
Learning to Recognise Mental Activities:
Genetic Programming of Stateful Classifiers for

Brain-Computer Interfacing

Alexandros Agapitos, Matthew Dyson, Simon M. Lucas, and Francisco Sepulveda
University of Essex

Department of Computing and Electronic Systems
Colchester, CO4 3SQ, United Kingdom

{aagapi,mdyson,sml,fsepulv}@essex.ac.uk

ABSTRACT
Two families (stateful and stateless) of genetically pro-
grammed classifiers were tested on a five class brain-
computer interface (BCI) data set of raw EEG signals. The
ability of evolved classifiers to discriminate mental tasks
from each other were analysed in terms of accuracy, pre-
cision and recall. A model describing the dynamics of state
usage in stateful programs is introduced. An investigation
of relationships between the model attributes and associated
classification results was made. The results show that both
stateful and stateless programs can be successfully evolved
for this task, though stateful programs start from lower fit-
ness and take longer to evolve.

Categories and Subject Descriptors
I.2 [ARTIFICIAL INTELLIGENCE]: Automatic Pro-
gramming

General Terms
Algorithms, Performance, Experimentation

Keywords
Brain Computer Interface, Classification on Raw Signal,
Stateful Representation, Statistical Signal Primitives

1. INTRODUCTION
A brain-computer interface (BCI) represents a commu-

nication channel able to accept and interpret intention re-
lated commands from a human or animal brain, indepen-
dent of peripheral nerves and muscles. System input is typ-
ically electrophysiological, with the use of surface electroen-
cephalography (EEG) being most common. More invasive
electrophysiological techniques such as electrocorticography
(ECoG) or single unit recordings from within the cortex
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produce data at higher spatial and temporal resolution but
yield limited contextual information whilst also inheriting
risks associated with medical procedures required. The fun-
damental component of a BCI is the algorithm converting
user input into an output signal practical for communication
or control. It is understood that this process will involve the
interaction of two adaptive controllers, a user conveying in-
tentional commands and a BCI system able to differentiate
said commands, the effectiveness of this interaction being a
key factor in overall performance.

Genetic Programming [7] (GP) has already spawned nu-
merous interesting applications including that of pattern
classification. There are many issues ubiquitous in the de-
sign of classifier systems that make GP an attractive can-
didate for solving such problems. One of the crucial as-
pects of machine learning systems is that of hypothesis rep-
resentation. The extremely flexible and expressive nature of
programming languages to represent solutions to problems
offers GP the capacity to represent classification problems
with means unavailable to other techniques such as decision
trees, statistical classifiers and NNs [9].

Currently, most evolved classifiers employ a functional
expression-tree representation that does not allow the main-
tenance and manipulation of state information. Stateful rep-
resentations have the advantage of, and potential for, inte-
gration of information over time, thus allowing for intro-
spective rather than purely reactive classifiers. A literature
review on the evolution of stateful classifiers revealed some
notable exceptions on the use of memory elements within
such programs. Teller’s work [13] on the evolution of pat-
tern recognisers is essentially the first attempt to include
state information in the classifier programs’ representation.
A linear structure of scalar memory cells, named indexed
memory, along with read and write primitive constructs
was the sole machinery used to allow programs to store and
retrieve state information during their computations. An
additional example of state usage comes from the domain
of sound discrimination using linear genetic programming
[5]. The system operated an unprocessed sound signal us-
ing a single-sample moving window and allowed programs
to produce an output vector of values which were fed back
in at every iteration. Loveard et al. [9] employed a variant
of stateful programs based on a data structure termed cer-
tainty vector which was used in a unilateral fashion, allow-
ing the storage but not retrieval of information during the
program’s computation. This vector contained one element
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for each class within the problem. Once program execution
halts the certainty vector is inspected and the element with
the highest value is declared to be the most certain class
label.

