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Summary. Starting from a broad description of analog circuit design in terms
of topology design and sizing, we discuss the difficulties of sizing and describe
approaches that are manual or automatic. These approaches make use of black-
box optimization techniques such as evolutionary algorithms or convex optimiza-
tion techniques such as geometric programming. Geometric programming requires
posynomial expressions for a circuit’s performance measurements. We show how a
genetic algorithm can be exploited to evolve a posynomial expression (i.e. model) of
transistor (i.e. mosfet) behavior more accurately than statistical techniques in the
literature.

1 Introduction

Analog circuit design remains an important part of electronic design even af-
ter the advent of digital electronics. This is because some components of an
electronic system must be analog. Some examples are voltage reference cir-
cuits, converters (analog to digital and vice versa), clock generators, circuits
for processing the input signal before it is digitized (e.g. filters and ampli-
fiers) and circuits for processing analog output signals. Because research also
shows [12] that analog systems can be designed to consume several orders
of magnitude lesser power than digital circuits, interest in analog design re-
mains strong. Complementarily, there is active interest in the improvement
and development of methods for computer-aided design (CAD) of analog cir-
cuits. Design and verification of analog circuits has not yielded to automation
and thus analog design is a bottleneck in achieving short time-to-market and
robustness.

An analog circuit is composed of components that include transistors (fets,
bipolar junction transistors), resistors, capacitors and inductors.1 Each of
these components has a certain behavior that is expressed in terms of the

1 Inductors are difficult to fabricate and are generally used in RF circuits.
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current(s) flowing through it and the voltage(s) across its nodes. This behav-
ior depends on one or more parameters that are numerically expressed. For
example, capacitance is the parameter for a capacitor and width and length
parameterize a mosfet. Models to express the behavior of capacitors and mos-
fets are shown in Figure 1 and Table 1. Here, the mosfet model is inaccurate
(a first order approximation).
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Fig. 1. Basic Analog

Component Model

Capacitor: v21 = i
sc

Mosfet: Id = k W
L

(Vgs − Vt)
2(1 + λVds)

Table 1. Capacitor and (first order) Mosfet models.

These components are connected to each other to form a circuit topology
that implements a certain function. A circuit topology may be defined as a
certain (wired) connection of the nodes of components with constraints on un-
specified parameters to implement a given function. Figure 2 shows a topology
of a differential pair that implements the differential amplification function
given in Equation 4. The topology is a connection of mosfets, resistors and
a current source. There are constraints on the parameters of the components
as expressed in Equations 2 and 3. The second constraint is popularly termed
a matching requirement in the analog design community. While there are ad-
ditional constraints on parameters to keep the mosfet in saturation, we omit
these for simplicity. For the given differential pair topology, the parameters of
the components must be determined according to its gain requirements as per
Equation 1. In general, the step of determining the parameters of a topology
is called circuit sizing.
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Fig. 2. Differential pair

av = f(R,Wi, Li, Iss, VDD) (1)

Constraints
W1

L1
=

W2

L2
(2)

R1 = R2 = R (3)

CircuitFunctionality
vo = −av(vinp1 − vinp2) (4)

Here av is gain, v0 is AC output and vinp1, vinp2: AC input

Every analog circuit has a function and performance measurements.2 For
instance, the function of a differential pair is that its output voltage is pro-
portional to the difference of its input voltages. The proportionality constant,
gain or av, is a performance measurement of the differential pair. Other mea-
surements for a differential amplifier are, for example, lower bound or upper
bound on gain, unity gain frequency, phase margin, noise and slew rate. Given
a model of the behavior of each component, its parameter values and the topol-
ogy, the measurements will have specific values. The analog design problem is
an inversion of this derivation: given a required function, a set of requirements
for (the values of) performance measurements and a class of components (e.g.,

2 Performance measurements are also called specifications. The term specification
in the analog domain is also used in the context of a requirement. In this submis-
sion, to avoid ambiguity we avoid the use of “specification” unless the context is
completely clear.
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use only mosfets), a designer must come up with the connection of compo-
nents (topology) and the component parameters to meet the function and
performance measurements requirements.

