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ABSTRACT
This paper presents an approach to analyse the behaviours
of teams of autonomous agents who work together to achieve
a common goal. The agents in a team are evolved together
using a genetic programming (GP) [8] approach where each
team of agents is represented as a single GP tree or chro-
mosome. A number of such teams are evolved and their be-
haviours analysed in an attempt to identify combinations of
individual agent behaviours that constitute good (or bad)
team behaviour. For each team we simulate a number of
games and periodically capture the agents’ behavioural in-
formation from the gaming environment during each simula-
tion. This information is stored in a series of status records
that can be later analysed. We compare and contrast the
behaviours of agents in the evolved teams to see if there is
a correlation between a team’s performance (fitness score)
and the combined behaviours of the team’s agents. This ap-
proach could also be applied to other GP-evolved teams in
different domains.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Coherence and Coordination, Multiagent Systems

; I.2.2 [Artificial Intelligence]: Automatic Program-
ming—Program Synthesis, Program Verification

General Terms
Experimentation

Keywords
Genetic programming, phenotypic analysis, artificial intelli-
gence, cooperative agents, tactical team behaviour

1. INTRODUCTION
Combative computer games are a specific genre of com-

puter games where two sets of agents are competing in a
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hostile environment with the primary goal of eliminating the
opposition. These games usually take the form of “shoot-
em ups” as the agents use some form of projectile weapon
to attack their enemies.

The artificial intelligence (AI) used in computer games to
control the non-playable characters1 is often implemented
using deterministic techniques such as finite state machines
(FSMs) and scripting as these are easy to understand and
implement [11]. However, these techniques lead to pre-
dictability in the game AI which is not desirable in mod-
ern games as the behaviour of the non-playable characters
(NPCs) appears unrealistic and thus reduces the game’s
playability.

For combative computer games, the AI tends to be squad
based as each set of agents share a common goal (i.e. to
eliminate the other team). The AI in these games can be
viewed as being tactical as the actions of each team can be
defined as a set of methods used for winning a small-scale
conflict against the opposing team. To imitate a tactical
behaviour however, a broad understanding of the situation
is needed [12]; thus it is very difficult for game developers
to manually code the tactics for the NPCs so that their
combined group behaviour is coordinated and effective.

Genetic programming has been shown to be successful at
evolving behaviours for teams of agents in a number of dif-
ferent domains. Luke et al. used genetic programming to
evolve coordination between teams of agents in a virtual soc-
cer environment [9] and Richards et al. successfully evolved
cooperative strategies for a group of unmanned aerial vehi-
cles (UAVs) using GP techniques [10]. These examples pro-
vide evidence that GP can be used as a effective technique
for the automated development of rational team behaviours
in different application domains.

Doherty and O’Riordan [4, 5] created an architecture for
developing effective team tactics using genetic programming
techniques. The evolved team behaviours that emerged from
the simulations outperformed those of a team of intelligent,
individually rational, manually coded agents developed by a
game designer. In this paper, we analyse the phenotypes of
these emergent team tactics and compare and contrast the
behaviours of the individual members of the teams in an
attempt to extract a set of features inherent in teams that
perform well and see what combination of individual agent
behaviours constitute a good tactical team behaviour. We
also wish to analyse the less fit teams to determine what fac-

1Non-playable characters, or NPCs for short, are any char-
acters in the gaming environment that are controlled by the
computer.

1951



tors lead to their poorer performance. We identify a number
of different behavioural types commonly found in the com-
bative gaming environment. For each agent we monitor their
behaviours and identify if their behaviour describes one or
more of these common behavioural types. This results in
a vector of probabilities representing the likelihood that an
agent’s behaviour adheres to the common types. The prob-
ability vectors of all agents on a team are combined into a
single team vector that can be compared with other team
vectors to analyse the behaviours of different teams. For
an in depth discussion of team performance assessment and
measurement see [2].

