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ABSTRACT

Modelling behaviour of materials involves approxtmg the actual behaviour with that
of an idealised material that deforms in accordamtie some constitutive relationships.
Several constitutive models have been developeddnous materials many of which
involve determination of material parameters wiilh physical meaning. ANN is a
computer-based modelling technique for computaaod knowledge representation
inspired by the neural architecture and operatioth@® human brain. It has been shown
by various researchers that ANNs offer outstandadyantages in constitutive
modelling of material, however, these networks hseme shortcoming. In this thesis,
the Evolutionary Polynomial Regression (EPR) wasotuced as an alternative
approach to constitutive modelling of the complegh&viour of saturated and
unsaturated soils and also modelling of a numbeotber civil and geotechnical
engineering materials and systems. EPR overcomesstibrtcomings of ANN by
providing a structured and transparent model reptesy the behaviour of the system.
In this research EPR is applied to modelling ofesdrstrain and volume change
behaviour of unsaturated soils, modelling of SW@Qmnsaturated soils, hydro-thermo-
mechanical modelling of unsaturated soils, iderdiion of coupling parameters
between shear strength behaviour and chemicakstsfin compacted soils, modelling
of permeability and compaction characteristicsalss prediction of the stability status
of soil and rock slopes and modelling the mecharbedaviour of rubber concrete.
Comparisons between EPR-based material model picdicthe experimental data and
the predictions from other data mining and regmssiodelling techniques and also the
results of the parametric studies revealed the el capabilities of the proposed
methodology in modelling the very complicated bebawr of geotechnical and civil

engineering materials.
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Chapter (1) Introduction

Chapter 1

INTRODUCTION

1.1 General background

Constitutive modelling involves approximating the actual behaviour of materials with
that of an idealised material that deforms in accordance with some constitutive
relationships. In the past decades several constitutive models have been developed for
various materials. Most of these models involve determination of material parameters,
many of which have no physical meaning. In spite of considerable complexities of
constitutive theories, due to the erratic and complex nature of some materials such as
soil, rock, etc, none of the existing constitutive models can completely describe the real
behaviour of these materials under various stress paths and loading conditions.

Because of significant advances in computational power and the development of more
efficient solvers, the models are getting more and more sophisticated and realistic.
Available packages provide new and improved interfaces, better visualization of the
developed results, more options for automatic searching for design solutions, etc; but,
the constitutive laws used in the analyses remain mostly unchanged from the ones used
years ago (Faramarzi, 2011). Traditional material models are not capable of addressing
the complexities inherent in natural geomaterials, like soils and rocks, in a unified way
and normally are developed for specific applications and target specific problems. One
of the main roles of constitutive modelling is their application in describing the material
behaviour in numerical analyses.

The finite element method is a very popular numerical modelling technique to find
approximate solutions of partial differential equations (PDE). Most of the problems in
engineering analysis and design can be represented as a single or a series of differential
equations. These equations are used to explain the system response once it is subjected
to external influences (loads, displacements, etc). Most differential equations do not
have analytical solution and numerical techniques need to be used to find approximate
solutions for this type of equations. Among numerical techniques available, the finite
element method is one of the most powerful techniques for solving most engineering
problems. In the finite element method the structure being analysed is divided into a
large number of smaller parts called elements (Stasa, 1986).
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The accuracy of the finite element analyses results greatly depends on the constitutive
model chosen to represent the material behaviour. Therefore, one of the most important
steps in finite element analysis is selecting the most appropriate constitutive model.
Although there are a large number of constitutive models with high degrees of
complexity, but none of these models are able to completely describe the real behaviour
of some materials such as soils, rocks, composites, etc. under different loading
conditions. Therefore alternative methods for describing the material behaviour would
be very advantageous.

In recent years, the use of artificial intelligence and data mining techniques has been
introduced, as an alternative approach, for constitutive modelling of complex materials
(Javadi and Rezania, 2009a). The use of artificial neural network (ANN) for modelling
the behaviour of concrete was first introduced by Ghaboussi et al (1991). After that,
other researchers continued to apply ANN to model the behaviour of other materials.
Some of these works incorporated neural network-based material models (NNCMs) in
finite element method to analyse engineering problems. Ghaboussi et al. (1998), Shin &
Pande (2000) and Hashash et al. (2006) proposed the autoprogressive or self-learning
approach to train neural network-based material models. These models included
sequences of training a neural network (NN) embedded in the finite element method
using measured values of displacements and forces of a structural or geotechnical test.
The results from these works indicated that ANNs can be incorporated into the finite
element method as alternative constitutive models. It was also shown that the trained
ANNs incorporated in the finite element analysis provide better predictions of the
behaviour of materials in comparison to the conventional/empirical models. In spite of
all advantages, ANNs are also known to suffer from some shortcomings. One of the
main disadvantages of the neural network-based constitutive models (NNCM) is that the
optimum structure of the ANN (such as number of inputs, hidden layers, transfer
functions, etc.) must be identified a priori which is usually obtained using time
consuming trial and error procedures (Giustolisi and Savic, 2006). Another main
drawback of the ANN approach is about the complexity of the network structure as
ANN represents the knowledge in terms of weight matrices together with biases which
are not accessible to the user. In other words ANN models do not provide any
information on the way the inputs affect the output and therefore are considered as a
black box class of models. The lack of interpretability of ANN models has stopped them
from achieving their full potential in real world problems ( (Lu, AbouRizk and
Hermann, 2001) and (Javadi and Rezania, 2009a)).

In this thesis, a recently developed technique, named evolutionary polynomial
regression (EPR), is considered as a powerful alternative to ANN. The proposed
technique expresses the behaviour of the material being studied in terms of structured
mathematical expressions. Giustolisi & Savic (2006) first introduced the use of EPR in
modelling of hydroinformatics and environmental related problems. EPR is a two-stage
technique: in the first step EPR attempts to find symbolic structures using a genetic
algorithm and in the second stage it estimates the constants using a linear least square
technique. In this thesis the EPR is used to model constitutive behaviour of complex
civil enginnering systems including geomaterials and particularly unsaturated soils.
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1.2 Aims

This thesis aims at:

e Introducing a new approach to modelling constitutive behaviour of complicated
civil engineering materials.

e Presenting important applications of the proposed methodology in modelling
complicated civil/geotechnical engineering problems relating saturated and
unsaturated soils and rubber concrete.

e Discussing the advantages of the proposed methodology and the
shortcomings/cautions that need to be considered in applying it.

1.3 Objectives

In this thesis EPR is employed, as an effective data mining and pattern recognition
technique, to model some of the most complicated materials in civil and geotechnical
engineering. The objectives of this thesis can be defined as:

e Presenting most recent developments in using data mining techniques for
material modelling.

e Describing the model development procedure using the proposed evolutionary-
based data mining technique.

e Modelling various aspects of the complex behaviour of unsaturated soils
including (i) stress-strain and volume change behaviour; (ii) soil water
characteristic curve (SWCC) and (iii) thermo-mechanical behaviour.

e Identification of coupling parameters between shear strength behaviour and
chemical’s effects in compacted soils.

e Constitutive modelling of coarse grained soils.

e Modelling permeability and compaction characteristics of soils and stability
analysis of soil and rock slopes.

e Modelling the mechanical behaviour of rubber concrete.

1.4 Contribution to the knowledge

Applications presented and discussed in this thesis are amongst the most important
geotechnical and civil engineering systems and material modelling problems with very
little knowledge about their erratic nature and complicated mechanical behaviour. In
this research a novel methodology is presented to develop models to represent this
complicated behaviour in the shape of a unique, explicit and easy to understand
mathematical expression with the capability of predicting the real behaviour of the
system based on the data acquired from experiments or field measurements with very
high accuracy levels. Pros and cons of the proposed methodology and its advantages
over the existing techniques used in civil engineering modelling and also any concerns
relating to the use of the proposed method in practical engineering problems are
discussed.
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1.5 Layout of the thesis

The thesis includes six chapters. In what follows a short description of the contents for
every chapter is presented.

Chapter one (current chapter) provides a general description and objectives of the thesis.
It gives an overall insight into the thesis and describes the order in which the materials
are arranged in the thesis.

The second chapter presents a review of the literature on the most important and up-to-
date developments in using data mining techniques in material modelling. In this
chapter a background on the conventional constitutive material modelling techniques as
well as developments in using data mining techniques (in particular artificial neural
networks) in material modelling are presented.

In chapter three the new data mining technique, evolutionary polynomial regression
(EPR), is described in detail. A general introduction is given to the most popular data
mining techniques, including artificial neural network (ANN) and genetic programming
(GP), and a detailed description of the evolutionary polynomial regression (EPR)
technique is provided. The key features and important advantages of the proposed EPR
technique are highlighted in this chapter.

In chapter four, EPR based modelling of constitutive stress-strain and volume change
behaviour, thermo-mechanical behaviour and the soil-water characteristic curve in
unsaturated soils, and also the constitutive stress-strain and volume change behaviour of
granular soils are presented. EPR is also used to identify the coupling parameters
between shear strength behaviour and chemicals’ effects in compacted soils. After
validation and verification, comparison of the predictions of the proposed models with
experimental data as well as conventional models and artificial neural network results
are presented. The results of sensitivity analyses of the proposed models are then
presented to provide an understanding of the contributions of the involved parameters.

In chapter five some other applications for EPR are presented including modelling the
compaction and permeability of soils, predicting stability status of soil and rock slopes
and also the mechanical behaviour of rubber concrete. Model verification results,
comparison of the predictions of the proposed models with experimental data and
conventional models as well as artificial neural network results (where available) are
presented. Effects of different contributing parameters on the proposed models are also
investigated.

The concluding chapter, chapter 6, includes the main conclusions based on the contents
of the present thesis and makes recommendations for further research.
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Chapter 2

CONSTITUTIVE MODELLING BASED
ON DATA MINING TECHNIQUES

2.1 Introduction

In the past few decades, numerical modelling tepkes, in particular the finite element
method, have been used to analyse a wide rangengheering problems. These
problems span over a range of different disciplimeduding civil and structural
engineering, aerospace, biomedical engineering,onztive and geotechnical
engineering, among others. The finite element nektiBoconsidered as a very robust
tool for analysis of complex engineering probleinsthis method, the behaviour of the
actual material is approximated with that of araigs=d material that behaves according
to predefined constitutive relationships. As a liesthe choice of an appropriate
constitutive model that adequately and accurategcdbes the behaviour of the actual
material is a crucial step in the finite elemenalgsis and affects the accuracy and
reliability of finite element predictions (Faramarzavadi and Ahangar-Asr, 2012).

A wide range of different models have been preskmtedescribe the constitutive
behaviour of different materials including soildh€lconstitutive models for soils vary
from simple elastic models (Hooke, 1675) to elgd&stic models (e.g., Drucker and
Prager (1952)), models created based on the ¢triiate theory (Schofield and Worth,
1968) and strain hardening models (Lade and Jakol®02; Lade, 1977), among
many others. In these models determination of tbdeh(material) parameters is one of
the important stages of model development procedsreany of these parameters have
very little or no physical meanings (Shin and Par2@®0). In recent years data mining
techniques are introduced as alternatives to cdmrext methods for constitutive
modelling of complex systems.

In this chapter, a history of the applications bé tdata mining-based constitutive
modelling approaches is included. Advantages arsdddantages of the presented
methodologies are also discussed.

2.2 Conventional approach to constitutive modelling

In developing conventional constitutive modelsstfia mathematical model is selected

based on the understanding of the behaviour ohtaeerial or trends of the available

data. In the next step, some appropriate physssas tare conducted on the samples of
5
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the material in order to capture the behaviour leg tmaterial and to define the

parameters of the model (model/material parameté)urate determination of these

parameters is very important when these constduthodels are implemented into

numerical models (such as FEM), as the accuradheohumerical model predictions

greatly depends on the accuracy with which thectsdeconstitutive model describes
the real behaviour of the material. Despite thesmerable complexity of the existing

constitutive theories and the fact that these thsorencompass most of the
characteristics of the material behaviour, dudéounpredictable and complex nature of
some materials including soils and rocks, the egstonstitutive models are not able to
accurately describe the behaviour of such mateualder various stress paths and
loading conditions (Javadi and Rezania, 2008).

2.3 Data mining techniques and constitutive modelling

With the rapid development in information techngl@nd computational software and
hardware in the past few years, the use of comqaudex pattern recognition
techniques has been introduced as an alternatw®agh to constitutive modelling of
materials. Pattern recognition techniques, suchrtificial neural network, fuzzy logic
and genetic programming, can learn adaptively fdata and generalise the captured
behaviour.