The highly stochastic nature of GP, combined with the
complexity of the space of computer programs have hin-
dered the modeling of the dynamics of GP systems; it was
not until recently that light has been shed on the theoretical
underpinnings of the GP approach to automatic program
induction. However, this significant effort has not taken
into account expression-tree representations that allow side-
affecting primitives. It has been previously shown [1] that
the use of state variables in evolvable programs structure the
search space differently and that this can increase the evolv-
ability of solutions within such space. It still holds that few
researchers allow their GP’s to include memory and there
are a limited number of empirical studies that reason about
either the way memory is used within evolvable individuals
(see [2] for a discussion) or underlying relationships between
use of memory and program fitness.

The primary motivation of this work is to extend the line
of research on stateful program representations. Attempts
are made to model the use of memory, hoping that this will
lead to a deeper understanding of its dynamics throughout
the evolutionary run and reveal relationships (if any) with
program performance. As a secondary we investigate the
potential of GP for both statistical feature extraction and
classification based on raw EEG time-series data, strength-
ening the view of GP as a domain-independent approach to
the signal-to-symbol problem. Two different families of clas-
sifier representations, stateful and stateless, were tested to
determine whether either showed improved accuracy, preci-
sion and recall in the BCI domain. This problem domain
has so far received limited attention from the evolutionary
computation community as reported in [6, 3, 10]. In [6], GP
was used to project EEG data into a new vectorial space of
lower dimensionality to be linearly separated by a percep-
tron while in [10] a genetic algorithm was used for feature
and parameter selection for the control of a mouse pointer.
The genetic programming of an EEG classifier has only been
tackled in [3] who considered a binary classification problem.

2. STATE USE DYNAMICS MODELING
In this section we are identifying a set of properties that

characterise the use of memory during a program’s fitness
evaluation. We are aiming at developing a more clear under-
standing of memory usage in GP and at gaining additional
insight into memory’s inner workings. In order to assess
the level of information provided by the various properties
we calculate their correlation with classification accuracy,
precision and recall.

Determining the way programs are utilizing the avail-
able memory is a difficult, open-ended process. As search
spaces become larger and more complex, evolved programs
become opaque to human understanding. The most impor-
tant factor involves the phenomenon of bloat. Bloat is often
facilitated by the lazy evaluation style of conditional (i.e
If-Then-Else) primitives. Updates and queries of memory
within the expression-tree structures are usually not easy
to trace and reason about. The above factors are mainly
attributed to the fact that GP does not create programs
systematically but evolutionarily. It is not yet clear whether
one should expect to identify common patterns of state vari-

able usage between fragments of evolved and human-written
code. Langdon [8], for example, observed unexpected results
on the use of memory in evolved solutions of a FIFO list
data structure. Humans often rely on programming idioms
and conventions to generate code efficiently and reliably.
Whether these are also identified and exploited through the
evolutionary pathway is yet to be examined.

An interesting technique for evaluating the use of memory
is reported in [12]. An individual was selected and in each set
of runs a random memory index either returned a random
number or zero independent of the true memory value. It
was found that when all of memory indices were subjected
to a random or constant damage, the individual’s fitness
dropped by around 10%.

In [2], Agapitos et al. surveyed the main ways that mem-
ory can be used during programs’ fitness evaluation process.
A mono-phasic fitness evaluation process considers just a
single program execution per training case. It makes use
of locally scoped variables which serve as a mean of stor-
ing the values of sub-computations at lower levels of the
expression-tree which may be used multiple times as the
evaluation proceeds to the upper levels. Those variables’
scope is restricted to a particular expression-sub-tree. On
the other hand, a multi-phasic fitness evaluation process
considers multiple program executions per training case [1],
making use of globally scoped variables that store the re-
sults of intermediate computations. Often, the evaluation
of expression-trees that modify such global stores precedes
the evaluation of those that query them. Their global vis-
ibility allows for state to be preserved between evaluations
simulating the life-cycle of an object that is born at the be-
ginning of fitness evaluation, operated upon in terms of state
changes and finally dying at cessation.

