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ABSTRACT

This paper analyses the reliability of confidence intervals
for Koza’s computational effort statistic. First, we conclude
that dependence between the observed minimum generation
and the observed cumulative probability of success leads
to the production of more reliable confidence intervals for
our preferred method. Second, we show that confidence in-
tervals from 80% to 95% have appropriate levels of perfor-
mance. Third, simulated data is used to consider the effect
of large minimum generations and the confidence intervals
are again found to be reliable. Finally, results from four
large datasets collected from real genetic programming ex-
periments are used to provide even more empirical evidence
that the method for producing confidence intervals is reli-
able.

Categories and Subject Descriptors

1.2.2 [Artificial Intelligence]: Automatic Programming—
Program synthesis

General Terms

Experimentation, Measurement, Performance

Keywords

Genetic Programming, Computational Effort, Confidence
Intervals, Wilson’s Method

1. INTRODUCTION

In Genetic Programming [5], Koza described a statistic
to assess the computational burden of using GP. It calcu-
lates the minimum number of individuals that must be eval-
uated in order to yield a solution 99% of the time. This
statistic, minimum computational effort, F, was used heav-
ily throughout Koza’s first two books on GP [5, 6] to com-
pare the performance of variations of GP.

Angeline [1] pointed out that a key problem with Koza’s
computational effort statistic was that, as defined, it was a
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point statistic with no confidence interval. Without a con-
fidence interval, comparisons are inconclusive.

In an earlier paper [10] we offered three methods for the
production of confidence intervals for minimum computa-
tional effort and concluded that a method based on Wil-
son’s ‘score’ method [8] was the best choice: it is fairly easy
to calculate, practically always produces a valid confidence
interval, and the confidence intervals included the true com-
putational effort an appropriate proportion of the time.

However the earlier work left a few questions unanswered.
This paper extends our previous research and attempts to
answer some of those open questions: How does dependence
between the two variables used in the method affect perfor-
mance? How does the method perform with different levels
of confidence? Is the performance reliable for difficult prob-
lems which run for many generations?

1.1 Computational Effort

Given the cumulative probability of success, P(i), of a
number of GP runs, we can calculate how many runs would
be required, R(z, z), in order to find a solution at generation
i with probability z' [10]:

log(l1—=2) . .
est—pay i PG) <=z

1 if P(i)>z S

R(i,z) = {

The computational effort, (7, z) (the number of individu-

als that need to be evaluated to find a solution with proba-

bility z) for generation ¢ with a population of M individuals
is calculated by:

I(i,2) = (i+1) x R(i,2) x M (2)

Koza’s minimum computational effort, E, is the minimum
value of I(i,z) over the range of generations from 0 to the
maximum in the experiment.

1.2 Producing confidence intervals

To calculate a 95% confidence interval for the true but un-
known proportion of successes based on the observed sample
proportion of successes, p = r/n, given r successes from n
runs, Wilson’s method [8] may be used (where the standard
normal variable znorm = 1.96):

B 2np + Znorm2 + Znorm \/Znorm2 + 4”17(1 - p)
2(n + Znorn]2)
(3)

! As is common, z will be set to 0.99 throughout this work.

upper(p,n)




_ 2np+ Znorm® — Znorm \/ Znorm?2 + 4np(1 — p)
B 2(n + Znorm?)
(4)

Using the formulae in equations 3 and 4, a confidence
interval can be established for the proportion of successful
runs: the upper bound is given by upper(P(i),n) and the
lower bound is given by lower(P(i),n). The minimum and
maximum of this range can then be used to calculate a max-
imum and minimum for the number of runs required to ob-
tain a solution with probability z. These numbers can then
be used with the known value for the population size, M,
to find a 95% confidence interval for the true computational
effort, Z(i), at a given generation 4*:

lower(p,n)

(i+1) x R(upper(P(i),n)) x M <ZI(i) <

(i4+1) x R(lower(P(i),n)) x M (5)

If j is the generation at which the minimum computa-

tional effort occurs (termed the minimum generation), then

the confidence interval for Z(j) can be used as a confidence

interval for the true value of the minimum computational
effort.