2.3.1 Artificial neural networks (ANN)

Artificial neural networks (ANNS) are the most commpattern recognition procedures
that have been widely used in constitutive modeglth materials. The use of ANN for
material modelling was first introduced by Ghabowsal. (1991) for modelling the
behaviour of concrete. This continued by the warkgllis et al. (1992) and Ghaboussi
et al. (1994) who applied the methodology to maithkel behaviour of geotechnical
materials. The results of these and similar reteavorks showed that the neural
networks are able to capture and represent theneamlmaterial behaviour with a good
degree of accuracy.

ANN models have the ability to work with large qtides of data. They can learn
complex behaviour of systems by training with inpatl output sets of data. The most
outstanding advantage of ANNs over conventionalemet models is their ability to
capture complex relationships between parametarfilooting to the system without
the need to assume the form of the relations betwgit and output variables.

The neural network assigns a given set of outpcitove to a given set of input vectors.
When applied to the constitutive description, timysacal nature of these input-output
data is determined by the measured quantities dikesses, strains, pore pressure,
temperature, etc (Javadi, Tan and Elkassas, 2808pical representation of an ANN
based model is shown in Figure 2.1.
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Figure 2.1: Typical neural network model

In the above network, one input layer, one hid@sei, and one output layer are used to
represent the neural network model. All neurongach layer (e.g. input layer) are
individually connected to the neurons in the nexgel (e.g. hidden layer) with a
“connection weight”. The knowledge stored in theeleped network is hidden in the
sets of connection weights and is used to makagtieds of the output parameters.
Training of the neural network is done by modifyiitg connection weights in an
appropriate manner through the data set used faniihg” of the network. Training
continues until the predicted output variables agatisfactorily with the target values
in the training data set. Networks trained in tihiay are generally termed back-
propagation neural networks. The “back-propagatiterm refers to the algorithm
through which the error observed in the predictegbat variables is used to modify the
connection weights and repeat the training undlrtiost suitable network is obtained.
However, ANNSs also suffer from some shortcomingthwhe most important one being
their back-box nature that prevents them from gyvthe user a clear insight and
understanding to the model and the way that thelwed parameters affect the model
predictions.

2.3.2 Nested adaptive neural network

Nested adaptive neural network (NANN) was introdlty Ghaboussi and Sidarta
(1998) and was applied to develop models to reptetbe constitutive behaviour of
geotechnical materials. Ghaboussi and Sidarta (18pglied this new type of neural
network to develop models for drained and undraibedaviour of sands in triaxial
tests. Nested adaptive neural network takes adyanté the nested structure of the
material test data, and represents it in the lapbuhe neural network. Although the
proposed new type of networks suggests the advauutatipe nested structure; but, they
show very little improvement towards removing thewd sides of using ANNSs in
material modelling.
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2.3.3 Application of neural network-based methods in material
modelling

Penumadu & Zhao (1999) modelled the stress-straihvalume change behaviour of
sand and gravel under drained triaxial compress®st conditions using neural
network. Data from a large number of tests (aroRb@ triaxial test data) were used to
train the neural network. The optimum structureth@ neural network was found by
trial and error. The proposed neural network hdadglen layers with 15 neurons in
each layer, eleven neurons in the input layer aval dutputs. The input and output
parameters of the model were as follows:

Inputs parameterfs,, Cy, Cc, h,ng, €, €', Ae', 65, a3, €,
Output parameters:;;™, i1

where D, C,,, C. represent equivalent particle size and their ithstion, h is an
indicator of hardness of the material,is the shape factoe, is the void ratio, and; is
the effective confining pressure. The current statestress and strain was also
represented with deviator stregs axial straine’ and volumetric strais. For a
specimen with given current state of stress arainstthe developed ANN model aimed
to predict two outputs, deviator stres§'! and volumetric strairei*! for the next
stress-strain state corresponding to an axialnsin@rement ofAs!. The results showed
that the developed neural network model was abtapdure the stress-strain behaviour
of granular soil with an acceptable level of accyreonsidering both non-linear stress-
strain relationship and volume change behaviours.

In case of isotropic materials, or when isotropy d& assumed, a strategy was
proposed by Shin and Pande (2002) to generate@ulidata from limited number of
general homogeneous material test results to bé uséraining of neural network-
based constitutive models. In this strategy, byiaésg that the material is isotropic,
the stress-strain pairs of data are transformed iShdone by rotating the datum axes
(X, Y and Z) from the axes with respect to whicle tnaterial tests are done (1-2-3).
This strategy increases the amount of training datahat there will be enough data
lines for proper training of the neural network rebdshin and Pande (2002) solved a
boundary value problem to evaluate their proposethadology. In this problem a
circular cavity in a plane stress plate was analyssing a finite element method in
which the neural network-based constitutive moddNCM) trained using their
proposed strategy was used as the constitutiveareship. The results were compared
to the ones from standard finite element analysisgiconventional constitutive models
and acceptable agreement was observed. The aniyation with this strategy,
according to the developers, is that it cannotdeeldor anisotropic materials.
Penumadu & Zhao (1999) and Shin and Pande (200epted some important
examples of applications of ANNs by suggesting méshof creating comprehensive
input data for better training of the networks. hltigh the proposed technique to
generate additional data helped improving the imgiexperience of ANNs; however,
no amendments to the actual methodology was sweghasimprove the performance.

2.3.4 Neural network-based finite dement and discrete eement
models

Javadi and colleagues investigated the applicatfoneural networks in constitutive
modelling of complex materials including soils. Viaeveloped a neural network based

8
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finite element method (NeuroFEM) based on the ipoation of a back-propagation
neural network (BPNN) in finite element analysifieTproposed model was validated
and applied to solve different boundary value peotd, mostly involving geotechnical
engineering applications (e.g., (Javadi, Zhang &ad, 2002); (Javadi and Zhang,
2003); (Javadi, Tan and Elkassas, 2004a); (Javatzaang, 2004b); (Javadi, Tan and
Elkassas, 2005); (Javadi, Tan and Elkassas, 2008p.results showed that neural
network is very efficient in capturing the behavioof complex materials and
generalising the behaviour to unseen conditions.

A closed-form solution for constructing materiaiffaess matrix using a neural
network-based constitutive model was proposed bshBish et al. (2004a). They also
explained some of the problems concerning the nigaleémplementation of a neural
network based constitutive model in finite elemamalysis. They proposed a procedure
to establish the Jacobian (stiffness) matrix usiegral network material models and
implemented the matrix in ABAQUS through the usefied material subroutine
(UMAT) and analysed some numerical examples inagdinalysis of a beam bending
problem and also the behaviour of a deep excavation

Furukawa and Hoffman (2004) used a neural netwank rhodelling of material
behaviour under monotonic and cyclic plastic defaion and implemented it in finite
element analysis. Two neural networks were traimed developed; one was used to
learn the back stress and the other network wasettawith the drag stress. The back
and drag stresses represented kinematic hardenjngnd isotropic hardening R
respectively. A more detailed illustration of thesstworks is presented in the figure
below.

(a) Back stress (b) Drag stress

Figure 2.2: Neural network material models for back and dragsses (Furukawa and
Hoffman, 2004)

In the above figure Y and R show the kinematic emadropic hardenings respectively

and £ represents the plastic strain. The subscriptskakd k-2 represent current and
two previous states of variables. Furukawa & Ho#inf2004) trained and validated the
neural networks and then implemented the neuralar&tbased constitutive models in
the commercial finite element software, MARC, usitgguser subroutine feature for
external material models. To make this possibley ttiefined the stiffness (Jacobian)
matrix, D, to describe the stress and strain @iatiip.

o = D¢ 2-1
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D matrix was defined as the sum of the eladiy And plasticDP) matrices:

D=De+ Dp 2-2

The elastic matrix was derived using the Young'siolos and Poisson’s ratio and only
the plastic matrix was updated using the trainedralenetworks. To validate the
performance of the proposed approach, two materialels similar to Figure 2.2 were
developed using real material data with monotorastic deformations. The results
were compared with those of a conventional mateniadiel (Chaboche model) as well
as experimental data. The same procedure was allsovéd for the case of cyclic

plastic deformation and an acceptable agreemergsofits was reported. As the final
stage, the proposed neural network based modetsseagting the behaviour of the
central part of a tensile specimen under cyclicilog were implemented in the finite
element analysis package (MARC). Figure 2.3 illtsis the results.

310
Aeeeo. A —4— Experiment
300 ———— Ttreee. — 4 — Neural
___________ #A- - -Chaboche
£ 290 T e
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Figure 2.3: Comparison of experimental, FEA, ANN, best-fitabloche model and
experimental results (Furukawa and Hoffman, 2004)

A better prediction of the results is presentedthws proposed neural network-based
finite element model in comparison to the converdldcChaboche model.

Nezami et al. (2006) used discrete element metb&d\) to generate stress-strain data
in order to train neural network models for soilfie developed models were then
implemented into the Real Time Simulation Method 1) within which the model
training process is done in a non-real time scdlehvis several times faster than the
reality. This approach resulted in a much fasterusation process compared to the
actual discrete element method simulation. Nezaimale(2006) used 2D and 3D
examples to validate their proposed approach. Theyed that the results of the neural
network based models in RTSM framework provide ma@sonable predictions in
comparison to the DEM and can be obtained conditiefaster.

10



Chapter (2) ConstitetModelling Based on Data Mining Techniques

2.3.5 Rate-dependent neural network-based finite element material
modelling

A rate-dependent neural network-based material maté its implementation into
finite element software was presented by Jung amdb@ussi (2006a). In rate
dependant material models, the material behaviewonsidered to be dependent on
both strains/stresses and the rate of strainsgssesThis assumption led to the
development of a neural network model with thedwihg structure:

o" = d'nNN(En, Sn—l' a.n—l' a.n, én, én_l, d.n—l) 2.3

The following equations were used to define steggbstrain rates:

1
n _ n_ .~n—-1 2-4
o Y (™ —=0o™1)
" = L (e" — e 1 2-5
At

The developed neural network model was implememéa the commercial finite
element software ABAQUS through its user matefi#\IAT) feature. A hypothetical
material and structure was considered to verifypgioposed methodology. Laboratory
test data obtained by previous researchers weoeualsd as an example of application
of the proposed rate-dependent neural network-basaterial model. The structure
used for testing was scaled by the factor of 1 waitB respect to the real bridge, and the
time dependent strain variations were measuredithspan using three strain gauges
located at the top, bottom, and middle of the idgoss section as shown in Figure
2.4,

57

*

24 60

40

70 (Unit: mm)
Figure 2.4: Test specimen — Physical geometry (Jung and Ghab@@96a)

To construct the beam for the experiment, conargl@ders with diameter of 10 cm
and height of 20 cm were made. Loading was appitedhese samples and the
corresponding time dependant strains were measiitezl.obtained stress-strain data
were used to train the neural network-based materdel. UMAT subroutine of
ABAQUS was used to implement the developed neweddork model to be used in the
finite element analysis of the beam structure. fidseilts of the analysis along with the
measured strains are shown in the following figure.

11
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Strains at Mid-span

compressive strain

time (days)

top (experiment)
***** center (experiment)

— —— bottom (experiment)
top (NN model + ABAQUS)
center (NN model + ABAQUS)
bottom (NN model + ABAQUS)

oo

Figure 2.5: Measured and predicted strains at mid-span (Jud@#aboussi, 2006a)

The results (Figure 2.5) show that in spite of ¢basiderable differences between the
experimental measurements and neural network-bdiset® element predictions
concerning the bottom gauge, an overall reasorajykeement was obtained.

Kessler et al. (2007) presented an implementatfaam reeural network (ANN) material
model in the finite element software, ABAQUS, thgbuits user subroutine VUMAT.
They developed a neural network model using a datalior 6061 Aluminium under
compression and in different temperature conditionbey tried different neural
network structures and different input parametes fenally used the following inputs
for training of the neural network:

1
In(e),In(é),In(0), T tabular data of flow stresses and strains

wheree and ¢ are strain and strain rate parameters respectively stress, and T is
temperature. VUMAT was used to implement the dgsedoneural network model in
ABAQUS to conduct the finite element analysis ahd tesults were compared with
those from two conventional material models embdddeABAQUS: power law model
and tabular data. The results showed that the heetaork-based finite element model
provided more accurate predictions than the otlBasides, some parameters needed to
be defined a priori in the case of conventional el®dwhile no parameter identification
was required in the neural network modelling teghei No explanation of the
procedure through which the models were implemeiriethe finite element analysis
using ABAQUS is provided in Kessler et al. (2007).

