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ABSTRACT 
Removing underground, unexploded bombs, mortars, cannon-
shells and other ordnance (“MEC” or “UXO”) from former 
military ranges is difficult and expensive. The principal difficulty 
is discriminating intact, underground ordnance from other 
metallic items such as fragments of exploded ordnance 
(“Clutter”), magnetic rocks, and “historic” items such as 
horseshoes, barbed-wire, and refrigerators. This study represents 
the first, large-scale, blind-test of MEC discrimination technology 
on production-grade, survey-mode data from the cleanup of a real 
impact site. The results reported here significantly advance the 
state-of-the-art in MEC discrimination over alternative forward-
modeling/inversion approaches to performing MEC 
discrimination. We combined Linear Genetic Programming (LGP) 
and statistical analysis to process data from the cleanup of 600 
acres of the F.E.Warren Air Force Base.  These data contained 
almost 30,000 targets of interest identified by geophysicists, 
including three-hundred thirty-two 75mm projectiles (75mm) and 
37mm projectiles (37mm). A little under one-third of the 
groundtruth was held back by the customer for blind-testing. Our 
task was to discriminate intact 37mm’s and 75mm’s from the 
clutter by ordering the targets from most-likely to be MEC to 
least-likely to be MEC in what is referred to as a “prioritized dig-
list”. We identified all 75mm’s by 28.2% of the way through our 
prioritized dig-list and all 37mm’s by 64.2% of the way through 
the prioritized dig list. Thus, depending on ordnance type, we 
reduced the number of targets that had to be excavated (false 
alarms) to clear the entire site by between 35% and 72%.  

Categories and Subject Descriptors 
I.2.2 [Artificial Intelligence]:Automatic Programming, Program 
Synthesis. J.2 [Computer Applications] Physical Sciences and 
Engineering. 

General Terms 
Algorithms, Measurement, Performance, Economics, 
Experimentation, Verification. 

Keywords 
Linear Genetic Programming; Discipulus; Geophysics; 
Unexploded Ordnance; UXO; Munitions and Explosives of 
Concern; MEC; EM61 MK2. 

1. INTRODUCTION 
Buried unexploded ordnance (“UXO”) (or Munitions and 
Explosives of Concern (“MEC”)) on closed military bases poses a 
hazard to life-and-limb and further prevents huge tracts of land—
frequently urban—from being returned to civilian use. The main 
barrier to cleaning-up closed military bases is cost. The 
Department of Defense (“DoD”) stated: “The UXO cleanup 
problem is a very large-scale undertaking involving 10 million 
acres of land at some 1400 sites.”1 One of the key problems is, 
according to DoD, “. . . instruments that can detect the buried 
UXO’s also detect numerous scrap metal objects and other 
artifacts, which leads to an enormous amount of expensive 
digging. Typically 100 holes may be dug before a real UXO is 
unearthed!”[6].  It costs more than $100 to excavate each target 
location that might contain a MEC item. So most of the cost of 
base-cleanup is spent digging empty holes, horseshoes, magnetic 
rocks and “MEC Clutter” or “Clutter”—small pieces of ordnance 
that flew apart on detonation or impact and pose no explosive 
hazard. 

This study represents the first, large-scale, blind test of MEC 
discrimination technology on production-grade, survey-mode data 
from the cleanup of a real impact site. The results reported here 
significantly advance the state-of-the-art in MEC discrimination 
over alternative forward-modeling/inversion approaches to the 
subject. 

1.1 Digital Geophysical Sensors 
Geophysicists locate possible MEC items on a site by pulling 
passive magnetic or active electromagnetic sensors across the site 
in parallel lines (also called “transects”) spaced 0.5 to 1 meter 
apart. These data are plotted spatially and potential MEC items 
show up as anomalies in an otherwise reasonably flat signal field. 
This process is referred to as Digital Geophysical Mapping 
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(“DGM”). The anomalous regions in the DGM are referred to as 
targets. This paper describes a process for determining which 
Targets are MEC and which are harmless metallic objects. 

