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Abstract—The importance of protein kinases made them a 

target for many drug design studies. They play an essential role 

in cell cycle development and many other biological processes. 

Kinases are divided into different subfamilies according to the 

type and mode of their enzymatic activity. Computational studies 

targeting kinase inhibitors identification is widely considered for 

modelling kinase-inhibitor. This modelling is expected to help in 

solving the selectivity problem arising from the high similarity 

between kinases and their binding profiles. In this study, we 

explore the ability of two machine-learning techniques in 

classifying compounds as inhibitors or non-inhibitors for two 

members of the cyclin-dependent kinases as a subfamily of 

protein kinases. Random forest and genetic programming were 

used to classify CDK5 and CDK2 kinases inhibitors. This 

classification is based on calculated values of chemical 

descriptors. In addition, the response of the classifiers to adding 

prior information about compounds promiscuity was 

investigated. The results from each classifier for the datasets 

were analyzed by calculating different accuracy measures and 

metrics. Confusion matrices, accuracy, ROC curves, AUC values, 

F1 scores, and Matthews correlation, were obtained for the 

outputs. The analysis of these accuracy measures showed a better 

performance for the RF classifier in most of the cases. In 

addition, the results show that promiscuity information improves 

the classification accuracy, but its significant effect was notably 

clear with GP classifiers. 
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I. INTRODUCTION 

Different important biological processes in the human body 
is related to the process of phosphorylation. In which, a 
phosphate group is added to proteins to activate their 
functionality. Protein kinases are enzymes that catalyze this 
process by adding the phosphate group to other proteins. 

Due to the importance of the phosphorylation process in 
cellular processes and metabolism, protein kinases gained their 
importance and they are subject to many studies including drug 
design studies. Protein kinases are related to different diseases 
and cancer types when inappropriately regulated [1]. 

In humans, there are more than 500 kinases. They are 
divided into three types as they catalyze three types of 
phosphorylation [2]. 

Although kinases were targeted by several drug discovery 
studies that led to developing many inhibitors for them, only 
few of these inhibitors were approved. The reason for that is 
the undesired side effects caused by inhibitor reactivity against 
unintended targets. This is caused by the high degree of 
similarity between kinases, as there are few structural 
differences between them especially in their highly conserved 
binding domains. This similarity in binding domains led to the 
selectivity problem in many kinase inhibitors [2]. In most 
cases, this problem is caused by the high conservation is in the 
ATP binding site, which is the target for most of the inhibitors 
developed for kinases [3]. 

Among protein kinases, cyclin-dependent kinases (CDKs) 
are protein kinases, which have essential roles in cell divisions 
and transcription. CDKs are marked by being dependent on a 
protein subunit called cyclin to activate their enzymatic 
function. They belong to the serine/threonine kinase family [4]. 

Blocking the cell cycle by targeting kinases is proposed to 
kill cancer cells as in [5]. CDKs related to cell cycle are 
divided into three subfamilies, Cdk1, Cdk4, and Cdk5. The 
Cdk1 family consists of CDK1, CDK2, and CDK3 kinases. 
Although CDK1 is the most important kinase in this family 
because its major role for cell cycle, CDK2 is also essential as 
it participates in the cycle of cell division. In addition, CDK2 is 
investigated as being related to cancer and is targeted for 
cancer treatment as in [6]. 

CDK5 is an important enzyme that has different functions 
related to cell-cycle, gene expression, and others. CDK5 
belongs to the cdk5 subfamily. In addition to its role in the cell-
cycle progress, it is also known for controlling neuronal 
proteins [4]. CDK5 is also related to neurodegenerative 
diseases if was deregulated [7]. It is also linked to cancer and 
other diseases [8]. 

Computer-based approaches is being utilized in order to 
help profile the activity of different inhibitors against kinases 
and to explore and tackle the selectivity problem. Among these 
techniques is machine learning, which is widely utilized in 
biological and medical related problems. Different machine 
learning techniques were used in interaction modelling studies 
to predict protein-inhibitor interactions. 