2. DEVELOPMENT
In [5] it is shown that a number of teams of game agents

can be successfully evolved to defeat a single intelligent agent
with infinite ammunition2 and a health level equivalent to
that of the entire team of agents. The single intelligent agent
here can be thought of as the human player in a single-player
game. Thus, the tactics evolved should be effective for use
by teams of enemy NPCs in single player combative com-
puter games. Each team consists of five agents that must
work together as a collective group and display tactical team
behaviour in order to outwit and overcome the single intel-
ligent enemy agent. As a control for these experiments, a
team of five individually rational agents were pitted against
the same single enemy agent where all agents have the same
reasoning abilities. In this control experiment, the team of
five only defeat the single, more powerful agent 225 times out
of 500 due to their individually rational behaviour, whereas
the genetic program managed to evolve a team that can
defeat the single agent 495 times out of 500. This paper
focuses on extending their work by analysing the resulting
behaviours of each of these evolved teams to ascertain which
combinations of individual agent behaviours within a team
constitutes a good (or bad) tactical team behaviour.

2.1 Simulation Environment
The simulator is built on the 2D Raven game engine cre-

ated by Matt Buckland [3]. The environment consists of an
open 2-dimensional space, enclosed by four walls. The team
of agents and the single enemy agent begin the game from
opposite ends of the map. Agents can navigate from their
current position to any other position on the map by using
the A* algorithm to find the shortest path. Items are also
placed on the map at locations that are equidistant from
both the team starting points and the enemy starting point.
These items consist of health packs and a range of weapons,
all of which can be collected and used by both the team
agents and the enemy agent during the course of the game.
If an item is picked up by an agent during the course of the
game it disappears from the map for a short time before
it respawns and can be used again. The game ends when
either the team of agents have defeated the single enemy
agent, the enemy agent has defeated all five team agents or
a predefined maximum game time has elapsed.

2All the agents have infinite ammunition for the weakest
weapon (i.e. the blaster) but the single enemy agent has in-
finite ammunition for the strongest weapon (i.e. the railgun)
also.

2.2 Agent Artificial Intelligence
The behaviour of all autonomous agents within the gam-

ing environment (i.e. both the team of evolved agents and
the single enemy agent) is based on the goal-driven agent ar-
chitecture as described by Buckland [3]. However, the way
the agents decide on which goal to follow at any particular
time is different. The enemy agent decides on which goal to
pursue at any given time based on intermittent desirability
checks. Each goal has a desirability algorithm associated
with it that results in individually rational behaviour. The
evolving team agents decide on what goal to pursue based
on a decision-making tree evolved using a genetic program.

Within the goal-driven agent architecture the goals can be
either atomic (define a single task or action) or composite
(made up of several subgoals). Composite goals are broken
down into subgoals of a simpler nature, hence a hierarchical
structure of goals can be created for any game agent to define
its behaviour.

3. THE GENETIC PROGRAM
Genetic programming is chosen as the technique used to

evolve the behaviours as it has the potential for uncovering
novel team tactics for the NPCs by searching the solution
space of all possible behaviours. It also allows for the auto-
matic creation of the NPCs’ decision-making code and the
GP tree representation means that the behaviours of the
teams can be later analysed and reused. Each GP chro-
mosome comprises five separate trees, one for each agent in
the team that defines the manner in which the agent de-
cides what actions to perform when following the tactic (i.e.
each team of five agents are represented as a single chromo-
some). The population consists of 100 chromosomes (teams)
and each simulation is run for 100 generations or until the
population converges. As there is a degree of randomness
within the gaming environment, every team (chromosome)
plays five games in each generation of the simulation and
the results are averaged so as to give a more accurate rep-
resentation of a team’s performance. An example of a team
chromosome can be seen in Figure 1.

Figure 1: Sample Evolved Team Chromosome.

1952



3.1 GP Node Sets
A strongly-typed GP is used in order to constrain the

type of nodes that can be used as children of other nodes.
Strongly-typed genetic programming (STGP) is able to evolve
programs that perform significantly better than GP evolved
programs. Furthermore, programs generated using STGP
are easier to understand [7]. There are five node sets in
total:

Action node set: The nodes that constitute this set define
the goals the agent can pursue or actions it can perform (e.g.
attack the enemy) but also include the IF statement node.
All goal nodes are terminals bar the MoveTo goal, which
takes in a position from the positional node set to which the
agent should navigate to.

