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Abstract

Building models using machine learning techniques requires
data. For some projects, gathering data is very expensive. In
this type of project—which we refer to as ‘Incremental
Learning Projects’—there are two significant costs to using
machine learning techniques: (1) Machine learning models
cannot even begin to make predictions until the project has
already spent significant amounts of money gathering data;
and (2) While the data is being gathered to train the machine
learning system, unnecessary costs are incurred in making
inefficient decisions.

Engineers may address this type of problem efficiently
when enough human expertise exists about the problem
domain to be modeled. This work proposes an approach to
combining human expertise, machine learning and
information theory that makes efficient and effective
decisions from the start of the project, in concert with
project data collection.

INTRODUCTION

This work describes an approach to creating integrated
decision support systems for certain types of projects, which
we refer to as ‘Incremental Learning Projects.’

Characteristics of Incremental L ear ning Proj ects

Properly-designed, decision-support systems can yield
significant cost savings and improved decision support for
Incremental Learning Projects, which have the following
characteristics:

e The project requires that engineers repeatedly make
similar decisions based on relatively low cost
measurements of the domain in which the decisions are
to be made;

e Human experts can give afirst-pass assessment for each
of these required repetitive decisions. From their
assessment, project engineers should be able to
determine how certain the human experts were of their
decision;

e The cost of acquiring actual ground-truth for the
decisions required by the project isrelatively high;

e One of the principal goals in the project is to avoid
incurring the costs of acquiring actual ground-truth for
alarge number of the decision points—that is, it would
be desirable that a large number of the repetitive project
decisions be made using only the information available
from the project’s low-cost, domain measurements; and

e Finaly, sufficient information exists in the low-cost
measurements for machine learning systems alone or in
conjunction with human experts to make better
judgments than the human expert alone.

We will sometimes refer to projects with these
characteristics as ‘Incremental Learning Projects.’

Incremental Learning Project Example

An example of an Incremental Learning Project, which
we will follow and expand upon throughout this paper, will
make our discussion more clear.

Geophysicists frequently have to discriminate between
different types of underground objects from readings made
by electromagnetic or other above-ground, non-destructive,
sensors. [1] Each signal from the above-ground sensors is



relatively inexpensive to obtain. From these above-ground
measurements, geophysicists can make predictions about
which signals represent target objects and which do not.

But to get ground-truth, a hole must be dug at
considerable expense. Not having to dig empty holes is a
primary objective of this type of project. [1] Adding a
machine learning system to the mix can improve decision
accuracy considerably. [2]

Obviously, this underground anomaly discrimination
project fits each of the criteria set forth above.

The Chicken-And-Egg Problem in Using Machine
Learningin Incremental L ear ning Projects

The problem with applying machine learning systems
to Incremental Learning Projects is that ground-truth must
be provided to machine learning systems for the purpose of
deriving predictive models. [3] This poses a chicken-and-
egg problem.

One technique to bypass the chicken-and-egg problem
is described in [4]. That work involved a physics-based
simulator that predicted the location of the fringe of an
underground, groundwater-contaminant-plume. A Kaman
filter system looked at randomly generated outputs from the
simulator to determine where to take the next ground sample
to optimally reduce the uncertainty of the simulator.

Where physics-based simulation models are not
available, machine-learning techniques may be used to
develop them to help make better predictions and reduce
costs. But building inductive models requires expensive
process information such as ground-truth to validate them.

[31[5][6]

This suggests that, at best, machine learning can only
begin to contribute to project decisions after the project has
been ongoing for some time and has made enough mistakes
to provide examples of good—and bad—decisions to the
machine learning algorithm.

Step-By-Step Approach to Incremental Learning
Projects

This paper proposes a step-by-step approach to
Incremental Learning Projects. This approach solves the
chicken-and-egg problem. Our approach involves five
Steps:

1. Make a preliminary expert assessment for each of the
repetitive decisions. The decisions should be ranked by
probability. For example, for binary decision-making
requiring a classification of each decision into ‘yes’ or
‘no’ categories, each decision should be ranked by how
probable is it that this decision should be a ‘yes’
decision. In our example project, each underground

anomaly detected by the sensors would be labeled with
the expert assessment of the probability that it is a
target that should be dug up;

2. Using the expert probability rankings from Step 1 as
ground-truth, train the machine learning system to
produce predictions about the result of making each of
the required repetitive decisions. In our example
project, the machine learning system would be trained
using the experts predictions of ground-truth in lieu of
actual ground truth. The machine learning system
would then generate predictions for each anomaly;

3. Using the predictions from the previous Step, for each
of the expected repetitive project decisions, do the
following:

(a) Determine the expected additional project cost of
acquiring ground-truth by making that decision; and

(b) Determine the information gain predicted by
Shannon as a result of making that decision.