There are two steps in analog circuit design. First, a topology is designed
that satisfies the functional requirements of the circuit. There are always mul-
tiple candidate topologies and the decision to choose one among them is in-
formed by the performance measurements requirements. In the context of our
example, a difference amplifier can be realized via the differential pair in Fig-
ure 2 or via a differential pair followed by a simple amplification state. If
high gain is a performance requirement, the latter will be chosen and for low
gain the former will be chosen. However, the latter circuit will consume more
power given it has more components and this might be a crucial tradeoff in
the design.3 This first step of topology selection involves making expertise
informed decisions among choices that have unfinalized outcomes because the
parameter values of the components are not decided upon.

The second step is circuit sizing, that of determining the parameter values
of all components to meet the required performance measurements. Given the
parameter values, the performance of the circuit can be determined, but as in
the case above, we need to solve the inverse problem, i.e. to find the compo-
nents’ parameters’ values given the performance measurement requirements.

The next two sections give an insight into how the parameters of circuits
map to performance measurements and elucidate the methodologies to do
sizing.

1.1 Circuit Sizing: Complex behavior models and Interconnection
Effects

Circuit sizing is complex even though it is possible to determine circuit perfor-
mance measurements when given the behavior of components, their parameter
values and interconnection,

The resistors and capacitors have simple linear behavior, however this is
not the case with the transistor. Simplistically, the transistor can be viewed
as an active device with a variable current that is controlled either by current
(BJT) or voltage (FET) in a non-linear relationship. The actual behavior of
transistor is far more complex with multiple interactions between its three
nodes (as observed on fabrication). The model of this relationship depends
on the technology used (different substrate, doping concentration, fabrica-
tion methodology, minimum feature size, etc. and their combinations imply
different technologies) to fabricate the device. The models may differ a lot
depending on the fabrication technology.

Beyond single component behavourial complexity, the behavior of the en-
tire circuit is even more complex due to interaction between the complex

3 The description and tradeoffs have been kept simple throughout this example for
clarity. In reality, they are much more complex.
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models of the individual devices. One result is very large expressions for per-
formance measurements. These are computationally expensive to solve (in
[13], it is shown that the gain expression of a 3 transistor circuit consist of
63 distinct terms in numerator and 908 distinct terms in denominator). An-
other factor in increased complexity is that many performance measurements
do not have closed form expressions. This implies they must be determined
iteratively or numerically (e.g., slew rate). This leads to a computationally
expensive and non-intuitive mapping between parameter values and perfor-
mance measurements.

An accurate, yet time consuming means of measuring circuit performance
is to use a circuit simulator with component models acquired from the fab-
rication phase. SPICE[14] is one such circuit simulator which handles all the
model and inter-model complexity. It takes as input the circuit expressed as a
netlist and outputs its behavior, from which the performance measurements
can be derived. SPICE is a world standard for circuit simulation and the final
verification tool for the circuit before it goes to silicon or PCB.

1.2 Circuit Sizing: Manual and Automatic Methodologies

There are both manual and automatic methodologies for sizing circuits.
Manual Design: Given the dismal cognition-starved, non-intuitive factors in
sizing, it is hard to imagine how analog circuit sizing could be done manually.
The reality is contrary to this intuition. Analog circuit sizing has been con-
ventionally done manually and even today, is done manually by highly-paid
analog design engineers!