The definition of the following attributes that form a
model of memory usage assumes a multi-phasic fitness eval-
uation process and is based on the notion of distance be-
tween memory states formed in-between fitness evaluations.
We are also assuming the use of indexed memory as the
mechanism of storing intermediate information. In the
context of indexed memory let memory state be an arbi-
trary snapshot of the values of the indexed elements. Let
M = {ai, ai+1, . . . , an} and M ′ = {bi, bi+1, . . . , bn} be two
consecutive memory states (of n elements) at evaluation iter-
ation t and t+1 respectively. The Access Weighted Distance
(AWDM,M′) between memory states M and M ′ is defined
as:

AWDM,M′ =
NX

i=1

AWDi (1)

where N are the available memory elements in the lin-
ear indexed memory structure and AWDi is an augmented
hamming distance between element at Mi and M ′

i , defined
as follows:

AWDi =

j
1 + ((WACi + RACi) · weight) if Mi �= M ′

i

0 otherwise
(2)

where WriteAccessCount (WAC) and ReadAccessCount
(RAC) are the number of times a write and read primitive
respectively accesses the memory element at index i during
evaluation iteration t + 1, and Mi, M ′

i are the memory el-
ements at index i respectively. weight is used to discount
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the effect of the sum of memory access counts. Finally, the
Mean Access Weighted Distance (MAWD) is defined as:

MAWD =
1

P · N
PX

i=1

AWDM,M′(i) (3)

where P is all possible consecutive pairs of memory states
during successive iterations of the multi-phasic fitness eval-
uation process and N are the available elements of indexed
memory. MAWD captures the part of the dynamics of mem-
ory usage that deals with the amount of new information
(state changes) presented to the program in every iteration,
the degree to which memory registers hold input-dependent
intermediate results and the degree in which a program up-
dates and inspects the memory pool. This kind of distance
is sensitive to and will detect cases where memory regis-
ters do not store any values or store constant values that
do not reflect dynamic aspects (such as input based) of the
computation. Intuitively, high MAWD indicates that the
program is making substantial use of its memory. Based
on MAWD we define the Variance of Access Weighted Dis-
tance (VAWD) as the average squared deviation of distance
AWDM,M′ of each pair of consecutive memory states from
MAWD.

V AWD =
1

P

PX
i=1

(AWDM,M′(i) − MAWD)2 (4)

where P is the number of consecutive pairs of mem-
ory states during successive iterations of fitness evaluations.
This attribute captures the trends of fluctuation of system-
aticity in state changes along successive program executions.
Low variance could indicate a monotony in the use of mem-
ory elements. No major variation takes place in the number
of write/read accesses and any changes that are performed
in the contents of memory registers are repeatedly observed
throughout the fitness evaluation life-cycle. On the con-
trary, high variance indicates great variation in the number
of memory accesses and a form of non-systematicity or in-
consistency in the way changes to memory element values
are being realized. This may in turn indicate the forma-
tion of different execution paths between subsequent fitness
evaluations which may be attributed to conditional primi-
tives leading to the evaluation of different read and/or write
expression-tree nodes. Alternatively, it may signal a general
difficulty of discovering a way of a consumer-producer type
of memory management through a circular inspect-compute-
and-update process.

An additional attribute that is part of our model of state
usage dynamics is termed Position Weighted Distance, de-
fined as follows:

PWDM,M′ =
NX

i=1

PWDi (5)

where N are the available memory elements in the linear
indexed memory structure and PWDi is a type of hamming
distance between element at Mi and M ′

i , defined as follows:

PWDi =

j
1 + i−length(memory)

length(memory)
if Mi �= M ′

i

0 otherwise
(6)

where length(memory) is the number of elements in the
indexed memory structure. Note that this distance is nor-
malized within the interval [0, 1] and indicates the posi-
tion, within the indexed arrangement, of the memory ele-
ments that are subjected to changes. Specifically, the dis-
tance is small when differences in memory values are per-
formed in the first indices (0,1,2,. . . ) and becomes larger
as state changes are being realized in subsequent ones.
Based on PWDi we define Mean Position Weighted Dis-
tance (MPWD) and Variance of Position Weighted Distance
(VPWD) as follows:

MPWD =
1

P · N
PX

i=1

PWDM,M′(i) (7)

