol BS16 1QY, U.K.
larry.bull@uwe.ac.uk

ABSTRACT
The use of machine learning techniques to automatically analyse
data for information is becoming increasingly widespread. In this
paper we examine the use of Genetic Programming and a Genetic
Algorithm to pre-process data before it is classified by an external
classifier. Genetic Programming is combined with a Genetic
Algorithm to construct and select new features from those
available in the data, a potentially significant process for data
mining since it gives consideration to hidden relationships
between features. We then examine techniques to improve the
human readability of these new features and extract more
information about the domain.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming –
Automatic analysis of algorithms, Program modification,
Program synthesis, Program transformation, Program
verification.

General Terms
Algorithms, Performance, Experimentation, Human Factors.

Keywords
Genetic programming, genetic algorithm, feature construction,
feature selection, classification, human readability, parsimony,
post-processing, knowledge discovery.

1. INTRODUCTION
Classification is one of the major tasks in data mining, involving
the prediction of class value based on information about the other
attributes. In this paper we examine the combination of Genetic
Programming (GP) [12] and a Genetic Algorithm (GA) [8] to
improve the performance of a classification algorithm through
feature construction and feature selection. Feature construction is
a process that aims to discover hidden relationships between
features, inferring new composite features. In contrast, feature
selection is a process that aims to refine the list of features used

thereby removing potential sources of noise and ambiguity. We
use GP individuals consisting of a number of separate
trees/automatically defined functions (ADFs) [12] to construct
features. A GA is simultaneously used to select over the new set
of constructed features. Previous results [21] have shown that the
system is able to construct a new set of features that improve the
individual performance of 3 classification algorithms: C4.5 [17];
IBk, a k-nearest neighbour classifier [1] with k=1; and Naïve
Bayes, a probability based classifier [9] on a number of datasets
held at the UCI repository (http://www.ics.uci.edu
/~mlearn/MLRepository.html). The system is also able to select
the most appropriate classifier for the dataset at hand. We then
show how using a parsimony measure based on that of Bojarczuk
et. al. [4] can reduce the size and number of GP trees to improve
human readability without appearing to significantly harm the
performance of the algorithm. The parsimony measure is then
compared with a method of post-processing, similar to reduced
error pruning [15], to improve human readability.
Raymer et al. [18] have used ADFs for feature extraction in
conjunction with the k-nearest-neighbour algorithm. Feature
extraction replaces an original feature with the result from passing
it through a functional mapping. In Raymer et al.’s approach each
feature is altered by an ADF, evolved for that feature only, with
the aim of increasing the separation of pattern classes in the
feature space; for problems with n features, individuals consist of
n ADFs. Ahluwalia and Bull [2] extended Raymer et al.’s
approach by coevolving the ADFs for each feature and adding an
extra coevolving GA population of feature selectors; extraction
and selection occurred simultaneously in n+1 populations for use
by a k-nearest-neighbour algorithm. For other (early) examples of
evolutionary computation approaches to data mining see [19] for
a GA-based feature selection approach using k-nearest-neighbour
and [10] for a similar GA-based approach also using k-nearest-
neighbour.
Vafaie and DeJong [23] demonstrated a combination of GP and a
GA for use with C4.5. They used the GA to perform feature
selection for a face recognition dataset where feature subsets were
evaluated through their use by C4.5. GP individuals were then
evolved which contained a variable number of ADFs to construct
new features from the selected subset, again using C4.5. Our
approach is similar to Vafaie and DeJong’s but feature
construction and selection are combined within a single stage
instead of starting with feature selection and then alternating
between construction and selection. We find that our approach
performs as well or better than Vafaie and DeJong’s [21].
Krawiec [13] has also presented a similar approach.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007...$5.00.