Roughly, the design methodology is the following: The designer uses an ap-
proximate quantitative first order model for the transistor behavior (strongly
informed by his prior design experience with the fabrication technology). The
simplified quantitative expressions are used to model the interaction between
the components to come up with simplified expressions for the performance
measurements. Using these expressions, the component parameters are worked
out. This is an iterative process where at one step the designer may select
parameters that manage to satisfy one measurement requirement but which
“fall out” on others. At the next step some adjustment is made to (hopefully)
bring the measurements closer (or completely) to requirements. Intuition of
the designer regarding the higher-order interactions between components and
feedback from simulations (which in turn sharpens intuition) informs the read-
justments to components to meet specifications. As the designer works more
and more on a given topology, intuition about the higher order interaction
of components improves and yields expertise in sizing circuits optimally. At
each step, the design is simulated on SPICE for verification with respect to
requirements.
Automated blackbox Optimization: SPICE technically performs a mapping
function between parameter values and performance measurements. It is em-
pirically known that such a direct mapping function would be misbehaved
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and multimodal. Also, performance measurements are coupled and in trade-
off. The problem is very high dimension in input variable space; the number of
parameters varies from 10s to a few hundreds. For instance, a simple opamp
has around 13 parameters that need to be set. Thus, rather than replacing
SPICE with a function, it can be exploited as a blackbox. This conceptual-
ization of SPICE lays the foundation for casting the sizing problem as a large
scale multi-objective optimization problem for which a blackbox function is
available. There has been a lot of work in applying different stochastic black-
box optimization algorithms (also termed non-structural) to sizing such as
genetic algorithms [17] and simulated annealing[16]. Genetic algorithms and
programming has been applied to the combined topology and sizing design
problem [9, 7, 15, 1].
Equation-based approaches have also been used instead of invoking SPICE in
the optimization loop[6]. Here, a simplified model for the transistor is used and
multiple symbolic equations are derived to express the performance measure-
ments. These equations, though not completely accurate, take much less time
than SPICE to provide the performance measurement values. The process of
sizing is thus accelerated at the cost of accuracy.
Equation-driven global optimization: When the sizing problem is solved by
blackbox optimization techniques that use multiple symbolic expressions
which measure the circuit’s performance, any exploitation of the structure
of the performance measurement equations is ignored. This observation re-
veals the possibility that a structured optimization algorithm (like linear pro-
gramming, quadratic programming), if it could exploit the structure of the
symbolic equations, would also be able to solve sizing. In an exciting develop-
ment in sizing methodology, [11] showed that in the case of an opamp, circuit
performance measurement equations could be accurately yet approximately
expressed in posynomial form (which we shall define in detail in Section 2)
to be solved by geometric programming. The approach used inaccurate tran-
sistor models and considered only simple interconnection effects. Geometric
programming is a structural optimization technique which can determine the
global optimum for objectives and constraints expressed in posynomial form.
It uses interior-point methods [2] and solves in a few seconds. In [11, 5, 3],
it was shown that geometric programming can be used to size various analog
circuits such as PLLs, opamps, OTAs and inductor circuits in a few minutes.

As convenient as the geometric programming technique might initially ap-
pear, the devil is in its details. Most significantly, all circuits do not render
accurately to posynomial equations that express real (i.e. complex) transis-
tor models and multiple interaction effects. When these inaccuracies then are
translated into problem objectives and constraints, they lead to the determi-
nation of a faulty global optimum, i.e. the optimum of an inappropriate (or
wrong) problem. The extent to which simple interaction terms impose inac-
curacy on the equations depends on the topology and needs to assessed on a
case-by-case basis. There may be a large unacceptable impact for a certain
topology, while it could be trivial for another.
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This paper investigates finding accurate posynomial expressions that are
high fidelity models of a real transistor. With more accurate performance
measurement equations incorporated into geometric programming’s objectives
and constraints, there is improved potential for sizing optimization. We have
used genetic algorithms to design posynomial models for mos transistors.

