
Automated Synthesis of a Fixed-Length Loaded 
Symmetric Dipole Antenna Whose Gain Exceeds That  
of a Commercial Antenna and Matches the Theoretical 

Maximum 
 

 John R. Koza 
Stanford University 

Stanford, California 94305 
PHONE: 650-960-8180 
koza@stanford.edu 

 

Sameer H. Al-Sakran 
Genetic Programming Inc. 

990 Villa Street 
Mountain View, California 94041 

sameer@genetic-
programming.com 

 
 Lee W. Jones 

Genetic Programming Inc. 
990 Villa Street 

Mountain View, California 94041 
lee@genetic-

programming.com 
 

Greg Manassero 
Electrical Engineering Consultant 

San Jose, California 
greg.manassero@ieee.org 

ABSTRACT 
This paper describes the use of genetic programming to 
automatically synthesize the design for a fixed-length loaded 
symmetric dipole antenna whose gain at a specific wavelength 
exceeds that of a commercially-marketed human-designed 
antenna and that reaches the theoretical maximum value for an 
antenna of its type. The run of genetic programming started 
“from scratch”—that is, without starting from a pre-existing 
human-created design; did not employ any knowledge base of 
human design techniques or principles from the field of antenna 
design; and did not benefit from any human intervention during 
the run. The run produced a human-competitive result.  

Categories and Subject Descriptors 
G.1.6–Global Optimization; I.2.2–Automatic Programming 
Program Synthesis; I.2.8–Control Methods and Search 

General Terms 
Design, algorithms 

Keywords 
Genetic programming, automated design, antenna, human-
competitive result, invention machine 
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1 INTRODUCTION 
An antenna is a device for receiving or transmitting 
electromagnetic waves. An antenna may receive an 
electromagnetic wave and transform it into an electrical signal 
on a transmission line. Alternately, an antenna may transform a 
signal from a transmission line into an electromagnetic wave 
that is then propagated in space.  

Maxwell’s equations describe the electromagnetic waves 
generated and received by antennas and the electrical currents in 
the antenna. The task of synthesizing the design of an antenna 
with specified behavior and characteristics is difficult. The 
design process for antennas typically calls for considerable 
creativity on the part of the antenna engineer (Balanis 1982; 
Stutzman and Thiele 1998; Linden 1997). The process by which 
humans design antennas is similar to that of the design process 
for analog electrical circuits, controllers, and optical lens 
systems in that synthesis is considered an art. 

Antenna performance can be altered—and often significantly 
improved—by embedding electrical components, such as 
capacitors and inductors, into the antenna. For example, a 
conventional non-loaded half-wavelength dipole consisting of 
only wire typically achieves a gain of 2.2 dBi, whereas a well-
designed loaded version may achieve a gain of 12 dBi or more. 
The insertion of electrical components into an antenna (called 
“loading”) exacerbates the task of synthesizing the design of an 
antenna with specified performance.  

The behavior and characteristics of many antennas can be 
analyzed by simulation. The Numerical Electromagnetics Code 
(NEC) is a method-of-moments simulator for wire antennas that 
was developed at the Lawrence Livermore National Laboratory 
(Burke 1992). The NEC simulator is widely used in the antenna 
community and is considered to be reasonably accurate and 
reliable for a broad range of structures (Linden 1997).  
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The NEC simulator works from a text input (called the geometry 
table) describing the antenna. NEC produces output in a well-
defined text format that is easily parsed. Source code for NEC 
(originally in FORTRAN) is available. Thus, the NEC simulator 
can be readily embedded inside an entirely automated run of a 
genetic algorithm or genetic programming. In these respects, the 
NEC simulator for antennas is similar to the SPICE simulator 
for analog electrical circuits and controllers (Koza, Bennett, 
Andre, and Keane 1999; Koza, Keane, Streeter, Mydlowec, Yu, 
and Lanza 2003) and the OSLO and KOJAK simulators for 
optical lens systems (Al-Sakran, Koza, and Jones 2005).  

