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ABSTRACT 
The use of machine learning techniques to automatically analyse 
data for information is becoming increasingly widespread. In this 
paper we examine the use of Genetic Programming and a Genetic 
Algorithm to pre-process data before it is classified by an external 
classifier. Genetic Programming is combined with a Genetic 
Algorithm to construct and select new features from those 
available in the data, a potentially significant process for data 
mining since it gives consideration to hidden relationships 
between features. We then examine techniques to improve the 
human readability of these new features and extract more 
information about the domain.   

Categories and Subject Descriptors 
I.2.2 [Artificial Intelligence]: Automatic Programming – 
Automatic analysis of algorithms, Program modification, 
Program synthesis, Program transformation, Program 
verification. 

General Terms 
Algorithms, Performance, Experimentation, Human Factors. 

Keywords 
Genetic programming, genetic algorithm, feature construction, 
feature selection, classification, human readability, parsimony, 
post-processing, knowledge discovery. 

1. INTRODUCTION 
Classification is one of the major tasks in data mining, involving 
the prediction of class value based on information about the other 
attributes. In this paper we examine the combination of Genetic 
Programming (GP) [12] and a Genetic Algorithm (GA) [8] to 
improve the performance of a classification algorithm through 
feature construction and feature selection.  Feature construction is 
a process that aims to discover hidden relationships between 
features, inferring new composite features. In contrast, feature 
selection is a process that aims to refine the list of features used 

thereby removing potential sources of noise and ambiguity. We 
use GP individuals consisting of a number of separate 
trees/automatically defined functions (ADFs) [12] to construct 
features. A GA is simultaneously used to select over the new set 
of constructed features. Previous results [21] have shown that the 
system is able to construct a new set of features that improve the 
individual performance of 3 classification algorithms: C4.5 [17]; 
IBk, a k-nearest neighbour classifier [1] with k=1; and Naïve 
Bayes, a probability based classifier [9] on a number of datasets 
held at the UCI repository (http://www.ics.uci.edu 
/~mlearn/MLRepository.html). The system is also able to select 
the most appropriate classifier for the dataset at hand. We then 
show how using a parsimony measure based on that of Bojarczuk 
et. al. [4] can reduce the size and number of GP trees to improve 
human readability without appearing to significantly harm the 
performance of the algorithm. The parsimony measure is then 
compared with a method of post-processing, similar to reduced 
error pruning [15], to improve human readability. 
Raymer et al. [18] have used ADFs for feature extraction in 
conjunction with the k-nearest-neighbour algorithm. Feature 
extraction replaces an original feature with the result from passing 
it through a functional mapping. In Raymer et al.’s approach each 
feature is altered by an ADF, evolved for that feature only, with 
the aim of increasing the separation of pattern classes in the 
feature space; for problems with n features, individuals consist of 
n ADFs. Ahluwalia and Bull [2] extended Raymer et al.’s 
approach by coevolving the ADFs for each feature and adding an 
extra coevolving GA population of feature selectors; extraction 
and selection occurred simultaneously in n+1 populations for use 
by a k-nearest-neighbour algorithm. For other (early) examples of 
evolutionary computation approaches to data mining see [19] for 
a GA-based feature selection approach using k-nearest-neighbour 
and [10] for a similar GA-based approach also using k-nearest-
neighbour.  
Vafaie and DeJong [23] demonstrated a combination of GP and a 
GA for use with C4.5. They used the GA to perform feature 
selection for a face recognition dataset where feature subsets were 
evaluated through their use by C4.5. GP individuals were then 
evolved which contained a variable number of ADFs to construct 
new features from the selected subset, again using C4.5. Our 
approach is similar to Vafaie and DeJong’s but feature 
construction and selection are combined within a single stage 
instead of starting with feature selection and then alternating 
between construction and selection. We find that our approach 
performs as well or better than Vafaie and DeJong’s [21]. 
Krawiec [13] has also presented a similar approach.  
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More recent work using GP to construct features for use by C4.5 
includes that of Otero et al. [16]. They use a population of GP 
trees to evolve a single new feature using information gain as the 
fitness measure (this is the criteria used by C4.5 to select 
attributes to test at each node of the decision tree). This produces 
a single feature that attempts to cover as many instances as 
possible – a feature that aims to be generally useful and which is 
appended to the set of original features for use by C4.5. Ekárt and 
Márkus [6] use GP to evolve new features that are useful at 
specific points in the decision tree by working interactively with 
C4.5. They do this by invoking a GP algorithm when constructing 
a new node in the decision tree – e.g., when a leaf node 
incorrectly classifies some instances. Information gain is again 
used as the fitness criterion but the GP is trained only on those 
instances relevant at that node of the tree.  
While Naïve Bayes is often used as a bench mark comparison for 
GP algorithms relatively little work seems to have been done to 
combine GP with Naïve Bayes. Langdon and Buxton [14] have 
combined GP and Naïve Bayes by using the output of Naïve 
Bayes (along with a number of other classification algorithms) as 
an input to GP, but not used GP to improve the performance of a 
Naïve Bayes algorithm. 
One of the advantages of Genetic Programming is that it has the 
potential to produce solutions that are amenable to human 
readability. The results can be made easier to read by reducing 
their complexity, either through post-processing (removing 
redundant sub-trees) or during their evolution by introducing a 
fitness function that encourages simplicity. Simpler solutions can 
also reduce the well known problem of over-fitting. Much of the 
work on enforcing simplicity in GP has focused on controlling 
bloat in decision trees: De Jong et al. [5] and Bernstein et al. [3] 
have used multi-objective techniques to control bloat, while 
Thomas and Sycara [22] have enforced simplicity by controlling 
the maximum depth of GP trees for data mining in financial data. 
Bojarczuk et al. [4] have applied a fitness function that combines 
predictive accuracy and simplicity to medical datasets, with the 
primary intention of improving human readability. Most theories 
that explain bloat in decision trees rest on the fact “that it is easier 
to add code to a program than it is to remove it. That is, it is quite 
difficult to remove code from an effectively functioning program 
without heavily impacting on that functionality and thus reducing 
its fitness” [3]. As this does not apply in the same way to 
constructed features (a sub-tree can be removed from a single 
feature without significantly reducing overall fitness) bloat does 
not pose such a problem, and instead we concentrate here on 
improving readability. 
This paper is arranged as follows: the next section describes the 
algorithm; section 3 presents results from its use on a number of 
well-known datasets and discusses the results. Two measures are 
then introduced to improve human readability in section 4; in 
section 5 the algorithm is applied to a dataset used for computer 
aided vision, followed by some conclusions and future directions 
in section 6. 