2 Geometric Programming

To be more explicit, geometric programming [2] is a special type of convex
optimization which exploits the posynomial or monomial form of objectives
and constraints. Let x be a vector of n real, positive variables. A function f
is called a posynomial function of x if it has the following form:

f(x1, . . . , xn) =
t∑

k=1

ckx
α1,k

1 x
α2,k

2 . . . x
αn,k
n , cj > 0, αi,j ∈ <

When t = 1, the expression is called a monomial. Geometric programming
solves an optimization problem of the following form:

minimize f0(x)
subject to fi(x) ≤ i, i = 1, . . . ,m,

gi(x) = 1, i = 1, . . . , p,
xi > 0, i = 1, . . . , n

Here fi and f0 are posynomials while gi are monomials. A geometric pro-
gram can be solved for the global optimum in a few seconds using interior
point methods. In the next section, we will show how an opamp sizing can be
expressed as a geometric program. Note that posynomials exclude the expres-
sion of a negative term but can express a fraction.

2.1 Circuits as a Geometric Program

Circuit performance measurements fall in two categories: small signal and
large signal. The process of expressing the circuit for geometric programming
involves expressing its small signal and large signal measurements as posyno-
mials.
Small Signal Measurements: The transistor despite being a non-linear device
has nearly linear behavior for small changes in voltage and current. This fact is
exploited (in general) by all analog circuits to implement different behaviors.
The measurements of these behaviors are termed small signal performance
measurements. One example is gain, the ratio of the output voltage and the
input voltage when the circuit is excited by a small input voltage.

The circuit small signal performance is measured by expressions that in-
terpret the interconnection of the topology and embed a small signal model of
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the mosfet. A small signal model for the mosfet is shown in Figure 3. Its pa-
rameters gm, gds (or ro, Cdb, Cgs and Cgd) are also shown in Figure 3. The
symbol g stands for transconductance, r for resistance and C for capacitance.
These parameters are themselves each a function of the transistor width (W ),
length (L) and the current (Id) flowing through it.
Large signal Specifications: The transistor is essentially a non-linear device.
The performance measures related to its non-linear characteristics are called
large signal specifications and do not consider the linearity assumption of the
small signal model. Slew rate and voltage swing are examples of large signal
performance measures for an opamp. The value of current flowing through the
transistor is also ascertained by the transistor large signal model, which is re-
quired to express the value of small signal parameters (small signal parameters
are a function of W , L and Id).
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The process of expressing the circuit as a posynomial for geometric pro-
gramming is shown for an opamp in Figure 4. To size the given circuit, the
width (Wi) and length (Li) of all transistors, the input current (Iss), the pa-
rameter values of the resistor (R) and capacitor (C) have to be determined.
The currents flowing through all mosfets are expressed using the large-signal
behavior of the mosfet and topological connection information. They are a
function of the input currents, W and L of transistors (example included
in Figure 4). These are monomial constraints. Small signal performance mea-
sures, for instance, (G) and unity-gain frequency (wc) are expressed in terms of
small signal parameters. For maximization of gain or imposing a lower bound
constraint on it, the inverse of the gain has to be a posynomial. This can be
achieved by expressing gds and gm as posynomial and monomial respectively.
Same holds true for wc. The large signal performance measures may be ex-
pressed using the large signal model parameter V t, V eff and substitution of
empirically derived values. The figure shows the constraint on Veff of transis-
tor M1 and M7 due to a lower bound of the maximum common-mode input
voltage (V cm(max)). This can also be expressed as a posynomial constraint.

In this formulation, each value of the small signal parameters (for e.g.,
gm) and certain large-signal parameters (for example, V t) of a mosfet must
be expressed as a posynomial (or monomials in certain cases) function of the
width, length and current flowing through the mosfet. This is what we dub
the MOS posynomial modeling problem.

3 The MOS Posynomial Modeling Problem

The goal of MOS posynomial modeling is to express all small signal parameters
and some large signal parameters (henceforth called output variables, Yi) as
posynomial function of the transistor width (W ), length (L) and the current
(Id) (henceforth called, input variables, X). This is shown below.

Yi =
t∑

k=1

akWαk,1Lαk,2I
αk,3
d , aj > 0, αi,j ∈ <

As can be seen, the number of terms, the value of the coefficients of each
term and the exponent of each input variable in each term fully specifies the
posynomial expression.