This paper demonstrates the use of genetic programming to 
automatically synthesize the design for a fixed-length loaded 
symmetric dipole antenna whose gain at a specific wavelength 
exceeds that of a commercially-marketed human-designed 
antenna and that matches the theoretical maximum value for an 
antenna of its type. The run of genetic programming started 
“from scratch”—that is, without starting from a pre-existing 
human-created design; did not employ any knowledge base of 
human design techniques or principles from the field of antenna 
design; and did not benefit from any human intervention during 
the run. The run produced a human-competitive result. 

Section 2 provides a statement of the problem. Section 3 
mentions previous work involving the use of genetic algorithms 
and genetic programming to design antennas. Section 4 
discusses our approach to the automated design of antennas. 
Section 5 discusses the preparatory steps used to apply genetic 
programming to the automated design of antennas. Section 6 
presents the results produced by genetic programming. Section 7 
is the conclusion.  

2 STATEMENT OF THE PROBLEM 
Cisco Systems Inc. (2002) offers a 12-dBi high-gain 
omnidirectional 42-inch antenna operating in the 2,400–2,500 
MHz frequency range, as described in the product’s commercial 
spec sheet (AIR-ANT24120).  

The goal in this paper is to automatically synthesize a design for 
a symmetric dipole antenna whose gain at a specific wavelength 
exceeds that of the commercially-marketed human-designed 
antenna and that matches the theoretical maximum value for an 
antenna of its type.  

A good estimate for the maximum practical gain for a dipole at 
a specific wavelength in dBi (assuming uniform current across 
the antenna’s length) is 10log102L, where L is the antenna’s 
electrical length (i.e., the dipole’s physical length divided by the 
wavelength). A 42-inch antenna (1.0688 meters) is 8.7 times the 
0.12245-meter wavelength of a 2,450 MHz wave (the midpoint 
of the 2,400–2,500 band). The maximum practical gain at a 
specific wavelength for an 8.7λ-long dipole at a single 
frequency is 12.406 dBi.  

3 GENETIC METHODS FOR ANTENNA 
DESIGN 

Genetic algorithms have been successfully applied to the design 
of a variety of antennas, including the design of thinned arrays 
(Haupt 1994), wire antennas (Linden 1997; Altshuler and 
Linden 1998, 1999), patch antennas (Johnson and Rahmat-Samii 
1999), and linear and planar arrays (Marcano and Duran 1999). 
The book Electromagnetic Optimization by Genetic Algorithms 

(Rahmat-Samii and Michielssen 1999) describes numerous 
applications of the genetic algorithm to antenna design. 

Altman, Wiart, and Mittra (1998) used a genetic algorithm to 
maximize gain for a fixed-length loaded dipole at a specific 
wavelength.  

Jones (1999) applied genetic programming to antenna design.  

Comisky, Yu, and Koza (2000) used a developmental 
representational scheme involving a turtle patterned after the 
way a draftsman might draw an antenna on paper. The 
developmental process and turtle was based on earlier work with 
developmental genetic programming and a turtle (Koza 1993).  

Lohn, Hornby, and Linden (2004) used developmental genetic 
programming to automatically synthesize the design of an X-
Band Antenna for NASA's Space Technology 5 Mission. This 
work added the additional, and highly advantageous, feature of 
permitting a wire to bifurcate.  

4 OUR APPROACH TO AUTOMATIC 
SYNTHESIS OF ANTENNAS 

Our approach to the problem of automatically synthesizing the 
design of an antenna that satisfies user-specified requirements 
involves 

(1) establishing a representation for individual 
antennas that is amenable to a run of genetic 
programming, and  

(2) defining a fitness measure that measures how well 
the behavior and characteristics of an individual 
antenna satisfy the problem’s design 
requirements. 