In this project we used the signal from a four-channel, active 
electromagnetic sensor, the Geonics EM61 MK2.1 It records the 
magnetic signal induced in an underground object by an 
electromagnetic pulse at three time-decay intervals at a lower coil. 
The fourth channel is measured at a coil placed above the lower 
coil—the “upper coil.” 

MEC items range in mass from a few ounces to 2000 pounds. 
Almost all buried metallic clutter items on a site fall in the same 
weight-range (the vast bulk in the lower end of that range). So the 
task of discriminating between smaller MEC and Clutter cannot 
rely on mass—it has to identify objects with typical MEC 
characteristics. For example, most MEC is roughly cylindrical 
and has a length to diameter ratio of four or five to one. By way 
of contrast, magnetic rocks and metallic clutter are normally 
irregular and less elongated. 

1.2 Previous Work 
Two approaches to MEC discrimination have shown promise. In 
one approach, a parameterized forward-model derived from the 
physics of magnetometers and electromagnetic induction is 
derived. This approach uses theory to reduce all information 
about a given Target to the set of parameters (between 2 and 5 
parameters) that drive the forward model. To discriminate a 
Target, the forward-model is inverted and the parameters that best 
fit the actual measured DGM of a Target are extracted.  The 
parameters are then used in a variety of ways to classify the 
Target as MEC or not-MEC [3][4][9][15].  

The advantage of the forward-modeling/inversion approach is that 
it works from known physics approximations of actively-induced 
magnetism and passive magnetometers. The principal 
shortcomings of this approach are: (1) It does not produce a 
unique solution for the parameters for a large number of targets; 
(2) For effective discrimination, it requires very accurate 
positional information (<= 1 cm error), which is not attainable 
with current, economic positioning technology for sensors moving 
across the field (“survey” mode) [18]; and (3) It requires higher 
signal-to-noise ratios than are typically encountered in production 
data for smaller targets like 37mm MEC.   

Thus, forward modeling/inversion technology is mostly confined 
to “cued” data—that is, data collected at very high resolution and 
positional accuracy with static measurements over a known 
Target location or research grade survey data. Further, studies 
using the this approach have not reported much success in 
discriminating small ordnance (20mm and 37mm projectiles)—
most of the successes have been with larger ordnance. 

The other approach was pioneered by Deschaine in 2002. He 
applied Linear Genetic Programming (“LGP”) to research-grade 
data from a Protem-47 sensor and compared his results to those of 
the ten other contractors who had attempted discrimination on 
these same data. Deschaine, using LGP, did a dramatically better 

                                                                 
1 For more information about the EM61 MK2, please see 

www.geonics.com. 

job discriminating MEC from not-MEC than had been reported by 
the other ten contractors [7].  

Later, Banks applied a Genetic Programming approach to these 
same data [1]. His preprocessing and Genetic Programming 
modality were different than Deschaine’s. Nevertheless, he 
produced results significantly better than the other ten contractors; 
but not as good as Deschaine’s.   

Francone and Deschaine then applied LGP to high-quality, 
survey-mode, production-grade EM61 MK1 data from a DoD test 
bed. That test-bed attempted to simulate an actual MEC impact-
site with known buried items. Francone [12][11] reported in that 
study that LGP reduced the number of false-alarms (the number 
of non-MEC items that had to be dug to completely clear the site 
of MEC items) by about 40%. This was particularly significant as 
the smallest items on that site were 20mm projectiles—
traditionally regarded as very difficult to discriminate from 
clutter. On the other hand, the sample size in that study was very 
small (a total of only 17 MEC items and 300 non-MEC targets). 
So some question remained whether the results would replicable 
on larger data sets. 

The principal advantages of Francone and Deschaine’s LGP 
approach to-date are: (1) It has demonstrated success on field-
grade, simulated, production data gathered in survey-mode; and 
(2) It has demonstrated success in discriminating small ordnance 
from surrounding clutter [12]. 

This paper reports the results of applying an extension of the 
methodologies reported by Francone and Deschaine in [12] to a 
large, MEC cleanup project using only production-grade, survey-
mode data. 