The values of the output variables for any value of input variables can
be found by SPICE simulation of the transistor. A large set of points (in
the order of 10s of thousands) enumerating the value of output variables for
values of input variable is available4. Our GA must find a posynomial function
for each output variable in terms of the input variables, which minimizes the

4 The large number of sampling points is necessary for comprehensive representa-
tion
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mean square error between the actual value and calculated value (posynomial
function) for each variable over the complete data set.

In earlier studies, log regression has been used to fit monomials [2], however
this approach cannot be extended for fitting posynomial models. In other
works [4, 10], posynomial models with exponents as integers between −2 and
2 have been suggested. Like a GA, these approaches make no claim to finding
a globally optimal solution. In our approach, the exponent can take any real
value which gives the model more expressive power.

4 Our Genetic Algorithm for MOS Modeling

We have designed a genetic algorithm (GA) to synthesize a posynomial for
each of the output variables of a mosfet model. The genetic algorithm has to
be executed for each output variable separately. The demonstrated method is
generic for fitting a posynomial to a given set of input and output data.

4.1 Posynomial Representation:Genotype to phenotype mapping

The mapping of genotype of phenotype is shown in the Figure 5. Our pheno-
type is a posynomial expression. The genotype is a matrix of real numbered
values as shown in Figure 5. Each row represents a term of the posynomial.
The number of rows is fixed. A choice parameter associated with each row
decides whether the row is actually used or not (1:used, 0:don’t care). This
allows us to have posynomials with varying number of terms in the popula-
tion. The number of rows is equivalent to the maximum number of possible
terms in the posynomial. Each column is associated with one of the 3 input
variables. The value in a cell encodes the exponent of the variable (represented
by the column) for the term (represented by the row). All cell values are in a
specified range [minV al,maxV al]. The coefficient of each term is not a part
of the genotype.

This genotype might be interpreted to state that the value of the choice
parameter helps exploration of posynomials with different number of terms.
This will not be sufficient due to high possibility of bloat. Because of how we
determine the coefficients (that are not in the genotype), a coefficient may
become zero valued. This incorporates automatic feature selection (term se-
lection) in the algorithm. The determination of coefficient values and how the
number of terms of the posynomial varies will be discussed in terms of fitness
evaluation in Section 4.2. This representation expresses the exponents as real
values (in a given bound) and our algorithm is not biased to set exponents as
absolute zeros. Another option for the model matrix would be to restrict the
exponents to integers, with a bias to pushing small exponent terms to zero.
Intuitively, while the current representation would evolve expressions with
fewer terms (since each term has a high degree of freedom/expressibility), the
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latter would evolve expression with more terms. Since there is no a priori
information about the model, our choice of the model matrix is arbitrary.5

4.2 Fitness Evaluation

The GA evolves the exponents of all variables for each term. To determine the
complete posynomial form of the candidate solution, the coefficient of each
term must be determined. This is done deterministically, given the specific
values of the exponents, with a minimization of mean square error (MSE)
objective. We formulate a Quadratic Programming (QP) problem from the
MSE objective function (because it is second degree) along with linear con-
straints that all coefficients are positive. The coefficients found by QP are the
global optima for the given exponents. A QP solver within Matlab is used to
solve the QP problem. The minimum value of the error (minimum MSE) is a
measure of the accuracy of the posynomial.

The complete dataset of SPICE derived MOS behavior is substantially
large (about 70000 points) and the formulation and solving of QP becomes
computationally expensive for the whole dataset. Therefore, we only use a
small randomly sampled fraction of the dataset.6 Using this smaller fraction
requires that the evolved model does not overfit the sampled points. To ensure
this, we use 2-fold cross validation on the sampled data set and use the cross
validation MSE as the fitness of the individual. At each generation, we fit the
5 The decision is not completely arbitrary since monomials with non-integer expo-

nents yield low error results.
6 A more principled approach to do this could be by use of Design of Experiments

[8]
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coefficients of only the best of generation solution on the entire dataset and
calculate its MSE. This error value lets us know, if in any phase of evolution,
the algorithm starts overfitting to the sampled data set. The error value is
not used to provide any feedback to the evolutionary algorithm.