V PWD =
1

P

PX
i=1

(PWDM,M′(i) − MPWD)2 (8)

where P is all possible consecutive pairs of memory states
during successive iterations of the fitness evaluation process
and N are the available elements of indexed memory. What
essentially interests us in the present study is VPWD so
this is the sole purpose of the definition of MPWD. How-
ever, it can be argued that when combined with VPWD,
MPWD itself can uncover certain properties of the program
representation and population content dynamics (in terms
of primitives present in the population). As already stated,
when VPWD is low, MPWD can detect certain memory in-
dices that are used in memory manipulation. These indices
are the result of the evaluation of argument subtrees of read
and write expression-tree nodes. The evaluation result of
these subtrees is restricted by the current population con-
tent so the value of MPWD provides a form of indication
of numeric value intervals that can be reached in a specific
part of the fitness landscape. A quite stable MPWD over
all individuals of a population along several successive gen-
erations may indicate convergence on a specific part of the
search space that does not allow for the exploitation of the
entire range of available memory indices. Whether this is
an advantage or disadvantage is problem specific and war-
rants further study. For our purposes here, VPWD will
be used as a modeling attribute because at the individual
level it characterizes the disorder of the physical addressing
of memory elements. Low variance could indicate a unifor-
mity of the indexed positions of memory slots that are being
accessed in each iteration of the fitness evaluation process.
High variance indicates that no particular set of indices is
being updated and accessed in each iteration and may be
interpreted as a general difficulty in reading from the same
memory element that information was written to. Addi-
tionally, it may signal a deficiency in determining memory
areas with particular semantics so that they are consulted
and updated consistently in every evaluation iteration.

The last attribute of our model is a simple measurement of
the mean read and write memory accesses in each iteration.
Mean Memory Access (MMA) is defined as follows:

MMA =
1

I · N
IX

k=1

NX
i=1

(WACi + RACi) (9)

where I is the number of fitness evaluation iterations, N is
the available memory elements in the linear indexed mem-
ory structure, and WACi, RACi is the number of times
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information has been written to or read from the ith mem-
ory element respectively. Note that RACi will be zero in the
case where no information has been stored in the ith element
during the current or previous iterations, counteracting the
undesired behaviour of the storage being read before being
written. Having defined a model of the dynamics of memory
usage during a program execution we will attempt to sup-
port it with empirical evidence and evaluate the importance
of its attributes by investigating their relationship with pro-
gram performance.
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Figure 1: First row: Scatter plots between accuracy
and MAWD; Second row: Scatter plots between ac-
curacy and VAWD; Third row: Scatter plots be-
tween accuracy VPWD; Fourth row: Scatter plots
between classification accuracy and MMA; (subjects
3,4)

3. METHODS

3.1 Fitness Function using Gaussian models
A novel approach for translating the numerical output of

the GP classifier into a class label was introduced in [11].
A gaussian model of each program output distribution for
a particular class can be acquired by evaluating the pro-
gram on the example training set and calculating the mean
and standard deviation of the program outputs. Assuming
a binary problem case, the following equation is used to de-
termine the distribution distance between classes i and j, as
in [11].

d = 2 × |μi − μj |
σi + σj

(10)

where μi, σi and μj , σj are the mean and standard devia-
tion of the program outputs for classes i and j in the training
set respectively, and σi, σj are non-zero. Under this mea-
sure, for programs that distinguish between two classes well
then distance d will be large, whereas the worst case is 0
where μi and μj are the same.

In multiclass pattern classification the fitness function is
determined by considering the distribution distance between

every two classes. For N-class problem there are

„
N
2

«
=

C2
N = N!

2!(N−2)!
class combinations and the fitness function

takes the following form:

fitness =
1

T

TX
i=1

C2
NX

j=1

1

1 + dj
(11)

where T is the number of training examples, N is the
number of classes and dj is the distribution distance for the
class combination j.

3.2 Probabilistic pattern classification
To measure which class a given pattern belongs to, we

used multiple best programs similarly to [11]. Assuming M
best programs in the population are used the probability
Probc of a given pattern being of class c is calculated by:

Probc =
MY

i=1

P (μi,c, σi,c, oi) (12)

where P is the normal probability density function, oi is
the output of program i with the pattern to be classified, μi,c

and σi,c are the mean and standard deviation (non-zero) of
the outputs of program i for class c.