2. DEPENDENCE ISSUES

In our previous work, it was assumed that GP practition-
ers would elect to use all their run-data to produce esti-
mates of both the minimum generation (5) and the cumu-
lative probability of success at the estimated minimum gen-
eration (P(j)). This is in contrast to the method proposed
by Keijzer et al. [4] who used half their runs to estimate
the minimum generation and the other half to estimate the
cumulative probability of success. The advantage of using
their method is that the estimation of the two variables is
statistically independent. This section analyses these two
variations on both the Wilson and Resampling methods.

Wilson’s method has been defined in section 1.2. If we
accept dependence between the estimation of P(j) and j,
then j is the generation at which the minimum computa-
tional effort occurs when calculated using the entire set of
runs. P(j) is estimated by the proportion of runs (as cal-
culated over the entire dataset) which found a solution at
or before generation j. This is the method that was used
in our previous work and for this section will be termed
Wilson-Dependent.

If independence between the estimation of P(j) and j is
desired, then the dataset should be divided in two. For
this work we considered a division of 1:1 (as Keijzer et al.
proposed), but other ratios could be used. j is estimated as
the generation at which the minimum computational effort
occurs when calculated using the first part of the dataset.
P(j) is estimated by the proportion of runs (as calculated
over the second part of the dataset) which found a solution
at or before generation j. We will term this method Wilson-
Independent.

In our previous work, the Resampling-Dependent method
where the estimation of 7 and P(j) were dependent was
shown to be an inferior choice to Wilson-Dependent. The

2The addition of one generation in these formulae is a cor-
rection to the formulae provided in our previous work [10].
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1. Obtain n independent runs. Label these as the source

set.

Divide the source set into two parts (S1 and S2) with n;
runs in S and ns runs in Ss.

Repeat 10,000 times:

(a) Select, with replacement, ny runs from the set S;
(s1).

(b) Calculate j, the generation at which the minimum
computational effort occurs, for the selection s;.

(c) Select, with replacement, na runs from the set So
(s2).

(d) Calculate the computational effort at generation j
for the selection s2. If zero runs succeeded, the
computational effort is infinite.

Find the 2.5% and 97.5% quantiles of the 10,000 min-
imum computational effort statistics. These provide an
upper and lower range on a 95% confidence interval for
the true minimum computational effort.

Table 1: Algorithm for the Resampling-Independent
method.

Resampling-Dependent method will not be considered any
further in this paper.

The Resampling-Independent algorithm is defined in ta-
ble 1.

To compare the three methods, Resampling-Independent,
Wilson-Dependent, and Wilson-Independent, the methods
were applied to the same large datasets that were used in
the previous paper:

e Ant: Christensen and Oppacher’s 27,755 runs [3] of the
artificial ant on the Santa-Fe trail; panmictic popula-
tion of 500; best estimate of the true computational ef-

fort 479,344 at generation 18; P(18) = 221 = 0.0872

Parity: 3,400 runs of even-4-parity without ADF's [5,
6]; panmictic population of 16,000; best estimate of
true computational effort 421,074 at generation 23;
P(23) = 3349 _ (.985

3400

Symbreg: Gagné’s 1,000 runs of a symbolic regression
problem (z* 4 z* + 2 + ) [5]; panmictic population of
500; best estimate of true computational effort 33,299
at generation 12; P(12) = 2% — (.593

1000

Multiplexor: Gagné’s 1,000 runs of the 11-multiplexor
problem [5]; panmictic population of 4,000; best esti-
mate of true computational effort 163,045 at genera-
tion 25; P(25) = 247 = (0.947

1000

For each dataset six simulated run sizes were used: 25,
50, 75, 100, 200, and 500 runs.

For each of the 72 combinations of confidence interval
method, dataset, and simulated run size, 10,000 samples of
the specified number of runs were randomly selected from
the problem domain’s large dataset. For each sample the
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Figure 1: Average observed coverage (upper) and
median confidence interval width ratios (lower)
against run size for the three methods, averaged
over the four problem domains.