2. THE WARREN AIR FORCE BASE DATA 
F.E.Warren Air Force Base (“Warren”) is located near Cheyenne, 
Wyoming. In the past, a portion of that base served as a practice 
range, primarily for 75mm and 37mm projectiles. 

We analyzed DGM data comprising over 60 million data points in 
four channels of data from 600 acres of Warren (the “Site”). Each 
data point consisted of four channels of information gathered 
from a Geonics EM61 MK2 configured with three time-decay 
channels on the lower-coil and one upper-coil channel. These data 
were integrated with a differential global positioning system 
(GPS). They were collected with one-meter between transects. 2 

We were also provided a table containing geophysicist-designated 
target-locations on the Site (the “Targets”) and ground-truth for 
some of those Targets (groundtruth is what the dig-teams actually 
found when they dug that Target up). Altogether, there were 
29,130 Targets designated. The vast bulk of them contained one 
or more metallic items on excavation. 

                                                                 
2 The DGM of the Site was delivered to us already lag-corrected 

by the customer in the Geosoft Oasis-Montaj UXO processing 
module. Lag correction is the process of adjusting the x,y 
coordinates of each data point to reflect the fact that alternate 
lines of data are collected when the sensors are traveling 
different directions. We assumed, for the purpose of this study 
that no further lag correction was necessary or desirable. 
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Of these 29,130 Targets, only 332 contained 37mm or 75mm 
MEC items. The remainder contained mostly MEC Clutter. 

3. TARGET DENSITY 
The Target density across the 600 acre Site varied widely. Some 
areas were densely populated with buried metal.  Figure 1 shows 
the Targets-per-acre on the Site sampled in 20x20 meter squares. 
The density ranges from low to over 400 Targets-per-acre.  

Figure 1. Target Density (Targets per Acre) 

 
Figure 2 shows a top-down picture of Target and MEC density on 
the Site. The very small gray dots are the geophysicist-selected 
Targets. The large, darker circles show the 37 and 75mm’s. Most 
of the small, gray circles contained Clutter. In the denser, darker 
regions of Figure 2, many Targets contained multiple metallic 
objects in the same hole. In fact, across the entire 600 acres, about 
20% of all Target locations contained multiple metallic objects. 

Figure 2. MEC and Target Density Map 

 
Areas containing a large number of Targets pose a particular 
problem for MEC discrimination because they usually contain 
overlapping Target DGM signatures. It is necessary to untangle 
such overlapping signals before they may be characterized 
individually.  On the Site, there were 7,382 Target pairs 
(including 36 MEC) that were less than two-meters apart and 
1,466 Target pairs (including 20 MEC) that were less than one-
meter apart. Depending on the size, depth, and inclination, the 
DGM signatures of the Targets ranged from 0.5 to more than 3 
meters in radius. Thus, overlapping Targets were a significant 
problem in this project. 

4. DISCRIMINATION CHALLENGES 
In addition to the overlapping Targets problem, these data posed 
several significant challenges in producing good discrimination 
results. 

4.1 Data Quality Issues 
These data were collected for comprehensive removal of all 
buried metallic objects on the Site.  The Targets for excavation 
were picked by geophysicists, who examined these data using 
commercially available spatial-gridding and processing software, 
using fixed thresholds. The intent in picking Targets was to dig 
every Target and this was a good-quality, commercial data set for 
that purpose.  

These data were not, however, collected for the purpose of 
machine-based discrimination and therefore posed significant 
data-quality issues for the present study. Geophysicist-driven, 
threshold-based Target selection normally needs only one good 
channel of data over any given Target to make a determination 
that there is likely a metallic object there. In that context, it makes 
no sense to incur extra costs to reacquire data when one channel 
has too much noise, so long as there is at least one good channel 
of data. 