P (μ, σ, o) =
exp

“
−(o−m)2

2σ2

”
σ
√

2π
(13)

The class with the highest probability is designated as the
class of the pattern.

3.3 Protocol
Seven male subjects (age 24 to 35), free from medication

and disorders of the central nervous system, took part in the
study. Subjects were seated in an armchair with a monitor
approximately 1.5 meters to their front. Within each run
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subjects performed a mental task in combination with an
idle task. A trial began with the presentation of a fixation
cross in the centre of the screen. Paired beep sounds were
used to cue the active task condition and the idle task, the
initial beep sound was presented at 750ms with a second at
1000ms. The first sound was consistent 1kHz, 70ms and the
second alternated between 1kHz, 70ms for the active task
condition and 1.3kHz, 70ms for the idle task. Subjects were
instructed to attempt to perform each task until the fixa-
tion cross disappeared from the screen, occurring after 10
seconds. An inter trial period of 3 to 4 seconds was used,
subjects were encouraged to use this period for blinking and
to remain fixated on the cross as much as possible during
trials. Each run contained ten trials (randomly ordered),
trials within each run were split equally between the active
task condition and the idle condition. Within each run cues
appeared after a 60 second pre-trial period, the maximum
length of each run was under 3.5 minutes. Each run was
repeated six times, producing 30 trials for each mental task
and 30 trials of associated idle data. Breaks were required
every 20 minutes and granted whenever requested. All pro-
cedures were performed according to the Universities ethical
regulations.

3.4 Mental activities
Left and Right Hand Motor Imagery: A wrist ex-

tension was demonstrated to the subject. Subjects were in-
structed to use arm-rests and perform the movement whilst
concentrating on the muscular feelings associated with the
action. Subjects practiced imaginary movements to their
own satisfaction. It was explained to participants that visu-
alisation of the movement was neither necessary nor likely
to be beneficial.

Auditory Imagery: Subjects were required to recall a
familiar tune that they knew well and “listen” to it. Instruc-
tions were given not to mouth words or make movements
during the trial.

Mental Arithmetic: Subtraction was selected as the
calculation task to perform. Subjects were instructed to
select a three digit number and a single digit number for each
trial. The single digit number was successively subtracted
from the result of each calculation for the duration of the
trial.

Idle Task: The idle task was undefined, subjects were
instructed that during this time they should remain focussed
on the fixation cross in the same manner as during an active
mental task and refrain from performing any of the defined
mental tasks.

3.5 Recordings
EEG was recorded from 64 electrodes positioned accord-

ing to the international 10-20 layout using a BioSemi Ac-
tive2 system. EEG signals were filtered between 0.1Hz and
100Hz (Butterworth - Order 5), a 50Hz notch filter was ap-
plied, data was sampled at a frequency of 256Hz. Trials were
inspected for electrooculogram (EOG) artifacts at the end
of session and additional runs were included if necessary to
ensure data sets met a minimum size. A right ear reference
was used.

3.6 Training/Test data
Data was presented to the classifiers in the form of time se-

ries of 512 signal samples. Forty-five channels were selected

covering the frontal, central and temporal and parietal chan-
nels. Eight seconds of data was used from each trial (second
2 to end of trial). Of each data type 20 files were used for
training, 10 for test. Data for the idle task was selected with
equal proportion from active mental task sessions. In order
to represent reasonable time frames for classification data
from each trial was separated into seven two-second sam-
ples with one second overlap. Overlap was used to ensure
the stateful classifier was not inhibited by artificial break
points in the data. N-fold cross validation was not feasible
due to excessive GP processing times.