Utilizing numerical techniques including finite elent and discrete element methods
for numerical modelling of neural network-based stantive models and developing
rate-dependent ANN models with the capability ohfimg with commercial finite
element analysis software (ABAQUS) using UMAT andMAT subroutines has been
a remarkable improvement to numerical artificiadkligence modelling. However, the
black box nature of neural network-based constutmodelling still limits its
applications in engineering practice.

12



Chapter (2) ConstitetModelling Based on Data Mining Techniques

2.3.6 Neural network-based constitutive modelling of FRPs

A neural network based constitutive model for film@nforced polymeric (FRP)
composites was proposed by Haj-Ali and Kim (200/9ur different combinations of
neural network models were considered in this st@fraxis compression and tension
tests were conducted with coupons cut from a mtmolcomposite plate manufactured
by pultrusion process to obtain the required datdrfining the neural network models.
The parameters considered as inputs of the neetalork wereo;,, 0,,, T, and the
outputs were inelastic or total strains; which tedathe four different combinations.
Good agreement was reported between the experilmestdts and the neural network
predictions. A notched composite plate with an opele was tested to evaluate the
developed finite element model using the creatadratenetwork model. ABAQUS
user subroutine was used to implement the neutalanke model in the finite element
analysis. Comparison of the finite element analysssilt with the experimental data for
an arbitrary point where the response of the sireavas linear revealed that the model
was able to predict the linear behaviour of the posite; however, a small diversion of
predicted results from the experimental data waeded as the strains increased. The
results were not compared at any point around thle lwhere the behaviour was
expected to show nonlinearity. A parametric studwld also be useful to show
contributions of involved input parameters; howewuars is not very practical due to
black-box nature of neural networks.

2.3.7 Recurrent neural network-based models

Najjar and Huang (2007) used a recurrent neuralvarét to develop a model to
simulate the behaviour of clay under plane straauing conditions. The results showed
that the developed model was capable of assedsingftect of strain rate and stress
history on the behaviour of the clay being studigddwever, according to the authors,
the model cannot be used to solve boundary valoblgms directly. This problem
could be addressed if the authors could have miea& dnsight into the developed
constitutive model. A sensitivity analysis couldhénd the most and least effective
parameters and removing the ineffective parametedsemphasizing on the key ones
could lead to development of better models, bubthek box nature of ANNs limits the
user access to only the weight matrices and biakeh are not easily interpretable.

2.3.8 Neural network-based models for materials under cyclic
loading

Yun et al. (2008a) and Yun et al. (2006a) usedurateetwork approach for modelling
the cyclic behaviour of materials including hysgese In the investigation of the
hysteric behaviour of materials, one strain valasy worrespond to more than one stress
and this could potentially prevent neural netwardnf learning the hysteretic and/or
cyclic behaviour of materials properly. Yun et &£008a) and Yun et al. (2006a)
introduced two new internal variables (additionaput parameters) to the neural
network based material model to help ANN learntisteretic and/or cyclic behaviour
of materials. The structure of the neural netwods\as follows:

0n = 6N (Ens En—1) On—1, fs,n: Ar’s,n) 2-6

13
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whereg,, is the current strairg,,_,, is the previous state of straw,_;, is the previous
state of stressg, is the current stress, arf},,and An., are additional internal
parameters defined as:

fe,n = Op-1&p-1 and Ar’s,n = Op_14&, 2-7

The developed constitutive model was implementéal tine ABAQUS software using
the UMAT subroutine. The material tangent stiffnessgrix was defined as:

a(n+1A0_)

ep — _~ = 7
a(n+1A£)

2-8

where "t'Ag = "*1Ag — ™Ag and "t1Ae = "t1Ae — "Ae. Three sets of data were
used to evaluate the neural network-based materael two of which were real
experimental data and the third one was a simuldd¢a set. Data from a cyclic test on
a plain concrete sample were first used to tramewaral network-based material model
(Equation 2-6). The neural network model predidioexperimental data as well as the
results from an analytical model are presentetierfollowing figure:

1
—s— Experiment (Karsan and Jirsa, 1969)

09 - --r- Analytical Model (Palermo, D and Vecchio, F.J., 2003)

-5 i O NN Prediction (Karsan and Jirsa)

0.8 A
0.7 4
0.6
0.5 4

ol/ic

0.4 -
034 &

Figure 2.6: Neural network model simulation results againstydital model predictions and
experimental data (Yun, Ghaboussi and ElnashaB&00

The developed neural network model was also exptsednew (previously unseen)
series of data in order to evaluate the generalisatapabilities of the model. The
results are presented in Figure 2.7.

As the second example, two experimental data seta two different steel beam-
column connections were used to train and validatgher neural network based model
to predict the cyclic behaviour of the materialnime of the above examples the neural
network-based material models were implemented fmibte element analysis. The
third example was a three-floor building modellesing the finite element software
ABAQUS. In this example, the Lemaitre-Chaboche nhodias used as the material
model. Data were extracted and used to train anadw@al network model the structure
of which was presented as:

n+1 . n+1 . n+1 A n+1 . n+1l . n+1 .
{ 011, 022; 012} =oyn (" e €225 €12;

n .n .n .n .n .n . n+1 . n+1 . n+1
€115 €225 €125 0115, 022, O12; Ce11s Ce,22; Ce12)
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—a— Experiment (Sinha et al. 1964)
©- NN Prediction (trained by Karsan and Jirsa)

0.9 4

ol1/fc'

3.5

Figure 2.7: Neural network model predictions on an unseen skttdYun, Ghaboussi and
Elnashai, 2008a)

whereg,,, = &, + An.,, is an additional input parameter (similar to ancbanbination
of the two previously introduced internal variables previous examples). The
developed neural network model was incorporated mtnon-linear finite element
analysis code and was used as the constitutive Inmadeake predictions on the cyclic
behaviour of the beam sections. Comparison of #wilts revealed an acceptable
agreement of the neural network-based finite elénagralysis predictions with the
original data despite minor differences at som@tsoivhere comparisons were made.

The neural network model developed by Yun et @08a) and Yun et al. (2006a) to
predict the behaviour of materials under cyclicdiogs for beam-column connections
was extended by Yun et al. (2008b) by adding sotheranechanical and design input
parameters. The structure of this neural networllehis:

Mn = MNN (en; en—lr Mn—li fG,n; Afle,n; gi (DVD ) DVj )) 2-10

where n represents thé" doading (or time) stepd and M represent the rotational
displacement and moment respectively &gd=M,_, X 6,,_; and Ang, = M,_; X
A6, are the two additional internal variables use@doelerate the learning of neural
network of hysteretic behavioug(DV,... DV)) is also the ! mechanical parameter
which is a function of design variables (DV).

In order to validate the proposed neural networkdehotwo different types of
connections including extended-end-plate (EEP) tmpdand-seat-angle with double
web-angle (TSADWA) connections, were considered axgosed to cyclic and
earthquake loading conditions. ABAQUS was usedttier numerical simulation. The
developed synthetic data were then used to dewelopural network model for the
extended-end-plate connection. Depth of the be#y) thickness of the end plate, |

and diameter of the connecting bgi)(were used as design variables.

Mn = MNN(enl 071—1' Mn—ll f@,nl An@,nl g(db' tp' fb)) 2-11

In case of the top-and-seat-angle with double wedlea connection type, real
experimental data were available and employedaia &ind validate the neural network
material model. In spite of some discrepanciediath cases good agreement between
the neural network model predictions and actuad dats observed.

15
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Kim et al. (2010) presented a comparison between diferent approaches for
modelling of steel beam-to-column connections. Titst approach investigated was a
component-based model where all components of otione were idealized by
assuming one-dimensional springs. Constitutivetioelahips defining the behaviour of
every spring were defined in to represent the d@nd comprehensive response of a
joint (Figure 2.8).
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(a) Test specimen. (b) Component-based mechanical model.

Figure 2.8: A top-and-seat angle connection with double weflesn actual and idealized (Kim,
Ghaboussi and Elnashai, 2010)

Two experimental data sets from literature, (Calatloal. (2000) and Kukreti and
Abolmali (1999)), were used to validate the propos®mponent-based modelling
approach. Comparison of the experimental and coenelmased model results for both
examples are shown in the following figures (Figu2e9 and 2.10).
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(a) Experimental results. (b) Analytical results.

Figure 2.9: Experimental and analytical hysteretic responsethcase suggested by Calado
et al. (2000)

It can be seen that the component-based model éas tapable of predicting the

general behaviour of the connection; however, ptedj every detail does not seem to
be possible using this methodology.
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Figure2.10:Comparisons of experimental and analytical resultsfor the case suggested by
Kukreti and Abolmali (1999)

As the second approach, the nonlinear hystereticaha@etwork model proposed by
Yun et al. (2008a) was employed to model the sts&sén behaviour of the
connections. The neural network-based model wak\erified using the synthetic data
which were generated using the Ramberg-Osgood molelproposed neural network-
based approach was also applied to two experimelai@ cases to provide further
verification to the component-based model.

Comparison of the results of the proposed neuravar& based model with the
experimental data showed that the neural networéleinis able to predict the overall
pinched hysteretic loops with a better accuracy ttitee component-based model. A
third approach which was a combination of the twpraaches proposed earlier in their
study was proposed by the authors for future ingasbn. The third suggested
approach would involve the most effective mechdraca informational aspects of the
complex behaviour of connections.

Neural networks were used to develop models forenad$ and connections under
cyclic and hysteretic loading; however the probheith the proposed neural network
models for connections was that the models weré@ddnto prediction of the global
responses of the joints and were not able to reptethe contribution of individual
components and therefore could not provide the wghran insight into the underlying
mechanics of the components.

24 Auto-progressive and self-learning neural network and
its application in constitutive modelling

2.4.1 Auto-progressive approach

Ghaboussi et al. (1998) proposed a methodologledcaluto-progressive approach, for
training neural network material models. In thipgach the acquired information from
a global load-deflection response of a structugat tvas used as data for training the
neural network model. Neural networks require largmber of data lines to be able to
capture and learn the material behaviour and mib@eiaterial response. It is usually
not possible to obtained comprehensive data frosingle test on one sample of the
material. The proposed approach was based on ¢héhfst a structural test contains a
large and diverse amount of data (e.g., differatiepns of stresses and strains) that can
be used for training of the neural network. In timethodology an iterative non-linear
finite element analysis of the test specimen wasiemented to extract and gradually
improve the stress-strain data for training of tleeiral network. This approach needs
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data from structural tests to be defined a pridnichh may not be available in some
practical cases.

Sidarta and Ghaboussi (1998) used the auto-progeesaining technique to develop a
neural network-based constitutive model for modgllgeotechnical materials. They
used a non-uniform material test, a triaxial teghvwend friction, which provides non-

uniform distribution of stresses and strains. Theasured boundary forces and
displacements obtained from this test were impléatemto a finite element model of

the test in order to generate the input and outiaté for training the neural network
material model using the auto-progressive methagolo

2.4.2 Self-learning finite element method

Shin and Pande (2000) also presented a self-leprmmite element code with an
implemented neural network based constitutive medeth was considered to replace
the conventional material models. The proposed ouetlogy was similar to the auto-
progressive approach proposed by Ghaboussi andokigorkers (Ghaboussi et al.,
1998). Two boundary value problems were considereldding a two-bar structure in
which one of the bars was constructed from an lggabstic or a strain softening
material and the other was linear elastic. Forrtbe-linear bar, the load-deformation
data was generated artificially using analyticdétrenships and were used for training
of the neural network-based constitutive modelth@ second example a plane stress
panel of linear elastic material under verticalppdoading from top was simulated. The
displacements at a number of points were extrdobaal the analysis and used to train a
neural network-based constitutive model. It wasaghthat the positions of monitoring
points could affect the training of the neural netivand consequently the convergence
of the predictions of the developed neural netwarkdel towards the standard
solutions. The position of the loading was alsongjeal in order to show that the neural
network-based model has been trained enough tesde in analysis of any boundary
value problem in which the material law correspotalghe trained neural network
model.

Another approach was suggested by Shin and Paf@4)(20 construct the tangential
stiffness matrix of the material. This methodolaged partial derivatives of the neural
network-based constitutive model which was develdp&sed on total stress and strain
data. The developed stiffness matrix was incorgar&ito a self-learning finite element
code developed by the authors and the develop#d élement model was validated by
application to analysis of a rock specimen withefixends under uniaxial cylindrical
compression.

Shin and Pande (2003) also used the self-learmengah network-based finite element
code to identify elastic constants for orthotropiaterials from a structural test. They
proposed a two-step methodology. In the first stiegpmeasured data from analysis of a
structure were used to train a neural network madhéth was implemented into a finite
element code. In the next step, the trained neww@ork-based constitutive model was
used to construct the constitutive stiffness matgig the following equation to obtain
the material elastic parameters.