2. THE GAP ALGORITHM 
In this work we have used the WEKA [24] data mining toolset to 
examine the performance of our Genetic Algorithm and 
Programming (GAP) approach [21]. This is a wrapper approach 
[11], in which the fitness of individuals is evaluated by 

performing 10-fold cross validation using the same inducer as 
used to create the final classifier. The algorithm is capable of 
operating with any WEKA-compatible classifier, in this paper we 
will concentrate on its use with the WEKA implementation of 
C4.5 (known as J48), k-nearest neighbour (IBk) and Naïve Bayes. 
Our algorithm is now briefly described (see [21] for a more 
detailed description and some analysis of the feature sets created). 

A population of 101 genotypes is created at random. Each 
genotype consists of n trees, where n is the number of numeric 
valued features in the dataset, subject to a minimum of 7. This 
minimum is chosen to ensure that, for datasets with a small 
number of numeric features, the initial population contains a large 
number of compound features. A tree can be either an original 
feature or an ADF. That is, a genotype consists of n GP trees, 
each of which may contain 1 or more nodes. The chance of a node 
being a leaf node (a primitive attribute) is determined by: 

( )1
11
+

−=
depth

Pleaf
 

(1) 

Where depth is the depth of the tree at the current node. Hence a 
root node will have a depth of 1, and therefore a probability of 0.5 
of being a leaf node, and so on. If a node is a leaf, it takes the 
value of one of the original features chosen at random. Otherwise, 
a function is randomly chosen from the set {*, /, +, -, %, log} and 
two child nodes are generated (one child in the case of log). In 
this manner there is no absolute limit placed on the depth any one 
tree may reach but the average depth is limited (see [21] for a 
comparison with the more traditional ramped half and half 
method).  