95% confidence interval for the sample’s computational ef-
fort was calculated using the specified method. Whether
the confidence interval included the best estimate of the true
computational effort (the coverage) was recorded, as was the
width of the confidence interval relative to the best estimate
of the true computational effort.

This process effectively simulates 10,000 genetic program-
ming experiments over each of the four problem domains and
each of the six run sizes, or a total of 240,000 experiments,
for each of the three confidence interval methods.

The minimum computational effort, as calculated over the
entire dataset, was used as the best estimate of the true
computational effort for that dataset.

Figure 1 plots the results of these experiments®. The up-
per graph gives the observed coverage by run size (averaged
over the four problem domains). The lower graph gives
the median observed confidence interval width as a ratio
of (i.e. divided by) the best estimate of the true computa-
tional effort (averaged over the four problem domains). Be-
cause Resampling-Independent produced an infinite-width
median coverage for all bar one of the Ant experiments,
only one data point for that method is plotted on the lower
graph. 95% confidence intervals for the coverage results (up-
per graph) are smaller than +0.4 percentage points.

Of the three methods considered, Wilson-Dependent pro-
duces observed average coverage levels that are closest to
the target 95%. This alone would make it the preferred
choice, however it has two other advantages. The first ad-
vantage is that the width of the confidence intervals are
notably tighter; and this is most obvious at the lower run

3Complete results for all the experiments in this paper are
available from www.massey.ac.nz/~mgwalker/CompEffort.
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sizes—sizes that are most commonly used. If the data is
averaged over problem domain, then Resampling’s infinite-
width issue is confined to just the Ant data, and in this form
the Resampling method produced widths that were at least
67% larger than those produced with Wilson-Dependent.
Wilson-Independent produced widths that were at least 51%
larger than Wilson-Dependent. The second advantage is
that confidence intervals produced by the Wilson method
were significantly less computationally expensive to obtain
than those produced via the Resampling method. We con-
clude that Wilson-Dependent is the method of choice, and
is the method used throughout the rest of this paper.
Finally, we have observed a correlation between the esti-
mated value of j and the estimated value of R(P(j)). This
correlation appears to be a critical component in explaining
the enhanced coverage accuracy of Wilson-Dependent versus
Wilson-Independent, but this remains an open issue.

3. VARYING ALPHA VALUES

In our previous research, the target coverage level was set
at 95%. This section extends our earlier work by consider-
ing the effect on observed coverage levels when the target
coverage level is varied.

Six commonly used target coverage levels (also known as
1 — « values) were selected. They were: 80%, 85%, 90%,
95%, 99% and 99.9%. The previous experimental setup was
repeated for each target level, that is: four problem domains
were used (Ant, Parity, Symbreg, and Multiplexor) and six
runs sizes were used (25, 50, 75, 100, 200, and 500 runs).

For each of the 144 combinations of target coverage level,
problem domain, and run size, 10,000 samples of the speci-
fied number of runs were randomly selected from the prob-
lem domain’s large dataset. For each sample the confidence
interval for the sample’s computational effort was calculated
using Wilson’s method (with a 1 — « value as specified by
the target coverage level). Whether the confidence interval
included the true computational effort (the coverage) was
recorded.

The cost of increasing the coverage level is an increase in
the width of the confidence intervals. To assess the impact
on the confidence interval width, we also recorded the width
of the interval as a ratio of the true computational effort,
for every sample’s confidence interval.

Figure 2 plots the mean observed coverage and the ra-
tio of the confidence interval width for each target coverage
level (averaged over the four problem domains and six run
sizes). Tables 2 and 3 give coverage and width statistics
by problem domain and target coverage level (averaged over
the six run sizes). Results where the sample did not include
any successful runs could not produce a valid confidence in-
terval; such samples were ignored for the calculation of the
averages.