1694

More recent work using GP to construct features for use by C4.5
includes that of Otero et al. [16]. They use a population of GP
trees to evolve a single new feature using information gain as the
fitness measure (this is the criteria used by C4.5 to select
attributes to test at each node of the decision tree). This produces
a single feature that attempts to cover as many instances as
possible – a feature that aims to be generally useful and which is
appended to the set of original features for use by C4.5. Ekárt and
Márkus [6] use GP to evolve new features that are useful at
specific points in the decision tree by working interactively with
C4.5. They do this by invoking a GP algorithm when constructing
a new node in the decision tree – e.g., when a leaf node
incorrectly classifies some instances. Information gain is again
used as the fitness criterion but the GP is trained only on those
instances relevant at that node of the tree.
While Naïve Bayes is often used as a bench mark comparison for
GP algorithms relatively little work seems to have been done to
combine GP with Naïve Bayes. Langdon and Buxton [14] have
combined GP and Naïve Bayes by using the output of Naïve
Bayes (along with a number of other classification algorithms) as
an input to GP, but not used GP to improve the performance of a
Naïve Bayes algorithm.
One of the advantages of Genetic Programming is that it has the
potential to produce solutions that are amenable to human
readability. The results can be made easier to read by reducing
their complexity, either through post-processing (removing
redundant sub-trees) or during their evolution by introducing a
fitness function that encourages simplicity. Simpler solutions can
also reduce the well known problem of over-fitting. Much of the
work on enforcing simplicity in GP has focused on controlling
bloat in decision trees: De Jong et al. [5] and Bernstein et al. [3]
have used multi-objective techniques to control bloat, while
Thomas and Sycara [22] have enforced simplicity by controlling
the maximum depth of GP trees for data mining in financial data.
Bojarczuk et al. [4] have applied a fitness function that combines
predictive accuracy and simplicity to medical datasets, with the
primary intention of improving human readability. Most theories
that explain bloat in decision trees rest on the fact “that it is easier
to add code to a program than it is to remove it. That is, it is quite
difficult to remove code from an effectively functioning program
without heavily impacting on that functionality and thus reducing
its fitness” [3]. As this does not apply in the same way to
constructed features (a sub-tree can be removed from a single
feature without significantly reducing overall fitness) bloat does
not pose such a problem, and instead we concentrate here on
improving readability.
This paper is arranged as follows: the next section describes the
algorithm; section 3 presents results from its use on a number of
well-known datasets and discusses the results. Two measures are
then introduced to improve human readability in section 4; in
section 5 the algorithm is applied to a dataset used for computer
aided vision, followed by some conclusions and future directions
in section 6.

2. THE GAP ALGORITHM
In this work we have used the WEKA [24] data mining toolset to
examine the performance of our Genetic Algorithm and
Programming (GAP) approach [21]. This is a wrapper approach
[11], in which the fitness of individuals is evaluated by

performing 10-fold cross validation using the same inducer as
used to create the final classifier. The algorithm is capable of
operating with any WEKA-compatible classifier, in this paper we
will concentrate on its use with the WEKA implementation of
C4.5 (known as J48), k-nearest neighbour (IBk) and Naïve Bayes.
Our algorithm is now briefly described (see [21] for a more
detailed description and some analysis of the feature sets created).

A population of 101 genotypes is created at random. Each
genotype consists of n trees, where n is the number of numeric
valued features in the dataset, subject to a minimum of 7. This
minimum is chosen to ensure that, for datasets with a small
number of numeric features, the initial population contains a large
number of compound features. A tree can be either an original
feature or an ADF. That is, a genotype consists of n GP trees,
each of which may contain 1 or more nodes. The chance of a node
being a leaf node (a primitive attribute) is determined by:

()1
11
+

−=
depth

Pleaf

(1)

Where depth is the depth of the tree at the current node. Hence a
root node will have a depth of 1, and therefore a probability of 0.5
of being a leaf node, and so on. If a node is a leaf, it takes the
value of one of the original features chosen at random. Otherwise,
a function is randomly chosen from the set {*, /, +, -, %, log} and
two child nodes are generated (one child in the case of log). In
this manner there is no absolute limit placed on the depth any one
tree may reach but the average depth is limited (see [21] for a
comparison with the more traditional ramped half and half
method).

During the initial creation no two trees in a single genotype are
allowed to be alike and no two genotypes are allowed to be the
same, though these restrictions are not enforced in later stages.
Additionally, nodes with ‘–‘, ‘%’ or ‘/’ for functions cannot have
child nodes that are equal to each other. In order to enforce this,
child nodes within a function ‘*’ or ‘+’ are ordered
lexicographically to enable comparison (e.g. [width + length] will
become [length + width]). Each tree has an associated activity – a
boolean switch set randomly in the initial population that
determines if the feature created by the tree will be used. Each
genotype also has a flag specifying the classifier it is to use (one
of C4.5, IBk, Naïve Bayes).

An individual is evaluated by constructing a new dataset with one
feature for each active tree in the genotype. This dataset is then
passed to the specified classifier (using default parameters),
whose performance on the dataset is evaluated using 10-fold cross
validation. The percentage correct is then assigned to the
individual and used as the fitness score.

Once the initial population has been evaluated, several
generations of selection, crossover, mutation and evaluation are
performed. We use tournament selection to select the parents of
the next generation, with a tournament size of 6. The classifier
flag is copied from parent to child, subject to mutation (changed
to a randomly selected, but different, classifier) with a probability
of 0.2. There is a 0.6 probability of uniform crossover occurring
between the ADFs of the two selected parents (whole trees are
exchanged between genotypes). The activity switch remains
associated with the tree.