In [9] random forest was used to classify kinases variants in 
order to understand the relation with different diseases. The 
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classification was based on protein kinases sequence features. 
The resulting accuracy was 88%. 

In the area of kinase inhibitors, machine learning was used 
in [10] to a study the kinase inhibitory data of [11] in order to 
model the prediction of interactions between kinases and their 
inhibitors. The study aimed for building a computational-
experimental framework by using Kernel-based regression 
methods on molecular descriptors and fingerprints of kinase 
inhibitors. The predicted results were found correlated to 
kinase assays experimental results by 0.77. 

In [12] Machine learning for predicting the binding of 
kinases to inhibitors by modelling different sets of features. 
Features used for kinases are based on sequences, in addition to 
phylogenetic features and amino acid positions in the active 
site. For inhibitors, 2D structural features and chemical features 
were used. Their experiments showed the importance of 
different sets of features based on the decision tree and SVM 
modelling results. The highest prediction accuracy achieved 
was 86.1%. 

Another application of machine learning to predict active or 
inactive confirmations of kinases was done in [13]. The study 
proved that classification based on the activation segment 
orientation is performing better than other methods. 

Genetic Programming (GP) [14] is a machine learning 
technique that simulates biological evolution and is used for 
modelling by regression or classification. It starts by a random 
population, then it continues to produce generations and 
individuals by performing evolutionary operations such as 
mutations, crossover, and selection, aiming to improve a fitness 
function. The individuals of GP is trees representing 
mathematical models to relate the modelled features to a target 
variable [15]. 

Random Forest (RF)[16], is a machine learning technique 
based on a large number of decision trees. A bootstrap sample 
is drawn and a set of variables are selected randomly to decide 
the split of each node. The tree grows and splits using the 
variables at each node until a specified criteria is achieved [17]. 

In this study, we use genetic programming and random 
forest classification techniques for classifying inhibitors and 
non-inhibitors for two of the cyclin-dependent kinases, CDK5 
and CDK2. Both techniques were used for modelling chemical 
descriptors information. In addition to classification, we 
investigated the response of the classifiers to adding 
information about kinase binding promiscuity of compounds. 

The outputs of the classifiers were analyzed using different 
accuracy measures and metrics. Because there is no standard 
single evaluator of classification accuracy, we calculated and 
obtained a group of measures for a wide evaluation of the 
results. These measures are confusion matrices, accuracy, ROC 
curves, AUC values, F1 score, and Matthews correlation 
coefficient. 

Additionally, the analysis shows how could the classifiers 
reflect compound promiscuity information. Compound 
promiscuity against kinases is the ratio of the kinases that could 
be inhibited by that compound at a specific concentration [11]. 

This document is structured as follows: In section 2 we 
describe the dataset we used and illustrate data processing and 
workflow steps. In section 3, different results are presented and 
discussed. In section 3, we present our conclusion on the 
results and expectations for future improvements. 

II. DATA AND METHODS 

We describe in this section the data sources, tools, and the 
methodology we used in order to achieve our objectives in 
building and evaluating the classifiers. 

A. Data Sources 

The dataset we used was extracted from the data of [11]. 
The original dataset contains the measured interaction values 
for more than 3000 compounds against 172 kinases. The values 
represent the pKI values, which are the negative values of base-
10 log of the KI interaction value. We extracted the values for 
the first 1497 compounds against two protein kinases 
belonging to the cyclin-dependent kinases subfamily, CDK2, 
and CDK5. 

The original dataset contains five cyclin-dependent kinases. 
We decided to study the data for CDK2, and CDK5 only as 
they have higher number of measured inhibitor activities with 
868 and 1038 values respectively. 

A threshold pKI value of (value >5.9) was used for 
classifying compounds as inhibitors or not. This threshold was 
determined based on what the original study in [11] mentioned 
about compound activity against kinases. 