The implementation of our approach entails working with four 
different representations for an antenna:  

• Engineering Drawing: An antenna can be 
represented as an engineering drawing in two-
dimensional or three-dimensional space in which 
certain lines or curves represent conductive 
material (e.g., metal).  

• Program Tree: An antenna can also be represented 
as a program tree whose internal points (nodes) 
are functions and external points (leaves) are 
terminals. This representation enables genetic 
programming to breed a population of programs 
in a search for an antenna that satisfies user-
specified design requirements.  

• Symbolic Expression: The program can also be 
represented as a symbolic expression (S-
expression) in the style of the LISP programming 
language. This representation is used internally 
by the program code for genetic programming.  

• Geometry Table: A wire antenna can also be 
represented as a geometry table that specifies the 
coordinates of the endpoints of each wire or 
electrical component and the relevant parameters 
of each wire (e.g., the radius of each wire) or 
component (e.g., capacitance, inductance).  

The representation and fitness measure are then used in a run of 
genetic programming. During the run, the evaluation of the 
fitness of each individual in the population involves  
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(1) converting each individual program tree in the 
population into an antenna,  

(2) converting each antenna into a geometry table of 
the type accepted by the antenna simulator,  

(3) obtaining the behavior of the individual antenna by 
simulating its behavior, and 

(4) using the antenna’s behavior and characteristics to 
calculate its fitness.  

Developmental genetic programming is especially relevant to 
work involving the automated design of complex structures. 
Pioneering work on developmental representations for use with 
genetic algorithms was done by Wilson (Wilson 1987) and 
Kitano (Kitano 1990). Pioneering work on developmental 
genetic programming was done by Gruau (Gruau 1992) for the 
automatic design of neural networks. In 1993, Koza (1993) used 
developmental genetic programming to evolve developmental 
rewrite rules (Lindenmayer system rules) using a turtle to create 
shapes such as the quadratic Koch island. In 1996, Koza, 
Bennett, Andre, and Keane (1996) used developmental genetic 
programming to automatically synthesize a variety of analog 
electrical circuits, including several previously patented circuits 
and human-competitive results. This work for automated circuit 
synthesis entailed the integration of a complex simulator into 
the runs of genetic programming. Koza, Bennett, Andre, and 
Keane (1996b) provided for reuse of portions of circuits (by 
means of subroutines and iterations), parameterized reuse, and 
hierarchical reuse of substructures in evolving circuits.  

5 PREPARATORY STEPS 
We now describe the repertoire of functions and terminals, a 
developmental representation for antennas, the fitness measure, 
control parameters, and termination criterion.  

5.1 Repertoire of Terminals 
The terminal set for each program’s single result-producing 
branch is 

T = {ℜ, END}.  

ℜ denotes a perturbable floating-point number between 0.0 and 
1.0. These numbers are interpreted in different ways depending 
on the function with which they are associated (as explained 
below).  

The END terminal terminates a component-establishing subtree 
associated with the LOAD function (explained below).  

5.2 Repertoire of Functions 
Our approach to the synthesis of a loaded dipole antenna 
involves a turtle moving in one dimension. As the turtle moves, 
it either lays down metal (wire) or inserts electrical components 
(capacitors or inductors) in various series-parallel arrangements.  

The function set for each program’s single result-producing 
branch is 

F = {WIRE, LOAD, L, C, PROGN}.  

A constrained syntactic structure specifies how the functions 
and terminals may be combined in a program tree. The top-most 
function of every program tree is a PROGN function.  

The connective function PROGN sequentially executes its two 
arguments. The only allowable arguments for a PROGN function 
are a WIRE, LOAD, or another PROGN function.  

The one-argument WIRE function advances the turtle along the 
positive X-axis by an amount specified by its first argument. 
When the program tree is executed, the turtle starts at the origin 
of the coordinate system. The origin is the feed point for the 
antenna’s electrical signal. The turtle lays down metal (wire) as 
it moves. The only allowable argument for a WIRE function is a 
perturbable numerical value specifying the wire length (after 
being scaled between 0.025λ and 1.000λ).  