3.7 Program Representation Language
Evolvable individuals employ an expression-tree represen-

tation. The primitive language is depicted in Table 3. Prim-
itives for statistical feature extraction accept 3 arguments,
the first being the time-series and the remaining two de-
fine the left and right bounds of the fragment of the time-
series to consider in the statistical function. If the start and
stop positions specify a negative fragment then the opposite
interpretation is taken, also, if they are out of time-series
length bounds, their values are induced by taking the mod-
ulus to the time-series length. The statistical function diff

is the difference between the average values of two halves of
a time-series fragment:

Diff(L, s, e) =

0
@ 1

e−s
2

e−s
2 +sX
k=s

Lk

1
A −

0
B@ 1

e−s
2

eX
k= e−s

2 +s

Lk

1
CA
(14)

where Lk is the kth input list element and s, e are the
start and end indices respectively. First order moment 1
FOPDM and second order moment SOPDM are position depen-
dent statistics that measure how the high-valued signal sam-
ples are distributed away from the center of a time-series
fragment. The first order moment is the average of the time-
series values weighted by their absolute distance from the
middle point of the fragment and the second order moment
is the variance of these values:

FOPDM(L, s, e) =
1

e − s

eX
k=s

h
Lk ·

˛̨̨
k −

“e − s

2
+ s

”˛̨̨i

(15)

SOPDM(L, s, e) =

1

e − s

eX
k=s

nh
Lk ·

˛̨̨
k −

“e − s

2
+ s

”˛̨̨i
− FOPDM

o2

(16)

where Lk is the kth input list element and s, e are the
start and end indices respectively. Finally, read and write

follow Teller’s definition.

3.8 Evolutionary Algorithm, Variation opera-
tors, and Run Parameters

For evolutionary algorithm we used a panmictic, genera-
tional genetic algorithm combined with elitism (0.5%). The
algorithm uses tournament selection with a tournament size
of 4. The evolutionary run proceeds for 50 generations and
the population size is set to 2, 500 individuals. Evolution
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Table 1: Pearson Correlation Coefficient between
classification performance and memory-usage model
attributes.

Subject no. 1 Accuracy Precision Recall

MAWD .6210 .5469 .6210
VAWD −.2592 −.3086 −.2592
VPWD .2629 .1824 .2629
MMA .3018 .0948 .3018

Subject no. 2 Accuracy Precision Recall

MAWD .1334 .1165 .1334
VAWD .4075 .3089 .4075
VPWD −.2426 −.1847 −.2426
MMA .0362 .0347 .3062

Subject no. 3 Accuracy Precision Recall

MAWD .3855 .2443 .3855
VAWD −.6119 −.7307 −.6119
VPWD −.6012 −.5539 −.6012
MMA .1799 .1113 .1799

Subject no. 4 Accuracy Precision Recall

MAWD .3802 .2796 .3802
VAWD −.4009 −.2031 −.4009
VPWD −.2976 −.3013 −.2976
MMA .1393 .1770 .1393

Subject no. 5 Accuracy Precision Recall

MAWD .0539 .0932 .0539
VAWD −.0836 −.1915 −.0836
VPWD .0249 −.0114 .0249
MMA .0579 .0652 .0579

Subject no. 6 Accuracy Precision Recall

MAWD .3994 .4682 .3994
VAWD −.0301 −.1485 −.0301
VPWD −.0381 .0142 −.0381
MMA .3616 .4352 .3616

Subject no. 7 Accuracy Precision Recall

MAWD .3749 .3669 .3749
VAWD −.3185 −.4497 −.3185
VPWD −.0227 −.0109 −.0227
MMA −.0722 −.1514 −.0722

Table 2: Pearson Correlation Coefficient between (i)
accuracy and time-series coverage percentage, (ii)
accuracy and statistical feature usage

Progs.

Accuracy
Stateful Stateless

Time-Series Feature Time-Series Feature
coverage usage coverage usage

(%) (%) (%) (%)

1 .2212 −.0496 .3186 .4674
3 .3623 .2308 .3081 .4434
5 .4330 .3251 .3013 .4264
10 .4651 .3859 .2959 .4092
15 .4527 .3763 .2951 .4266
20 .4327 .4036 .2904 .4252
25 .3638 .4243 .2044 .3402
30 .4357 .4768 .2098 .3368
35 .3649 .4721 .2009 .3558
40 .4102 .4984 .1551 .3569
45 .3922 .4866 .1139 .3582
50 .4221 .5216 .0888 .3454
80 .3852 .5920 −.0512 .3655
100 .4223 .6048 −.3828 .3543
150 .4078 .5300 −.5869 .2923
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Figure 2: Learning curves for (a) stateful and (b)
stateless representations