We used the molecular descriptor values for the 1497 
compounds. These values were obtained previously using e-
dragon online tool [18]. The number of descriptors extracted 
for each compound is 1666 descriptor values. 

Promiscuity value for each compound is provided in the 
original dataset in [11]. Promiscuity_1uM of a compound 
represents the portion of kinases tested with a potency of 1uM 
achieved by that compound. 

B. Data Preparation 

For each of the two proteins, two files were created with all 
the information needed for modelling. Each file contained the 
descriptor values for the compounds that interacted with one 
protein after removing columns that contained only zeros for 
all compounds. In addition, the interaction values were added 
as the last column as the target value. For each protein, another 
version of the data file was created including the value of 
promiscuity_1uM for each compound as an additional feature. 
So, each of the two proteins had two data files, and building a 
classifier was done twice for each protein. One time with 
descriptor values only, and another time with promiscuity and 
descriptor values. 

The interaction values were classified based on the 
threshold mentioned in [11], considering the value of 5.9 pKI 
as the inhibition threshold. The data file for each protein was 
modified replacing the interaction value with the class number. 
Class 1 represents that the corresponding compound is a 
potential inhibitor (pKI > 5.9) while class 2 represents a non-
inhibitor compound (pKI <= 5.9). Table I shows the counts of 
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compounds as inhibitors or non-inhibitors according to the 
specified threshold in both protein datasets. 

 
Fig. 1. Complete Workflow for Buidling and Eavaluating Classifiers. 

Data separation, processing and cleaning were all done 
using python scripts that we wrote to read, manipulate and 
write csv files with the desired structure. 

C. Methodology 

In this study, we followed a multi-step methodology to 
explore the ability of two machine-learning techniques for 
predicting the inhibition activity of compounds against two 
cyclin dependent kinases. Random forest and genetic 
programming were applied on datasets of CDK5, and CDK2 
kinases. The effect of adding promiscuity to the modelling 

features was also investigated, as it provides information about 
the ability of a compound to inhibit kinases. 

First, we obtained, separated, and preprocessed the data sets 
for CDK5 and CDK2 kinases. After that, we obtained and 
prepared the required tools for testing random forest, and 
genetic programming classifications. Then, we performed 
different experiments, namely four for each protein, and 
collected the outputs. Finally, we evaluated the performance of 
the classifiers with different measures and compared the 
results. We concentrated more on the outputs of the RF 
classifier. The workflow of the complete steps for our work is 
shown in Fig. 1, which shows the steps followed to build both 
classifiers for each protein dataset. 

In all experiments, descriptor values were considered as 
variables or features, and the class number was the target to be 
predicted. Each dataset was divided into a 70% training set, 
and a 30% test set. 

D. Genetic Programming Classification 

To perform GP classification we used a free desktop tool, 
HeuristicLab Optimizer 3.3.15 [19], in the mode (symbolic 
classification). 

The input in each GP experiment was one of the files we 
created previously, in addition to setting GP parameters. We 
used different combination of parameters trying to achieve 
higher accuracy. The set of parameter values used with GP 
experiments are shown in table II. 

TABLE I.  Number of Compounds in ecah class 

 Inhibitors Non-Inhibitors 

CDK5 234 804 

CDK2 251 618 

TABLE II.  GP CLASSIFICATION PARAMETER VALUES 

Population size 1000 

No. of generations 1000 - 5000 

Selection method Tournament Selector 

Crossover rate 0.90 

Mutation rate 0.15 

Objective 
Min (MSE), Or 

Min (Penalty Score) 

Model Depth 10 

Model length 100 

E. Random Forest Classification 

Data files for each protein were loaded into R studio. Each 
dataset was divided by random sampling into a 70% training 
set, and a 30% testing set for validation. 