Then incur the expense of obtaining ground-truth (dig
the hole in the example project) for the decision or
decisions that yield(s) the highest expected amount of
new information per net-dollar expended obtaining the
information;

4. Retrain the machine learning system using known
ground-truth, including the new ground-truth
information just acquired in Step 3. Where ground-truth
is not available, use the most current expert-based
assessment for each decision in lieu of ground-truth;
and

5. Repeat Steps 3 and 4 until the project ends.

Improvement in Incremental Learning Projects
Dueto Step-by-Step Approach

The advantages of this step-by-step approach are
straightforward:

e  Problem-solving with machine learning techniques may
begin at the start of a project rather than having to wait
until sufficient data samples have been gathered on
which to train the models;

e Early use of machine learning may improve decision
making substantially and throughout the life of the
project; and

e Improved decision making means lower cost and better
results. This is particularly critical where the cost of
obtaining data is high. In such projects, minimizing the
number of data points for which high-cost measurement
isrequired is often the largest cost-determinant.



Information Theory and Incremental Learning
Projects

Information Theory suggests that the step-by-step
approach we propose should be the most efficient means of
gathering information for training a machine learning
system in Incremental Learning Projects. Simply put,
information theory suggests that more information is
acquired about a physical system when one samples from
the system and obtains an unexpected result than when the
result is expected. [7]

So long as the experts’ preliminary ranking of the
probable effect of decisions to be made is not random, then
the most unexpected results should occur in the region
where the experts are most uncertain. Thus, by sampling
ground-truth in the region of maximum uncertainty, we
gather additional information about the system as efficiently
as possible per sample.

In addition to the information gain expected as a result
of acquiring new ground truth, there is another factor in
determining the optimal ordering of project decisions—that
is, which hole to dig next. That factor is the expected
additional cost to the project of acquiring the ground-truth
by digging any particular hole.

When we consider added project cost in conjunction
with Shannon’s definition of information gain, we conclude
that the most efficient order of decision-making is, at any
given time, to make that decision of which the predictive
system is most confident and then feed the ground-truth
thereby acquired back into the machine learning system. In
other words, dig the next hole where the predictive system
(human-expert-based or machine-learning-based) is most
certain thereis atarget.

MACHINE LEARNING ALGORITHMS

Machine Learning is a term that includes a number of
algorithmic approaches. When we refer to machine learning
systems, we are actualy referring to a subset of machine
learning called ‘supervised” machine learning. [3][5]
Various and probably familiar machine learning techniques
include back-propagation and various other neural network
approaches [8], decision-tree algorithms [3][5], and genetic
programming, [3][9][10][11]

The authors prefer linear genetic programming (‘LGP”)
for the particularly difficult learning domains that are
typical of Incremental Learning Projects. [2] Thus, while
our discussion here will frequently refer to LGP, other
sufficiently powerful machine learning tools may sometimes
be substituted for LGP in this technique.

What all supervised machine learning techniques have
in common is that the algorithm trains on known data with
known answers. In one way or another, the algorithm

develops a mapping between the domain measurements
provided to it by the project engineers and the known
‘answer’—or the ‘ground-truth’.

Thus, and by way of example, LGP automatically
produces a C program that maps the domain measurements
provided by the project engineers to ground-truth. [11] With
a properly trained and tested model in hand, the engineer
can then apply the LGP mode to inputs for which the
answer is not known and use the model as a predictive tool
for the remainder of the project. [3][11]

Our approach is related to, but different from other
work we have done to improve process decision-making
accuracy. [2] In that work, we fused the information content
of human-derived models and machine-based models. This
resulted in improved decision-quality accuracy beyond that
which was possible using either approach separately. In that
study, we assumed that ground-truth was available to train
the machine-learning system from the start. By way of
contrast, the present approach addresses quite a different
problem—how to fuse expert analysis with machine-
learning when there is no preexisting ground-truth.

The purpose of this paper is to suggest that by
appropriate step-by-step sampling of ground-truth, machine
learning may be integrated with human and traditional
computer simulation tools even in Incremental Learning
Projects to produce a better, and more cost effective,
approach to thistype of project.