1695

There is an additional 0.6 probability that crossover will occur
within two ADFs at a randomly chosen locus (sub-trees are
exchanged between trees in the same position in the child
genotypes). There is a 0.24 probability per individual of mutating
tree structure (in which a single node in one active tree is replaced
with a random sub-tree1), and an additional 0.24 probability of
mutating tree activity (in which the activity bit of a single tree is
flipped). We also use a form of inversion with low probability
(0.02), whereby the order of the trees between two randomly
chosen loci is reversed.

The fittest individual in each generation is copied unchanged to
the next generation. The evolutionary process continues until the
following conditions are met: at least 20 generations have passed,
and the fittest individual so far is at least 12 generations old. At
this point, in order to reduce over-fitting the training dataset is
randomly reordered, the fitness of the population re-evaluated,
and evolution continues until the termination criteria are reached a
second time. This provides a different split for the cross-
validation and has been found to reduce over-fitting.

This is a lengthy process, as performing 10-fold cross validation
for each member of the population is very processor intensive.
The extra time required for cross-validation can be justified here
by the improvement in the results over using, e.g., a single train
and test set (results not shown). Information Gain, the fitness
criterion employed by both Otero and Ekárt, is much faster but is
only applicable to a single feature – it cannot provide the fitness
criterion for a set of features (it is also specific to C4.5, and the
GAP algorithm is designed to be classifier-neutral).

3. INITIAL EXPERIMENTATION
3.1 Datasets
We have used ten well-known data sets from the UCI repository
to examine the performance of the GAP algorithm. The UCI
datasets were chosen because they consisted entirely of numeric
attributes (though the algorithm can handle nominal attributes, as
long as there are two or more numeric attributes present). Table 1
shows the details of the ten datasets used here.

For performance comparisons the tests were performed using ten-
fold cross-validation, and in which 90% of the data was used for
training and 10% for testing. An additional set of ten runs using
ten-fold cross validation were made (a total of twenty runs - two
sets of ten-fold cross-validation) to allow a paired t-test to
establish the significance of any improvement over the
comparison classifier. During each of the 20 runs all 3 unaided
classifiers were evaluated against the training data and the most
accurate classifier was selected as the comparison for evaluation
on the test data.

1 The new sub-tree is created using equation 1 but using an initial

depth of 1, regardless of where in the tree it will be inserted.

Table 1. UCI dataset information

Dataset Features Classes Instance
s

BUPA Liver Disorder
(Liver) 6 2 345

Glass Identification (Glass) 9 6 214

Ionosphere (Iono.) 34 2 351

New Thyroid (NT) 5 3 215
Pima Indians Diabetes
(Diab.) 8 2 768

Sonar 60 2 208

Vehicle 18 4 846

Wine Recognition (Wine) 13 3 178
Wisconsin Breast Cancer –
New (WBC New) 30 2 569

Wisconsin Breast Cancer –
Original (WBC Orig.) 9 2 699

3.2 Results
The highest classification score for each dataset is shown in Table
2 in bold. The first two columns show the performance of the
GAP algorithm and comparison on the test data (with standard
deviation in brackets), and the last column shows the results of
the paired t-test comparing the GAP algorithm to the selected
comparison classifier. Results that are significant at the 95%
confidence level are shown in bold. Table 3 shows the classifier
that was selected most often for the dataset, and the number of
times it was selected. Table 4 shows the performance of each of
the unaided classifiers for comparison purposes (see [20] for
details of how the GAP algorithm successfully improves the
performance of each of these classifiers individually).

Table 2. Performance of GAP algorithm and comparison

Dataset GAP (S.D.) Comparison
(S.D.)

Paired
t-test

Liver 68.71 (7.98) 64.76 (8.99) 2.44

Glass 73.86 (9.09) 68.78 (11.47) 2.16

Iono. 88.08 (6.69) 89.82 (4.79) -1.10

NT 96.52 (3.63) 96.26 (4.19) 0.32

Diab. 74.55 (5.28) 76.05 (4.87) -1.12

Sonar 88.30 (7.66) 86.65 (6.56) 0.95

Vehicle 71.93 (4.79) 72.22 (3.33) -0.20

Wine 96.32 (4.27) 97.99 (3.85) -2.29

(WBC New) 94.32 (3.71) 95.09 (3.06) -0.93

(WBC Orig.) 95.70 (2.60) 95.99 (1.84) -0.74

Overall 84.83 84.36 1.03

The initial results indicate that GAP algorithm performs little
better than selecting the most appropriate classifier for the dataset
at hand, at a significant increase in cost (time). Part of the lack of

1696

improvement may be due to the fact that C4.5 appears more
prone to over-fitting than the other classifiers and the fitness
(not shown) of C4.5 genotypes often overshadows other,
ultimately more accurate, genotypes. For instance on the WBC
original dataset C4.5 is selected 10 times, while selecting Naïve
Bayes instead would have resulted in a higher test score.