By way of contrast, our discrimination approach uses all four 
channels. A significant portion of the geophysicist-selected 
Targets had noise or calibration issues with one or two channels 
of data—usually channels one and/or four. We elected to retain 
data as long as there were at least two good channels of data and 
to allow the LGP algorithm to adjust for varying noise contexts. 
This decision permitted us to rank all 29,130 Targets for the 
likelihood they were MEC. However, as discussed below, it also 
affected the accuracy of the 37mm discrimination significantly. 

Figure 3. Peak Millivolt Responses for 37mm’s 

 

4.2 Signal-to-Noise Ratio 
Traditional forward-modeling/inversion approaches to 
discrimination degrade quickly when the signal-to-noise ratio for 
a Target falls below 30-1. Targets in the Warren data routinely 
presented with a signal-to-noise ratio lower than that. The 
background noise level on the Site was roughly +/- 2 to 3 
Millivolts of white-noise chatter in the absence of instrument 
calibration or noise issues. For comparison, Figure 3 shows a 
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histogram of the peak Millivolt responses for the Targets that 
were determined to be 37mm MEC.  

Using the lower figure of 2 Millivolts for the background noise 
level, Figure 3 shows that the largest signal-to-noise ratio for any 
37mm was 16-1. And, the signal-to-noise ratio for the smaller 
37mm’s was just 2-1. So the signal-to-noise ratios in these data 
fell below the usual 30-1 threshold. 

4.3 An Ocean of Clutter 
The most significant challenge we faced was discriminating the 
37mm MEC items from MEC Clutter. As noted above, 37mm’s 
are rather small ordnance and are much more difficult to 
discriminate than, say, 500 lb bombs or 155mm artillery shells.   
The data at Warren illustrate why this is so. There, the largest 
ordnance type was the 75mm projectile. Investigators recovered 
26,996 pieces of MEC Clutter out of the 29,130 Targets 
excavated. By far, MEC Clutter from detonated 75mm’s was most 
common buried metallic item found on the site.  
The dig-teams recovered only 87 intact 37mm’s. They reported 
the intact 37mm’s weighed between 2 and 20 ounces.3  Of the 
MEC Clutter items recovered, 19,351 weighed between 2 and 20 
ounces.  Thus, most of the MEC Clutter was about the same size 
as the 37mm’s recovered. Mass was, therefore, not an appropriate 
or useful discriminator for the 37mm’s. 

5. BLIND-TESTING PROCEDURES 
We were provided with DGM for the entire 600 acre site. In 
addition, we were provided with groundtruth (that is, what the 
dig-teams found when they excavated a Target) for 23,085 of the 
29,130 Targets, which we used to develop our models. The 
Targets for which we were provided groundtruth contained fifty-
nine, 37mm’s and one-hundred eighty-six 75mm’s. We were not 
provided groundtruth for the remaining 6,045 Targets, which 
contained twenty-eight 37mm’s and fifty-nine 75mm’s. Nor were 
we involved in selecting the blind Targets. 

We performed two kinds of blind testing, which we distinguish 
here. First: In training our models to discriminate between MEC 
and not-MEC, we used four-fold cross-validation. All results on 
the 23,085 Targets on which we had groundtruth are reported on 
the held-out, testing data, the “virtual” blind-predictions if you 
will. Second: We delivered predictions to our customer for all 
29,130 Targets—the Targets for which we had groundtruth and 
the Targets for which we did not. The predictions took the form of 
rankings of the Targets by the likelihood the Target was MEC. So 
we ranked the 6,045 Targets for which we had no groundtruth 
blind. After we delivered the rankings to the customer, the 
customer then delivered groundtruth for these 6,045 Targets to us. 
So, as to these 6,045 Targets, the predictions were actual blind 
predictions. 

When we compared the blind data and the data for which we had 
groundtruth, it was clear that the customer had not selected 6,045 
Targets entirely at random.4 Accordingly, the blind Targets were 

                                                                 
3 Weights were collected in the field by the dig-teams and were 

estimated manually, not weighed. 
4 For example, the proportion of 37mm’s in the blinded data was 

0.0046. The proportion in the training data was .0025. The 

not representative of the entire site. Our goal in this project was to 
determine what portion of Targets had to be excavated in order to 
clear the whole site of MEC. In order to make that assessment, it 
was necessary to combine predictions on the virtual blind-Targets 
with the predictions on the “actual” blind Targets. In that way, it 
was possible to fit the blind-Targets into the context of the entire 
site. Our reports below were assembled in this manner. 