The R package (randomForest) was used for the modelling. 
We set two basic RF parameters, the number of trees 
constructed (ntree), and the number of randomly preselected 
features, or variables, in each tree (mrty). We tried different 
values for these two parameters until we achieved a relatively 
low error value. Parameter values used for RF experiments are 
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shown for different datasets in table III. The parameter values 
used with the datasets including promiscuity are also shown in 
the table.  The clear difference when using promiscuity in the 
dataset was achieving higher accuracies with lower number of 
trees. 

Finally, results of different experiments were collected and 
different accuracy metrics were calculated for enhanced 
analysis. 

TABLE III.  RF CLASSIFICATION PARAMETER VALUES 

Promiscuity 
Trees 

(ntree) 
Variables 

(mrty) 

C
D

K
5
 

No 600 70 

Yes 450 110 

C
D

K
2
 No 600 85 

Yes 450 65 

III. RESULTS AND DISCUSSION 

Both machine-learning classification techniques, genetic 
programming and random forest, were tested on two datasets 
for two cyclin dependent kinases and their inhibitors. Results 
varied between datasets and techniques. We mention the results 
in this section showing different accuracy measures we used, 
along with a discussion of the variations in these accuracies. 

A. Accuracy 

RF classifier could classify all test data. Table IV shows the 
overall accuracy of the RF classifier in terms of all correctly 
classified items in training and testing sets for both proteins. 
The accuracy is also shown when promiscuity was used in the 
data set. 

B. Confusion Matrix 

A confusion matrix is a table with a specific layout that is 
usually used to describe and visualize the performance of a 
classification algorithm. We show here the confusion matrices 
for each experiment. 

The confusion matrices resulted from RF experiments are 
shown in tables V to VIII. Table V shows the matrix for the RF 
Result Accuracies for both proteins with and without 
promiscuity. 

TABLE IV.  RF RESULT ACCURACIES FOR BOTH PROTEINS WITH AND 

WITHOUT PROMISCUITY 

 

Promiscuity 

Accuracy 

Training Test 

C
D

K
5
 No 83.47 % 83.97 % 

Yes 84.44 % 85.26 % 

C
D

K
2
 No 83.22 % 80.08 % 

Yes 85.53 % 88.51 % 

In all confusion tables, the columns show the number of 
predicted items in each class (Inhibitor, Non-Inhibitor), and the 
rows display the actual items in each class. The results are 
shown for training and testing sets. 

Table V shows results from CDK5 dataset without 
promiscuity, while table VI shows the results for CDK5 dataset 
including promiscuity information. Similarly, for CDK2 
dataset, tables VII shows the results without promiscuity 
information, while table VIII displays the confusion matrix of 
CDK2 dataset that includes promiscuity values. 

It should be noticed that the test sets were selected by 
random sampling, so, number of items in each class will not 
remain the same among different experiments. 

The confusion matrices in all experiments show a high 
ability of the RF classifier to identify non-inhibitors. On the 
other hand, the ability to identify inhibitors is not in the same 
level. The reason for that could be the imbalance in data 
provided for the classifier, as most of the compounds in the 
data sets are already non-inhibitors as shown in table I. 

TABLE V.  RF CLASSIFIER CONFUSION MATRIX FOR CDK5 INHIBITORS 

(DESCRIPTORS ONLY) 

 

Predicted 

Training Testing 

Inhibitor 
Non-

Inhibitor 
Inhibitor 

Non-

Inhibitor 

A
c
tu

a
l 

Inhibitor 52 109 28 45 

Non-

Inhibitor 
11 554 5 234 

TABLE VI.  RF CLASSIFIER CONFUSION MATRIX FOR CDK5 INHIBITORS 

(DESCRIPTORS AND PROMISCUITY) 

 