As can be seen from the upper plot of figure 2, the ob-
served coverage levels are very close to the target levels
up to about 95%. For the two higher cases of 99% and
99.9% the observed coverage is slightly smaller than the
target. Although these results are highly statistically sig-
nificant (with 95% confidence intervals of less than +0.2
percentage points), one could ask if the four datasets that
were selected are a fair representation of the problem do-
mains on which this method may be used. This question
will always remain open, even though the domains selected
are common GP problems. However, at the very least the



Target coverage | 80% 85% 90% 95% 99% 99.9%
Ant T7.5% 82.7% 87.6% 92.4% 97.5% 99.1%
Multiplexor 79.2% 84.6% 90.7% 95.7% 97.9% 98.2%
Parity 85.2% 89.7% 91.9% 94.0% 95.1% 95.5%
Symbreg 79.1% 84.7% 90.0% 94.9% 99.0% 99.9%

Table 2: Coverage statistics by target coverage and problem domain

Target coverage | 80% 85% 90% 95% 99% 99.9%
Ant 1.12 1.28 1.51 1.89 271 3.80
Multiplexor 0.37 042 0.49 0.60 0.82 1.12
Parity 0.37 043 0.51 0.63 090 1.24
Symbreg 0.38 042 049 0.59 0.79 1.04

Table 3: Confidence interval width ratios by target coverage and problem domain
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Figure 2: Observed coverage (upper) and confidence
interval width ratios (lower) of Wilson’s method
against target coverage, averaged over all four prob-
lem domains and all six run sizes.

results from the four problem domains do give a good in-
dication that Wilson’s method performs as expected with
different target coverage levels between 80% and 95%.

The lower plot of figure 2 shows, as expected, that as the
target coverage is decreased, the width of the confidence
interval also decreases. However even with a choice of 80%
coverage, the mean observed width was not small: it was
56% of the true computational effort (with a range of 16% to
just over two-fold). The Ant dataset has larger width ratios
than the other datasets (due primarily to its low P(j) value).
But even with the Ant dataset removed, 80% coverage still
gives a width ratio of 37%.

4. LARGE MINIMUM GENERATIONS

In our previous work the confidence interval generation
methods were tested on a range of minimum generations
that was quite tight: 12 to 25 generations. It was an open
question as to whether any of the methods would continue
to function acceptably if the true minimum generation were
significantly outside this range.

For “difficult problems”, Luke [7] concluded that a solu-
tion was more likely to be found with longer runs than with
multiple shorter runs. This would produce a minimum gen-
eration that was much larger than would be obtained were
the traditional approach, of terminating runs longer than 50
generations, taken.

To ensure that Wilson’s method does not deteriorate with
larger minimum generations, it is important to empirically
check its validity in this area. Unfortunately it is far too
computationally expensive to obtain thousands of runs on
problem domains that find solutions only after many hun-
dreds of generations. Instead we have elected to simulate GP
experiments of that difficulty and to check Wilson’s method
using this simulated data.

4.1 Simulating GP experiments

4.1.1 Distribution selection

The distribution which models the generation at which a
GP solution will appear is not known. In fact, it is highly
likely that the distribution is problem-domain specific. How-
ever from the four large datasets that we have studied, it can
be said that the distribution is a smooth curve that peaks
at a specific generation and that may have a long tail to the
right.
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Figure 3: The best model (thick grey line) that was
found for the Ant dataset (black line): a log-normal
distribution with © = 16.2 and o = 2.2.

Many such distributions have been defined that pass this
description. In order to assess the match between these dis-
tributions and the large datasets, we optimised the distribu-
tions’ parameters and then tested their quality as models.

The distributions we considered were: normal, log-normal,
gamma, weibull, and beta. Each distribution takes two pa-
rameters to describe its shape. The optimal values for these
parameters were found with a numerical method*. Figure 3
shows one of the better models. Once the distributions’ pa-
rameters were obtained, the models were then compared to
the real dataset using x? tests.