Conditional node set: There are 7 conditional nodes in
this set that can be combined to form the conditions under
which an action is to be performed.

Positional node set: Nodes in this node set are all terminal
nodes that represent vector positions on the map to which
the agents can move. These positions are relative to the
positions of other agents on the map (e.g position of nearest
ally).

Environmental parameter node set: This node set consists
of parameters taken from the gaming environment that are
checked during the decision making process of the evolving
agent. Such nodes include an agent’s current health, the
distance to an agent’s nearest ally, the distance to its enemy
and the agent’s ammunition supplies for each weapon in its
inventory.

Numerical node set: This node set defines arithmetic op-
erators and constants.

There are a total of 39 different types of node across the
five node sets that can be combined to describe an agents
decision-making code. The decision-making trees created
from the evolutionary process can reach a maximum depth
of 17. Hence, the search space of possible trees is vast.

3.2 Fitness Evaluation
To evaluate the performance of a team in a given simu-

lation, the fitness function must take a number of factors
into account: the length of time a game lasts, the remain-
ing health of both the enemy agent and ally team and the
length of the chromosome (to prevent bloating of the trees).
To obtain an accurate measure, five games are used. The
basic fitness is calculated as follows:

RawFitness =
AvgGameT ime

Scaling ∗ MaxGameT ime
+

(5 ∗ (Games ∗ TSize ∗ MaxHealth − EH) + AH)

Games ∗ TSize ∗ MaxHealth

where AvgGameT ime is the average duration of the five
games in a simulation, Scaling is a variable to reduce the
impact the game time has on the fitness of a team, EH and
AH are the total amount of health remaining for the enemy
agent and for all five ally agents respectively (averaged over
five games), TSize is the number of agents in the evolving
team (set to 5 for these experiments), Games is the number
of games played (i.e. five) and MaxHealth is the maximum
health an agent in the game can have.

As a general rule, the longer a game lasts, the better the
team are at surviving the enemy’s attack. As the single
agent in these experiments is likened to a human player so as
to evolve team tactics for single player combative computer
games, shorter games would mean either the human player
dies quickly (making the games too difficult) or the team
dies quickly (making the games too easy). More importance
is attached to the change in the enemy agent’s health than
the corresponding change in the ally team’s health as the
tactics are evolved to be capable of defeating the enemy.

The length of the chromosome is taken into account in the
fitness calculation to prevent trees from bloating.

StdF itness = (MaxRF − RawFitness) +
Length

LengthFactor

where MaxRF is the maximum value possible RawFitness
can hold and LengthFactor is a parameter used to limit the
influence the length of the chromosome has on the fitness.
The fitter the team the closer the value StdF itness is to
zero. Once fitness scores are calculated for all teams of a
generation, they, then, are used to probabilistically select
chromosomes (i.e. teams) from that generation to be used
to make individuals for the next generation of the popula-
tion.

3.3 Selection Process
Selection is performed in two phases. The first is a form

of elitism where m of the best n individuals from each gen-
eration are retained by reproducing them into the new gen-
eration unaltered. For these experiments, three copies of the
best individual and two copies of the next best individual
are retained in this manner. This ensures that the fittest
members of the population are not destroyed or lost.

The second method of selection is roulette wheel selec-
tion, which selects chromosomes from the current generation
probabilistically based on the fitness of the chromosomes.
Each individual is assigned a section of the roulette wheel
proportional to its fitness in relation to all other individ-
uals in the population. Any chromosomes selected in this
manner are subjected to crossover and mutation operators
before being inserted into the next generation.

In order to add more diversity and prevent premature con-
vergence of the population, there is also a 2% chance for
completely new chromosomes to be created and added to
the population each generation rather than selecting from
the current population.