DESCRIPTION OF INCREMENTAL
LEARNING PROJECTS

We briefly described Incremental Learning Projects in
the Introduction. The following observations flesh that
discussion out:

First: Incremental Learning Projects involve similar
decisions made over-and-over. It would be desirable to
make these decisions based on relatively low-cost
measurements. But these low-cost measurements do not
provide experts enough information to make their decisions
with certainty.

Although we have referred to human experts as having
made the preliminary assessment, the nature of the
preliminary assessment is not so important here. This
assessment may be grounded on one or more of the
following techniques, depending on the project:

e Human experts using the low-cost measurements to
make preliminary decisions;

e Statistical analysis of the low cost measurements;

e A simulation model of the project using the low-cost
measurements as inputs; or



e A combination of the foregoing.

Second: This approach is suitable for projects for where
machine learning can make better predictions out of
whatever ground-truth information is available at any given
time than can the human experts or the existing simulation
models.

Surprisingly to some, this project requirement is no
longer uncommon for noisy, complex modeling problems.
The underground objects example above is only one domain
in which genetic programming outperforms human experts
when looking at the same data. [2][12] Noisy domains
where the physics of the problem are complex or poorly
understood frequently present situations where genetic
programming or other machine learning techniques
outperforms human experts and human-designed rule
systems or simulators.

Finally: This approach is suitable only for projects in
which the cost of obtaining ground-truth is high. If it is not,
then the project engineer should gather the ground-truth (at
low cost, of course) and apply machine learning techniques
in atraditional manner.

APPLICATION ISSUES

Our step-by-step approach for applying machine
learning to Incremental Learning Projectsis presented in the
Introduction. Those steps raise a number of interesting
application issues, which we address in this section.

Acquiring the Training Data for the Machine
Learning Algorithm

The essentia ingredient of the approach outlined in this
paper is the manner in which the training examples are
derived for the machine learning algorithm. The traditional
machine learning approach would be to select training
examples containing both: (1) low-cost measurements of the
domain; and (2) the known ground-truth for those
measurements.

Simulated Ground Truth

For Incremental Learning Projects, we suggest deriving
the ground-truth for the initial training examples in a non-
traditional manner. In our approach, the training examples
would be derived from two sources: (1) If available, training
examples should be chosen using actual ground-truth. As
the project proceeds, more and more of the examples would
be based on real ground-truth; or (2) If actual ground-truth
is not available, the training examples should be derived
from the best human, statistical, or simulator based
judgment that may be derived from the low-cost
measurements in lieu of ground-truth. Model development
should, of course, follow the Department of Defense

guidelines for verification, validation, accreditation and
credibility. [6]

To use the example above, suppose the decision that
must be made in the project is whether to dig expensive
holes at particular spots where electromagnetic anomalies
have been detected by above-ground measurements. Of
course, the goal is to remove the target objects. An empty
hole represents a large and unnecessary expense.

To do this, Geophysicists would examine the low-cost
measurements and assess the probability of whether these
measurements reveal a target object that must be removed.
Anomalies with an assessed probability in excess of a
project specific threshold would be labeled, for the purpose
of training the machine learning algorithm, as “TARGET.”
Those below the threshold would be labeled as “NOT
TARGET.” That would provide °‘ground-truth’ to the
machine learning system in the absence of actual ground-
truth.

The Effect of Using Simulated Ground Truth

The effect of constructing training examples in this
manner is that machine learning may be integrated with
human expertise in an almost risk-free manner. That is, a
properly trained and tested machine learning model would
begin making predictions at or above the level of the human
experts, whose judgment it has effectively reverse
engineered. Machine learning systems (in particular linear
genetic programming) have been quite successful in such
‘reverse engineering the experts’ type applications. [2]

The machine learning system typically starts by making
predictions as good as those that would be made by the best
human-experts or the best available simulators. As more
ground-truth is acquired during the course of the project—in
the above example, as more holes are dug—those actual
examples supplement and/or replace the human-expertise
based examples. Typically, a machine learning system’s
predictions will improve as it acquires more—and more
accurate—training data.