Table 3. Selection of classifiers by dataset

Dataset
Classifier Most

Used
count

Liver C4.5 16

Glass IBk 20

Iono. C4.5 15

NT NaiveBayes 11

Diab. NaiveBayes 14

Sonar IBk 20

Vehicle C4.5 12

Wine NaiveBayes 11

(WBC New) IBk 9

(WBC Orig.) C4.5 10

Table 4. Performance of unaided classifiers

Dataset C4.5(J48) IBk Naïve Bayes

Liver 66.37 62.62 54.19

Glass 68.28 68.79 48.50

Iono. 89.82 86.95 82.37

NT 92.31 96.95 97.20

Diab. 73.32 69.90 75.13

Sonar 73.86 86.65 67.16

Vehicle 72.22 70.03 43.98

Wine 93.27 95.44 97.99

(WBC New) 93.88 95.44 93.26

(WBC Orig.) 94.42 95.42 96.06

Overall 81.77 82.82 75.58

However there is still scope for successful use of the GAP
algorithm. Being probabilistic in nature the GAP algorithm will
produce a different set of features every time it is run – some of
which will be better than others. The results have been obtained
from 20 runs per dataset, every run providing a distinct set of
features and the score is an average over the 20 feature sets (or
feature/classifier combinations) - each set tested on a single data
fold. In a practical situation we are not interested in the average
utility of a number of feature sets, but in using the best available
feature set.

The best of the feature sets tends to show a marked improvement
over the average, and over the performance of an unaided
classifier. In section 5 we will be able to demonstrate this
improvement on a larger dataset in which a third of the data has
been held back for this purpose.

4. IMPROVING HUMAN READABILITY

4.1 Applying a Parsimony measure
The parsimony measure presented here is modelled on the fitness
function used by Bojarczuk et al. [04]. They applied a fitness
function that combines predictive accuracy and simplicity to a GP
system which operates on medical datasets with a binary
classification (in which a person either has a specific condition or
they do not). Their fitness function is defined as follows:

SimplicityySpecificitySensitivitFitness ∗∗= (2)

Where Sensitivity measures the rate of true positives against false
negatives, and Specificity measures the rate of true negatives
against false positives. As our algorithm is designed to work with
datasets having multiple classifications, sensitivity and specificity
are not appropriate, so these are replaced with the existing fitness
measure: predictive accuracy – the proportion of instances
correctly identified during 10-fold cross validation.

Bojarczuk et al.’s measure of simplicity is defined as:

)1(
)5.05.0(

−
−∗−

=
maxnodes

numnodesmaxnodes
Simplicity (3)

“Where numnodes is the current number of nodes (functions and
terminals) of an individual (tree), and maxnodes is the maximum
allowed size of a tree (set to 45).” [04] For our purposes we take
numnodes to be defined as the total number of nodes in all active
trees in an individual. Because in our algorithm there is no
maximum size for a GP tree maxnodes is defined, somewhat
arbitrarily, as twice the number of nodes in the largest individual
in the initial population.

If we modify the fitness function of the GAP algorithm to be:

SimplicityAccuracyPredictiveFitness ∗= (4)

With simplicity is defined as in equation 3, simplicity quickly
overwhelms predictive accuracy. Before the simplicity measure is
applied the average number of nodes in the fittest individual is
approx. 23 nodes in 9 trees; with the simplicity measure applied it
drops to roughly 7 nodes in 6 trees, i.e., feature construction is
almost completely eliminated. The overall performance also
drops, from 84.3% to 83.3%. This is because Bojarczuk et al.’s
measure is designed to reduce the complexity of a GP classifier,
not reduce the complexity of features passed to a classifier. A GP
classifier with just a single node is doomed to failure, while, say,
C4.5 may still perform well given just one feature (at least to the
extent that the loss in accuracy is less than the gain from
simplicity).

It is possible to amend Bojarczuk et al.’s measure of simplicity to
include a strength parameter:

)1(
))1((

−
−−∗−

=
maxnodes

strengthnumnodesstrengthmaxnodesSimplicity (5)

1697

If strength is 0.5 then the simplicity measure is the same as
Bojarczuk et al.’s, if strength is reduced to 0 simplicity is
eliminated from the fitness function. Figures 1 and 2 illustrate the
effect of varying values of the strength parameter. Initially
strength values in the series 0, 0.05, 0.1, 0.15,…0.45 were tried
(not shown), then the range was narrowed down to 0, 0.01,
0.02,…0.1. All values are averages over all ten datasets listed in
table 1, with 20 runs per dataset.