3.4 Team-based Crossover
The crossover operator used here was first proposed by

Haynes [6]. It involves selecting a random five bit mask that
decides what agents of the parent team chromosomes are to
be altered during crossover. A ‘1’ indicates that the agent
is copied directly over into the child chromosome and a ‘0’
indicates that the agent is to take part in crossover with the
corresponding agent of the other parent chromosome, before
being placed in the child chromosome.

Following the selection of the bit mask, a random crossover
point is chosen within each agent to be crossed over. The
node at the crossover point in each corresponding agent of
the two parents must be from the same node set in order for
a valid crossover to take place (e.g. a subtree with its root
as a conditional can only be swapped with a subtree whose
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Figure 2: Crossover Operation between two Teams

root is also a conditional). Figure 2 illustrates the crossover
operation between two sample team chromosomes.

3.5 Team-based Mutation
There are two kinds of mutation operators used in the

evolutionary process.
The first form is known as swap mutation. It involves

randomly selecting a mutation point in one of the five agent
trees of the chromosome and deleting its subtree. The node
at the mutation point is replaced with a new random node
from the same node set and a new random subtree is grown
from this new node.

The second mutation operator randomly selects two of the
five agents of the chromosome to take part in the mutation.
A random point is chosen in each of the selected agent trees
for the tactic being evolved and the subtree at that point is
swapped between the two agents.

4. PHENOTYPIC ANALYSIS
The GP described in the previous section is used to evolve

a number of solutions capable of defeating the single enemy
agent. A total of 21 solutions are evolved over a series of
runs. All of the teams evolved are capable of defeating the
enemy agent, but not all of them have the same fitness as
some can defeat the enemy more effectively than others. We
suspect this is due to a variance in the behaviours of the in-
dividual agents on each of the teams. We hypothesise the
agents of the teams with the better fitness scores work more
cooperatively together in order to defeat the enemy and that
the interplay between the individual behaviours of the group
members has a significant impact on the overall team’s per-
formance. We wish to discover what factors constitute a
good team behaviour or what combination of specific agent
roles are important to have on a team to ensure good over-
all team performance. Although it is possible for there to
be multiple ways of defeating the enemy agent effectively,
we suspect that commonalities exist between teams of sim-
ilar fitness and that the agents of these teams of similar
fitness fulfill similar team roles. We believe an investigation
of these evolved team behaviours will result in the formation
of clusters of teams with both similar behavioural properties

Table 1: Sample Status Record for Team Agent
Update 1 2 3 ...

GoalFollowed 14 14 7 ...
WeaponSelected 2 3 3 ...
RocketsCollected 0 0 0 ...

RailAmmoCollected 0 15 0 ...
ShellsCollected 0 0 0 ...

BlasterAmmoUsed 0 0 0 ...
RocketsUsed 0 0 0 ...

RailAmmoUsed 0 0 1 ...
ShellsUsed 0 0 0 ...

Health 50 48 48 ...
DistanceAlly1 1485 1587 1720 ...
DistanceAlly2 9540 8563 7458 ...
DistanceAlly3 14000 14102 14537 ...
DistanceAlly4 14870 14982 15010 ...

DistanceEnemy 5250 4580 4325 ...
EnemyTarget 0 1 1 ...

and fitness scores. For this we have put forward a method
for analysing and classifying the phenotypic behaviour of a
group of evolved agents, such as those evolved using this
genetic program.

4.1 Gathering Behavioural Information
In order to investigate team behaviours, we must first

specify a method to formally capture behavioural informa-
tion from the gaming environment for each individual team
agent. We implement this by periodically taking snapshots
of each agent’s game state throughout its lifetime. These pe-
riodic snapshots are accumulated throughout the game for
each team agent and are stored as a vector of status records
that can later be analysed. Each status record (snapshot)
holds information on the identification number of the current
goal being pursued by the agent, the identification number of
current selected weapon, any ammunition collected for each
weapon type and any ammunition used for each weapon type
(since last snapshot was taken), relative distances to each of
the agent’s four allies and the enemy agent, the agent’s cur-
rent health level and whether or not the agent is the current
target of the enemy agent. One of the most difficult tasks is
choosing the most suitable factors to extract from the gam-
ing environment. Although other factors could be captured
from the gaming environment (e.g. distance to items), we
believe the set of agent parameters we have chosen is suffi-
cient for the classification of a game agent’s behaviour in this
environment. The set of parameters that can be extracted
and stored in these status records could be extended to deal
with more complex environments. A sample record is illus-
trated in Table 1. The values in the cells of the table refer
to: update number, goal and weapon identifiers, amounts of
ammunition supplies and health, distances from other agents
and a Boolean value stating whether or not the agent is the
current target of the enemy agent.