During the initial creation no two trees in a single genotype are 
allowed to be alike and no two genotypes are allowed to be the 
same, though these restrictions are not enforced in later stages. 
Additionally, nodes with ‘–‘, ‘%’ or ‘/’ for functions cannot have 
child nodes that are equal to each other. In order to enforce this, 
child nodes within a function ‘*’ or ‘+’ are ordered 
lexicographically to enable comparison (e.g. [width + length] will 
become [length + width]). Each tree has an associated activity – a 
boolean switch set randomly in the initial population that 
determines if the feature created by the tree will be used. Each 
genotype also has a flag specifying the classifier it is to use (one 
of C4.5, IBk, Naïve Bayes). 

An individual is evaluated by constructing a new dataset with one 
feature for each active tree in the genotype. This dataset is then 
passed to the specified classifier (using default parameters), 
whose performance on the dataset is evaluated using 10-fold cross 
validation. The percentage correct is then assigned to the 
individual and used as the fitness score. 

Once the initial population has been evaluated, several 
generations of selection, crossover, mutation and evaluation are 
performed. We use tournament selection to select the parents of 
the next generation, with a tournament size of 6. The classifier 
flag is copied from parent to child, subject to mutation (changed 
to a randomly selected, but different, classifier) with a probability 
of 0.2. There is a 0.6 probability of uniform crossover occurring 
between the ADFs of the two selected parents (whole trees are 
exchanged between genotypes). The activity switch remains 
associated with the tree.  
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There is an additional 0.6 probability that crossover will occur 
within two ADFs at a randomly chosen locus (sub-trees are 
exchanged between trees in the same position in the child 
genotypes). There is a 0.24 probability per individual of mutating 
tree structure (in which a single node in one active tree is replaced 
with a random sub-tree1), and an additional 0.24 probability of 
mutating tree activity (in which the activity bit of a single tree is 
flipped). We also use a form of inversion with low probability 
(0.02), whereby the order of the trees between two randomly 
chosen loci is reversed. 

The fittest individual in each generation is copied unchanged to 
the next generation. The evolutionary process continues until the 
following conditions are met: at least 20 generations have passed, 
and the fittest individual so far is at least 12 generations old. At 
this point, in order to reduce over-fitting the training dataset is 
randomly reordered, the fitness of the population re-evaluated, 
and evolution continues until the termination criteria are reached a 
second time. This provides a different split for the cross-
validation and has been found to reduce over-fitting. 

This is a lengthy process, as performing 10-fold cross validation 
for each member of the population is very processor intensive. 
The extra time required for cross-validation can be justified here 
by the improvement in the results over using, e.g., a single train 
and test set (results not shown). Information Gain, the fitness 
criterion employed by both Otero and Ekárt, is much faster but is 
only applicable to a single feature – it cannot provide the fitness 
criterion for a set of features (it is also specific to C4.5, and the 
GAP algorithm is designed to be classifier-neutral). 

3. INITIAL EXPERIMENTATION 
3.1 Datasets 
We have used ten well-known data sets from the UCI repository 
to examine the performance of the GAP algorithm. The UCI 
datasets were chosen because they consisted entirely of numeric 
attributes (though the algorithm can handle nominal attributes, as 
long as there are two or more numeric attributes present). Table 1 
shows the details of the ten datasets used here. 

For performance comparisons the tests were performed using ten-
fold cross-validation, and in which 90% of the data was used for 
training and 10% for testing. An additional set of ten runs using 
ten-fold cross validation were made (a total of twenty runs - two 
sets of ten-fold cross-validation) to allow a paired t-test to 
establish the significance of any improvement over the 
comparison classifier. During each of the 20 runs all 3 unaided 
classifiers were evaluated against the training data and the most 
accurate classifier was selected as the comparison for evaluation 
on the test data. 

                                                                 
1 The new sub-tree is created using equation 1 but using an initial 

depth of 1, regardless of where in the tree it will be inserted. 