halts when all of 50 generations have elapsed. Ramped-
half-and-half tree creation with a maximum depth of 7 is
used to perform a random sampling of program space dur-
ing the initial generation. During the run, expression-trees
are allowed to grow up to depth of 17. Our search employs
a mixture of mutation-based variation operators [4]: (i) All
Nodes Mutation, (ii) Macro Mutation, (iii) Point Mu-
tation, (iv) Swap Mutation, (v) Grow Mutation:, (vi)
Truncation Mutation, (vii) Gaussian Mutation. These
variation operators are applied in the following way: a sam-
ple S from a Poisson random variable with a mean of 2 was
generated. S random mutation operators were uniformly
picked (with replacement) from the set of available oper-
ators and were applied in sequence using a pipe-and-filter
pattern (i.e. Mutant=(Swap(Grow(Parent)))). Let this type
of mutation be called Variation-Bundle. In order to ac-
count for the exploration-exploitation trade-off we allow for
the selection of either a Variation-Bundle or a single point-
mutation (each node is being mutated with a probability
of 15%) using an adaptive probability that is induced as
follows: Probsingle−mut = k ∗ (gencurrent/genmax), where
gencurrent and genmax are the current and maximum num-
ber of generations in the evolutionary run respectively, and
k is a discount coefficient which is set to 0.6. Once the main
variation procedure is performed, the mutant is subjected
to a perturbation (with a probability of 50%) of the con-
stant integer values representing the left and right bounds
of the fragment of the time-series to consider in the statis-
tical function. The rounded gaussian sample added to the
constants is of zero mean and std. deviation of 12.0.

3.9 Experimental Context
Empirical results are based on the average of 10 indepen-

dent runs for each subject, under each representation. For
stateful classifiers, read and write primitives are included
in the primitive alphabet. In addition each program has
access to a linear repository of state information (indexed
memory) of size 20. The evaluation of each fitness case for
stateful classifiers is performed in an iterative way in or-
der to allow for the use of intermediate state information.
The recorded signal (512 samples) from each electrode is
being partitioned in chunks of 50 samples with no overlap.
The process initiates by initialising all memory elements to
zero. In each iteration data is being fed in a moving win-
dow fashion covering each consecutive 50-sample window,
allowing the program to inspect and modify previously accu-
mulated information. The way fitness evaluation is crafted
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Figure 3: First row: Avg. percentage of time-series
coverage in each bundle of programs used for classi-
fication; Second row: Avg. percentage of statistical
feature usage in each bundle of programs used for
classification; (left: stateful; right: stateless)

Table 3: Primitive Elements for Evolving Classifiers

Method Argument(s) Return

+, −, ∗, /, write double, double double
exp, ln, sqrt, sin, cos, read double double
mean, std.dev., skewness

List, int, int doublekurtosis, min, max, diff
FOPDM, SOPDM

Terminal Value Type

Constant
20 rnd. in [-1,1] double
100 rnd. in [-100,100]
0, . . . , 512 int

Parameter 45 time series List

strongly encourages the use of memory. Programs that do
not maintain state information will be only accessing the last
50 samples of the whole signal and their performance would
be rather poor. The testing phase has been appropriately
instrumented in order to monitor the use of memory and
evaluate the significance and appropriateness of the state
dynamics model introduced in section 2. For stateless rep-
resentation, we followed a standard GP practice by feeding
the whole 512-sample signal from each electrode during the
evaluation of a single fitness case. Note that while their
length varies, the number of parameter time-series was 45
in both representations.

4. RESULTS
We begin by presenting a comparison of the overall classi-

fication performance between stateful and stateless represen-
tations. Unfortunately, a table demonstrating the numerical
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Figure 4: Box-plots: accuracy, precision, recall

results could not be included due to space limitations. The
box-plots depicted in figure 4 show that both representa-
tions achieved competent performance and in most cases
differences are of minor magnitude. A significant differ-
ence was found between accuracy and precision rates for
the right hand motor imagery task between the stateful and
stateless classifiers (P < 0.05, paired t-test, degrees of free-
dom df = 6), the stateless representation outperforming the
stateful. Accuracy rates for stateful right hand motor im-
agery task were also significantly lower than rates for the
stateful idle task (P < 0.05, paired t-test, df = 6). No
significant differences were found between overall accuracy
rates for the two classification representations across classes.