A vector of these status records is kept for each agent on a
team. Records are periodically taken every n game updates
for each team agent until either the game has ended or the
team agent has been killed by the enemy agent. This vector
of snapshots of the agent’s state throughout the game is later
used to classify its behaviour in ascertaining how likely it is
to be a specific agent type.
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4.2 Identification of Agent Types
Having discussed how the behavioural information is col-

lected from the game environment, we must now consider
how to best utilise this information to classify the different
behaviours of the team agents. The first step is to iden-
tify the different agent types to be used in the classification.
Each agent type has their own specific behavioural char-
acteristics but the agent types are not mutually exclusive
and an agent’s behaviour can be categorised as simultane-
ously belonging to different types. A total of eleven different
agent types that capture specific agent behaviours have been
identified. In order to classify these behaviours, algorithms
have been developed to calculate the degree of membership
that an agent has to each specific agent type. Based on an
agent’s behaviour we calculate values indicating the degree
to which this satisfies a particular role (e.g. attacker). The
value returned from these calculations is used to calculate
the probability of being a particular role according to:

FinalProbability =
1

1 + c ∗ e((−value)∗s)

where c and s are constant values and value is the original
value returned from the agent type classification equations.

4.2.1 Agent Type Classification
In order to classify an agent’s behaviour, we must define

classification equations for each of the roles identified that
determine to what degree a particular agent’s behaviour de-
scribes that agent type.

• Decoys: In our environment, a decoy agent is any agent
who deters enemy fire from its teammates. This is
generally done when a team agent deliberately exposes
itself to the enemy so as to make itself the prime target
of enemy fire and hence deter fire from the other team
members. The first factor we use to calculate the decoy
score for an agent is the average distance from the
team agent to the enemy. For this, the smaller the
distance, the better, as the closer an agent is to the
enemy the more likely it is to influence the enemy’s
behaviour (i.e. cause the enemy to retreat, panic, focus
its fire on the agent, etc.). The second factor used to
calculate the decoy score for an agent is the number
of times throughout its lifetime that the team agent
was the focus of the enemy fire. Both these factors are
weighted equally for these experiments.

DecoyBoundaryDist

AverageDistEnemy
∗ 0.5 +

∑
EnemyTarget

AgentLifetime
∗ 0.5

• Ammunition Gatherers: An agent is an ammunition
gatherer if one of its primary activities is to collect
ammunition packs. As there are three different types
of ammunition packs that can be collected within the
gaming environment, we define three different types
of ammunition gathering agent types, one for each of
the railgun, shotgun and rocket launcher weapons3. In
order to ascertain the likelihood an agent is an ammu-
nition gatherer, we must take account of how much
ammunition the agent has gathered for that particular

3Agents have infinite ammunition for the blaster weapon.

weapon over the course of its lifetime and how much of
its lifetime it has spent looking for that ammunition
type (i.e. the proportion of status records in which
its goal is to retrieve ammunition for that weapon).
For these experiments, both the factors are weighted
evenly. The following equation is used to classify a
railgun ammo gatherer:

RailAmmoGathered

RailAmmoPerPack
∗ 0.5+

∑
GoalGetRailgun

Lifetime
∗ 0.5

• Attackers: An attacker is an agent who aggressively
attacks the enemy. We define four different types of
attacking agents for our classification, one for each
weapon type. To calculate the probability of an agent
being a specific attacker type three factors need to be
taken into account: the amount of ammunition fired
for that weapon during the course of the agent’s life-
time, the number of times the agent’s goal was to at-
tack the enemy and the number of times the weapon in
question was the agent’s weapon of choice. For these
experiments, we have viewed the amount of ammuni-
tion used by the agent as the most important factor
in determining its probability of being an attacker and
have thus weighted this factor more heavily than the
other two. The equation to classify the rocket launcher
attacker type is shown below:

RocketsF ired

Lifetime
∗ 0.5 +

∑
GoalAttack

Lifetime
∗ 0.25

+

∑
WeaponSelectedRocketLauncher

Lifetime
∗ 0.25

• Evaders: Evaders are agents who do their best to keep
their distance from the enemy agent. Their behaviour
can be thought of as being cautious as they choose to
stay back rather than engage the enemy. For these
experiments we calculate the probability of an agent
being an evader based on its average distance from the
enemy over the lifetime of the agent. The larger this
distance the more likely the agent is an evader.

AverageDistanceEnemy

EvaderBoundaryDistance

• Health Preservers: An agent can be categorised as a
health preserver if it has a high average health level
over its lifetime and it actively seeks health packs within
the game. Therefore, the probability of an agent be-
ing a health preserver is relative to its average health
level over its lifetime and how often it actively tries
to retrieve health packs to replenish its health. An
agent’s ability to preserve its health should also take
into account how long it is able to stay alive; therefore
the lifetime of the agent relative to the lifetime of the
longest living agent on the team (i.e. MaxLifetime)
is also taken into account when calculating the agent’s
health preserving ability. Although this method is not
ideal, as it only calculates the probability relative to
the longest living agent on the team, it does eliminate
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the chance of agents who die off quickly receiving a
high health preserver score. Furthermore, the chance
of all five team agents dying off early is very slim as the
enemy agent can only target one team agent at a time
(although it can hit many with a single shot if they
are very clustered). For these experiments the factors
that determine the probability score are weighted dif-
ferently as we believe the average health and relative
lifetime of an agent are better indicators of an agent’s
ability to preserve health than the number of times it
seeks health packs.

AverageHealth

MaxHealth
∗ Lifetime

MaxLifetime
∗ 0.75

+

∑
GoalGetHealth

Lifetime
∗ 0.25

• Cohesive Agents: Cohesive agents are agents who stay
close to at least one of their teammates during the
course of their lifetime. The average distance from the
agent to its nearest teammate is checked to see if it is
within some arbitrarily chosen distance.

CohesiveBoundaryDistance

AverageClosestAllyDistance

4.2.2 Storing Team Agent Type Probabilities
These probabilities are stored in a vector of probabilities

for every game played by each agent. In order to get an
accurate measurement of an agent’s behaviour a number of
games must be played per evaluation and the results aver-
aged, as there is a degree of noise or randomness inherent
in the gaming environment. In total, for these experiments,
100 games are played per team evaluation so 500 probability
vectors are calculated, 100 for each of the five agents on any
one team. For each agent, the probabilities in all 100 prob-
ability vectors for that agent are averaged to give a single
probability vector that describes the agent types that agent
most likely belongs to. So we end up with five probability
vectors in total, one for each agent on the team describing
the behaviour of that team agent.

4.3 Comparison of Team Behaviours
In order to compare overall team behaviours, we must de-

fine a method to combine the five team agent probability
vectors into a single team probability vector that describes
the behaviour of the team as a whole. As the probabili-
ties in the probability vector are not mutually exclusive, we
use a simple thresholding system to decide to which agent
types a particular agent most likely belongs. A threshold of
0.6 is chosen for these experiments. Every agent probability
above 0.6 is raised to 1 and everything below lowered to 0.
Although this method is not perfect and very lossy, it is suf-
ficient to distinguish between different types of team agents
for these experiments. Once this thresholding technique has
been executed for a team agent’s probability vector, a 0
should be in place for every agent type it is unlikely to be
and a 1 should be in place for every agent type it is likely
to be. When this is done for all five team agents, the prob-
ability vectors can simply be added up to give a final team

vector of whole numbers describing how many agents of each
type are on the team.