To quantify how well the distribution modelled the real
data, x? tests were executed for multiple run sizes (25, 50,
100, 200, 300, 400, and 500 runs). For each run size, 100
samples of that number of runs were randomly generated
using the distribution (with its optimised parameters). For
each of the 100 samples a x? test was executed (on bin sizes
of one generation, unless the real dataset contained fewer
than 5 successes in a given bin, in which case adjacent bins
were combined until the enlarged bin contained at least 5
successes). If the p-value of the x? test was greater than
0.05 then it was considered that the distribution success-
fully modelled the dataset. The proportion of times that
the distribution sufficiently modelled the data was recorded
and those proportions are plotted for the log-normal and
normal distributions in figure 4.

Although sample sizes of 100 give a 95% confidence inter-
val for the proportions of up to £0.1, the results are suf-
ficient to conclude that the log-normal distribution models
the results of genetic programming runs with an accuracy
that is, at best, only mediocre. Of perhaps more interest is
the normal distribution which performs very well with the
Parity problem, but was unable to satisfy any tests for the
Symbreg problem.

Because we were unable to find a distribution function
that successfully modelled the real datasets beyond 100 runs,
we elected to use the best two distributions (normal and log-

4An implementation of the Nelder and Mead method was
used as defined by the optim function in the statistical soft-
ware R [9].
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Figure 4: The performance of the log-normal (up-
per) and normal (lower) distributions as models for
the four large datasets.

normal) for simulating GP runs with large minimum gener-
ations.

4.1.2  Probability of success

When considering the cumulative probability curves of the
large datasets (most notably Symbreg and Ant), it appeared
that GP runs may asymptotically tend to a cumulative prob-
ability of success that is less than one. Although it seems
reasonable that if a GP run were left to evolve indefinitely
it would eventually find a solution, it would seem that the
tails must become wvery long indeed.

To model this asymptotic behaviour, a “second level” was
added. This asked the question, “does a given run have
any chance of success?”. If the answer was “yes”, then the
chosen distribution was used to answer the question “does
success occur before the cut-off generation?”.

4.2 Testing performance on simulated data

Because neither the normal nor the log-normal distribu-
tions had any consistent acceptable level of success past 100
runs, we elected to limit the use of the models to 25, 50, and
100 runs.

Because appropriate parameters for each model are un-
known a range of parameters were used. For both models
the mean was set to 25, 100, 500, and 1000 generations. For
the log-normal distribution the standard deviation was set
to 0.5, 1.0, and 2.0 times the mean. For the normal distri-
bution the standard deviation was set to %, %, and i times
the mean. The probability of success (at the second level)
was set to 0.2, 0.5, and 0.8. The cut-off was set to 1,000
generations. The number 500 was used as a population size,
but this was just a scaling factor that had no bearing on the
model nor the coverage results.

It was found that when the standard deviation values used



Mean 25 100 500 1000
93.6% 91.5% 90.6% 91.1%
Std. dev. 0.5 1.0 2.0
93.6% 91.7% 89.9%
Success prop. | 0.2 0.5 0.8
90.1% 92.2% 92.7%
Runs 25 50 100
90.2% 92.0% 93.0%

Table 4: Average coverage statistics for the log-
normal model per parameter

for the log-normal distribution were applied to the normal
distribution, they were sufficiently large to produce a non-
zero probability of success at the initial generation. This
non-zero probability was sufficient to set the minimum gen-
eration to generation zero. Koza studied the probability
of finding a solution at generation zero for both the 11-
multiplexor and 6-multiplexor problems [5, page 207]. He
tested up to 10,000,000 individuals, and found that none
were successful; that is a probability of success of less than
0.000001. Because this work was intended to model prob-
lems significantly harder than the two Koza studied, the
standard deviations used for the normal distribution were
reduced.

For each of the 216 combinations of distribution, mean,
standard deviation, probability of success, and number of
runs, one million simulated runs were generated using the
specified distribution. From these simulated runs, 10,000
samples of the specified number of runs were randomly se-
lected. For each sample the 95% confidence interval for the
sample’s computational effort was calculated using Wilson’s
method. Whether the confidence interval included the true
computational effort (the coverage) was recorded.