. . aUk
Dyn = DNNj, (g, 0%) = De. 2-12
l
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Figure 2.11 shows the inputs and outputs of theldged neural network model and its
optimal structure. Strain vectors were consideretha inputs of the developed model
and the stress vectors were the outputs.
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Figure 2.11: Structure of the neural network based constitutieelel (Shin and Pande, 2003)

The same methodology was then applied to the das@lane stress problem involving
a panel with a circular hole located in its cergubjected to compression. Synthetic
structural test data, including displacements olethifrom 66 nodes at 5 loading stages
from finite element analysis of the panel with ased values for the nine independent
orthotropic elastic constants, were used as theirigadata. The material showed linear
elastic behaviour and after 3cycles of self-leagrargood agreement was obtained with
target results used as reference. The predictédtoopic elastic constants were also in
good agreement with the reference values. Theelastic constants were:

Ex; Ey: Ez: ny; Gyz; ze; ny, Vyz, VXZ

The neural network-based stiffness matrices wertesgmmetric and altogether 36
elastic constants were achieved. The off diagograhd were averaged to symmetrise
these matrices. A relatively large number of node=e needed to monitor the
displacements of a structure with a relatively dargeometry and simple linear elastic
behaviour. This could mean that in the case of mmmplicated and nonlinear
problems using this method could suggest somedinaits.

Hashash et al. (2003) considered a braced excavatnl used measured lateral
deflections of the walls and settlements of thefamer of the structure in different
construction stages to extract and capture thetitainge behaviour of the soil using the
auto-progressive approach. They obtained syntidgdia for training of the neural
network model by simulating the excavation problesmg the finite element method.
The constitutive model used for the soil in the idation stage in the finite element
analysis was the modified cam clay model. Two éiretement models of the problem
were prepared in order to start the auto-progregsigcedure. The first one was used to
simulate soil removal and installation of the bnacat ' stage of excavation and the
second one was implemented to apply monitored nefions of the same excavation
stage. The first finite element model and the sdocome were used to obtain stresses
and strains respectively and the stress-strairs pe@re used to train a neural network
based soil model. At the very beginning of the nhodievelopment procedure the
material behaviour was totally unknown and the tinite element models were used to
initialise with developing the neural network-baseddel representing the linear elastic
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behaviour. The procedure was repeated until thereemxcavation stages were
simulated. At the end of the process, a neural odtlvased material model, which was
trained with a comprehensive set of data, was ede#tirough the iterative process.
Comparison of the results showed that the methggofwoposed in this paper was
capable of capturing the behaviour of the mateinain a series of finite element
analyses of the excavation model and the incrertgniaarning from field
observations.

Hashash et al. (2004b) proposed a general andnsyste procedure for probing
constitutive models. The following general stranol@e equation, composed of all six
independent components of the strain tensor, waglemented to explore the
constitutive model behaviour:

\/(Agll)z + (Agz)% + (Ag33)? + (Ag)? + (Aep3)? + (Ae31)? = Tae 2-13

True triaxial strain probe (TTSP) and plane-stistiiain probe (PSSP) were considered
as two specific cases of probing to investigateapglication of the above equation in
studying material behaviour. Von Mises, Modifiedn€&lay, and MIT-E3 (an elasto-
plastic constitutive model for overconsolidatedyslawere used as three different
models to demonstrate the true triaxial probingcedure. In case of the plane strain
probing an artificial neural network model was ddesed. The proposed neural
network model was trained using the auto-progresalgorithm in a braced excavation
problem using MIT-E3 constitutive model. The neuratwork based model showed a
good performance and provided good predictiondefsurface settlements and lateral
displacements concerning the excavation problen. &uhe time of implementing the
probing procedure to find the yield loci of the redunetwork model, it was revealed
that the neural network model had not been abtapture the correct shape of the loci;
however, the overall size of the response surfaes similar to MIT-E3 model.
Although the data were generated synthetically gushre results of FE analysis the
authors claimed that the reason for this (modelaagpturing the correct shape of the
loci) can be the lack of training data availablerfeural network model development.

2.4.3 Self-Sim methodology

Hashash et al. (2006a) introduced Self-Sim (salfd®g simulation) methodology.
They described the newly suggested procedure adtwase analysis framework to
implement and extend the auto-progressive algoritiihe modelling procedure and
steps of the suggested Self-Sim methodology wesesttme as the auto-progressive
method introduced by Ghaboussi et al. (1998) anghbsh et al (2003). The
performance of the Self-Sim technique was validagdg a simulated excavation case
history. Synthetic data (including lateral wall l@etions and surface settlements)
obtained using a finite element model employinght&-E3 as soil constitutive model
were used to train the neural network. Results ffime example problems, including
three numerical examples and two actual case hastowere used to validate the
capabilities and performance of Self-Sim in predggtthe behaviour of a deep
excavation. The results showed that the proposdtiadelogy was able to help obtain
sufficient data on behaviour of the soil and thedel® developed using this
methodology were able to predict the soil behavieitin acceptable accuracy.

Hashash et al. (2006b) used load-displacement mezasuts along with their suggested
Self-Sim methodology to characterize the constimubehaviour of granular materials in
general and a particular case of extra-terresdodl The steps suggested for Self-Sim
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presented in this work (Hashash, Ghaboussi and, 20@§b) are the same as Hashash
et al (2006a). They assumed an in-situ test beangucted on an extra-terrestrial soil in
which the applied load and resultant deformatiorreneeing recorded. Two finite
element models were created for the considered ioaral the measured loads and
displacements in each case were applied to the Immadean incremental manner.
Stresses were obtained from the first model wheeasured loads were applied.
Measured displacements and the compatibility pomcwere used to obtain strains
using the second finite element model. As all treasurements could be taken in situ,
the acquiring and transferring process of extreestrial soils, which would be an
expensive process, was avoided. Additionally, akénSelf-Sim methodology no priori
assumptions are needed for developing constitutelationship for materials, this
methodology can be considered as a strong alteentltat can be used to investigate the
behaviour of unknown and new materials like exémaigstrial soils.

244 Auto-progressive algorithm for rate dependant material
models

Jung and Ghaboussi (2006b) presented an extendsobrveof the auto-progressive
algorithm which included rate dependant materiatie®. In the new auto-progressive
algorithm, rates of stresses and strains were aisasured from finite element
simulation models. To validate the proposed metlogoa hypothetical cylinder with
variable diameter, made of a visco-elastic matevad considered (Figure 2.12).
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Figure 2.12: Structure of the simulated experiment and the impleted creep function (Jung
and Ghaboussi, 2006b)

The structural test shown ikrror! Reference source not found. and its global
response was used to develop a neural network-basedlependant material model
which was then employed to solve a new boundanyevplroblem. An important aspect
of the neural network-based model was that it wagsable of learning the effects of
time step. If the neural network based model wamed using only one time step, its
predictions for other time steps would be pooug@land Ghaboussi, 2006a); (Jung and
Ghaboussi, 2006b)). Considering this fact Jung @hdboussi (2006b) suggested the
model to be trained using different time step d&tee methodology was applied to the
results from actual experiments with the aim oftaepg the non-linear creep behaviour
of a super alloy.

Aquino and Brigham (2006) also employed the autmgpssive or self-learning finite
element methodology to develop a neural networletbabermal constitutive model.
Similar to the previous applications of this metblodyy, the main steps followed were
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pre-training or initialising of the neural networkodel, developing and using two
simulated finite element models, and training tharal network material model.

In order to verify the capabilities of the proposeethodology a steel plate with a
prescribed heat flux on one side and 100 °C tenwperas boundary condition on the
other three sides was simulated (Figure 2.13).

Applied heat flux

&
(= o |
S STEEL AL
Eﬂ- PLATE g
ﬂo
T=100 °C

Figure 2.13: Simulated steel plate experiment (Aquino and Bnigh2006)

This experiment was simulated numerically to geteesgnthetic data. A random noise
was introduced into the simulated data to evaltfeestability of the self-learning finite

element-based methodology. Three test cases wansideoed. The self-learning

algorithm started with pre-training of a neuralwatk model by generating random
temperature, temperature gradient, and also tbeiesponding heat flux data using the
Fourier law. Two finite element models were evelyuereated. The temperature and
temperature gradient data were extracted fromehbersl finite element model and were
used as inputs, and the heat flux vectors wereaetet from the first finite element

analysis and were used as outputs. The neural rletwodel was trained using the
generated data and the inputs and outputs of tlikeinngere:

dT T
Inputs.ax, P and T

Outputsy,, J,

aT T : : o .
Where:a, 5, are gradients in x and y directions respectivehg & represents

temperature/,, and J, are heat flux vectors in x and y directions.

The results showed that the self-learning methapoieas able to help develop neural
network thermal constitutive models using noisyadat

Modelling time-dependant behaviour of concrete te time of construction of a

segmental bridge was investigated by Jung et @{Rusing the previously introduced
Self-Sim methodology. They used Self-Sim to deveabepiral network models using

stresses, strains, and their corresponding rates farly stages of construction to
predict future stress-strain states of the straecas the construction continued. The
proposed methodology was used to analyse PipitdhgBya concrete segmental bridge
that was built employing the balanced cantileverthmé in Colombia. The neural

network model used in this application had 2 hidtsyers, each layer made of 14
nodes, 7 inputs and 1 output parameter (Figure)2.14
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Figure 2.14: Rate-dependent neural network material model (JBhgpboussi and Marulanda,
2007)

The input and output parameters for the neuralort model were considered to be:

$" = $"NN(e", e, s" s, e, e s 2-14

wheres =0 -6 0,/3, e =¢ —§6 ¢&,/3. The superscripta andn-1 represent the
current and the previous time steps.

The proposed constitutive equation was iteratigelyed using the following equation:

s =s"1+ At x NN(e™, e™ 1, s" s, e e s 2-15

The current strain state together with previoutestaf other parameters, were obtained
from the results of finite element analyses andréite-dependent neural network model
was used to predict the creep of concrete.

Two different implementations of the Self-Sim metbmgy were proposed to predict
the deflection of a segmental bridge (Figure 2.1B).the first approach, when a
construction case had a repetition of many cargrgvthe first two cantilevers were
used to calibrate the neural network model andeh®ining ones were predicted using
the calibrated neural network model. In the secapproach the neural network-based
model had already been trained using data fromeeasegments and was used to
predict the deflections of the remaining segmentshe same cantilever. However it
should be noted that data mining based modelstlikeones developed using neural
networks cannot be relied on 100% when they ard tsenake predictions beyond the
range of data that they have experienced durindgrétieing phase. The authors (Jung,
Ghaboussi and Marulanda, 2007) suggested addingppsty obtained data from other
resources like data from laboratory tests, fieldasumeements and synthetic data
generated using conventional constitutive modelth&r current database in order to
improve the prediction capabilities of the propoSadf-Sim methodology and possibly
predicting the deflections of the remaining segreent
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(b) L,'\L /j/i/} D learn
[ ] predict

Figure 2.15: (a) learn from the current cantilever and prededftettions of the remaining
cantilevers (b) learn from the earlier segmentsedict the deflections of the remaining
segments (Jung, Ghaboussi and Marulanda, 2007)

Fu et al. (2007) and Hashash et al. (2006¢c) imetged the Self-Sim methodology to
develop constitutive models for soils based on ratooy test data. They applied the
methodology to two simulated laboratory tests idirlg a triaxial compression test and
a triaxial torsional shear test. A neural netwodsdxd constitutive model was developed
using the extracted soil data from the laboratast tsimulations to represent the
behaviour of the soil. The developed model was tissd to predict the load-settlement
behaviour of a simulated strip footing.

Yun et al. (2008c) and Yun et al. (2006b) used-lsglfning simulation to model the

cyclic behaviour of beam-column connections in Isteemes. They used a similar

neural network model to the one presented by Yuale(2008a) and (2008b) for

predicting the cyclic and hysteretic behaviour aam-column connections. The

structure and input and output parameters of theah@etwork model were as:

M, = MNN (6, On-1, Mn—1,$9.n, Ao ) 2-16

whereéy,, = M,,_16,_1 andAng,, = M,,_1A6,, are two internal variables/=moment,
f=rotation, Myy: R°>—R is the functional mapping to be established throungural
networks. n indicatesn™ time (or loading) step. An intuitive descriptiofi the two
internal variables is presented in the followingfie.