6. EXPERIMENTAL PROCEDURE 
Our process involves several steps, described below. Before LGP 
was applied, considerable preprocessing to remove noise and 
standardize the Targets was necessary. In addition, for each 
Target we had to define what data points were in the Target and 
which were not—that is, we had to define the size, shape, and 
orientation of each Target. Finally, we extracted the features used 
for LGP discrimination, analyzed them and prepared preliminary 
statistical models from them. The process is described in more 
detail below. 

6.1 Preprocessing 
EM61 data contains low frequency variation caused by factors 
like instrument drift or geomagnetic variation. Targets are 
typically between 0.5 and 3 meters in radius. We filtered the low 
frequency variation using a robust, high-pass filter, allowing 
features less than 10 meters in length to pass. This filtering 
process was entirely automated--the volume of data prevented 
individual examination of Targets. Then we standardized the 
background noise regions to a mean level of about zero.  

Figure 4. Channel 1 (dark line), Channel 2 (middle line), and 
Channel 3 (bottom line) on a Transect before Preprocessing 

 
Figure 4 shows Channels 1, 2 and 3 of an EM61 MK2 before we 
preprocessed the data. It shows about ten meters of data from a 
single transect in the vicinity of a Target. Note the differences 
between channels in background noise levels and the eleven 
Millivolt rise in channel one from meter 20 to 23.5 Figure 5 shows 

                                                                                                           
probability of this happening by random chance is less than 
p=0.007. In addition, the blinded data had a disproportionately 
high percentage of 37mm targets where Channel 1 was 
excessively noisy over the target. 

5 The eleven Millivolt rise in Figure 4 looks small in comparison 
to the Target shown therein. But Figure 3 reveals that almost 
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the same portion of that transect after preprocessing. The 
background levels for all three channels have been standardized to 
approximately zero and much of the eleven Millivolt rise has been 
eliminated. 

Figure 5. Channel 1 (top, dark line), Channel 2 (middle line), 
and Channel 3 (lowest line) on a Transect after Preprocessing 

 

6.2 Defining the Targets 
The customer provided us x, y coordinates of the geophysicist-
selected Targets. We grouped the EM61 signals read in the 
vicinity of each Target as being: (1) in the Target; and/or (2) in 
another (adjacent) Target; or (3) in the background noise. Our 
process for doing so involved fitting an ellipse to each Target 
using the preprocessed data converted to localized z-scores. The 
localized z-scores were calculated for each Target empirically, 
relative to the background noise level in the ten meter circle 
surrounding the Target. 
We used a deterministic optimizer using the Lipchitz global 
optimization algorithm [17] to define the Targets from the 
localized z-scores. The problem posed to the optimizer was to 
find the ellipse that best separated the above-background-noise 
values (z-score > 2) in the vicinity of each Target from the below-
background-noise values (z score <= 2) in the vicinity of that 
Target. For overlapping Targets, points in the area of overlap 
were excluded from the optimization. Thereafter, the ellipse 
derived was used to define the size and shape of the Target.  We 
defined such an ellipse for each channel of data for each of the 
29,130 Targets. This process was also entirely automated. 
Figure 6 shows the result of this process for a single EM61 
channel around one Target. Each datum from the EM61 near the 
geophysicist-picked Target location (marked with an “X”) is 
shown as a point. The size of the points in Figure 6 represents a 
point’s z-score—larger means a higher z-score relative to 
background noise. The ellipse defines which points we treated as 
being “in” the Target. 

                                                                                                           
half of the 37mm’s had a peak response above background 
noise that was less than or equal to eleven millivolts. So 
removing low frequency movements in the signal like the one 
shown in Figure 4 is quite important. 