The true computational effort was obtained by calculating

rnl_in (i14+1) x R(P(i) xp) x M (6)
where: R is the function for calculating the number of runs
required (equation 1); P(i) is the cumulative proportion
given by the distribution function; p is the probability of suc-
cess (at the second level); ¢ is the generation which ranged
from 0 to 1000; and M is the population size (where 500 was
used).

Tables 4 and 5 summarise these results. The log-normal
model had an average coverage of 91.7% and the normal
model had an average of 94.6%. These should be compared
with the desired coverage of 95%.

So, for the log-normal model (table 4), The average cov-
erage for a mean of 25 generations (as seen in the top left
cell) was 93.6%. This coverage is an average coverage for
all parameter combinations where the mean was set to 25.
Similarly, for the normal model (table 5), for all parameter
combinations where run size was set to 100 runs, an average
of 94.8% of the samples produced a confidence interval that
included the true computational effort.

For the log-normal distribution, the minimum generation
ranged from 7 to 1000 generations with a mean of 299 and
an upper quartile of 523 generations. For the normal dis-
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Mean 25 100 500 1000
94.8% 94.7% 94.8% 94.4%
Std. dev. 1lTa % i
94.9% 94.8% 94.3%
Success prop. | 0.2 0.5 0.8
94.1% 94.9% 94.9%
Runs 25 50 100
94.4% 94.9% 94.7%

Table 5: Average coverage statistics for the normal
model per parameter

tribution the minimum generation ranged from 28 to 1000
generations with a mean of 447 and an upper quartile of
799 generations. Thus the minimum generations that were
considered in this study were significantly larger than those
observed in the experiments originally executed.

Both models showed reduced coverage as the standard
deviation increased. Both models produced increased cover-
age levels as the success proportion increased, and increased
coverage as the number of runs increased.

From these results, if your GP data follows a normal or
log-normal distribution, it appears that the confidence inter-
val generation method based on Wilson’s method produces
coverage levels that are a good approximation to a 95% con-
fidence interval.

4.3 Arbitrary distributions

Given the success with the normal and log-normal distri-
butions, we continued the investigation with some arbitrar-
ily selected distributions. The objective in this study was
to see if the earlier success depended on the selection of the
distribution functions.

Figure 5 shows the four new distributions that were se-
lected. All four distributions had zero-values between 0-49
generations and 951-1000 generations and had a cumulative
probability (the area under the graph) of one. The first was
a rectangular shape. The second was a triangular shaped
distribution that sloped from 0 at 50 generations to a peak
at 950 generations (termed Right-Triangle). The third was
a triangular shape that sloped from a peak at 50 generations
down to 0 at 950 generations (termed Left-Triangle). The
fourth was a semi-ellipse.

To test the coverage of Wilson’s method on these distri-
butions, three variables were required: the distribution, the
success proportion (at the second level), and the number
of runs. The success proportion was given the same three
values as before: 0.2, 0.5, and 0.8. However, the number
of runs in each sample was extended to include 25, 50, 100,
200, and 500 runs.

For each of the 60 combinations of distribution, success
proportion, and runs size, 100,000 simulated runs were gen-
erated using the specified distribution. From these simu-
lated runs, 1,000 samples of the specified number of runs
were randomly selected. For each sample the 95% confi-
dence interval for the sample’s computational effort was cal-
culated using Wilson’s method. Whether the confidence in-
terval included the true computational effort (the coverage)
was recorded.
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Figure 5: Density versus generation for the four
arbitrarily-selected distributions.

Success prop. | 0.2 0.5 0.8
92.7% 95.1% 95.3%

Runs 25 50 100 200 500
93.2% 94.4% 94.5% 94.9% 94.8%

Table 6: Average coverage statistics for the Rectan-
gle model per parameter

For Rectangle and Right-Triangle, the minimum genera-
tion was 951. Left-Triangle’s minimum generation ranged
from 341 to 692 generations and Semi-Ellipse’s ranged from
817 to 928 generations—with the specific value dependent
on the success proportion.