M A M A

M, _

el

(@) (b)

Figure 2.16: Internal variables defined for the neural netwoakdd cyclic connection model:
(a) displacement control form and (b) stress rastitontrol form (Yun, Ghaboussi and
Elnashai, 2008c)

The following equation was used to obtain tangéstiéfness from the neural network-
based model for the connection.
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_0AM
~0A0

whereAM = "*'AM — "AM andA@ = "*'A@ — "A@

The self-learning simulation methodology presented Yun et al. (2008c) was
enhanced with a new algorithmic formulation suggegdor the neural network-based
cyclic material model. Numerically simulated dataveell as actual data were used to
validate the improved self-learning simulation noetipresented for prediction of cyclic
behaviour of connections. As mentioned above, & $elf-Sim methodology, in the
second step of the modelling procedure, two fialesnent models (A, B) run parallel to
each other to update and improve the neural netwaded material model. From
models A and B, force and displacement values &taireed respectively and are
applied as stress strain pairs to train the neugédvork model At each load step (or
time step), two FE analyses (FEM-A and FEM-B) aeefgrmed: in the FEM-A, the
measured forces are applied; and, in the FEM-B, nieasured displacements are
enforced. The local stress resultant vector atcthnections from FEM-A represents
acceptable approximation of the actual stress tasul/ector. The local displacement
vector from FEM-B is considered to be a good apjpnation of the actual
displacement vector. Two different cases were clamed to construct the stiffness
matrices based on the FEM-A and FEM-B as shownguarEs 2.17 and 2.18.

K _ MM

2-17

A0
/’ .
// ax g NN \
yd M.
/ NN Model 1
7 _» \\
pd g \
pd \,
- 1O
| | | ]
FEM-A 6,16, ;:M;_;1M; 6] ;:M; ,A6] FEM-B

. B Y 4 - I . .

Figure2.17: Case I: Algorithmic tangential stiffness formulatiduring the self-learning
simulation process (Yun, Ghaboussi and Elnash@8&0
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Figure 2.18: Case IlI: Algorithmic tangential stiffness formutatiduring the self-learning
simulation process (Yun, Ghaboussi and Elnash@8&0

Yun et al (Yun, Ghaboussi and Elnashai, 2008c) glbthiat the neural network-based
model from case | provides a better predictiondmparison to case Il for the examples
presented in their paper.

Hashash and Song (2008) implemented the self-legrrgimulation (Self-Sim)
technique to capture and predict behaviour of sihitsugh neural network models.
They presented three different examples includitigaaial test with frictional loading
plates, deformation due to deep excavations aedrasponse as a result of horizontal
shaking. Hashash and Song (2008) showed that thelogeed model is capable of
predicting the soil behaviour with a good accurdmyt, as the authors stated, selecting
parameters of Self-Sim and neural network is anigcap and important process and
requires personal experience. This can be considasea drawback for the neural
network models.

Another application of the Self-Sim methodologyaimalysis of dynamical behaviour of
soils was suggested by Tsai and Hashash (2008y. déseribed the implementation of
the Self-Sim methodology and the process of integgdield data measurements and
numerical simulations of seismic site responseb thi¢ aim of obtaining the underlying
cyclic response of soils. They applied the Self-Sinethodology to study one-
dimensional seismic site response in steps.

Step 1. The ground responses corresponding targhak the base were measured in
selected points in different depths in the soil.s®ashaking and the obtained
measurements were used to make sets of field nesaeuat data. Initially a neural
network-based soil model was pre-trained usingssistrain data concerning the linear
elastic behaviour over a limited range of strains.

Step 2(a): The initial neural network model waplemented in a FE model and was
used to simulate the site response and the actieferfaom the deepest point in a
downhole array was measured and was applied adbdtiem of the soil column. By
conducting a dynamic equilibrium analysis, the s#es and strains were computed all
along the soil column. Because the base accelarand the applied boundary forces
are accurate, in the Self-Sim approach it was asduttmat the computed equilibrium
stresses corresponding to the applied boundaryedorprovide an acceptable
approximation of the actual stresses experiencetthdgoil, but computed strains were
discarded because they may not match the expezsatis.

Step 2(b): In a similar site response analysisraggh and using the same neural
network model, the measured displacements fromvenkole array were applied as
additional boundary conditions and stresses arhstwere also computed in the soill
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column. It was assumed that the applied displace&sneere accurate and therefore the
corresponding computed strains were considerec tanbacceptable approximation of
the true field strain experienced by the soil.

Stresses and strains obtained from steps 2(a) @despectively formed stress-strain
pairs that approximate the soil constitutive reggonThe obtained stress-strain pairs
were used to update the neural network based ralateadel through retraining. The
entire process was repeated several times usinittground motion time series until
the ground responses similar to the measured oaes acquired. An illustration of the
process is presented in the following figure.

1. Field measurements 3. Forward analysis with
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Figure 2.19: Self-Sim algorithm applied to a downhole array (&s& Hashash, 2008)

Tsai and Hashash (2008) also applied this procetiura synthetically generated
downhole array data to create models. In ordev#tuate the capability of the model in
capturing the dynamic behaviour of soils the pregomethodology was applied to
three different synthetically created case examiplelsiding a single soil layer under a
sinusolidal motion, a uniform but multilayer soiofile under seismic motion, and a
non-uniform multilayer soil profile under seismiotion. The results from application
of the proposed modelling approach revealed thatS&lf-Sim was able to provide
acceptable predictions of the site response incatisidered cases. To evaluate the
predictive capabilities of the material model ceghbased on individual events, it was
assumed that there were two more recordings alil8iie response analyses (with FE
incorporated NN material model obtained from a giwvent) were performed using
input motions of the other two events. The resshswed that in some cases the
prediction of surface response is not accurate.diifierence between the predated and
expected results was because the site responsgsesdhad been experiencing a
different range of strains which had not been uhikeed to the neural network model
development procedure at the training stage, asiomeal by Tsai and Hashash (2008)
Further to this, the three different individuallyteacted stress-strain behaviour
regarding three different events were combined rteate a more comprehensive
database to be used to train a new neural netwaterral model with the aim of
increasing the accuracy of the predicted resulbsn@arison of the results revealed that
despite the significant difference in one case betwthe predicted response spectra and
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the expected one, the prediction of the new NN rmataodel was improved compared
to the previous results (Tsai and Hashash, 2008).

Self-Sim methodology was also used to capture thmed behaviour of sand based on
data from triaxial test with fully frictional loadg platens (Hashash et al., 2009). Three
series of isotropic drained triaxial tests werediaried on different loose, medium, and
dense specimens. The triaxial tests were simulagedy the finite element method and
the Self-Sim approach was used to extract the mifiormn stress-strain behaviour of
the material considering external load and displeerg measurements. The results of
this study showed that the Self-Sim methodology alals to capture the behaviour of
the soil specimens accurately. Hashash et al. j20@@tioned that integration of Self-
Sim methodology and laboratory testing can makm®sésible to use a single laboratory
test to generate multiple stress paths, insteagpplying the current practice of using a
laboratory test for creating only one stress path.

Two different methodologies used for learning tlehdviour of deep excavations in
urban environment were compared by Hashash eR@L0j. They implemented the
genetic algorithm (GA) and Self-Sim methodologyh&dp the neural network learn the
behaviour of the soil in a deep excavation. Infitet approach a genetic algorithm was
implemented to optimise the material parameteranoéxisting material model, which
was the hardening soil model of PLAXIS, and theosélcapproach was including a
combination of the finite element method and aniti neural network (ANN) and was
employed to capture the behaviour of soil. In fhieposed procedure no predefined
constitutive models were required. The above mantiatwo approaches were used to
analyse a case study in Lurie Centre excavatidbhicago, USA. It was observed that
GA and Self-Sim were able to reproduce the defaonatof the wall reasonably well;
however it came out that the hardening soil modgdlémented into the FE model in
the GA approach was not capable of reproducingmhbgnitude or the shape of the
settlement profile behind the wall (Figure 2.20heTgraph on the right hand side of the
figure shows the settlement of the surface. In greph the difference between the
results of the GA-based approach and the measwakes/ can be easily seen. This
difference for results related to Self-Sim seemsb#o negligible. This can be an
indication of the fact that the GA-based approahlly depends on the constitutive
model selected and the results would be differeatdifferent soil constitutive model
was used in implementing the genetic algorithm aggin. Although, considering the
left side of the figure both approaches have pmedidcceptable predictions, it can be
easily observed that none of the methods have l@®@ to predict the exact
deformations of the wall.
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Figure 2.20: Comparison of the corﬁputed (a) lateral wall defations and (b) surface
settlements using GA and Self-Sim of the excavatitashash et al., 2010)
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Jung and Ghaboussi (2010) used the auto-progresmtieod to train neural network-

based constitutive models considering the loadiatgment measurements from
structural monitoring. After pre-training the nelureetwork model, the method was

applied to inverse identification of creep in a cate beam. The results of the auto-
progressive model were then compared to the expeatahresults (Figure 2.21).

mid-span deflection (mm)
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Figure 2.21: Representation of the convergence of mid-span d@ftes during the auto-
progressive training (Jung and Ghaboussi, 2010)

In order to improve the prediction capabilitiestbé proposed methodology Jung and
Ghaboussi (2010) added the shrinkage effect toéuweal network model parameters.
The results showed that considering shrinkage hadingproving effect on the
predictions made by the neural network model bigt ithprovement does not seem to
be very noticeable (Figure 2.22).
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Figure 2.22: Representation of the convergence of mid-span deftes during the auto-
progressive training (Jung and Ghaboussi, 2010)

Predicting the long-term behaviour of concrete dtmes based on their short-term
behaviour was also investigated by Jung and Ghab¢R810). They used the auto-
progressive methodology to conduct this study wihvery satisfactory results.
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245 Mathematics and information-based hybrid modelling
framewor k

Ghaboussi et al. (2010) considered the suggestitade by Kim et al. (2010), and
developed a hybrid modelling framework utilizing tii@matics and information-based
methodologies (HMIM). The proposed method combitiies mathematical models of
engineered systems, which were developed consglghiysics and mechanical laws,
with artificial neural network-based models createsing auto-progressive and Self-
learning Simulation procedures. In the HMIM, neuma¢tworks only keep the
information that is presented in the experimengbdind the mathematical models are
not able to capture them because of their complatura. The proposed HMIM
methodology was applied to modelling of a steelnbéa-column connection. In this
example the components of the connection were elividnto two parts: (i)
Mathematical-based components and (i) Informabased components. The
components in which the underlying mechanics alédexeloped are very suitable for
the mathematical modelling and these types of nsockeh provide accurate predictions.
The remaining components with more complicated Wela or where there has not
been enough investigation to model their behavimathematically will lay into the
informational modelling category. Kukreti and Abaali (1999) conducted an
experiment on top-and-seat-angle connection whiak exposed to the methodology
proposed by Ghaboussi et al. (2010) to evaluateapsbilities. In this connection, the
angles and column panel zones were considered thematical-based and the slip and
ovalisations were assumed to be information-basedponents. For the calculation
purposes, the mathematical-based components weizied as one-dimensional
springs with reliable constitutive equations foregv component. In case of the
information-based components, the auto-progresasthodology was used to generate
neural network-based model. The predictions oftibleaviour of the connection under
cyclic loading by the presented hybrid model weoenpared with the ones from an
analytical model as well as the experimental res(figure 2.23). This comparison
revealed that the hybrid model was able to pradietbehaviour of the considered type
of connection better than the analytical methodthia case, in contrary to the normal
procedure, the whole data set was used to traimmibekel and it was not divided into
training and testing data cases.
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Figure 2.23: Comparison of the predictions of the hybrid andwital models with the
experimental data (Ghaboussi, Kim and ElnashaiQp01

The effect of different measurement and monitoringtrumentations and their
considered locations in an excavation project alsd ¢he impact of the quality of

30



Chapter (2) ConstitetModelling Based on Data Mining Techniques

information being extracted for modelling the babav of the excavation using the
self-learning simulation technique was investigabgdOsouli et al (2010). Synthetic
data were generated using finite element analysisidering the MIT-E3 constitutive
model. The generated data represented measurefnemsdifferent locations of an
excavation project including surface settlement] deflection and other data and were
used to study the relationship between selectiegsthtable field instrumentations and
the quality of the material behaviour captured migirthe learning (training) process.
The results showed that considering inclinometdesqa behind the wall and also
measuring forces in the struts in addition to tleasurements of lateral wall deflections
and surface settlement can improve the qualityxtfaeted soil behaviour to a great
extent. A real case of a deep excavation projedaimvan was considered to verify the
results of this study.

2.4.6 Self-Sim approach for analysing a 3D problem

Hashash et al. (2011) also considered the Self-&proach for analysing a three-
dimensional deep excavation. They provided a dason of the numerical issues
concerning the problem, including the problems daicedeveloping the proposed three-
dimensional model. The capabilities of the propasethod in capturing the behaviour
of soil using the measured wall deformation andaser settlement from a 3D problem
were highlighted.

