
Numerical-Node Building Block Analysis of Genetic
Programming with Simplification

Phillip Wong, Mengjie Zhang
Victoria University of Wellington, P.O. Box 600,

Wellington, New Zealand
{phillip, mengjie}@mcs.vuw.ac.nz

ABSTRACT
This paper investigates the effects on building blocks of us-
ing online simplification in a GP system. Numerical nodes
are tracked through individual runs to observe their be-
haviour. Results show that simplification disrupts building
blocks early on, but also creates new building blocks.

Categories and Subject Descriptors
I.2.m [Artificial Intelligence]: Miscellaneous

General Terms
Performance, Experimentation

Keywords
Genetic Programming, Simplification, Code Bloat, Numerical-
nodes

One current problem in GP is that of code bloat [1]. Ge-
netic programs tend to grow very quickly in size (mostly
through redundant code), easily out-pacing the improve-
ments in program fitness as evolution progresses. Simpli-
fication [2] is one approach to combating code bloat and has
been tested on several GP tasks, showing that simplification
can significantly improve the efficiency of the GP system
(i.e. training time and program size), as well as the effec-
tiveness (fitness of solutions) [2]. However, simplification
may also remove useful building blocks within the GP pop-
ulation. This work aims to determine whether simplification
disrupts or creates building blocks during GP evolution.

Simplification is the process of directly removing redun-
dancy from a program, leaving behind a smaller, semanti-
cally equivalent program (yields the same outputs given the
same inputs). For the purposes of this paper, we will use an
Algebraic Simplification method described in GECCO ’06
[2]. This method uses a set of algebraically based rules, as
well as hashing techniques.

We track a simple form of building block (numerical-nodes)
throughout a GP run in order to observe their behaviour
under simplification. These are simply the numerical termi-
nal nodes in GP programs. In standard GP, these are usu-
ally regarded as “constant”. However, in GP systems using
simplification, this is no longer true as they can be altered

Copyright is held by the author/owner(s).
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
ACM 978-1-59593-697-4/07/0007.

by simplification. Essentially, numerical-nodes can exhibit
nearly all the characteristics of larger building blocks, but
with reduced complexity, allowing for easier tracking and
analysis. They provide a good “first step” into analysing
the influence simplification has on GP building blocks. We
will analyse more “general” building blocks in future work.

For experiments, we used the symbolic regression task
11x + 50.0 for 200 points over the range [−10.0, 10.0]. This
task put emphasis on the use of numerical-nodes. Mean
square error over all the points is used as the fitness mea-
sure. In both “standard GP” and “GP with simplification”,
tree-based programs are used. The ramped half-and-half
method was used for program generation. Proportional se-
lection and reproduction crossover and mutation were used
as the genetic operators. The terminal set consists of a sin-
gle variable and a number of randomly generated numerical-
nodes in the range of [−1.0, 1.0]. The use of a small range is
used in order to increase the difficulty of the problem. The
function set contains the four arithmetic functions: +, −, ×,
÷ (protected division). The following parameters were used
for both GP with or without simplification: Mutation 30%,
Elitism 10%, Crossover 60%, Population Size 500, Genera-
tions 100, Max. Depth Limit 6. Additionally for GP with
simplification, several frequencies of how often simplification
was applied were used: none, every 1, every 5, every 10.
Hash order (p) for the hashing process is set to 1000077157,
and the constant precision (δ) is set to 1000000.

It was found that, in general, simplification does in fact
disrupt existing building blocks, which can make it more
difficult for a system to find a highly fit solution. We also
found that simplification was able to create new numerical-
nodes, some of which were propagated by the GP system to
create better solutions. In most cases, new building blocks
were able to be constructed, and GP systems using simpli-
fication were able to recover from the disruption of build-
ing blocks and even outperform the standard GP. Results
suggest that system performance for GP with simplification
relies on these building blocks being created.

It is clear that these interactions need to be further in-
vestigated. We will analyse more complex forms of building
blocks in future works.

[1] Terence Soule and James A. Foster and John
Dickinson, Code Growth in Genetic Programming, in
Genetic Programming 1996, pages 215–223, MIT
Press.

[2] Phillip Wong and Mengjie Zhang, Algebraic
simplification of GP programs during evolution, in
GECCO 2006, pages 927–934, ACM Press.

1761