6.3 Feature Extraction 
Once the ellipse was defined, we extracted a series of features for 
each Target. We determined what features to extract using two 
criteria. First: approximate physics-based models of induced 
magnetic field provides some guidance as to what ought to be 
important. See e.g. [4][3]. For example: (1) The shape of the time-
decay of the signal from Channel 1 to Channel 3 shows different 
characteristics for differently shaped objects; (2) The ratio of the 
upper and lower coil signals ought to provide information about 
the depth of the object because of the exponential decay of signal 
strength with distance; and (3) The symmetry of the signal about 
the major and minor axes is affected by the shape and inclination 
of the buried object. So the features we extracted provided 
detailed information about decay, upper/lower coil ratios, and 
signal symmetry. 

Figure 6. Ellipse defining a Target 

 
But approximate physics-based models do not completely define 
the problem posed by production-grade survey data. Instrument 
noise of various types affects the signal. For example, we 
described situations above where one or more channels would be 
overly noisy. The physics of induced magnetism cannot account 
for such problems; yet models must be built from imperfect data. 
To account for these imperfections of the data, we also extracted 
features that provide a detailed statistical topology of each Target. 
For example, we extracted the median signal value for the 
innermost part of each ellipse and for concentric ellipsoidal 
donuts outside that innermost part. 

6.4 Feature Reduction 
We took the extracted feature set and subjected them to statistical 
correlation analysis to determine which were most predictive of 
“MEC-ness” and, of those, which features were the least 
correlated with each other. In addition, we performed a series of 
preliminary modeling runs to determine which features 
contributed most to good-quality models [10]. After three 
iterations of this process, we had a tractable-size feature set. 

6.5 Modeling 
We then built our models using four-fold cross-validation—that 
is, the data set was split four different ways, with each data point 
serving as training data three times and as blind, testing data once. 
Each split of the data set was generated randomly. The examples 
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of MEC were duplicated until there was an approximate balance 
between the number of MEC items and the number of non-MEC 
items in each cross-validation training set. No such duplication 
was performed for the data used to test the models.  
Our principal tool here was LGP [2][10][16].  That software 
performs multiple runs automatically and selects the best evolved 
programs out of multiple runs.  We used the default parameters of 
the LGP software for in non-stepping mode [10] and terminated 
each run when no improvement had occurred for at least 50 runs.  
The Target output we wanted to predict was Boolean—a value of 
1 represented MEC and a value of 0 represented non-MEC. The 
output from our models was a probability that an item was MEC. 

Figure 7. ROC Chart for 75mm MEC 
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For each of the cross-validation data sets, we chose the model that 
our software selected as best on the training data. The numbers 
reported below represent the performance of the four chosen 
models on the held-out, testing data—the “virtual” blind data.  
For our predictions on the “actual” blind Targets, we took the four 
models trained on the four cross-validation data sets, applied them 
to the features extracted for the “actual” blind Targets, and 
averaged the predictions from the four models. That average was 
the value used to order the blind Targets. 
We performed this process separately for 37mm and 75mm. 
Using the outputs of the four models described above on both the 
“virtual” blind Targets and the “actual” blind Targets, we 
prepared a list prioritizing the Targets starting with the most 
likely to be MEC to the least likely to be MEC. We did that on a 
“whole site” basis to show where the “actual” blind Targets would 
have been excavated as part of clearing the entire site. 

7. RESULTS 
7.1 75mm MEC Results 
Figure 7 is a pseudo-Receiver Operating Characteristics (“ROC”) 
chart [13] showing the performance of our prioritized dig-list on 
75mm MEC. The horizontal axis represents the prioritized dig-
list—that is, what portion of all Targets would have been 