5
7
9

11
13
15
17
19
21
23
25

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Simplicity Strength

Nodes per individual Trees per individual

Figure 1. No. Nodes and Trees vs. Simplicity Strength

0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89
0.9

0.91
0.92

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Simplicity Strength

fitness accuracy (train) accuracy (test)

Figure 2. Fitness and Accuracy vs. Simplicity Strength

A value of 0.04 was finally chosen for the simplicity strength
parameter (i.e., the simplicity of a genotype accounts for 4% of its
fitness). 0.04 was chosen because it successfully simplifies the
individuals (reducing the average number of nodes per tree from
roughly 2.5 to just over 2) while allowing feature construction to
continue playing a meaningful part in the algorithm. It also
occupies a slight hump in the graph of predictive accuracy for
both train and test scores (Figure 2).
Table 5 shows the results for the algorithm including parsimony
on the UCI datasets. The figures are very similar to those without
the parsimony measure. Results for the Liver dataset are no longer
significant but otherwise there is no significant change in the
performance, while the average number of nodes in the output has
been reduced by 16%. However this average hides some variation
between datasets. More nodes are removed on datasets with many

attributes (and correspondingly many possible trees) than on those
with few attributes. The accuracy on the test set remains almost
exactly the same when setting simplicity strength to 0.04 (as
compared to no parsimony pressure), while the average standard
deviation drops slightly from 5.6% to 5.0%. The average number
of generations drops by just under 11%, from 72.5 to 64.7
generations.

Table 5. Performance with parsimony

Dataset GAP (S.D.) Comparison
(S.D.)

Paired
t-test

Liver 66.64 (9.77) 64.76 (8.99) 0.80

Glass 73.46 (8.50) 68.78 (11.47) 2.17

Iono. 89.34 (4.68) 89.82 (4.79) -0.37

NT 96.28 (3.22) 96.26 (4.19) 0.03

Diab. 75.13 (4.39) 76.05 (4.87) -1.26

Sonar 87.74 (5.85) 86.65 (6.56) 0.88

Vehicle 71.82 (4.98) 72.22 (3.33) -0.31

Wine 94.90 (4.83) 97.99 (3.85) -2.90

(WBC New) 95.88 (2.14) 95.09 (3.06) 1.42

(WBC Orig.) 96.36 (1.68) 95.99 (1.84) 1.05

Overall 84.75 84.36 0.92

4.2 Post-Processing the Final Genotype
Even with parsimony pressure applied by the simplicity function
there is no guarantee that the final genotype does not contain
redundant or unhelpful nodes that obscure useful information.
There are two techniques that we apply to clean the final
genotype. Both techniques use the full dataset and have not been
applied to the genotypes used to obtain the results shown above.
Note that as the post-processing techniques involve the full
dataset it is impossible to give a fair estimate of the change in
predictive accuracy, as the cleaned genotypes have effectively
‘seen’ the test data (the UCI datasets are too small to keep back a
separate validation set).

The first technique is to identify any sub-trees that evaluate to a
constant and replace them with that constant. A sub-tree is said to
evaluate to a constant if it returns the same value for every
instance in the dataset. Constants do not appear in the final
genotype very often – in less than 1 in 20 runs, but this step
certainly aids human readability when they do occur.

The second is to identify and remove any trees or sub-trees that
do not contribute to the predictive accuracy of the genotype. This
has the same purpose as the simplicity measure but operates in a
deterministic fashion, and is similar to the reduced error pruning
technique applied to decision trees [15] except using cross-
validation instead of separate validation data (see also [7] for
related work). First, the genotype is evaluated by ten-fold cross
validation to provide a baseline score. Then each active tree in
turn is deactivated and the genotype is re-evaluated. If the new
score is the same as or better than the baseline score then the tree
remains deactivated and the new score becomes the baseline.
Otherwise the tree is re-activated.

1698

After the trees have been evaluated in such a fashion, sub-trees
are similarly evaluated. This is done by replacing the top node of
each sub-tree by each of its operands in turn, re-evaluating the
genotype at each step. Once again if the new score is the same as
or better than the baseline score then the function is permanently
replaced by its operand. Otherwise the process continues in a
depth-first, left-right fashion. For example, if a sub-tree consists
of the function (A + B) then the function will be replaced by A
(so that the function is replaced by a leaf node) and the genotype
re-evaluated. If using A instead of (A + B) offers the same or
improved performance then the function will be replaced by A.
Otherwise the function is instead replaced by B and the genotype
re-evaluated again.