The new auto-progressive, Self-Sim and mathemara$ information-based hybrid
modelling framework self-learning methodologies #oand 3D problems suggested by
Ghaboussi et al. (1998) and (2010), Sidarta andbQ@lssi (1998), Hashash et al.
(2006a) and (2011) and Jung and Ghaboussi (20@8b3ented in section 2.4, are
efficient ways of training neural networks with yelittle data available and were
successfully applied to practical examples. AltHouthese works are major
contributions to development of NNCM approach, thain shortcomings of ANN
remain unresolved.

2.5 Conclusions

Many researchers have used ANNs as a useful to@deeloping constitutive models
for different materials as well as models to démerthe behaviour of complex
engineering systems.

Despite the great capabilities and advantages @fnéural network in constitutive
modelling of materials and its successful impleragah in the finite element and
discrete element analysis of different problemss tachnique is also known to suffer
from a number of shortcomings. One of the negativats that can be considered in a
neural network-based modelling system is that thgnmm structure of the neural
network including number of input layers, hiddewyedies and transfer functions need to
be identified a priori through a time consumingltand error procedure. Another main
drawback of the neural network approach is theel@amplexity of the structure of the
proposed network. This is because the neural nktvetores and represents the
knowledge in the form of weights and biases whiehret easily accessible to the user.
The lack of interpretability of ANN models has ibhéed them from achieving their full
potential in real world problems ( (Lu, AbouRizkdaklermann, 2001); (Javadi and
Rezania, 2009a)). As a matter of fact, neural ndivbased models do not provide clear
and easily accessible information on the way thptii parameters affect the output(s)
and are considered as a black-box class of modettethodologies.
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In this thesis, a new data mining technique, evahatry polynomial regression (EPR),
is proposed for modelling the complex constitutheehaviour of geomaterials and a
number of civil engineering systems. The proposexthod overcomes most of the
issues and drawbacks associated with neural neswaoet other previously mentioned
material modelling procedures. EPR provides a parent representation of models in
terms of mathematical (polynomial) expressions éecdbe the complex behaviour of
materials / systems and there is no need to prangeorior information to develop the
models. A detailed description of the techniquepisvided and its application in
modelling different important aspects of saturased unsaturated soils and also a
number of other geotechnical and civil engineepraplems is presented.
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Chapter 3

EVOLUTIONARY POLYNOMIAL
REGRESSION (EPR)

3.1 Introduction

Developing material models using data mining teghes (and particularly the artificial
neural networks) was discussed in the previous tehapt was shown that these
techniques have been able to be trained using iexg@etal and/or numerical simulation
data and/or the field measurements to capture @mbduce the material behaviour. It
was also shown that these developed models camgdemented in numerical analysis
techniques like the finite element method.

Amongst all data mining techniques the artifici@ural networks (ANN) and genetic
programming (GP) techniques are the most populdrvaidely used methods. The
artificial neural networks make use of many prorgsslements called neurons. These
neurons are connected to each other by links tdréiiit weights and all together form a
“black box” system called artificial neural netwolWhen large amounts of data exist,
artificial neural networks can easily learn and taegp very complicated relations
between contributing parameters through traininth whe provided data. A suitably
trained network can accurately represent the behawf the system. Artificial neural
networks are able to model highly complex and ma&ar processes without the need to
assume any pre-specified structure for the relalips between considered input and
output parameters. Although the artificial neuratworks can be considered a robust
and capable modelling technique; they also suffemfsome drawbacks. The main
drawback of ANNSs is that the structure of a neumatiwork including model inputs,
transfer functions, number of hidden layers andrtheurons should be identified a
priori. Another disadvantage is that the structafrANN is generally very complex and
the acquired knowledge is represented in the fdrmweaght matrices and biases which
are not easily accessible to the user and any eagng judgment on the developed
models remains very difficult. Over-fitting probleis also another issue with artificial
neural network-based modelling techniques (Giusitalnd Savic, 2006; Giustolisi and
Laucelli, 2005).

Genetic programming (GP), another popular and sitely used modelling approach,
is also an evolutionary based computing methodgamerates structured representation
of the considered system. Koza (1992) proposedrabglc regression based genetic
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programming methodology which has been used veegukntly with interested
researchers since then. GP develops mathematipedsstons with the aim of fitting a
set of data points using the evolutionary processchvis the nature of genetic
programming. Similar to most other evolutionary miidg techniques, populations of
solutions, which are mathematical expressions seaaf genetic programming, are
manipulated by symbolic regression using operati@ry much like the evolutionary
processes that are already on operation in natlilee genetic programming
methodology imitates the natural selection at thee tthat the ‘fitness’ of the solutions
in the available population improves through susiesgenerations. Due to the nature
of the genetic programming technique global explons is possible and the user is
able to obtain more information on the behaviouthef system. In other words by using
this technique the user is able to gain an indigfiot the way that the input and output
parameters are related. Despite very distinct adgas, the genetic programming
technique is also known to suffer from some shoniogs and limitations. Previous
research works have proven that this techniqguetvery powerful in finding constant
values and it also tends to produce functions gnaiv in length over time (Giustolisi
and Savic, 2006).

The Evolutionary Polynomial Regression (EPR), a m#ava mining technique, is
introduced in this chapter with the advantage @roeming some problems associated
with artificial neural networks and genetic programg. EPR is a two-stage process
that uses a combination of Genetic Algorithm (GAYldeast Square (LS) regression.
In EPR an evolutionary searching method is usefthtbthe exponents of polynomial
expressions using a genetic algorithm engine aedp#rameters of the model are
determined using the least squares method (Giastwid Savic, 2006).

3.2 Evolutionary algorithms

In artificial intelligence-based methodologies oml solutions are searched for and
found from among a finite set of solutions by impénting evolutionary algorithms

(EAs). The main idea behind evolutionary algorithirtechniques is to mimic natural

evolutions and their corresponding aspects likeatiart, selection, and crossover in
generating solutions to optimization problems (Raaezi, 2011). Two most commonly

used evolutionary algorithms are genetic algoritf@?®) and genetic programming

(GP). A brief description of genetic algorithm isepented below as it is a part of the
suggested evolutionary technique in this thesis.

3.3 Geneticalgorithm (GA)

Genetic algorithms are search algorithms basechenrtechanics of natural selection
and natural genetics. Genetic algorithms are coatioin of the survival of the fittest

between string structures together with a randothigait controlled and structured)
information exchange to create a search algorithitim some of the innovative styles of
human search (Doglioni, 2004). Genetic algorithesksto maximize the fitness of the
population by selecting the fittest individualssed on Darwin’s theory of survival of

the fittest, and using their genetic informationnrating and mutation operations to
create a new population of solutions. Although grecess involves randomized
operations, however genetic algorithms are not lEmgndom walk. Genetic algorithms
utilize historical information in an efficient wag find new search points with expected
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improved performance. Genetic algorithms have lkameloped by John Holland and
his co-workers in the University of Michigan (Goktly, 1989).

Genetic algorithm is a global optimization techrcand can be implemented to a wide
variety of problems with large and complex searplaces. Because of their high
capabilities and potential, they have receivedtatattention and have been used by
many researchers. The most distinct advantage eofgdmnetic algorithm over other
traditional optimization methods is that it does need derivatives of the function and
works on the function evaluations only to search dptimums. Genetic algorithm
searches among a population of available pointerahan focusing on a single point.
It can consider design spaces consisting of a rhisootinuous and discrete variables
and therefore, it has a better chance of findimdpal optimums (Doglioni, 2004).

In spite of all the advantages, genetic algorittaise suffer from some limitations. One
of the main disadvantages of genetic algorithm rigpkes is that although as global
optimization techniques they have good initial cengence characteristics, but they
may slow down considerably once the region of oatisolutions has been identified
(Javadi et al (2005b), Abramson and Abela (1992)).

Many research works have used genetic algorithranasffective optimization tool to
solve various engineering problems. The resultthe$e studies have proven that the
genetic algorithm can be successfully employed astrang optimization tool to
engineering optimization problems.

3.4 Evolutionary polynomial regression

3.4.1 Introduction

In order to simplify the understanding of the diffieces between mathematical
modelling approaches, colours are used to groupsethmodelling techniques
considering their required level of prior inforn@ti In this type of categorization,
models are considered to be white-box, black-box, geey-box models. Brief
descriptions of these types of models are presdygkeav (Giustolisi and Savic, 2006):

= A white-box model is a model with known variablparameters, and underlying
physical laws. It explains the relationship of thgstem in form of a set of
mathematical equations or a single one.

* Black-box models are systems for which there ipnor information available.
These are data-driven or regressive models, foctwthe functional form of
relationships between variables and the numeriaeadmeters in those functions
are unknown and need to be estimated.

* Grey-box models are conceptual models whose matiehatructure can be
derived through conceptualisation of physical pmeeoca or through
simplification of differential equations describinthe phenomena under
consideration. These models usually need paranestenmation by means of
input/output data analysis, though the range otrpater values is normally
known.

White-box models have the ability to describe thdarlying relationships between the
contributing parameters of the desired systemsidernisg only the physics principles
which can be considered as a great positive p@intthe other hand developing white-
box models can be difficult due to the fact that tinderlying mechanisms are not
always totally understood by the users or the sasijhlat are used in the lab to conduct
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experiments providing the required understandinghef phenomenon, may not be an
entirely perfect representation of the real envinent being considered.

If one wants to contextualize the evolutionary polyial data mining technique into

one of the categories defined above, EPR is cladsdfs a symbolic grey box technique
which is able to identify and construct structuraddel expressions for a given data
(Giustolisi and Savic, 2006). Table 3.1 shows tlassification of the most commonly

used modelling techniques.

Table 3.1: Classification of EPR and other modelling techngj(l2oglioni, 2004)

Artificial Genetic Evolutionary =~ Mathematical
Neural Programming polynomial Equations
Networks (GP) regression derived based
(ANN) (EPR) on Physical
principles

Black-box

modelling iiiiiiiiiiiiiiiiiiiiiii

Grey-box

Models i iiiiiiiiiiiiiiiiii

White-box

Models i

3.4.2 EPR procedure

The evolutionary polynomial regression works aswa-stage technique. Firstly it
searches for symbolic structures using a spedcificsitmple genetic algorithm and in the
second stage EPR estimates the constant valu#isefonodel by solving a linear Least
Square (LS) problem.

3.4.2.1 Evolutionary structural identification

General formulation of the EPR expression is g@eiiGiustolisi and Savic, 2006):

m
y= Z F(X, f(X),a;) + ag 3-1
j=1
wherey is the estimated output of the systeip;is a constant valug is a function
constructed by the proceséjs the matrix of input variableg; is a function defined by
the user; aneh is the number of terms of the expression exclubiaga,.

At the first stage of the modelling process, EP&ntdies the structure of the model. To
do this the equation 3-1 is transformed into tH®Wang form (vector form):

Yyx1(0,Z) = [IN ZIJVXm] X[ag a; .. apl" =Zyyxg X ecTix1 3-2
where
Yn«1(0,Z) is the least square estimate vector of N targketes
01x4 is the vector ofl = m + 1 parameters;,j = 1: m,and a,
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Zyxq IS @ matrix formed by, for biasa,, andm vectors of variableg’ that for a fixed
j are a product of the independent predictor vectofsvariables/inputs,X =
X; X, .o Xp).

Initially EPR starts from Equatiokrror! Reference source not found. and searches
for the best structure which is meant to be a caatimn of vectors of independent
variables (inputs paramete®)_,.,. The matrix of inputX is:

X111 X12 X33 X1k
X21 X222 X3 X2k

X = x31 .X32 x33 ann x3k = [X1 Xz X3 wen Xk] 3'3
_le le le s xNk_

where thek®™ column of X represents the candidate variable for jHe term of
EquationError! Reference source not found.. Therefore thg®® term of Equation
Error! Reference source not found. can be written as

Zya = [(XD)FUD - (X) B0 - (Xg)B0D -, (X,) FUW] 3-4

where,Z’/ is the j®* column vector in which its elements are produdtsandidate
independent inputs arl is a matrix of exponents. Therefore, the problenoifind
the matrix ES,,, of exponents whose elements can be values wither-defined
bounds. For example, if a vector of candidate egptsfor inputsX, (chosen by user)
iSEX=1[0, 1, 2] and number of termsn)) (excluding bias) is 4, and the number of
independent variablesc) is 3, then the polynomial regression problem iditd a
matrix of exponentBS, ;. An example of the ES matrix can be seen in Eqoai5:

[0 1 2]

0 1 1

ES = 3-5
1 2 0
1 1 0

Substituting the above matrix into Equation 3-4 lwgive the following set of
mathematical expressions:

Z, = (X1)0 : (Xz)1 : (X3)2 =X, -X%
Z, = X)? X)' - X3)' =X, X5 3-6
Z; = (X1)1 ’ (Xz)z ' (X3)0 =X, 'X%
Z,= (X1)1 : (Xz)1 : (Xs)o =X;X;

And the expression of Equati@nrror! Reference source not found.3-2 would be:

Y= a0+a1'Z1+a2'Z2+a3'Z3+a4'Z4
:a0+ al'Xz'Xg‘}' az'XZ'X3+ a3'X1'X%+a4'X1'X2 3-7
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Each row in theES matrix expresses the exponents of the candidatabla of thejt"
term in EquationsError! Reference source not found.3-1 andError! Reference
source not found.3-2. Each exponent in matriS corresponds to a value in tlEX
vector. This allows the transformation of the syfitboegression problem into the
problem of finding the be&S, which is the best structure of the EPR equation.