excavated had the site been cleared in the order specified by our 
prioritized dig-list. The vertical axis shows what portion of the 
75mm’s would have been cleared had the site been cleared in the 
order suggested by our prioritized dig-list. The diagonal line 
represents what random guessing would generate. The line with 
square points is key. It shows the tradeoff between finding all 
75mm’s, on the one hand, and the number of Targets that must be 
dug to do so, on the other hand, given our prioritized dig list. 
The horizontal axis in Figure 7 is somewhat different than what 
would be shown in a true ROC curve. In a true ROC curve, the 
horizontal axis would show the portion of true-negatives 
excavated in the order of the prioritized dig-list [13]. We use the 
pseudo-ROC chart for display as that is the recommended DoD 
format for assessing rankings to MEC vs. not-MEC in 
remediation discrimination [5]. 
In brief summary, Figure 7 shows that all 75mm MEC would 
have been cleared from the site by excavating only 27.8% of the 
total Targets had our dig-list been used to order the excavation. 
Put another way, our approach would have cleared all 75mm’s 
and reduced the number of false-alarms to do so by 72.2%.  

Figure 8. ROC Chart for 37mm MEC 
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Our test of the statistical significance of these rankings begins by 
converting the pseudo-ROC curve in Figure 7 into a true ROC 
curve, described above. Of course, the true ROC curve for these 
rankings also has a 45 degree random-guessing line that goes thru 
origin and the point 1,1.  The area under that random guessing 
line is, obviously, 0.5. So our null hypothesis is that the area 
under the true ROC curve for our 75mm rankings is not greater 
than 0.5. The alternative hypothesis is that the area under the 
ROC curve is greater than 0.5. 
The computation of the area under a ROC curve and the standard 
error of the area are described by Hanley in [13]. For our 75mm 
rankings, the area under the ROC curve is 0.9568 and the standard 
error is 0.00918. Thus, 0.5 is more than 49 standard deviations 
away from the computed area under the ROC curve. The p-value 
that the area under this ROC curve was not greater than 0.5 is 
zero to the limits of computational precision. Accordingly, we 
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reject the null hypothesis for the 75mm rankings with a high level 
of confidence.  

7.2 37mm MEC Results 
Figure 8 is a pseudo-ROC chart showing the performance of our 
prioritized dig-list on 37mm MEC. The horizontal axis represents 
the prioritized dig-list. The vertical axis shows what portion of the 
37mm’s would have been cleared had the site been excavated in 
the order suggested by the prioritized dig-list. The diagonal line 
again represents what random guessing would generate. 
In summary, Figure 8 shows that all 37mm MEC would have 
been cleared from the site by excavating only 64.2% of the total 
Targets. Put another way, our approach would clear all 37mm’s 
and reduce the number of false alarms by 35.8%. 
We applied the same Hanley procedure [13] used for the 75mm 
ROC curve to test the statistical significance of our 37mm 
rankings. The results were: (1) The area under the true-ROC 
curve for the 37mm rankings is 0.8233; (2) the standard error of 
the area is 0.0275; and (3) The probability that the area under the 
37mm true-ROC curve is not greater than 0.5 (random guessing) 
is 3.27E-32 to the limits of machine precision. Accordingly, we 
reject the null hypothesis with a high degree of confidence. 

8. DISCUSSION 
These results represent a significant step forward in the state-of-
the-art for MEC discrimination in several regards. 

First, this study extends the approach described by Francone and 
Deschaine in [12] from small, high-quality data samples derived 
from a simulated impact site to noisy, production-grade, survey 
data. To our knowledge, this is by far the largest MEC 
discrimination test reported and the only one demonstrating 
substantial success on production-grade, survey data. 

Second, this study replicates Francone’s findings in [12] on a 
much larger data set in blind, third-party-conducted testing. Both 
[12] and the present study reduced false alarms by between 35% 
and 40% over geophysicist Target-selection in clearing a site of 
the smallest ordnance. (In [12], the smallest ordnance was 20mm 
MEC. In the present study, the smallest was 37mm.) Both this 
study and Francone’s previous work used LGP. Both used similar 
methodologies. Thus, the replication of these earlier results on 
blind-data provides substantial evidence for the efficacy of the 
methodology. 