Post-processing reduces the number of nodes in the final genotype
by an average of 6.9 nodes (or 30% of the total) with no
parsimony pressure applied, and 5.3 nodes (27.4%) with
parsimony pressure. With a simplicity strength of 0.04 there is
evidently still scope for the post-processing to remove a fairly
large proportion of redundant nodes from the final genotype.
Conversely, after cleaning the parsimonious genotypes remain
slightly smaller than their counterparts (an average of 14.1 nodes
compared with 16.1) indicating that the parsimony pressure may
be eliminating some potentially useful nodes. The lower standard
deviation of the parsimonious solutions suggests that at least some
of those nodes are over-fitting the training data, however.

5. APPLICATION TO A VISION DATASET
The machine vision dataset we used consists of measurements of
video data feed from a camera in a controlled environment. The
aim is to identify and provide a colouring for various objects in a
room on a mobile display. The dataset consists of 9963 instances,
31 real-number attributes and 6 classes. The attributes are
Luminance, Red, Green, Blue, and 27 Harr Wavelet coefficients2
(8 size scales, 3 orientations). The class values are Obstacle,
Boundary, Floor, Chair, Ball and Box. The target performance is
93%, as achieved by an MLP in a previous study (unpublished).
The dataset was randomly divided into a training set of 6676
instances (67%) and a validation set of 3287 instances. The
training set was then treated as the source for 20 runs of the
algorithm, each using 90% of the data for training and 10% for
test.

Table 6. Performance of unaided classifiers on Vision Dataset

Classifier Accuracy
(train)

Accuracy
(test)

C4.5 87.43 (1.06) 88.56

IBk 90.14 (0.84) 90.57

Naïve Bayes 65.36 (2.05) 65.14

The performance of the unaided classifiers on the training set is
shown in Table 6 (accuracy on the train set is from cross-
validation, followed by standard deviation in brackets). The
accuracy figure in the final column was obtained from a single
run on the test data. It can quickly be seen that of the three

2 Harr Wavelet coefficients can be used to identify edges in

images.

classifiers, IBk is the most accurate by a convincing margin, but
falls short of the performance achieved by the MLP neural
network.

5.1 Applying Parsimony Pressure
The GAP algorithm was tested with and without parsimony on the
training data, results are shown in Table 7 (at this point no post-
processing has been done, and genotypes not evaluated on the
validation data). Due to the performance implications of using a
large dataset the actual number of instances used during fitness
evaluation for the GAP algorithm was limited to 2000 (randomly
selected)3.

Table 7. Performance of GAP on Vision training set

 Accuracy (S.D.) Paired t-test

Without Parsimony 91.56 (1.66) 4.26

With Parsimony 91.42 (1.26) 4.53

The accuracy is virtually the same with or without parsimony, but
applying parsimony pressure reduces the number of nodes by
approx. 48% and in doing so reduces the standard deviation.
Applying parsimony pressure provides some robustness to the
algorithm by reducing variation between solutions with minimal
cost to accuracy (thus improving the t-test value). The t-test
values are obtained by comparing the accuracy against that of IBk
on the training data.

Despite the fact that on its own IBk is clearly the best of the three
classifiers for this dataset, over 25% of the final genotypes used
C4.5 as the base classifier, rising to just over 50% when
parsimony pressure is applied.

Although the algorithm provides a significant improvement over
an unaided classifier it still falls short of the accuracy of the MLP
neural network used in the previous study. However we have not
yet performed any post-processing to clean the genotypes, and the
presence of a separate validation set allows us to test the best
single genotype (as identified by cross-validation on the training
set).

5.2 Effect of Post-Processing
Post-processing to clean the final genotypes reduces the number
of nodes as shown in Table 8 - figures show nodes before and
after post-processing, followed by accuracy using cross-validation
on the training set. Recall that as post-processing uses the entire
(training) set it cannot be fairly compared to the accuracy of the
initial genotypes shown in Table 7, although it is indicative.

3 At the point where the termination criteria have been met the

first time and the dataset would be randomly reordered, it was
instead re-sampled to obtain a different random selection of
2000 instances from the training set.

1699

Table 8. Effect of post-processing

 Avg. Nodes
(before)

Avg. Nodes
(after)

Accuracy
(S.D.)

Without Parsimony 52.2 28.6 92.17 (0.93)

With Parsimony 27.2 21.2 91.52 (1.06)

The cleaned genotypes with no parsimony are over 25% bigger
than the cleaned genotypes with parsimony applied, but they are
more accurate (by over half a percent) and the standard deviation
is now smaller than that with parsimony.