Table 1. UCI dataset information 

Dataset Features Classes Instance
s 

BUPA Liver Disorder 
(Liver) 6 2 345

Glass Identification (Glass) 9 6 214

Ionosphere (Iono.) 34 2 351

New Thyroid (NT) 5 3 215
Pima Indians Diabetes 
(Diab.) 8 2 768

Sonar 60 2 208

Vehicle 18 4 846

Wine Recognition (Wine) 13 3 178
Wisconsin Breast Cancer – 
New (WBC New) 30 2 569

Wisconsin Breast Cancer – 
Original (WBC Orig.) 9 2 699

3.2 Results 
The highest classification score for each dataset is shown in Table 
2 in bold. The first two columns show the performance of the 
GAP algorithm and comparison on the test data (with standard 
deviation in brackets), and the last column shows the results of 
the paired t-test comparing the GAP algorithm to the selected 
comparison classifier. Results that are significant at the 95% 
confidence level are shown in bold. Table 3 shows the classifier 
that was selected most often for the dataset, and the number of 
times it was selected. Table 4 shows the performance of each of 
the unaided classifiers for comparison purposes (see [20] for 
details of how the GAP algorithm successfully improves the 
performance of each of these classifiers individually). 

Table 2. Performance of GAP algorithm and comparison  

Dataset GAP (S.D.) Comparison 
(S.D.) 

Paired 
t-test 

Liver 68.71 (7.98) 64.76 (8.99) 2.44 

Glass 73.86 (9.09) 68.78 (11.47) 2.16 

Iono. 88.08 (6.69) 89.82 (4.79) -1.10 

NT 96.52 (3.63) 96.26 (4.19) 0.32 

Diab. 74.55 (5.28) 76.05 (4.87) -1.12 

Sonar 88.30 (7.66) 86.65 (6.56) 0.95 

Vehicle 71.93 (4.79) 72.22 (3.33) -0.20 

Wine 96.32 (4.27) 97.99 (3.85) -2.29 

(WBC New) 94.32 (3.71) 95.09 (3.06) -0.93 

(WBC Orig.) 95.70 (2.60) 95.99 (1.84) -0.74 

Overall 84.83 84.36 1.03 
 
The initial results indicate that GAP algorithm performs little 
better than selecting the most appropriate classifier for the dataset 
at hand, at a significant increase in cost (time). Part of the lack of 
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improvement may be due to the fact that C4.5 appears more 
prone to over-fitting than the other classifiers and the fitness 
(not shown) of C4.5 genotypes often overshadows other, 
ultimately more accurate, genotypes.  For instance on the WBC 
original dataset C4.5 is selected 10 times, while selecting Naïve 
Bayes instead would have resulted in a higher test score.  

Table 3. Selection of classifiers by dataset 

Dataset 
Classifier Most 

Used 
count 

Liver C4.5 16 

Glass IBk 20 

Iono. C4.5 15 

NT NaiveBayes 11 

Diab. NaiveBayes 14 

Sonar IBk 20 

Vehicle C4.5 12 

Wine NaiveBayes 11 

(WBC New) IBk 9 

(WBC Orig.) C4.5 10 

 
Table 4. Performance of unaided classifiers 

Dataset C4.5(J48) IBk Naïve Bayes 

Liver 66.37 62.62 54.19 

Glass 68.28 68.79 48.50 

Iono. 89.82 86.95 82.37 

NT 92.31 96.95 97.20 

Diab. 73.32 69.90 75.13 

Sonar 73.86 86.65 67.16 

Vehicle 72.22 70.03 43.98 

Wine 93.27 95.44 97.99 

(WBC New) 93.88 95.44 93.26 

(WBC Orig.) 94.42 95.42 96.06 

Overall 81.77 82.82 75.58 
 

However there is still scope for successful use of the GAP 
algorithm. Being probabilistic in nature the GAP algorithm will 
produce a different set of features every time it is run – some of 
which will be better than others. The results have been obtained 
from 20 runs per dataset, every run providing a distinct set of 
features and the score is an average over the 20 feature sets (or 
feature/classifier combinations) - each set tested on a single data 
fold. In a practical situation we are not interested in the average 
utility of a number of feature sets, but in using the best available 
feature set. 

The best of the feature sets tends to show a marked improvement 
over the average, and over the performance of an unaided 
classifier. In section 5 we will be able to demonstrate this 
improvement on a larger dataset in which a third of the data has 
been held back for this purpose. 