The one-argument LOAD function advances the turtle along the 
positive X-axis by 0.01λ. This function inserts a capacitor, an 
inductor, or a parallel combination consisting of one inductor 
and one capacitor in the 0.01λ space. The components that are 
inserted are specified by this function’s component-establishing 
subtree. In addition to the electrical properties of the inserted 
component(s), this portion of the antenna also possesses the 
electromagnetic properties of a 0.01λ wire. The only allowable 
arguments for a LOAD function are L and C.  

The two-argument L function inserts an inductor, and the two-
argument C function inserts a capacitor. The first argument of an 
L or C function is a perturbable numerical value ℜ specifying 
the component’s inductance or capacitance (after scaling). The 
second argument of an L or C function is a construction-
continuing subtree that may consist of another L or C function 
or an END function.  

The evaluation of each individual antenna-creating program tree 
in the population begins with its execution. The program tree is 
executed in the usual depth-first order of evaluation (from left to 
right).  

When a WIRE function is encountered, a length of wire is 
inserted. If consecutive WIRE functions are encountered, the 
consecutive wires are considered to be one wire (with length 
equal to the sum of respective lengths).  

When a LOAD function is encountered, its component-
establishing subtree is executed. If a component-establishing 
subtree contains only L functions, a single inductor is inserted 
whose inductance is the sum of the inductances associated with 
all L functions in the subree. The behavior is similar if the 
subtree contains only C functions. If the subtree contains a 
mixture of L and C functions, then a parallel composition of one 
inductor and one capacitor is inserted. The inductance of the 
inductor is equal to the sum of the inductances associated with 
all L functions in the subree (and likewise for the capacitor). 
The incoming and outgoing leads of the single inductor and the 
single capacitor are connected together.  

If consecutive LOAD functions are encountered, then a series 
composition is created.  

Figures 1 and 2 illustrate the formation of a composition of 
electrical components consisting of an inductor and capacitor in 
parallel, followed in series by an inductor. Specifically, figure 1 
shows the program tree corresponding to the following S-
expression:  

(PROGN  
  (LOAD 
    (L 0.75 (C 0.25 END))) 
  (LOAD 
    (L 0.50 END)) 
) 
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Figure 2 shows the circuit that would be created by the program 
tree in figure 1. The L and C functions in the left branch of 
figure 1 create the inductor-capacitor parallel combination 
shown in the left of figure 2. Note that the numerical values 
found in the program tree in figure 1 (between 0 and 1) are 
scaled to yield the 120-nH component value for the inductor in 
figure 2 and the 40-pF component value for the capacitor. The 
right branch of figure 1 adds an 80-μH inductor in series (right 
part of figure 2) with the just-created inductor-capacitor parallel 
combination.  

PROGN

0.5

L

LOAD

END0.75

L

LOAD

END0.25

C

 
Figure 1  Program tree with two LOAD functions 

 

120nH

40pF

80nH

 
Figure 2  Resulting circuit to be inserted into antenna 

 

5.3 Fitness Measure 
Fitness is the antenna’s gain, in dBi, at a frequency of 300 MHz, 
measured in the plane perpendicular to the dipole. Obtaining 
high gain in this direction is generally more difficult than in 
other directions. 

Figure 3 is a flowchart for the execution and evaluation of a 
program tree during the run of genetic programming.  