It is noteworthy that the EPR can also construch-polynomial mathematical
expressions. There is a possibility of assuming finection f to be the natural
logarithm, hyperbolic tangent, hyperbolic secarpamential or have a structure similar
to one of the following expressions (Doglioni, 2004

m
Y=a +za.. X )ESGA) . (X,)ESGK)
0 2, ;- (X1) 0.99) case 1
.f((xl)ES(NHl)) .- .f((xk)ES(f'Zk))
m
Y=q,+ Z a; - f((XDESUD - - (X,)ESUR) case 2
=1
m
Y=a +Za-- XESUD . (X, )ESUR ;
0 2,% X1) Xi) case3 38
. f((Xl)ES(j"‘“) . (Xk)ES(j,Zk))
m
Y=g|ay+ Z a; - (X)EBUD - - (X,)ESUR) case 4
j=1

Standard genetic algorithm is used as the glol@athedool to find the best form for the
Equation 3-7 . Chromosomes, which are sets ofachar strings, similar to the ones that
can be found in Deoxyribonucleic acid (DNA) in thedies of the living creatures, are
used to code the parameters needing to be optimisestandard genetic algorithm
binary codes, which are 0 and 1 characters, areemgnted to form the chromosomes.
Integer GA coding is used here to determine thatlon of the candidate exponents of
the EX matrix in the matriES (Doglioni, 2004).

Values of the adjustable parameters are also computed by the EPR after the
evolutionary identification of the structure, by plamenting the linear Least Square
(LS) method and minimising the sum of squared sr{&@SE) considered as the cost
function (Giustolisi and Savic, 2006).

3.4.2.2 Least squaresolution

Calculation of the values af; in Equation 3-7 is an inverse problem that cqoesls to
solving an over-determined linear system in formaofeast square problem. This
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problem can normally be solved using Gaussian eltion technique (Giustolisi and
Savic, 2006).

A random population of exponent vectors is firgated and assigned to the columns of
the input matrix. A population of structures foruatjons is then created. The least
square technique is subsequently used to devedep @& equations to be exposed to the
fitness criteria. If the considered complexity ditdess criteria are met, then the results
will be shown and otherwise, the creation of anotheonents pool will be passed to
GA and this procedure will be repeated until théngel criteria for developing the
models are satisfactorily met. A typical flow diagr representing EPR procedure is

shown in Figure 3.1.

GA Random initialization of a
population of exponent vectors
Offspring generation of exponent Assignment of exponent vectors
vectors " to columns of input matrix
1 ¢
A population of equation
structures is created
Mutation Least Square
Iy L
A set of equations is created
Crossover of the population Fitness evaluation
A ¢
Construction of the best Pareto
front of equations
Selection (based on ranking) of
the mating pool of exponent |«—}—N Is the stop criterion met?
vector individuals
YES

Figure 3.1: Flow diagram for representing the evolutionaryypolmial regression procedure
(Doglioni, 2004)
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3.4.3 Objective functions used in the evolutionary polynomial
regression

During the modelling process, different objectivadtions are provided for EPR to be
optimised. This is done with the aim of developittte best symbolic model
representing the system being modelled. EPR hasitigéy to operate in single and
multi-objective configurations. Figure 3.2 depicéss summary of main available
objective functions in the proposed EPR technique.

Multidimensional strategies are introduced in EPBdselling technique for selecting
models considering a comprehensive complexity amlycluding number of terms,
number of inputs and also the fitness of the modeie best modelling approach is
obviously the one that can provide the simplest ehditting the application purpose.
The “principle of parsimony” also states that irseaof availability of multiple and
equivalent models describing one system, the sghpieodel should be chosen to
explain the available set of data. Considering, thiree can conclude that the fitness in
regression-based models should also include a meeasutrade-off between the
complexity of the model and the quality of fit. $hsould be achieved in the following
ways (Doglioni, 2004):

. In single-objective configuration, an objective ¢tion must be used to control
the fitness of the models preventing unnecessanptaxities from entering into
the models.

I[I. At least two objective functions should be introddcif the multi-objective
configuration is used. In this case one of the abje functions is aimed to
control the fitness of the models, while at leastther one is needed to control
the model complexity. The advantage of the mulfective approach is that it
returns a set of non-dominated models, each oneeptiag fithess and
complexity features. There is no need for the useassume the number of
building blocks a priori. The user will only neealget the maximum number of
terms and the control on the complexity will lee thumber of building blocks
vary considering the fitness of the model (Giusia@nd Savic, 2006).

fu nctlons/strategles

Multi-Objective

Single-Objective

3 Objective

No. of ajvs. No. X;
vs. fitness

Cross validation
Control on
Control on
blocks

2 Objective

No. of X; vs. fitness

Figure 3.2: Main objective functions/strategies available PREmethodology (Doglioni, 2004)
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3.4.3.1 Single-objective strategy

Once experimental, field or simulation-based dataavailable; a regression-based
technique being used to model the desired phenomssds to search among a large or
infinite number of possible models to be able mmifan explanation for those data. The
EPR technique does the search among all possibielsndy changing the exponents
for the columns of matriX and searching for the best-fit set of paramedeisowever,
in order to avoid complexity, there is a need forodjective function ensuring the best
fit. Unwanted unnecessary complexity can be defaetbringing additional terms into
the model or combinations of input parameters ititabduce noise to the raw data” and
is not the real representative of the target system
An important aim of this methodology is finding veapf avoiding the over-fitting
problem. Following strategies are introduced tqlfakce this problem (Giustolisi and
Savic, 2006):

1. Penalising the complexity of the expression by mising the number of terms

2. Controlling the variance af; constants (the variance of estimates) with respect

to their values

3. Controlling the variance af; - Z; terms with respect to the variance of residuals

4. Cross-validation of the models

5. Optimisation of the SSE evaluated on the simulafa@filine prediction) of the

phenomenon performed by the models

Detailed explanation of these strategies can bedau Doglioni (2004)

3.4.3.2 Multi-objective strategy

Earlier editions of EPR used single-objective genatgorithm (SOGA) strategy to
explore the formulae space. This exploration isieagd by first assuming the
maximum number of terma in the pseudo-polynomial expressions shown in Eguoa
Error! Reference source not found. and then sequentially exploring the formulae
space having one, two .andm terms. However, the SOGA-based EPR methodology
has the following disadvantages (Giustolisi andi§&009):

a) As the number of polynomial terms increases, the performance of the SOGA-
based EPR methodology decreases exponentially. oms means more GA
runs.

b) Interpretation of the results of SOGA-based EPRvasy difficult in some
occasions. The identified models can either beedr¥ased on their fithess to
data or considering their structural complexity.nkag the models chosen
based on structural complexity requires some stibpgeuidgment, and therefore
this process can be biased by the analyst's experieather than being only
based on some mathematical criteria.

c) During the searching process for the formulae witbrms, the ones with fewer
terms are not presented; however, these formulakl ¢@ve a better accuracy
than the previously found ones wjtk- 1 terms (Giustolisi and Savic, 2009).

To overcome the above mentioned shortcomings, +objéctive genetic algorithm
strategy (MOGA) was introduced to the evolutionapplynomial regression
methodology with the aim of searching for the brasdel structures that comply with
the fitness and include limited structural complexGiustolisi and Savic, 2009). Two
different objective functions are defined to cohttiee fithess and complexity. The
objectives represented by the functions are mutuatinflicting, and then their
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optimisation returns a trade-off surface of moddlee multi-objective strategy in
hybrid evolutionary computing helps the user with:
a) Finding a set of feasible symbolic models
b) Making a robust choice
c) Having a set of models with variable parsimony Ievéen an efficient
computational time
Multi objective genetic algorithm-based evolutiongolynomial regression (MOGA-
EPR) takes advantage of a multi-model strategy dnying the structural parsimony,
which is the number of constant values in the egonatnd working on the objective
function used in single-objective EPR. Then, MOGRHFEfinds the set of symbolic
expressions that perform well according to twor{mre) conflicting criteria considered
simultaneously; the level of agreement between lsited and observed measurements
and structural parsimony of the expressions obdairhe implemented objective
functions are:
a) Maximizing the fitness
b) Minimizing the total number of input parametersesédd by the modelling
strategy
c) Minimizing the length of the model expression (@&sing the number of terms
in the developed model)
Ranking of the developed models is done considdhegPareto dominance criterion.
By using the MOGA-EPR the computational time neeogdhe multiple executions of
EPR reduces. In the case of SOGA-EPR this time dvoaly be enough for one of the
objective functions introduced in the model devetept process. The best possible
models from among all developed models are chosémpeesented to the user based on
the MOGA-EPR methodology. The Pareto set of sahstiseems to be the best set of
expressions required for the analysis of the prokj@iustolisi and Savic, 2009).
The most commonly used objective functions impleteeéno measure the fithess of the
symbolic structures are based on the Sum of Squ&mdrs (SSE) or on the
Penalisation of Complex Structures (PCS). The tesftilthe single-objective EPR
optimization is normally made of a set of modekst thll are good in an equal manner. It
is normally easier to rank these models considetheg sum of squared errors, rather
than according to their structural complexity. Amatter of fact, putting the models in
order according to their structural complexity d@nquite complicated (Giustolisi and
Savic, 2009). The multi-objective strategy is immpénted to improve both the post-
processing and the general modelling frameworkhefliasic evolutionary polynomial
regression. MOGA strategy allows ranking the degwetbmodels considering both the
Coefficient of Determination (CoD) and the strualutcomplexity. Objective functions
implemented in multi objective genetic algorithnmsbd evolutionary polynomial
regression are (Giustolisi and Savic, 2009):
a) (1-CoD), which is equal to the SSE,

N-1 ZN[(Yp - Ya)z]

R [V S A
2(N — 1)

CoD=1- =1—k-SSE

3-9

k = T 5
En | Ve =y Zn o) |

whereY, is the vector of actual (measured or experimerdatp, Y, values are the

corresponding predicted ones aNdis the number of data lines based on which the
coefficient of determination is obtained.
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b) The number of constant values(# of a;) and

c) The total number of input parameters involved ia ffymbolic expression (%
of Xl)

It is noteworthy that the total number of inputgraeters corresponds to the number of
times that each input is involved in the symbolipression. The user must set the
maximum number of constant values, which puts apeupimit on the maximum
number of the symbolic expression inputs. MOGA-E®iBs to find the best non-
dominated models with respect to both structurahmlexity and fithess performance
which is placed on the best Pareto front. In othwrds, a direct multi-model
methodology is provided where the post-processimgse is improved using MOGA-
EPR returning models ranked considering both titeiess and structural complexity.
Another outstanding feature of the new MOGA-EPRh&t, this strategy applies extra
pressure on achieving structural parsimony. Thearéor this is that a large number of
a;j values or a large total number of inputs can omlyrtroduced in case that there is a
justification by the fitness of the model. It must noted that the Pareto dominance
criterion and the function need to be minimisedje®tive functions can be used in a
double-objective configuration or all together (&nlisi and Savic, 2009):

a) Coefficient of Determination versus % Xf

b) Coefficient of Determination versus % af

c) Coefficient of Determination versus [(% Xf) and (% ofa;)]

By choosing the Pareto dominance criterion for mdti-objective optimisation the
following advantages can be obtained:

a) Less searching time is required: It is reasonaddy for few objective functions
in comparison with the total amount of time reqdirby multiple single-
objective sessions.

b) Simultaneous action: It deals simultaneously witlitiple solutions.

c) Uniformity of the suggested solutions: It is able provide a uniformly
distributed range of Pareto solutions.