4. IMPROVING HUMAN READABILITY 

4.1 Applying a Parsimony measure 
The parsimony measure presented here is modelled on the fitness 
function used by Bojarczuk et al. [04]. They applied a fitness 
function that combines predictive accuracy and simplicity to a GP 
system which operates on medical datasets with a binary 
classification (in which a person either has a specific condition or 
they do not). Their fitness function is defined as follows: 

SimplicityySpecificitySensitivitFitness ∗∗=  (2) 

Where Sensitivity measures the rate of true positives against false 
negatives, and Specificity measures the rate of true negatives 
against false positives. As our algorithm is designed to work with 
datasets having multiple classifications, sensitivity and specificity 
are not appropriate, so these are replaced with the existing fitness 
measure: predictive accuracy – the proportion of instances 
correctly identified during 10-fold cross validation. 

Bojarczuk et al.’s measure of simplicity is defined as: 

)1(
)5.05.0(

−
−∗−

=
maxnodes

numnodesmaxnodes
Simplicity  (3) 

“Where numnodes is the current number of nodes (functions and 
terminals) of an individual (tree), and maxnodes is the maximum 
allowed size of a tree (set to 45).” [04] For our purposes we take 
numnodes to be defined as the total number of nodes in all active 
trees in an individual. Because in our algorithm there is no 
maximum size for a GP tree maxnodes is defined, somewhat 
arbitrarily, as twice the number of nodes in the largest individual 
in the initial population. 

If we modify the fitness function of the GAP algorithm to be:  

SimplicityAccuracyPredictiveFitness ∗=  (4) 

With simplicity is defined as in equation 3, simplicity quickly 
overwhelms predictive accuracy. Before the simplicity measure is 
applied the average number of nodes in the fittest individual is 
approx. 23 nodes in 9 trees; with the simplicity measure applied it 
drops to roughly 7 nodes in 6 trees, i.e., feature construction is 
almost completely eliminated. The overall performance also 
drops, from 84.3% to 83.3%. This is because Bojarczuk et al.’s 
measure is designed to reduce the complexity of a GP classifier, 
not reduce the complexity of features passed to a classifier. A GP 
classifier with just a single node is doomed to failure, while, say, 
C4.5 may still perform well given just one feature (at least to the 
extent that the loss in accuracy is less than the gain from 
simplicity). 

It is possible to amend Bojarczuk et al.’s measure of simplicity to 
include a strength parameter: 

)1(
))1((

−
−−∗−

=
maxnodes

strengthnumnodesstrengthmaxnodesSimplicity (5)
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If strength is 0.5 then the simplicity measure is the same as 
Bojarczuk et al.’s, if strength is reduced to 0 simplicity is 
eliminated from the fitness function. Figures 1 and 2 illustrate the 
effect of varying values of the strength parameter. Initially 
strength values in the series 0, 0.05, 0.1, 0.15,…0.45 were tried 
(not shown), then the range was narrowed down to 0, 0.01, 
0.02,…0.1. All values are averages over all ten datasets listed in 
table 1, with 20 runs per dataset.  

5
7
9
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13
15
17
19
21
23
25

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Simplicity Strength

Nodes per individual Trees per individual

 
Figure 1. No. Nodes and Trees vs. Simplicity Strength  
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Figure 2. Fitness and Accuracy vs. Simplicity Strength 

A value of 0.04 was finally chosen for the simplicity strength 
parameter (i.e., the simplicity of a genotype accounts for 4% of its 
fitness). 0.04 was chosen because it successfully simplifies the 
individuals (reducing the average number of nodes per tree from 
roughly 2.5 to just over 2) while allowing feature construction to 
continue playing a meaningful part in the algorithm. It also 
occupies a slight hump in the graph of predictive accuracy for 
both train and test scores (Figure 2).  
Table 5 shows the results for the algorithm including parsimony 
on the UCI datasets. The figures are very similar to those without 
the parsimony measure. Results for the Liver dataset are no longer 
significant but otherwise there is no significant change in the 
performance, while the average number of nodes in the output has 
been reduced by 16%. However this average hides some variation 
between datasets. More nodes are removed on datasets with many 

attributes (and correspondingly many possible trees) than on those 
with few attributes. The accuracy on the test set remains almost 
exactly the same when setting simplicity strength to 0.04 (as 
compared to no parsimony pressure), while the average standard 
deviation drops slightly from 5.6% to 5.0%. The average number 
of generations drops by just under 11%, from 72.5 to 64.7 
generations. 