Accordingly, we should expect such an approach to do
no worse than the human experts. In readlity, the machine
learning system, after training on the human expert
predictions, often immediately improves on the human
predictions. What happens is that the machine learning
system finds regions of the input space where the expert
predictions are inconsistent with expert predictions
elsewhere. By identifying those inconsistencies ab initio,
the machine learning system clarifies the expert’s domain
knowledge for better predictions at the start. [2]

And, as the project moves forward—and more ground-
truth is acquired—we should expect such an approach
frequently to out-perform the alternative approach which



uses only human, statistical or simulator-based expertise
throughout the project. [2]

Choosing the Cost Function

All supervised machine learning systems require a ‘cost
function.” In effect, a cost function tells the algorithm when
a particular model is doing better, or worse, at solving the
problem at hand. The cost function is used by machine
learning algorithms to move thru the search space of
possible models. [3][5]

In linear genetic programming, the cost function is
referred to as a ‘fitness function.” This nomenclature comes
from LGP’s history as an evolutionary algorithm.
Evolutionary algorithms draw on analogies to Darwinian
natural selection—survival of the fittest. Thus, the genetic
programming fitness function is used to determine which
models survive and ‘reproduce’ during training. [3]

In the above example, a simple fitness function would
just tally up how many anomalies a particular model has
classified correctly as “DIG” or “DON’T DIG.” Models that
classify training examples more accurately would be
assessed in the cost function as more “fit.”

But in this approach, al training examples are not
equal. Off-hand, at least three general categories of training
examples may be delineated:

1. Examples based on human-expert evaluations—that is,
there is no known ground-truth for the example—and in
which the experts have low confidence in their
prediction.

2. Examples based on human-expert evaluations—that is,
there is no known ground-truth for the example—and in
which the experts have high confidence in their
prediction.

3. Examples based on actual, measured ground-truth. In
almost all cases, these examples should be regarded as
the examples in which we have the most confidence.*

One important decision that project engineers must
make is whether and how to weight these different cases in
the cost, or fitness function. Assigning different costs to
different training examples is a frequently used technique in
machine learning [5] [11] and it seems particularly
applicable in this situation. Manifestly, an error by the
algorithm on atraining example that involves known ground
truth seems more serious than an error on an example where

! The exception to this general rule would occur where
engineers determine there is a reason to suspect the low-cost
measurements such as instrument error, calibration
problems and the like.

the training example is based on an expert’s low-confidence
judgment.

The details of using differential cost functions would be
the subject of a different, and much longer paper.
Neverthelessit isimportant to note here:

First, that the issue should be explicitly resolved by
project engineers based on the particulars of the project, and

Second, that effect of similar weighting schemes can be
very different depending on which machine learning
algorithm is used. For example, the author’s experience with
differential cost functionsin evolutionary algorithms such as
LGP suggests a very small weighting differential can have
much more substantial effects than the same differentia
applied in decision-tree algorithms. [11]

Ordering the Acquisition of Ground-Truth for
Optimal Project Performance

Improvements in machine learning predictions for the
project will depend on how much new information is
acquired during the project. New information is acquired by
learning ground-truth. Thus, Shannon’s measure of the
amount of information that may be acquired by choosing to
dig hereinstead of there is very useful.

Shannon described the foundations of Information
Theory in 1948. [7] The information obtained by making an
observation that has an a priori probability, p, of

occurring— | (p) —is defined as:
M 1(p)=p*Log(l/p);

Using Equation (1), the remainder of this section
describes two different approaches to integrating
information theory into the project decision-making process.
One approach seeks to maximize the amount of information
acquired per decision made. The later seeks to maximize
the information acquired per additional project dollar
expended obtaining that information.

The Simple Information Theoretic Approach to
Ordering the Samplesto Obtain Ground-Truth

In the above example, assume that the geophysicists
have made preliminary assessments of each of the
geophysical anomalies. In doing so, they have assigned
probabilities that each anomaly represents a target that
should be dug up. In that case, it is trivial to show that the
maximum Shannon information (see Equation 1) would be
obtained by digging the anomaly about which the
geophysicists are most uncertain about whether their
decision is correct.

Put another way, where the geophysicists assign a
probability of 0.50 that a particular anomaly is a target that



should be dug up, their uncertainty is highest. Regarding
that anomaly, the expected value of the information to be
obtained from digging it up is greater than or equal to the
expected information obtainable from any other anomaly in
the domain.?

Thus, the strategy suggested by this ssimple information
theoretic approach isto dig next, that anomaly for which the
TARGET vs. NOT TARGET classification is most
uncertain.

A More Sophisticated Information Theoretic
Approach to Ordering Samplesto Obtain Ground-
Truth--Integrating Project Costs and I nfor mation
Theory

A second measure by which project engineers could
order the digging of anomalies would be to maximize the
expected amount of information acquired by digging a hole
per dollar of expected additional project-costs caused by
digging.