To summarize, the candidate solution is derived by evolution of its expo-
nents and QP optimization of its coefficients. It is evaluated on a fixed ran-
domly sampled small fraction of the complete data set and the cross-validation
error is used as the candidate’s fitness.

It is worth noting here, that the problem at hand is different from a typical
model building problem, where one needs to deliver a model which generalizes
well to unseen data. Here a huge data-set for prediction is available but we
are using only a part of it since our algorithm is computationally intractable
with the complete data set. There is also a hypothesis that using more data
will not help.7 Our final adjustment of the coefficients for the exponents of the
GA solution for optimal performance on the complete dataset is a flexibility
that is not available in typical model building problems.

Also noteworthy is an effect arising from using QP to find the coefficients.
The QP problem has the constraints that all coefficients should be more than
zero. This can be visualized as an optimization problem with feasible space
bounded by hyperplanes. Each hyperplane has value of one of the coefficients
as zero everywhere on it. The intersection of the hyperplanes have more than
one coefficient equal to zero. The solution of the QP problem in many cases
lie on one of the constraining hyperplanes or their intersection. This pushes
some of the coefficients to exact zero. Thus QP implicitly performs feature
selection on the evolved terms by setting the coefficients of useless terms to
zero. From the perspective of GAs, QP is identifying useful terms within the
genotype. It also makes the genotype implicitly variable length though with
an upper bound. It is an open question whether this QP-based selection of
terms also generates useful building blocks across the population that could
be exploited by a GA combination operator.

4.3 Variation Operators

The GA employs a coarse grained uniform crossover operator that exchanges
terms. The order of terms (rows in the genotype matrix) has no significance
since all terms are additive so each row is chosen from one of the two parents.
Since the evolved expression is a sum-of-products, we consider the product
terms as building blocks, which combine through the addition operator to
form the solution.

We used term-wise uniform crossover. Two individuals are chosen from the
selected population and the new individual is created by choosing each row

7 This is akin to bioinformatics experiments, where in motif predicting algorithms,
no improvement in accuracy is observed after the data-set becomes larger than a
given number.
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from one of the two parents. This operator is used to do inter building block
recombination.

The mutation operator is used to perturb the real-numbered values in
the cells of the matrix. A normal distribution centered at zero with a given
variance (λ) is added to the real numbered value. The variance is adaptively
decreased according to the genetic algorithm generation to make the algo-
rithm explorative initially and exploitative in later stages. We investigated
two strategies:
Strategy 1: Mutation is carried out in two phases. In the first phase, a term
(equivalent to a row) is chosen for mutation by a given probability (pterm).
In the second phase, each cell in the chosen row is mutated by a given prob-
ability (pcell). This scheme in phase one chooses a building-block to mutate.
The term-wise mutation rate is set to conserve a given number of building
blocks in the population depending on the selection pressure. In the second
phase the intention is to direct appropriately step-sized, local search within
each identified building block. The cell-wise mutation rate is set to encourage
incremental search in the product-term space.
Strategy 2: Strategy 2 exploits the fact that the coefficients indicate whether a
given term is a useful (i.e. contributing to fitness) component to a particular
genotype’s solution. We could hypothesize that a useful term in one solution
might be useful in another solution and thus is an evolutionary building block.
A zero coefficient term would not be a useful building block. Thus, in this
strategy, terms with zero coefficients and non-zero coefficients are treated dif-
ferently. A term with a zero coefficient is mutated by a probability (pzero term),
the operation being reinitialization of the term randomly. A term with a non-
zero coefficient is mutated by a different probability (pnon zero term) and is
mutated cell-wise in the same way as Strategy 1. Here, the coefficients of the
terms are considered in tandem with the genotype for the purposes of muta-
tion only. This strategy is exploiting a hypothesis that a term with a non-zero
coefficient is a building block. If this is true, the strategy will generate useful
explorative variation only in circumstances where it seems advantageous (i.e.
when a zero coefficient term has evolved).