Table 5. Performance with parsimony 

Dataset GAP (S.D.) Comparison 
(S.D.) 

Paired 
t-test 

Liver 66.64 (9.77) 64.76 (8.99) 0.80 

Glass 73.46 (8.50) 68.78 (11.47) 2.17 

Iono. 89.34 (4.68) 89.82 (4.79) -0.37 

NT 96.28 (3.22) 96.26 (4.19) 0.03 

Diab. 75.13 (4.39) 76.05 (4.87) -1.26 

Sonar 87.74 (5.85) 86.65 (6.56) 0.88 

Vehicle 71.82 (4.98) 72.22 (3.33) -0.31 

Wine 94.90 (4.83) 97.99 (3.85) -2.90 

(WBC New) 95.88 (2.14) 95.09 (3.06) 1.42 

(WBC Orig.) 96.36 (1.68) 95.99 (1.84) 1.05 

Overall 84.75 84.36 0.92 

4.2 Post-Processing the Final Genotype 
Even with parsimony pressure applied by the simplicity function 
there is no guarantee that the final genotype does not contain 
redundant or unhelpful nodes that obscure useful information. 
There are two techniques that we apply to clean the final 
genotype. Both techniques use the full dataset and have not been 
applied to the genotypes used to obtain the results shown above. 
Note that as the post-processing techniques involve the full 
dataset it is impossible to give a fair estimate of the change in 
predictive accuracy, as the cleaned genotypes have effectively 
‘seen’ the test data (the UCI datasets are too small to keep back a 
separate validation set). 

The first technique is to identify any sub-trees that evaluate to a 
constant and replace them with that constant. A sub-tree is said to 
evaluate to a constant if it returns the same value for every 
instance in the dataset. Constants do not appear in the final 
genotype very often – in less than 1 in 20 runs, but this step 
certainly aids human readability when they do occur. 

The second is to identify and remove any trees or sub-trees that 
do not contribute to the predictive accuracy of the genotype. This 
has the same purpose as the simplicity measure but operates in a 
deterministic fashion, and is similar to the reduced error pruning 
technique applied to decision trees [15] except using cross-
validation instead of separate validation data (see also [7] for 
related work). First, the genotype is evaluated by ten-fold cross 
validation to provide a baseline score. Then each active tree in 
turn is deactivated and the genotype is re-evaluated. If the new 
score is the same as or better than the baseline score then the tree 
remains deactivated and the new score becomes the baseline. 
Otherwise the tree is re-activated.  
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After the trees have been evaluated in such a fashion, sub-trees 
are similarly evaluated. This is done by replacing the top node of 
each sub-tree by each of its operands in turn, re-evaluating the 
genotype at each step. Once again if the new score is the same as 
or better than the baseline score then the function is permanently 
replaced by its operand. Otherwise the process continues in a 
depth-first, left-right fashion. For example, if a sub-tree consists 
of the function (A + B) then the function will be replaced by A 
(so that the function is replaced by a leaf node) and the genotype 
re-evaluated. If using A instead of (A + B) offers the same or 
improved performance then the function will be replaced by A. 
Otherwise the function is instead replaced by B and the genotype 
re-evaluated again. 

Post-processing reduces the number of nodes in the final genotype 
by an average of 6.9 nodes (or 30% of the total) with no 
parsimony pressure applied, and 5.3 nodes (27.4%) with 
parsimony pressure. With a simplicity strength of 0.04 there is 
evidently still scope for the post-processing to remove a fairly 
large proportion of redundant nodes from the final genotype. 
Conversely, after cleaning the parsimonious genotypes remain 
slightly smaller than their counterparts (an average of 14.1 nodes 
compared with 16.1) indicating that the parsimony pressure may 
be eliminating some potentially useful nodes. The lower standard 
deviation of the parsimonious solutions suggests that at least some 
of those nodes are over-fitting the training data, however.  