Tables 6, 7, 8 and 9 show the coverage results for the
four distributions. Wilson’s method produced an average
coverage of 94.4% for Rectangle, 94.9% for Right-Triangle,
91.1% for Left-Triangle, and 94.0% for Semi-Ellipse.

Although the average coverage for Left-Triangle dips to
91.1%, this should be compared to Robert Newcombe’s anal-
ysis of the performance of the normal-approximation method
for confidence intervals for a proportion [8]. He showed that
method to have an estimated mean coverage of 88%. In
that light, Wilson’s method on the Left-Triangle data per-
forms better than that generally-accepted and widely used
method.

These results are very interesting. They show that the
performance of Wilson’s method is not affected by the dis-
tribution of successes—even with these four far-from-typical
distributions. The results also give further evidence that the

Success prop. | 0.2 0.5 0.8
94.9% 95.3% 94.6%

Runs 25 50 100 200 500
95.3% 95.3% 94.0% 95.1% 95.0%

Table 7: Average coverage statistics for the Right-
Triangle model per parameter
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Success prop. | 0.2 0.5 0.8
89.7% 90.7% 92.8%

Runs 25 50 100 200 500
88.1% 89.9% 91.3% 92.5% 93.7%

Table 8: Average coverage statistics for the Left-
Triangle model per parameter

Success prop. | 0.2 0.5 0.8
92.5% 94.0% 95.4%

Runs 25 50 100 200 500
93.7% 93.4% 93.4% 94.3% 95.1%

Table 9: Average coverage statistics for the Semi-
Ellipse model per parameter

method is not sensitive to the magnitude of the minimum
generation.

S. MORE LARGE DATASETS

Steffen Christensen executed some enormously large num-
ber of runs on the Ant problem domain [2]. This section
analyses the performance of the confidence intervals for these
real datasets.

The four datasets were all based on the artificial ant on the
Santa-Fe trail, a problem domain detailed in Genetic Pro-
gramming [5, section 3.3.2] and commonly used as a bench-
mark for variations of GP. The four datasets that Chris-
tensen produced vary by population size and the generation
at which the runs were cut off. The four datasets are:

e Ant m10000g25: Panmictic population of 10,000; cut-
off of 25 generations; 12,280 runs; best estimate of
the true computational effort 478,506 at generation 15;
P(15) = 257 — (.786

12,280

Ant m1000g150: Panmictic population of 1,000; cut-
off of 150 generations; 40,010 runs; best estimate of
the true computational effort 446,801 at generation 17;
P(17) = 2775 — (.169

10,010

Ant m250g60: Panmictic population of 250; cutoff of
60 generations; 400,625 runs(!); best estimate of the
true computational effort 488,518 at generation 19;
P(19) = 2445 _ () 0460

100,625

Ant m25091000: Panmictic population of 250; cut-
off of 1,000 generations; 8,000 runs; best estimate of
the true computational effort 503,594 at generation 20;
P(20) = 355 = 0.0444

8,000

These datasets are interesting because, whereas our pre-
vious research covered P(j) values that were biased towards
one, these datasets are biased towards a cumulative success
at the minimum generation of zero. To enable direct com-
parison with the earlier results, run sizes were simulated at
25, 50, 75, 100, 200, and 500 runs.

For each of the 24 combinations of dataset and run size,
10,000 samples of the specified number of runs were ran-
domly selected from the specified large dataset. For each



Run size 25 50 75 100 200 500 Average
m10000g25 | 95.9% 95.4% 95.3% 94.7% 95.0% 94.9% | 95.2%
m1000g150 | 92.4% 94.4% 94.0% 94.8% 95.2% 94.7% | 94.2%
m250g60 74.9% 89.4% 90.1% 92.4% 93.5% 93.8% | 89.0%
m250g1000 | 78.4% 88.8% 91.8% 92.1% 93.3% 94.6% | 89.8%
Average 85.4% 92.0% 92.8% 93.5% 94.3% 94.5% | 92.1%

Table 10: Coverage statistics, by run size and dataset, for the four extra Ant datasets.

sample the 95% confidence interval for the sample’s compu-
tational effort was calculated using Wilson’s method. We
recorded whether the confidence interval included the best
estimate of the true computational effort (the coverage).
The best estimate of the true computational effort was the
computational effort calculated over the entire dataset.