Comparing the number of nodes after post-processing, it appears
that applying parsimony pressure may be causing useful
information to be lost. However it is possible that the extra nodes
in the genotypes without parsimony are over-fitting the training
data and will prove detrimental on the validation data.

5.3 Applying the Best-of-Run Genotypes to
Validation Data
The individuals with the best accuracy using cross-validation on
the training set (after post-processing) were applied to the
validation set to obtain the results shown in Table 9. Both
individuals offer a marked improvement over the average shown
in Table 8.

Table 9. Best-of-Run Genotypes

 Accuracy
(train)

Accuracy
(validation)

Without Parsimony 94.01 94.83

With Parsimony 93.68 94.07

The best of run genotype without parsimony is three quarters of a
percent better than that with parsimony (both of which use IBk as
the base classifier), and indeed now offers almost two percent
improvement over the neural network. Thus results on the
validation data do not support the theory that the extra nodes
removed by parsimony pressure are over-fitting the training data
for the dataset. To determine the impact of post-processing on the
overall accuracy we also evaluated the same genotypes as they
were before post processing on the validation data. In both cases
the cleaned genotype performed better on the validation data than
the original genotype (the original without parsimony obtained
94.34% and the original with parsimony obtained 93.7%). That is,
post-processing appears to reduce over-fitting as well as
improving human readability.

5.4 Human Readability of the Results
Visual inspection of the best single genotype, while easier with
the cleaned genotype than the original, did not provide any
immediately useful information to a subject matter expert. This is
perhaps because the genotype still contains 18 features (of which
7 are trees/ADF’s) using 17 of the original attributes, and it is not
clear which of the features are the most useful in classification.
More useful information may be obtained using a process that
estimates the utility of each feature (by removing each one in turn
and determining the accuracy of the tree without it, also noting

any features that occur more than once4). Using this yardstick 3
ADF’s were identified as being the most important features:
Blue/Luminance, Green/Luminance and Log(Red), along with
one of the original coefficients. Dividing a colour by its
luminance was identified by the expert as a method by which the
true colour of an object may be determined (by factoring out the
level of light falling on it).
Additional use was made of the human readability of the decision
trees created by C4.5. These were created using the features of the
both the best of run genotype (based on IBk) and of the best
genotype based on C4.5 – see Figures 3 and 4. The presence of
ratios of colour/luminance at the top of both decision tree
hierarchies added weight to their importance in identifying
objects in images.
Analysis of the frequency with which attributes appear in all of
the final (cleaned) genotypes also provides some indication of
how useful they are in classification. The 3 colours and
luminosity are the most useful attributes (they always appear in
all 20 of the final genotypes regardless of parsimony pressure, and
are the only attributes to do so). These are followed by 2 of the
coefficients which appear in over 75% of the final genotypes.
Similar analysis of the frequency of ADF’s confirms the utility of
the 3 ADF’s identified above (which appear in at least a quarter of
the final genotypes), and also the ratios of Green and Blue to Red
(ADF’s that did not appear in the best of run).

6. CONCLUSIONS
When pre-processing data, and in the absence of any form of post
processing, applying parsimony pressure successfully reduces the
number of nodes in the final solution, making it easier for a
human to read and adding some robustness by reducing variance
in the accuracy of the final solutions. However, it does introduce
a risk of removing some useful information from the solutions,
particularly the best-of-run.
Performing post-processing to clean the final genotypes has a
similar impact on human readability as parsimony pressure, but
does not run the same risk of losing useful information. It can also
help to reduce over-fitting.
Additional measures to determine the utility of individual features
(both within the single best solution and across all solutions)
provide a further aid to human readability.
Future work will investigate the application of the GAP algorithm
to larger datasets, and investigate combining all 20 final
genotypes into an ensemble classifier.

7. REFERENCES
[1] Aha, D., & Kibler, D. Instance-based learning algorithms.

Machine Learning vol.6, 1991, 37-66.
[2] Ahluwalia, M. & Bull, L. Co-Evolving Functions in Genetic

Programming: Classification using k-nearest neighbour. In
GECCO-99: Proceedings of the Genetic and Evolutionary

4 Because the genotype has been processed to remove any part

that does not contribute toward its accuracy, we may be certain
that IBk is benefiting from having extra copies of each of two
features: Blue/Luminance and log (Red); and one of the
coefficients.

1700

Computation Conference. Morgan Kaufmann, 1999 pp. 947–
952.

[3] Bernstein, Y., Li, X., Ciesielski, V., Song, A.: Multiobjective
parsimony enforcement for superior generalisation
performance. In: Proceedings of the Congress for
Evolutionary Computation 2004 (CEC'04), 2004 pp. 83-89.