The cost of digging a hole would be the simplest way to
measure the cost of obtaining ground-truth for a particular
anomaly. But that does not really represent the expenditure
of additional monies for that anomaly if there is a
probability assessed to the anomaly that the anomaly is a

target. Rather, if P(i) represents the probability that the ith
anomaly is a target, the expected incremental cost to the
project of digging that anomaly Cost(inc) is:

2 Cost(inc,i)=(1- p(i)) * Cost(dig) ;
where Cost(diQ) isthe expected cost of digging ahole.

This may be illustrated by an example. Suppose the
probability that the ith anomaly is actually a target is 0.90.
In that case, project engineers expect to dig that hole one
way or the other. So digging it now adds an additional
expected cost to the project measured by the probability that
the hole will be empty—that is, 0.10, as suggested by
Equation (2).2 Thus, if it costs $200 to dig a hole, the

2 Although we refer in the preceding paragraph to
‘geophysicist’ based estimates of probability, such estimates
will be made purely by the geophysicists only in the early
stages of the project. As the project continues, and the
machine learning system begins to make predictions, those
probabilities would be assigned by the machine learning
system alone or (more likely) by the machine learning
system after review of its predictions by the geophysicists.

3 Similar reasoning leads to the conclusion that project
engineers may ignore the cost of not digging until the very
end of the project. The decision not to dig imposes no
additional costs on the project until the decision becomes
irrevocable—that is, at the end of the project. Until the end

expected additional cost to the project of digging this
anomaly to acquire information is only $20.

The information gain per dollar of additional cost
expected from digging up the ith anomaly may be
formalized by combining Equations 1 and 2. The expected
information gain per dollar of added project cost from

digging the ith anomaly— | ($,1) — is stated in Equation 3.:
@ 1@i)=P0r1oo p0)
(1- p(i)) * Cost

It is smple to demonstrate computationally that, as

p(i)increases from 0 to 1, | ($,i) increases steadily, for
all positive values of Cost (Equation 3).

We can therefore conclude as the anomaly digging
project proceeds, engineers should, at any point, dig the
anomaly that then has the highest probability of being a
target. By doing so, they can maximize the expected
information gain per dollar of added costs— | ($) .

Furthermore, so long as project engineers can rank the
anomalies in the project from most likely to least likely to
be targets, the same dig ordering holds, even if we cannot
assign specific probability numbers. This follows from the

fact that, if p(i) > p(j). then!($,i) is greater than
I ($,]) (seeEquation (3)).

This leads to a somewhat different conclusion than the
simple application of Equation (1), discussed above. Instead
of digging up the most uncertain anomaly first, this analysis
suggests that project engineers can minimize the cost of
acquiring information by, at each point in the project,
digging up the anomaly that they are most certain is not a
false positive.

Machine L earning as a Decision Support Tool in
Concluding the Project

At some point in the project, the engineers have to stop
digging. Otherwise, the machine learning system saves no
money. In this section, we propose a simple metric for
making that determination.

The effectiveness in this metric depends on project
engineers adopting the second method of ordering
acquisition of ground-truth proposed above—that s,
ground-truth is acquired by starting with the decision about
which human or machine predictors are most certain. Then
the next most certain. Then the next. And so forth.

of the project, the hole can always be dug. So deciding not
todigit at an earlier point in the project adds no cost to the
project.



That metric is also based on the project designers
assigning a cost— Cost( fn) —to making a false-negative
decision. In our example project, Cost(fn) represents the
cost of a decision not to dig up an anomaly that turns out to

be a target. Our example project is over when engineers
decide not to dig up all anomalies remaining.

At each step, the machine learning system has assigned
a probability that the ith anomaly is a target, p(i). The
incremental cost to the project of not digging the hole—

Cost(nd) —is:
(4) Cost(nd) = p(i) * Cost( fn) .

As long as Cost(nd)is greater than Cost(dig),

engineers should keep digging because the cost of digging
the hole isless than the cost of afalse negative.

So, for example, if the cost of afalse negative is $5,000
and the cost of digging a hole is $200, engineers should

keep digging until p(i)=0.04.

CONCLUSION

In this paper we have presented a novel approach to
integrating machine learning techniques with human
expertise and human-built simulators on projects with a high
cost of obtaining data.

Engineers with projects similar to those described in
this paper should consider utilizing the techniques described
herein to integrate machine learning capabilities into their
projects.
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