5. APPLICATION TO A VISION DATASET 
The machine vision dataset we used consists of measurements of 
video data feed from a camera in a controlled environment. The 
aim is to identify and provide a colouring for various objects in a 
room on a mobile display. The dataset consists of 9963 instances, 
31 real-number attributes and 6 classes. The attributes are 
Luminance, Red, Green, Blue, and 27 Harr Wavelet coefficients2 
(8 size scales, 3 orientations). The class values are Obstacle, 
Boundary, Floor, Chair, Ball and Box. The target performance is 
93%, as achieved by an MLP in a previous study (unpublished). 
The dataset was randomly divided into a training set of 6676 
instances (67%) and a validation set of 3287 instances. The 
training set was then treated as the source for 20 runs of the 
algorithm, each using 90% of the data for training and 10% for 
test.  

Table 6. Performance of unaided classifiers on Vision Dataset 

Classifier Accuracy 
(train) 

Accuracy 
(test) 

C4.5 87.43 (1.06) 88.56 

IBk 90.14 (0.84) 90.57 

Naïve Bayes 65.36 (2.05) 65.14 
 

The performance of the unaided classifiers on the training set is 
shown in Table 6 (accuracy on the train set is from cross-
validation, followed by standard deviation in brackets). The 
accuracy figure in the final column was obtained from a single 
run on the test data. It can quickly be seen that of the three 
                                                                 
2 Harr Wavelet coefficients can be used to identify edges in 

images. 

classifiers, IBk is the most accurate by a convincing margin, but 
falls short of the performance achieved by the MLP neural 
network. 

5.1 Applying Parsimony Pressure 
The GAP algorithm was tested with and without parsimony on the 
training data, results are shown in Table 7 (at this point no post-
processing has been done, and genotypes not evaluated on the 
validation data). Due to the performance implications of using a 
large dataset the actual number of instances used during fitness 
evaluation for the GAP algorithm was limited to 2000 (randomly 
selected)3. 
 

Table 7. Performance of GAP on Vision training set 

 Accuracy (S.D.) Paired t-test 

Without Parsimony 91.56 (1.66) 4.26 

With Parsimony 91.42 (1.26) 4.53 
 
The accuracy is virtually the same with or without parsimony, but 
applying parsimony pressure reduces the number of nodes by 
approx. 48% and in doing so reduces the standard deviation. 
Applying parsimony pressure provides some robustness to the 
algorithm by reducing variation between solutions with minimal 
cost to accuracy (thus improving the t-test value). The t-test 
values are obtained by comparing the accuracy against that of IBk 
on the training data.  

Despite the fact that on its own IBk is clearly the best of the three 
classifiers for this dataset, over 25% of the final genotypes used 
C4.5 as the base classifier, rising to just over 50% when 
parsimony pressure is applied.  

Although the algorithm provides a significant improvement over 
an unaided classifier it still falls short of the accuracy of the MLP 
neural network used in the previous study. However we have not 
yet performed any post-processing to clean the genotypes, and the 
presence of a separate validation set allows us to test the best 
single genotype (as identified by cross-validation on the training 
set). 

5.2 Effect of Post-Processing 
Post-processing to clean the final genotypes reduces the number 
of nodes as shown in Table 8 - figures show nodes before and 
after post-processing, followed by accuracy using cross-validation 
on the training set. Recall that as post-processing uses the entire 
(training) set it cannot be fairly compared to the accuracy of the 
initial genotypes shown in Table 7, although it is indicative.  

                                                                 
3 At the point where the termination criteria have been met the 

first time and the dataset would be randomly reordered, it was 
instead re-sampled to obtain a different random selection of 
2000 instances from the training set. 
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Table 8. Effect of post-processing 

 Avg. Nodes 
(before) 

Avg. Nodes 
(after) 

Accuracy 
(S.D.) 

Without Parsimony 52.2 28.6 92.17 (0.93) 

With Parsimony 27.2 21.2 91.52 (1.06) 
 

The cleaned genotypes with no parsimony are over 25% bigger 
than the cleaned genotypes with parsimony applied, but they are 
more accurate (by over half a percent) and the standard deviation 
is now smaller than that with parsimony. 