[4] Bojarczuk, C.C., Lopes, H.S., Freitas, A.A., Michalkiewicz,
E.L., A constrained-syntax genetic programming system for
discovering classification rules: application to medical data
sets, Artificial Intelligence in Medicine 30 (1), 2004, 21–48.

[5] De Jong, E. D., Watson, R. A., Pollack, J. B. Reducing Bloat
and Promoting Diversity using Multi-Objective Methods. In
Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 2001), 2001, pp. 11-18.

[6] Ekárt, A. & Márkus, A. Using Genetic Programming and
Decision Trees for Generating Structural Descriptions of
Four Bar Mechanisms. In Artificial Intelligence for
Engineering Design, Analysis and Manufacturing, volume
17, issue 3, 2003.

[7] Garcia-Almanza, A.L., Tsang, E.P.K. Simplifying Decision
Trees Learned by Genetic Programming. IEEE Congress on
Evolutionary Computation, CEC 2006, pp 2142- 2148.

[8] Holland, J.H. Adaptation in Natural and Artificial Systems.
Univ. Michigan. 1975.

[9] John, G.H & Langley, P. Estimating Continuous
Distributions in Bayesian Classifiers. Proceedings of the
Eleventh Conference on Uncertainty in Artificial
Intelligence. Morgan Kaufmann, San Mateo. 1995, 338-345.

[10] Kelly, J.D. & Davis, L. Hybridizing the Genetic Algorithm
and the K Nearest Neighbors Classification Algorithm. In
Proceedings of the Fourth International Conference on
Genetic Algorithms. Morgan Kaufmann, 1991, pp377-383.

[11] Kohavi, R. & John, G. H. Wrappers for feature subset
selection. Artificial Intelligence Journal vol. 1-2: 273-324.
1997.

[12] Koza, J.R. Genetic Programming. MIT Press. 1992.
[13] Krawiec, K. Genetic Programming-based Construction of

Features for Machine Learning and Knowledge Discovery
Tasks. Genetic Programming and Evolvable Machines vol. 3
no. 4: 329-343. 2002.

Langdon, W. B. & Buxton, B. F. Genetic programming for
improved receiver operating characteristics. In Second
International Conference on Multiple Classifier System,
volume 2096: 68-77. 2001.

[14] Mitchell, T. M. Machine Learning. McGraw-Hill, 1997.
[15] Otero, F. E. B., Silva, M. M. S., Freitas, A. A. & Nievola J.

C. Genetic Programming for Attribute Construction in Data
Mining. In Genetic Programming: 6th European Conference,
EuroGP 2003, Essex, UK, April 2003, Proceedings.
Springer, pp. 384-393.

[16] Quinlan, J.R. C4.5: Programs for Machine Learning.
Morgan Kaufmann. 1993.

[17] Raymer, M.L., Punch, W., Goodman, E.D. & Kuhn, L.
Genetic Programming for Improved Data Mining -
Application to the Biochemistry of Protein Interactions. In
Proceedings of the Second Annual Conference on Genetic
Programming, Morgan Kaufmann, 1996, 375-380.

[18] Siedlecki, W. & Sklansky, J. On Automatic Feature
Selection. International Journal of Pattern Recognition and
Artificial Intelligence 2:197-220. 1988.

[19] Smith, M. & Bull, L. Using Genetic Programming for
Feature Creation with a Genetic Algorithm Feature Selector.
In Parallel Problem Solving from Nature - PPSN VIII, X.
Springer-Verlag, 2004.

[20] Smith, M. & Bull, L. Genetic Programming with a Genetic
Algorithm for Feature Construction and Selection. Genetic
Programming and Evolvable Machines vol. 6 no. 3: 265-
281. 2005

[21] Thomas, J. & Sycara, K. The Importance of Simplicity and
Validation in Genetic Programming for Data Mining in
Financial Data. Proceedings of the joint AAAI-1999 and
GECCO-1999 Workshop on Data Mining with Evolutionary
Algorithms, July, 1999.

[22] Vafaie, H. & De Jong, K. Genetic Algorithms as a Tool for
Restructuring Feature Space Representations. In Proceedings
of the International Conference on Tools with A.I. IEEE
Computer Society Press. 1995.

[23] Witten, I.H. & Frank, E. Data Mining: Practical Machine
Learning Tools and Techniques with Java Implementations.
Morgan Kaufmann. 2000.

Figure 3. Top section of the C4.5 decision tree for the best IBk genotype

Figure 4. Top section of the C4.5 decision tree for the best C4.5 genotype

1701