5 Experiments

We used the proposed genetic algorithm to evolve posynomial models for 9 mos
model output variables in terms of its W, I and L for an NMOS transistor. The
specific model output variables are shown in the top row of Table 3. The silicon
technology for the mosfet model is TSMC 0.18u . Approximately 70,000 points
were extracted from SPICE simulation which swept the complete operating
range of the transistor (in saturation). We sampled 2000 points uniformly
from the complete set for fitness evaluation and used 2-fold cross-validation.

The GA is standard. Each genotype of generation 0 is initialized using
a uniform random distribution bounded by [minV al,maxV al] for each cell
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element. The choice parameter is randomly initialized to 1 or 0 such that the
average number of terms per individual in the initial generation is 3. We use a
generation based GA with tournament selection. Each tournament produces
one new member of the next generation. The genetic algorithm parameters
are given in Table 2. The probability of term mutation for both Strategy 1
and Strategy 2 were roughly hand calculated for learning a linkage of 3 terms
given the tournament size.

Parameter Value

Population Size 50

Tournament Size 6

[minVal, maxVal] [-3, 3]

Initial λ 1

λ rate Halved every 20 generations

pcrossover 0.5

Mixing Ratio 0.7

pterm 0.45

pcell 0.5

pzero term 0.7

pnon zero term 0.3

Maximum number of terms 5

Table 2. GA Parameters
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Fig. 6. Quantile plot for best solutions of Strategy 1 and Strategy 2 over
10 runs
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5.1 Experiment 1

Here we evolved posynomial models for output variable V eff using Strat-
egy 1 and Strategy 2. The average best-fitness over all runs is misleading due
to outlier runs. Thus, we use quantile plots which show the fitness value range
for a percent of individuals. Figure 6) shows the quantile plot for best-fitness
over 10 runs for both strategies. One can observe that 8 out of 10 solutions
for Strategy 2 have lower error value than those of Strategy 1. However, one
solution from Strategy 2 does much worse than Strategy 1 and maybe con-
sidered an outlier. The fitness of the posynomial expressions which gave the
least error for complete data over all runs and generations was 1.030e−4 for
Strategy 1 and 1.0220e−4 for Strategy 2. These results are just indicative in
favour of Strategy 2 and no strong claim can be made on their basis. The pri-
mayy aim of this investigation is to find out whether our GA can find a better
posynomial than log-trained monomials. This is addressed in Experiment 2.

5.2 Experiment 2

We evolved posynomials for all 9 mos output variables using the genetic algo-
rithm. We ran 2 runs for each output variable with the same settings as above
for 1000 generations. In each generation, the coefficients of the best individual
and its error were re-determined according to the complete set. The posyn-
omial expressions which gave the least error for complete data over all runs
and generations are reported in Table 4. For each parameter the coefficient of
each term and the respective exponents are reported.

For comparison, monomials for output variables were created by a three
step process. First, log regression [2] was done to find a set of coefficients and
exponents. The exponents and coefficients were re-tuned to minimize MSE
using a gradient-descent method in the second step. In the third step, the
coefficients for the given exponents were optimized globally by a QP formula-
tion. A comparison of error of these monomials and GA evolved posynomial
is shown in Table 3.

gm gds V eff V t Vd(sat) Cgd Cgs Cdb ro

Monomial 1.36e−8 1.57e−11 5.08e−4 3.46e−5 2.87e−4 6.28−34 3.94e−29 3.48e−32 3.35e13

Monomial 4.75e−9 5.62e−13 1.04e−4 8.53e−6 7.61e−5 1.99−35 3.55e−29 1.28e−34 1.25e12