Third, these results improve on results for larger ordnance 
reported by well conducted studies using the forward-
modeling/inversion approach we described earlier. Nelson 
conducted a relatively large study of an actual impact site using 
magnetic and EM61 survey data collected by the MTADS system 
[9]. MTADS produces much higher quality survey data than we 
had access to in this project.6 The discrimination approach tested 
by Nelson produced a 58% reduction in false alarms for 81mm 
mortars, when the 81mm’s were considered alone. (In general, the 
larger the ordnance, the easier it is to discriminate. So our 
                                                                 
6 This difference in data-quality is not a result of different data-

gathering technique. Rather, it is the result of different hardware 
platforms. MTAD’s is the current state-of-the-art for survey-
based data collection but is seldom used for actual cleanup 
because of expense. [8] 

discrimination of 75mm projectiles in the present study was a 
roughly comparable task to the discrimination of 81mm’s in [9].) 
We produced a 72.2% reduction in the false alarms for 75mm’s 
on data very much inferior to that group’s MTAD’s data. 

Fourth, the discrimination of small ordnance (such as 37mm’s) 
from Clutter is usually the most difficult discrimination task on a 
site. We are not aware of any studies that have produced results 
on small ordnance using survey-based, production-grade data that 
show results comparable to ours, other than Francone’s previous 
work also using LGP and similar preprocessing methodologies to 
the present study and even that was conducted on a much smaller 
data set [12]. 

Fifth, we mentioned earlier that we encountered noise problems 
with the signal on channels one and/or four from the EM61 MK2. 
This problem affected 28 of the 37mm’s on the site. This was a 
problem for discrimination as it affected various measurements of 
the shape of the decay curve across the three time gates for these 
Targets, all important discriminators. For these Targets, the 
models we developed solved the discrimination problem 
differently than they solved the same problem for the less noisy 
Targets.  Had we not encountered these noisy data, the entire site 
would have been cleared of 37mm’s by about 50% of the way 
through our prioritized dig-list. That is, if the twenty-eight 
37mm’s that had noise problems in channel one been removed 
from the study, our results would have improved to 50% from 
64.2%. There are two conclusions to draw from these 
observations: (1) Better data means better discrimination; and (2) 
Our methodology permits our models to adapt to noise issues on a 
site. Thus, where the data for a particular Target was not 
especially good, an acceptable solution (albeit not as good as the 
solutions for clean-data Targets) was, nevertheless, derived, 
which provided good discrimination, even in the face of noise. 

All this may suggest why the LGP approach has produced better 
results than previous forward modeling/inversion studies. At their 
core, both approaches use the known physics of induced magnetic 
fields—one explicitly via the forward model and the other 
implicitly via the extracted features provided to LGP. But known 
physics is not all that is taking place in real production projects. 
Like many other earth-science challenges, a comprehensive 
closed-form analytic solution for MEC discrimination is not 
available, only approximations. In addition, instruments drift and 
go out of calibration. Positioning is not exact. The geophysicists 
do not walk straight lines exactly one-meter apart across the site 
and transects are not always directly over the Target. In other 
words, there is imprecision in the data that comes and goes. LGP 
can model how the noise on a site affects the signal, something 
that the purely physics based approaches cannot easily do. 

Finally, the forward modeling approach reduces all information 
about a Target to just a few parameters—usually between two and 
five. We examined the features drawn from the DGM that proved 
to be useful discriminators in our models and subjected them to 
principal components analysis (“PCA”). PCA produces 
uncorrelated components that contain most of the variance in the 
original data set [14]. More than 25 of these orthogonal 
components contained useful and statistically significant 
information for distinguishing MEC from not-MEC. This suggests 
that there is some information loss in reducing the description of a 
Target using a lumped parameter formulation comprising of only 
two to five orthogonal parameters.  
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By allowing LGP to fuse the known physics and extract valuable 
discrimination information from what might appear as noise 
characteristics of the instrument, the data gathering techniques, or 
the signal itself, and by not requiring that models be restricted to a 
very small number of parameters to describe a Target, we believe 
it possible to extend MEC discrimination accuracy beyond what 
may be had by relying solely on the analytical physics-based, 
forward-model approximations. 
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