GW 1 86 0 0 0 0 0 0 2.19 5.0e-4
GW 2 1  0 0 2.19 0 0 2.20 5.0e-4
GW 3 86 0 0 2.20 0 0 4.35 5.0e-4
GX 500 001
GE
LD 1 2 0 0 0.0 8.0e-8 0.0
EX 0 1 1 0 1
FR 0 1 0 0 300 0 0 0
RP 0 1 1 1000 90 0 0 0
EN

Gain = -0.79 dBi

PROGN

WIRE

PROGN

0.5

0.219 L

LOAD

WIRE

0.225

END (a)

80nH

Feed

(c)

(f)

(e)

80nH80nH

Feed

(d)

80nH

Feed

(b)

2.19

0.264

2.152.15

2.15

2.19 2.19

0.258 λλ

λ λ

λ λ λ λ

 
Figure 3  Flowchart for fitness 
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The program tree (figure 3a) is executed in the usual depth-first 
(from the left) order of evaluation to yield an unscaled 
monopole antenna (figure 3b) along the positive X-axis. The 
unscaled antenna shown consists of a 0.258λ wire, an 80-nH 
inductor occupying a 0.01λ space, and a 0.264λ wire.  

The unscaled antenna is then scaled to produce the scaled 
monopole antenna (figure 3c) of length equal to 50% of the 
desired length of 8.7λ.  

The scaled monopole antenna (along the positive X-axis) is then 
mirrored to yield a symmetric dipole antenna (figure 3d). The 
result is an antenna whose total length is 8.7λ.  

We used version 4 of the Numerical Electromagnetics Code 
(NEC) antenna simulator (Burke 1992) to ascertain the 
antenna’s performance (its gain at a specific wavelength).  

The input to the NEC simulator is a geometry table (figure 3e) 
describing the symmetric dipole antenna. The simulation was 
conducted with a segment size of 0.05 λ. This segment size is 
consistent with that normally employed by antenna designers.  

Fitness (figure 3f) is the gain reported by the NEC simulator. 

Antennas that cannot be simulated or that begin or end with 
electrical components (as opposed to wires) are assigned a 
debilitating value of fitness.  

5.4 Control Parameters 
The population size was approximately 240,000 (750 
individuals per node and 320 nodes on a Beowulf-style cluster 
computer). Crossover, constant mutation, subtree mutation, and 
reproduction (with elitism for 5 individuals) were performed 
with a probability of 47%, 40%, 10%, and 3%, respectively. 
Individuals were created at generation 0 with a minimum tree 
depth of 4, a maximum depth of 15, and maximum tree size of 
1,500. 

6 RESULTS 
The run produced three particularly noteworthy topologies.  

The first topology of interest appears in the best-of-generation 
individual from generation 0 (figure 4). This figure (and 
subsequent figures in this section) show only the portion of the 
antenna along the positive X-axis (i.e., the mirrored portion 
along the negative X-axis is not shown). This antenna has a gain 
of 8.92 dBi. The right half of this best-of-generation individual 
consists of only four wires and three loads. All three loads are 
inductive. There are no capacitors present. There are no parallel 
combinations of electrical components. Thus, “genetic 
programming starts small” in a manner consistent with the 
observations contained in the paper entitled “Cross-domain 
features of runs of genetic programming used to evolve designs 
for analog circuits, optical lens systems, controllers, antennas, 
mechanical systems, and quantum computing circuits.” (Koza, 
Al-Sakran, and Jones 2005).  

The best-of-generation 6 (figure 5) achieves a gain of 10.06 dBi 
with the same topology (but different component values) as the 
best of generation 0.  

The second topology of interest appears in the best-of-
generation individual from generation 10 (figure 6). This 

antenna has considerably more wires and loads than the best 
individual of generation 0. The best-of-generation individual 
from generation 10 includes one load consisting of an inductor-
capacitor parallel combination, followed in series by a lone 
inductor. This antenna has a gain of 11.98 dBi.  

A pace-setting antenna from generation 25 (figure 7) with this 
same topology reaches a gain of 12.3 dBi. Its performance is 
better than that of the commercial product and near the 
theoretical maximum. This antenna makes use of the parallel-
series topological arrangement of the components permitted by 
genetic programming.  