Across subjects the mean precision rates for the stateless
classifier were found to be significantly higher (P < 0.01,
paired t-test, df = 34). The only significant difference
between precision rates for classes existed in the stateless
condition between the calculation and idle task (P < 0.05,
paired t-test df = 6). In both classifier conditions the mean
precision rates, across subjects, for the calculation and au-
ditory imagery task appear better than the motor imagery
tasks, although these results are not significant. This differ-
ence in precision rates may reflect the manner in which the
task is maintained over the trial period, or possibly subject
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familiarity with the activity. The motor imagery activities
may have been executed repeatedly with specific subcom-
ponents of the task producing variations in EEG patterns
at differing times per trial, in comparison the auditory and
calculation tasks may be viewed as more fluid and familiar.

Mean recall is lower for the idle state in both classifier
conditions, the difference is significant in the stateful con-
dition (P < 0.01, single factor ANOVA, df = 4) and close
to significant in the stateless condition (P = 0.055, single
factor ANOVA, df = 4). This result is expected as the idle
task is undefined and may be representative of a number of
mental activities therefore lacking the consistency found in
other tasks. The stateful classifier has a higher recall rate
than the stateless classifier for the auditory imagery task
(P < 0.05, paired t-test, df = 6).

Figure 2 shows the average best fitness of each genera-
tion. There seem to be no severe stagnation of evolution-
ary improvement as evidenced by the continuous decrease of
the adjusted distribution distance (representing the fitness
criterion). Also, on average over the 7 subjects, stateful
programs are more unfit in the beginning of the run (avg.
fitness of 0.64) as opposed to stateless ones (avg. fitness
of 0.57). This is intuitive, and we generally expected that
initial random programs will be hardly making any sensi-
ble use of their memory. However, within the same amount
of generations stateful representations (avg. final fitness of
0.52) seem to be able to compensate and reach an analogous
fitness level along with stateless representations (avg. final
fitness of 0.50).

We subsequently looked for correlations (Table 1) between
the memory-use model attributes and classification perfor-
mance. A positive correlation which is consistent across all
subjects is observed between Mean Access Weighted Dis-
tance and classification accuracy. As one might expect, high
classification accuracy is seen with programs that make sub-
stantial use of their memory. A negative correlation, which
is not consistently strong across all subjects, is observed be-
tween Variance of Access Weighted Distance and accuracy
and also between Variance of Position Weighted Distance
and accuracy. This suggests that low variance is seen with
high accuracy. Based on the discussion of section 2 this
can be interpreted as meaning that efficient memory usage
is associated with a uniformity of the indexed positions of
memory slots that are being accessed during program execu-
tion and a consistency on the amount of read/write accesses.
Mean Memory Access shows a weak correlation with accu-
racy. Interesting relations could easily exist but not nec-
essarily be linear. The Pearson correlation coefficient used
in this study only describes linear relationships so we also
examine a series of scatter plots, depicted in figure 1, which
can show linear relationships in addition to others. The
plots are representative of a clear trend, occurring across
most subjects, of high classification accuracy occurring with
high MAWD/MMA and low VAWD/VPWD.

Figure 3 illustrates that the average usage of statistical
features and time-series sample coverage was lower in the
case of the stateful classifier. Table 2 demonstrates that
the stateful representation shows higher correlation between
time-series coverage and classification accuracy. In all cases
of correlation (including the analysis of memory-use model)
we do not infer causation, however, we intend to test the
impact of selection pressure towards individuals exhibiting
greater coverage of series samples and statistical features.

5. CONCLUSIONS
Genetic programming has been empirically shown to be a

competent paradigm in multi-class pattern classification of
raw EEG signals. Initial attempts at modeling the dynam-
ics of state-use during program execution have been insight-
ful in uncovering and quantifying various aspects of stateful
program evolutionary induction.
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