Comparing the number of nodes after post-processing, it appears 
that applying parsimony pressure may be causing useful 
information to be lost. However it is possible that the extra nodes 
in the genotypes without parsimony are over-fitting the training 
data and will prove detrimental on the validation data. 

5.3 Applying the Best-of-Run Genotypes to 
Validation Data 
The individuals with the best accuracy using cross-validation on 
the training set (after post-processing) were applied to the 
validation set to obtain the results shown in Table 9. Both 
individuals offer a marked improvement over the average shown 
in Table 8.  

Table 9. Best-of-Run Genotypes 

 Accuracy 
(train) 

Accuracy 
(validation) 

Without Parsimony 94.01 94.83 

With Parsimony 93.68 94.07 
 

The best of run genotype without parsimony is three quarters of a 
percent better than that with parsimony (both of which use IBk as 
the base classifier), and indeed now offers almost two percent 
improvement over the neural network. Thus results on the 
validation data do not support the theory that the extra nodes 
removed by parsimony pressure are over-fitting the training data 
for the dataset. To determine the impact of post-processing on the 
overall accuracy we also evaluated the same genotypes as they 
were before post processing on the validation data. In both cases 
the cleaned genotype performed better on the validation data than 
the original genotype (the original without parsimony obtained 
94.34% and the original with parsimony obtained 93.7%). That is, 
post-processing appears to reduce over-fitting as well as 
improving human readability. 

5.4 Human Readability of the Results 
Visual inspection of the best single genotype, while easier with 
the cleaned genotype than the original, did not provide any 
immediately useful information to a subject matter expert. This is 
perhaps because the genotype still contains 18 features (of which 
7 are trees/ADF’s) using 17 of the original attributes, and it is not 
clear which of the features are the most useful in classification. 
More useful information may be obtained using a process that 
estimates the utility of each feature (by removing each one in turn 
and determining the accuracy of the tree without it, also noting 

any features that occur more than once4). Using this yardstick 3 
ADF’s were identified as being the most important features: 
Blue/Luminance, Green/Luminance and Log(Red), along with 
one of the original coefficients. Dividing a colour by its 
luminance was identified by the expert as a method by which the 
true colour of an object may be determined (by factoring out the 
level of light falling on it). 
Additional use was made of the human readability of the decision 
trees created by C4.5. These were created using the features of the 
both the best of run genotype (based on IBk) and of the best 
genotype based on C4.5 – see Figures 3 and 4. The presence of 
ratios of colour/luminance at the top of both decision tree 
hierarchies added weight to their importance in identifying 
objects in images.  
Analysis of the frequency with which attributes appear in all of 
the final (cleaned) genotypes also provides some indication of 
how useful they are in classification. The 3 colours and 
luminosity are the most useful attributes (they always appear in 
all 20 of the final genotypes regardless of parsimony pressure, and 
are the only attributes to do so). These are followed by 2 of the 
coefficients which appear in over 75% of the final genotypes. 
Similar analysis of the frequency of ADF’s confirms the utility of 
the 3 ADF’s identified above (which appear in at least a quarter of 
the final genotypes), and also the ratios of Green and Blue to Red 
(ADF’s that did not appear in the best of run). 

6. CONCLUSIONS 
When pre-processing data, and in the absence of any form of post 
processing, applying parsimony pressure successfully reduces the 
number of nodes in the final solution, making it easier for a 
human to read and adding some robustness by reducing variance 
in the accuracy of the final solutions. However, it does introduce 
a risk of removing some useful information from the solutions, 
particularly the best-of-run.  
Performing post-processing to clean the final genotypes has a 
similar impact on human readability as parsimony pressure, but 
does not run the same risk of losing useful information. It can also 
help to reduce over-fitting. 
Additional measures to determine the utility of individual features 
(both within the single best solution and across all solutions) 
provide a further aid to human readability. 
Future work will investigate the application of the GAP algorithm 
to larger datasets, and investigate combining all 20 final 
genotypes into an ensemble classifier. 
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Figure 3. Top section of the C4.5 decision tree for the best IBk genotype 

 
Figure 4. Top section of the C4.5 decision tree for the best C4.5 genotype 
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