4.3.1 Decision Tree Classification
In order to compare the team behaviours of the 21 evolved

teams, a team vector must be calculated for each evolved
team using the method described above. Once these are
found, we put the team vectors together with the relative
fitness of each evolved team into a decision tree classification
algorithm and observe the results. The target variable of our
decision tree is, of course, team fitness as we wish to see what
team behaviours or combination of agent types on a team
lead to similar team fitness. As our data set is relatively
small we chose our minimum node split size to be 5 so leaf
nodes can be a maximum of size 4. We believe that the
path from the root node of the tree to the leaves should
tell us something about the phenotypic behaviours of the
agents of teams who perform similarly and the combination
of agent types on a team that allow for better (or worse)
team performance.

5. RESULTS
The decision tree classification algorithm used to analyse

the phenotypic behaviours of the evolved teams resulted in
the decision tree shown in Figure 3.

As the target variable for the decision tree is a team’s fit-
ness score, the teams are grouped based on similar fitness
values, so the leaf nodes of the tree contain groups of teams
that performed alike over their evaluation, given some small
degree of variance within the group. By the nature of the de-
cision tree, these groups are formed by finding behavioural
properties common in the team vectors of all teams in a
group. Although the training set of data is relatively small
for these experiments, the decision tree classification algo-
rithm did manage to extract behavioural properties inherent
in good, bad and average teams by splitting the teams into
their corresponding groups based on their performance dur-
ing the classification.

From the tree in Figure 3, we can see that the most differ-
entiating factor between good and bad teams is the number
of railgun attackers on a team. Teams with at least one
railgun attacker on their team perform better than those
that do not. This is understandable as the railgun is the
most powerful weapon available in the environment. Hence,
the team will generally have a higher fitness if at least one
agent on a team uses a railgun to attack the enemy, as more
damage is likely to be inflicted on the enemy agent.

Following the left branch of the tree we can establish the
features that constitute a poorly performing team. Firstly,
as mentioned earlier, these teams have no agents who attack
using railguns which severely limits their attacking ability.
The number of evaders on these teams is also an important
factor in determining a teams performance. A team with two
or more evaders tends not to be as fit as a team with zero
or only one evader. This can be explained by the fact that
there are no railgun attackers on the team. The distance
an agent is away from the enemy has little or no influence
on the damage inflicted by or the accuracy of a railgun.
However, distance has a great impact on the effectiveness
of the other three weapon types. Hence, the greater the
number of evaders on a team with no railguns, the more
limited its attacking ability will be, leading to an overall
lower team fitness.
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Figure 3: Decision Tree for Classification of Team Behaviours.

Teams with just one (or no) evader(s) are further divided
into those with no shotgun attackers and those with at least
one shotgun attacker. Those with no shotgun attackers per-
form worse which is understandable as their attacking ability
is even more restricted with no railgun attackers nor shot-
gun attackers on the team. The teams with at least one
shotgun attacker are additionally split based on the number
of health preservers on a team. Understandably, the teams
who are better at preserving their health perform better as
agents in a team need to conserve their own health and stay
alive in order to inflict more damage on the enemy agent.

Looking at the right branch of the tree we can see that the
main factor that constitutes a team that performs well is its
ability to attack the enemy. All teams on the right half of
the tree have at least one railgun attacker, which is the most
powerful weapon available in the simulation environment.
Moreover, the decision tree shows that teams who have at
least one shotgun attacker on their team as well perform
even better. This is intuitive as the shotgun would be the
second most powerful weapon after the railgun4 and if a
teammate is already going for the railgun it makes sense
to go for the next most powerful weapon5. It seems that if
there is at least one railgun attacker and at least one shotgun
attacker on a team, then the team has sufficient firepower to
perform well. However, if one or two of the other agents on a
team are decoy agents6 that deter the enemy fire away from
the attackers, then the team performs even better as a whole.
If all three of the other team members are decoys, then the
team performs more poorly. We believe this is because one

4Note that the rocket launcher is also a powerful weapon
but it is not as effective as the railgun or shotgun as it is
much slower and if it is used in close proximity to the target
it can damage the agent firing it also.
5Weapon packs can only be picked up by one agent at a
time and once picked up they do not respawn until a time
delay has elapsed.
6All evolved teams contained at least one decoy agent.

to two decoys per team is sufficient to distract the enemy and
if more decoys are present more damage than is necessary
gets inflicted on the team as a whole. Furthermore, the
other team member(s) could be another attacker(s) which
could inflict even more damage on the enemy agent7.