Imp (%) 65.1 96.4 79.5 75.3 73.4 96.8 9.7 99.63 96.2

Table 3. Results of Experiment 2. The bottom row (Imp) shows the percentage
improvement of the GA evolved posynomial over over the monomial derived by a
three step process (see text for details). Improvement measures decreased error.
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Coefficient L exponent W exponent Id exponent

gds

1.394403e−08 -0.4964759 -0.1530169e 0.6236803

3.822282e+04 1.926779 -1.993445 3.000000

3.340184e−05 -0.6053242 0.5020036 0.5457113

7.580838e−21 -3.000000 0.5954294 0.3877911

gm

6.142170e−02 -0.3766175 0.4750202 0.5247892

Veff

1.010186e+02 0.5113741 -0.5138530 0.5071154

6.589195e−01 0.5540773 -1.458791 1.621552

Vt

1.100209e−01 -0.09881736 0.003999609 0.000000

9.979964e+05 1.476890 -0.06611535 0.000000

Vd(sat)

1.521139e−01 0.07657982 -0.04372403 0.08441106

9.201251e+06 2.151408 -2.249152 2.269076

2.012515e+02 0.5960877 -0.5342329 0.5364634

1.499778e−02 1.367515 -1.578360 0.5740558

Cgd

9.281660e+01 3.000000 -0.8642648 1.858666

3.756514e−16 -0.6405048 1.774402 -0.7871581

1.335686e+03 2.631523 0.9.397126 0.04175101

6.854030e−10 -0.01477968 1.002911 0.00050428

Cgs

7.175508e−03 1.080458 0.9303338 0.05072020

2.179441e−03 0.9974063 0.9505211 0.04358394

4.078940e−07 0.2597072 1.171186 0.05483664

Cdb

4.333407e−10 0.0092217 0.9867695 0.0018283

5.303325e−10 0.0013345 1.014629 -0.0012439

ro

5.928747e+09 1.560661 -0.4045190 -0.6062304

3.738613e−18 -2.572708 1.495797 -2.566089

1.487947e−04 -0.3950394 1.965040 -2.956083

1.077567e+11 2.380938 1.812263 -2.580723

3.027457e+04 0.5501161 -0.3637335 -0.5637681

Table 4. Results of Experiment 2. These are GA evolved posynomial mosfet models.
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6 Summary

We have broadly described the process and methods of analog circuit design
in terms of topology selection and sizing. A description of sizing as an op-
timization problem along with brief descriptions of hand methodologies and
automatic methodologies such as black-box optimization and geometric pro-
gramming was given. Geometric programming can solve an optimization prob-
lem in seconds provided the problem objectives are expressed as posynomials
and the constraints are expressed as monomials. This prompted us to design a
GA to evolve posynomial mos models that are embedded within posynomials
that express the circuit’s small signal measurements. We designed a GA with
a fixed length genotype that implicitly has variable encoding of posynomial
terms via its accompanying use of QP for coefficient optimization. For this par-
ticular mos the GA provides much better models than statistically log linear
fitted monomial based models. The given approach is a general posynomial
model building approach and not specific to only mos parameters. However,
care has to be taken if building models for higher dimensional input space
because sparseness of expressions will be required. In this case a modified GA
or geometric programming might be useful.

7 Future Work

While we have only focused on posynomial models in this submission, a
broader goal is to evaluate the value of GA evolved posynomial models in
terms of how much they improve the quality of circuit sizing. Comparisons
can be made to hand-sized circuits and circuits sized with posynomial mod-
els derived by other means (e.g statistically derived mos monomial models
and hand written circuit level posynomials). While the GA provides better
accuracy, the extent to which this improved accuracy helps with sizing is un-
quantified as yet. The cost of the accuracy of the GA derived mos models is
the computational expense and time to evolve them. High cost is unimportant
because the model is very reusable. In other words, the cost is amortized over
many uses of the model.

But are posynomials’ inherent errors worse than using polynomials and
more computationally intensive techniques? There could be potential advan-
tages to using any kind of EA to derive less restricted models and then using
another EA (i.e. in place of geometric programming) that exploits the model.
This sounds easy but it is not straight forward in the circuit sizing domain
because of the complexity of large signal models and the ability to express a
models parameterized for a technology.
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