Predicted 

Training Testing 

Inhibitor 
Non-

Inhibitor 
Inhibitor 

Non-

Inhibitor 

A
c
tu

a
l 

Inhibitor 57 103 30 44 

Non-

Inhibitor 
10 556 2 236 

TABLE VII.  RF CLASSIFIER CONFUSION MATRIX FOR CDK2 INHIBITORS 

(DESCRIPTORS ONLY) 

 

Predicted 

Training Testing 

Inhibitor 
Non-

Inhibitor 
Inhibitor 

Non-

Inhibitor 

A
c
tu

a
l 

Inhibitor 82 87 36 46 

Non-

Inhibitor 
15 424 6 173 
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TABLE VIII.  RF CLASSIFIER CONFUSION MATRIX FOR CDK2 INHIBITORS 

(DESCRIPTORS AND PROMISCUITY) 

 

Predicted 

Training Testing 

Inhibitor 
Non-

Inhibitor 
Inhibitor 

Non-

Inhibitor 

A
c
tu

a
l 

Inhibitor 100 75 49 27 

Non-
Inhibitor 

13 420 3 182 

C. ROC Curves 

The Receiver operating Characteristics curve (ROC Curve) 
was plotted for all outputs to understand the ability of each 
classifier in discriminating between inhibitors and non-
inhibitors. RF ROC curves were plotted using ROCR package 
in R [20], and are shown in Fig. 2, while ROC curves for GP 
experiments were obtained from HeuristicLab, and are shown 
in Fig. 3. 

The curves show a fairly high ability for the RF classifier to 
label and determine the class for test data. For additional better 
understanding of the ROC curves, we show the values of AUC 
(Area Under the ROC Curve) for these ROC curves in table 
IX. 

From the AUC values and the ROC curves, we can see that 
RF outperforms GP with both protein datasets, especially when 
promiscuity information exists. The AUC values also show a 
remarkable improvement when promiscuity information exists 
in the dataset for both proteins and with the two techniques. 
However, the improvement ratio in the case of promiscuity 
information is notably higher with GP classifier. 

D. F1 Score 

F1score is calculated based on the precision and recall 
measures. F1 score measures the accuracy of a classification 
model based on the number of positives identified correctly 
and the total number of positives. Tables X and XI show the F1 
scores for RF and GP classifiers on CDK5 and CDK2 dataset 
respectively. 

For CDK2, F1 scores are almost within a close range to 
each other except for GP classifier without promiscuity. Also 
in this measure, we can see that GP could better reflect the 
promiscuity information by increasing the F1 score value with 
a higher ratio than RF, although RF values were better 
beforehand. Additional note here is that CDK5 dataset without 
promiscuity could not result in high accuracy predictions of 
positives, even after many experiments. 

E. Matthews Correlation Coefficient 

Matthews correlation coefficient (MCC), is a quality 
measure used to evaluate binary classifications. So it is 
applicable in our case. It takes into consideration true positives 
and negatives and hence it is considered as a balanced measure.  
Tables XII and XIII show the MCC values for RF and GP 
classifiers on CDK5 and CDK2 datasets respectively. 

TABLE IX.  AREA UNNDER ROC CURVE FOR RF AND GP CLASSIFIERS 

 

AUC 

CDK5 CDK2 

No Prom. With Prom. No Prom. With Prom. 

RF 0.82 0.94 0.87 0.94 

GP 0.56 0.85 0.62 0.68 

TABLE X.  F1 SCORES FOR CDK5 DATASET RESULTS 

 

F1 Score 

Training Testing 

No Prom. With Prom. No Prom. With Prom. 

RF 0.46 0.50 0.53 0.57 

GP 0.62 0.70 0.23 0.51 

TABLE XI.  F1 SCORES FOR CDK2 DATASET RESULTS 

 

F1 Score 

Training Testing 

No Prom. With Prom. No Prom. With Prom. 

RF 0.62 0.69 0.58 0.77 

GP 0.66 0.88 0.39 0.43 

TABLE XII.  MCC SCORES FOR CDK5 DATASET RESULTS 

 

MCC 

Training Testing 

No Prom. With Prom. No Prom. With Prom. 