Teams that have at least one railgun attacker but no shot-
gun attacking agents do not generally perform as well, how-
ever teams with two or more railgun attacking agents per-
form much better than teams with just one railgun attacker.
This finding is justifiable as a team with no shotgun attack-
ers and two railgun attackers has approximately twice the
firepower of a team with no shotgun attackers and just one
railgun attacker, thus able to inflict more damage on the
enemy.

From these results we can clearly see that it is the team’s
combined ability to attack the enemy and hence inflict dam-
age on the enemy that is the primary factor in determining
the performance of the team. The best performing teams
are those that have a combination of both railgun attackers
and shotgun attackers whilst also having one or two decoy
team members to draw enemy fire away from the team’s
attacking agents.

6. CONCLUSIONS AND FUTURE WORK
The purpose of this paper is to define an approach to

analyse the phenotypic behaviours of teams of autonomous
agents evolved using a genetic program. For these experi-
ments, a number of such teams are evolved for a combat-
ive computer game environment and an analysis is done on
their behaviours in an attempt to see what combination of
individual agent behaviours make up a good (or bad) team
behaviour. From the above results we can conclude that the
behavioural interactions among the agents on a team sig-
nificantly affect the team performance. Although the data

7Although possible for a decoy agent to also be an attacker
it is very unlikely.
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set used for these experiments is small for classification pur-
poses it does still show similarities in the behaviours of teams
with similar fitness scores. These similar behaviours show
phenotypic features that are common to teams with com-
parable fitnesses. As such, the phenotypic behaviours com-
mon to the teams who receive the higher fitness scores can
be extracted as those behaviours inherent in good team be-
haviours. From these experiments, the features common to
high performing teams are namely, having one or more shot-
gun attackers and one or more railgun attackers on a team
whilst also having one to two decoy team members to draw
away enemy fire from the team’s attacking agents. It is in-
teresting that the decision tree is able to classify the best
performing teams as those who have a combination of the
two most powerful attacking agent types as well as decoys
to divert enemy fire away from the attackers. This combi-
nation of agents shows a group rationality among the agents
as the decoys are rather selflessly making themselves targets
to protect their teammates and the attackers are resourceful
of the weapons they choose to attack with8.

We can clearly see that there is a correlation between
a team’s performance (fitness score) and the combined be-
haviours of the team’s agents (phenotypic behaviours). For
future experiments, we will explore using different methods
to combine the team agent vectors together when calculating
the team vector, such as using two or more thresholds in-
stead of just one and giving a different score for each thresh-
old an agent’s behaviour describes.

In an analysis conducted by Barlow et al. [1], it was found
that the three most important factors in team performance
in a squad environment are the assignment of roles to team
agents, coordination amongst the team agents and commu-
nication between the team agents. The GP used in these
experiments allows for automatic role assignment and coor-
dination of team agents but there is no explicit communica-
tion between team members. In the future, we would like to
integrate a communication element into our GP when evolv-
ing the behaviours by giving the agents the capability to
send and receive messages and respond accordingly to mes-
sages received from teammates. It would be interesting to
analyse the effect this explicit messaging would have on the
evolved behaviours and to compare them to the behaviours
evolved when no messaging is present. We hypothesise that
the behaviours will be more varied with the communication
element as agents will have the capability to warn allies of
threats or request backup and their teammates should react
accordingly.

Our approach to phenotypic analysis could also be used
in other domains that contain teams of agents working co-
operatively together to analyse their team behaviours and
see what it is that makes them perform well (or poorly) in
their environment.
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