The third topology of interest appears in the best-of-generation 
individual from generation 25 (figure 8). This antenna achieves 
a gain of 12.31 dBi, It consists of seven wires, 5 lone inductors, 
and an LC–L parallel-series combination.  

The best-of-run individual from generation 31 (figure 9) 
achieves a gain of 12.43 dBi. It uses the topology of the best-of-
generation individual from generation 25.  

Figure 10 shows the radiation pattern in the vertical plane 
(produced by the simulator) for the best-of-run individual from 
generation 31. Note that the second largest concentric circle in 
the figure corresponds to 12 dBi. The figure shows the gain, in 
the directions of interest (–90º and +90º), to be 12.43 dBi.  

As a reasonableness test, we ascertained the gain of the best-of-
run individual from generation 31 over the frequency range 
(2,400MHz to 2,500MHz) mentioned in the Cisco data sheet. 
The data sheet specifies only the peak performance over the 
entire frequency range, so no direct comparison can be made. 
However, a precipitous drop in gain at near-by frequencies 
would raise questions about the practicality of the best-of-run 
antenna. The worst gains for the best-of-run antenna occurred at 
the two ends of the range. The gain was 11.39 dBi for a 
frequency of 2,400 MHz and 10.34 dBi for a frequency of 2,500 
MHz. The peak gain (12.43dBi) occurred at 2,450MHz. These 
values lead us to believe that the evolved antenna behaves in a 
reasonable manner.  

Referring to the eight criteria for saying that an automatically 
created result is human-competitive in Genetic Programming 
III: Darwinian Invention and Problem Solving (Koza, Bennett, 
Andre, and Keane 1999), the genetically evolved result 
described in this paper satisfies the following criteria and, 
therefore, we claim that this result is an instance of a “human-
competitive” result produced by genetic programming.  

(A) The result was patented as an invention in the 
past, is an improvement over a patented invention, or 
would qualify today as a patentable new invention. 

(B) The result is equal to or better than a result that 
was accepted as a new scientific result at the time 
when it was published in a peer-reviewed scientific 
journal.  

(E) The result is equal to or better than the most recent 
human-created solution to a long-standing problem for 
which there has been a succession of increasingly 
better human-created solutions. 
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146 nH 97nH 129nH

1.76 0.74λ λ λ λ

Feed

 
Figure 4  Best of generation 0—with gain of 8.92 dBi 

 

0.79 0.96

146 nH 87nH 154nH

1.85 0.69λ λ λ λ

Feed

 
Figure 5  Best of generation 6—with gain of 10.06 dBi 

 

139nH

328pF

152nH

0.97 0.83 0.79 0.95 0.76

159nH128nH

83nH

λ λ λ λ λ

Feed

 
Figure 6  Best of generation 10—with gain of 11.98 dBi 

 

93.9nH

356pF

149nH

0.92 0.88 0.84 0.90 0.76

159nH101nH

83nH

λ λ λ λ λ

Feed

 
Figure 7  A pace-setting individual from generation 25—with gain of 12.3 dBi 
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303nH

186nH

2.51 pF

146nH

0.89 0.23 0.61 0.93 0.77 0.58 0.28

165nH

113nH

41nH

106 nH

λ λλλλ λλ

Feed

 
Figure 8  Best of generation 25—with gain of 12.31 dBi 
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Feed

 
Figure  9 Best-of-run individual from generation 31—with gain of 12.43 dBi 

 
 

 

 
Figure  10 Radiation pattern of best-of-run individual from 

generation 31—with gain of 12.43 dBi 
 
 

7 CONCLUSION 
This paper described the use of genetic programming to 
automatically synthesize the design for a fixed-length loaded 
symmetric dipole antenna whose gain at a specific wavelength 
exceeds that of a commercially-marketed human-designed 
antenna and that reaches the theoretical maximum value for an 
antenna of its type. The design is a human-competitive result.  
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