RF 0.45 0.49 0.50 0.56 

GP 0.53 0.62 0.11 0.42 

TABLE XIII.  MCC SCORES FOR CDK2 DATASET RESULTS 

 

MCC 

Training Testing 

No Prom. With Prom. No Prom. With Prom. 

RF 0.55 0.63 0.51 0.71 

GP 0.54 0.83 0.18 0.33 

The values of MCC measure in general ranges between -1 
(No prediction), and 1 (Perfect prediction). In this case, the 
values for MCC in both datasets almost near to 0.5 or higher, 
except in the cases where GP classifier predicts the test sets for 
both proteins. As a general note, GP is performing better than 
RF in training data, but it cannot predict test sets accurately. 
On the other hand, RF is more accurate in predicting the test 
sets classes. 

It is also clear from the tables that MCC value increases 
when promiscuity information is included in the datasets. 
Promiscuity information improved the accuracy of GP 
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classifier more than its improvement for RF classifier on the 
training set level. This improvement is clearly noticeable in GP 
results for the test sets, although GP accuracy is still low on 
test sets compared to RF. 

F. Important Vairables 

RF has the ability to rank different available considered 
while training. So, it can produce a list in each experiment with 
the most important variable affecting the prediction results. In 
table XIV we show a portion of  the top important variables in 
the two experiments for each protein. We selected these 
important variables that had high rank in RF ranking for both 
mean decrease accuracy, and mean decrease Gini, and 
appeared with each protein in its corresponding two 
experiments. Variables names represent chemical descriptors 
produced by e-dragon. 

TABLE XIV.  IMPORTANT VARAIBLES AS SELECTED BY RF 

CDK5 CDK2 

MATS7p Mor32m 

MAXDP MATS1v 

Cl-090 MATS1p 

MATS7v Mor18m 

 
(a) CDK2 without Prmiscuity. 

 
(b) CDK2 with Promiscuity. 

 
(c) CDK5 without Promiscuity. 

 
(d) CDK5 with Promiscuity. 

Fig. 2. RF Results ROC Curves for both proteins. 

 
(a) CDK2 without Promiscuity. 

 
(b) CDK2 with Promiscuity. 
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(c) CDK5 without Promiscuity. 

 
(d) CDK5 with Promiscuity. 

Fig. 3. GP Results ROC Curves for both Proteins. 

IV. CONCLUSION 

Machine learning techniques provides a useful means to 
model and understand kinase-inhibitor interaction data. 
Although the results were not usually of high accuracy for 
different accuracy measures, but still there are many measures 
showing promising values and representing good predictions. 
Machine learning classifiers produced good predictions for the 
class with more data in the dataset, non-inhibitor class. We 
suppose that this could be a result of imbalanced data 
distribution. 

Another important conclusion is the ability of the classifiers 
to response effectively to one feature reflecting its importance. 
Kinase inhibitors are likely to bind to more than one kinase. 
The improvement in predictions when compound promiscuity 
is added to the features means that it was efficiently modeled. 
This suggests that adding more features such as protein binding 
site properties could highly improve the prediction accuracy. 

Compared to previous work using different techniques 
mentioned in section 1, our results achieved promising values 
in terms of overall accuracy. The average overall accuracy 
from RF experiments was about 85%, which is comparable to 
the 88% in [9], and 86% in [12]. Most of previous work tried to 
predict kinase inhibitors for the whole family, while in our 
work here we concentrated on the CDK subfamily to be more 
specific and more responsive to any special binding features of 
CDKs. We expect that extending the data by adding more 
features and considering protein-related properties on different 
levels would improve the classification accuracy. 

Finally, it is not necessarily that a good performing 
technique to be usually the most sensitive one for new features. 
Different approached should be tired with different datasets 

and features with a comprehensive and accurate evaluation of 
the results. 
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