Table 10 shows the results of these experiments. 95% con-
fidence intervals for these results are at most +1 percentage
point, and in most cases will be no more than +0.5 percent-
age points.

The performance of Wilson’s method is very good, averag-
ing 95.2% and 94.2% coverage, for the two datasets with the
higher values for P(j) (m10000g25 and m1000g150). For the
other two datasets (m250g60 and m250g1000), the perfor-
mance is good except for the smaller run sizes (specifically
25 runs).

However, for the smaller run sizes, it is worth noting that
the granularity of the estimate of P(j) is of the same order
as the best estimate of the true value. In other words, for the
case where 25 runs are being sampled, we should expect just
one of the runs to succeed (% = 0.04 and the two values for
P(j) were 0.0460 and 0.0444). Thus, a variation in success
of just one run is a variation of approximately £100% of the
true value.

It is also worth noting that, although the only difference
between m250g60 and m250g1000 was that the former had a
shorter cutoff value (a variable that would not have affected
the true computational effort), there was still a 3.1% dif-
ference between their estimated computational efforts—and
that was with an enormous number of runs.

So, as might be expected, if the cumulative probability
of success at the minimum generation is very small com-
pared to the granularity produced by the number of runs,
the coverage of Wilson’s method deteriorates.

However, the general picture provided by these datasets
is that the method to produce confidence intervals for min-
imum computational effort is reliable.

6. CONCLUSIONS

This research has extended our previous work on the pro-
duction of confidence intervals for Koza’s minimum compu-
tational effort statistic. We have shown that the confidence
interval production method is reliable; specifically that:

e It out-performs other methods, in terms of both appro-
priate coverage levels and tighter confidence interval
widths.

e It performs well at different target coverage levels, es-
pecially those between 80% and 95%.

e It performs well across a large range (10 to 1,000 gener-
ations) of minimum generations on simulated datasets.
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e It appears to be insensitive to the distribution of gen-
erations of successful runs.

e [t performs well on a number of datasets collected from
real GP runs.

7. ACKNOWLEDGEMENTS

We would like to acknowledge Steffen Christensen for giv-
ing us access to his enormous Ant datasets. Our thanks also
go to Christian Gagné for the use of his Symbreg and Parity
datasets.

8. REFERENCES

[1] P. J. Angeline. An investigation into the sensitivity of
genetic programming to the frequency of leaf selection
during subtree crossover. In Genetic Programming
1996: Proceedings of the First Annual Conference,
pages 21-29. MIT Press, 1996.
S. Christensen. Towards Scalable Genetic
Programming. PhD thesis, Ottawa-Carleton Institute
for Computer Science, Ottawa, Canada, 2007.
S. Christensen and F. Oppacher. An analysis of
Koza’s computational effort statistic for genetic
programming. In Genetic Programming, Proceedings of
the 5th European Conference, EuroGP 2002, volume
2278 of LNCS, pages 182—-191. Springer-Verlag, 2002.
M. Keijzer, V. Babovic, C. Ryan, M. O’Neill, and
M. Cattolico. Adaptive logic programming. In
Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2001), pages
42-49. Morgan Kaufmann, 2001.
J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press, 1992.
J. R. Koza. Genetic Programming II: Automatic
Discovery of Reusable Programs. MIT Press,
Cambridge Massachusetts, 1994.
S. Luke. When short runs beat long runs. In
Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2001), pages
74-80. Morgan Kaufmann, 2001.
R. G. Newcombe. Two-sided confidence intervals for
the single proportion: comparison of seven methods.
Statistics in Medicine, 17:857-872, 1998.
R Development Core Team. R: A Language and
Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2006.
M. Walker, H. Edwards, and C. Messom. Confidence
intervals for computational effort comparisons. In
E. et. al, editor, Genetic Programming. Proceedings of
the 10th European Conference, FuroGP 2007, 2007.
To appear.

(10]




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