Figure 3.3 shows a typical outlook of the MOGA-E&Roperation.
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Figure 3.1: A typical outlook of multi-objective EPR on opeoat

3.4.4 EPR user interface

EPR has been coded using MATLAB® HoLITECNICO DI BARI University, Italy, by
Professor Giustolisi and his co-workers in collaon with Professor Savic in
University of Exeter, UK. EPR is provided with aeudriendly interface, (following

figure):
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Evolutionary Polynomial Regression
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Figure 3.2: User interface of the evolutiongpplynomial regressiamode

Within this graphical user interface (GUI), the usan set up the modelling phase
according to the features described in the prevemaions. Moreover, the user can
decide on the number of generations of the GA Iyngethe proper value in the “Gen”
box. This value corresponds to a proportionalitgtda which will be multiplied for the
maximum length of the expression (maximum numbefmonomial building blocks)
and for the total number of inputs. Another opti®about the possibility of seeding the
population with random elements from the previoaseptal set. This option efficiently
works when large data sets are available and glesibjective configuration. In multi-
objective search the seed option does not seerdd@my advantage in the GA phase
(Giustolisi and Savic, 2009). Finally, the optiohids” refers to the possibility of
looking for symbolic expression containing the tergn If the bias option is not
selected, EPR will automatically exclude all thes@ressions containing,, otherwise
EPR will search for both types of expression witld avithout a, term (Doglioni,
2004).

3.4.5 Application of the evolutionary polynomial regression technique
in modelling engineering problems

EPR is successfully employed to model various sl and systems in many
engineering disciplines including structural, eowmmental and geotechnical
engineering. Rezania et al (Rezania, FaramarziJamddi, 2011) used EPR to predict
the earthquake-induced soil liquefaction and latdisplacement. A 3D surface was
developed discriminating between the cases of oecoe and non-occurrence of
liquefaction using the evolutionary polynomial reggion. Faramarzi et al (2011)
employed EPR to model and predict the behaviowsteél plate shear walls (SPSW)
under cyclic behaviour. The results of a numberaofual experiments on cyclic

45



Chapter (3) Evolutionary Polynomial Regression (EPR)

behaviour of SPSW structures were used to develPR Eodels with the aim of
predicting lateral deformations of SPSWs under icyidading. Some other research
works were also published including the ones frdra &uthor of this thesis (e.g.;
(Ahangar-Asr et al (2012); (2011a); (2011b); (2Q1(Faramarzi, Javadi and Ahangar-
Asr, 2013); (Cuisinier et al., 2013)).

3.5 Conclusions

In this chapter the Evolutionary Polynomial Regm@ss(EPR) methodology was

introduced as a new data mining technique. EPR tiwoastage process that uses a
Genetic Algorithm (GA) and Least Squares (LS) regi@n to develop models

representing data. Both single-objective and nmabjective modelling strategies were
explained with sufficient details. The advantageEPR in overcoming some problems
associated with artificial neural networks and gienprogramming were represented
along with detailed explanation of the related folations. The user interface of the
programme and past applications of the methodolagye also presented in this

chapter.

In the next two chapters important applicationsE#R in geotechnical and civil
engineering problems will be presented.
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Chapter 4

APPLICATION OF EPR FOR
CONSTITUTIVE MODELLING OF
SOILS

4.1 Introduction

Constitutive modelling is an important element ohité element analysis. In
conventional constitutive modelling, initially aitgble constitutive model is selected
from a range of available models and then the patens of the model are identified
from suitable physical tests on representative $sgnpf the material. Therefore, the
accuracy with which the selected constitutive matg=cribes the real behaviour of the
material has significant effect on the accuracy artlability of the numerical
predictions. In the past few decades a number ofistdative models have been
developed to describe the complex behaviour of geenals. Due to erratic and
complex nature of soils, none of the existing cbmste models can completely
describe the real behaviour of these materials umdeous stress paths and loading
conditions.

In this chapter the evolutionary polynomial regimesstechnique is applied to
constitutive modelling of different soils. Fivefférent applications are considered
including (i) modelling of mechanical behaviourwfsaturated soils, (ii) modelling of
soil-water characteristic curve for unsaturatedssdiii) thermo-mechanical behaviour
of unsaturated soils, (iv) stress-strain and voluhange behaviour of granular soils
and (v) identification of coupling parameters bedgweshear strength behaviour and
chemical’s effects in compacted soils.

Comparisons of the results of the proposed EPR mogi¢h experimental data, and
conventional models and also artificial neural reekvmodel results in some cases are
presented. Sensitivity analyses of the proposedetacate presented with the aim of
understanding the level of contribution of the ilweal parameters in the EPR models.
In what follows a review of the relevant literatuevelopment of the EPR models,
comparison of the results with previous models dhe sensitivity analysis are
presented for modelling the mechanical stressrstb@haviour of unsaturated soils
(Section 4.2), soil-water characteristic curve nsaturated soils (Section 4.3), thermo-
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mechanical behaviour of unsaturated soils (Sectiaf), stress-strain and volume
change behaviour of granular soils (Section 4.5) acoupling parameters between
shear strength behaviour and chemical’s effectmpacted soils of unsaturated soils
(Section 4.6).

4.2 Constitutive modelling of unsaturated soils

4.2.1 Introduction

The mechanical behaviour of unsaturated soils heen lthe subject of numerous
investigations over the past few decades. Soméleotantributions are presented here.
Toll (1990) proposed a framework to describe theastehaviour of an unsaturated soill
in terms of total stresses and suctions in the blisl proposed model was based on the
critical state model for saturated soils incorpoatadditional variables needed to
formulate the behaviour of unsaturated soil. THeot$ of total stress and suction were
considered separately to avoid the possibilityreéting the two stress components as
equivalent. The framework was based on couplingvolumetric and shearing
behaviour. It incorporated separate stress stat@abkes and included degree of
saturation as a controlling variable.

Alonso et al (1990) presented a constitutive motteldescribe the stress-strain
behaviour of partially saturated soils. The modakviormulated within the framework
of hardening plasticity using two independent stneariables: the excess of total stress
over air pressure and the suction. The model wkstalrepresent the fundamental
features of the behaviour of partially saturatedss@hich had been treated separately
by previously proposed models. On reaching saturatthis model becomes a
conventional critical state model. However, asdkperimental evidence was lacking at
the time, the model was kept simple in order tovt® a basic framework from which
extensions could be possible. The model was interide slightly or moderately
expansive partially saturated soils.

Wheeler and Sivakumar (1995) used data collectmu f series of controlled suction
triaxial tests on samples of compacted white katidevelop an elasto-plastic critical
state framework for unsaturated soil. The frameweak defined in terms of four state
variables: mean net stress, deviator stress, suatial specific volume. An isotropic
normal compression hyperline, a critical state blype and a state boundary
hypersurface were included within the proposed éaork. For states situated inside
the state boundary hypersurface the soil behaweas assumed to be elastic with
movement over the state boundary hypersurfacesmoreling to expansion of the yield
surface in stress space. The proposed criticag stetdel for unsaturated soil would
have possible applications at three different kevels described by Wheeler &
Sivakumar (1995): (i) in providing a qualitativeamnework that would enhance
fundamental understanding of the mechanical bebavid unsaturated soil, (ii) in
guiding the choice of drained and undrained stiegtstiffness parameters to be used
in conventional calculations of collapse load ofodmation and (iii) in providing a
formalized elasto-plastic constitutive model thatild be incorporated within numerical
formulations, such as the finite element method,the solution of boundary value
problems. However, in this model, similar to sontbeo sophisticated constitutive
models for unsaturated soils, within a numericaimfalation for the solution of real
boundary value problems, it is difficult to measatethe relevant soil parameters such
as elastic constants, the suction-dependent pagasnetc.
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Kogho et al (1993) discussed several theoretigadcs for preparation of constitutive
equations governing the behaviour of unsaturatéld. sthey described possible pore
water states including insular air, fuzzy and péadsaturation which were considered
to examine the mechanical behaviour of unsaturatels. They also classified the
suction effects into two categories: (i) increasesuction that induces an increase in
effective stress values and (ii) increase in suctiat causes both the yield stress and
stiffness of the soil skeleton to increase. Acamgdio this research, taking the three
saturation conditions (insular air saturation, fuzaturation and pendular saturation)
into account in modelling the behaviour of unsatudesoils is practical.

Bolzon et al. (1996) extended the elasto-plastitstitutive model developed by Pastor
et al. (1990), which has been extensively validdtedully saturated soil behaviour, to
include partially saturated soil behaviour. Theytipalarly investigated soil stiffness
changes induced by suction together with the psoadscollapse (i.e. irreversible
compressive volumetric strains) of soil on wettimpey introduced Bishop's stress and
suction as the stress parameters to describe tmevioerr of partially saturated soils
under isotropic conditions. For full saturation, emhsuction is equal to zero, Bishop's
stress reduces to total stress in excess of potervpaessure, which is the stress
measure considered in the original saturated mdskeéss paths different from the
isotropic one can also be dealt with in the genfeaahework established by Pastor et al.
(1990). Bolzon et al. (1996) introduced a few addiél parameters to Pastor et al
(1990) saturated soil model with the aim of chaazing the material response to
suction changes.

Loret and Khalili (2000) proposed a framework tdimke the constitutive behaviour of
unsaturated soils which was developed within tle®m of mixtures applied to three-
phase porous media. Each of the three phases mwveddwith its own strains and
stresses. Elastic and elastic-plastic constituégeations were developed. Particular
emphasis was put on the interactions between thegghboth in the elastic and plastic
regimes. Nevertheless, the clear structure of thestdutive equations required a
minimum number of material parameters and the \sater characteristic curve was
directly used to identify these parameters. Folimnthis work which was an extension
of the elasto—plastic models of saturated soilsngaturated states within a three-phase
framework, Loret and Khalili (2000) stated theirimaoncern to be on the behaviour of
the solid skeleton. They described a model for #tasto—plastic behaviour of
unsaturated soils requiring minimal number of matgrarameters to define the effect
of desaturation. These material parameters wengifgel and the application of the
model was demonstrated using the data reported leWdr and Sivakumar (1995) that
included results from first wetting, followed by r=wlidation and finally triaxial
compression tests. They aimed to develop an efdastic model for unsaturated soils
with the least possible deviation from the classaturated soil models and therefore,
they chose the modified Cam-Clay model as theipldsiver.

Gallipoli et al. (2003) presented an elasto-plastmdel for unsaturated soils that took
explicitly into account the mechanisms with whicfctson affects mechanical behaviour
of soil, as well as their dependence on degreeaniration. The proposed model was
formulated in terms of constitutive variables dilgaelated to suction mechanisms.
The analysis of experimental data on isotropic c@sgion tests suggested that the
quotient between the void ratio of an unsaturatedasmd the void ratio corresponding
to the saturated state at the same average stt@kestress is a unique function of the
bonding effect due to water menisci at the intetipl@ contacts. The same result was
obtained when examining critical states at differequctions. Based on these
observations, an elasto-plastic constitutive mada$ developed using a single yield
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surface, the size of which was controlled by voltrmadiardening. It was shown that the
model could reproduce many important features saturated soil behaviour.

Wheeler et al. (2003) developed an anisotropict@lpsstic model for soft clays.
Experimental data from multistage drained triaxgakss path tests on Otaniemi clay
from Finland supported their proposed shape of yiieéd curve and the proposed
relationship describing the change of yield cundination with plastic straining. They
also suggested procedures for determining thealinitclination of the yield curve and
the values of the two additional soil constantdhimitheir model. They compared their
model simulations with experimental data and thedifled Cam Clay model. They
attributed the discrepancies observed in comparisbrihe results to the role of
destructuration in the sensitive Otaniemi clay.

Borja (2004) presented a mathematical framework aoalysis of deformation and
strain localization of partially saturated granutaedia using three-phase continuum
mixture theory. He developed conservation laws guwg a three-phase mixture to
identify energy-conjugate expressions for constiutmodelling. Energy conjugate
expressions identified relate a certain measureffettive stress to the deformation of
the solid matrix, the degree of saturation to thetrim suction, the pressure in each
phase to the corresponding intrinsic volume charidhis phase and the seepage forces
to the corresponding pressure gradients. He usededtond law of thermodynamics to
obtain the dissipation inequality; from the prideimf maximum plastic dissipation a
condition for the convexity of the yield functiona® driven. Then, he formulated
expressions describing conditions for the onsetabiilar deformation bands under
locally drained and locally undrained conditiongs groposed model changes to the
classical modified Cam-Clay model in saturated domts. He also presented
numerical examples to demonstrate the performahdkeoreturn mapping algorithm
and illustrated the localization properties of thedel as functions of imposed
deformation and matrix suction histories.

Ehlers et al. (2004) investigated the deformation #he localization behaviour of
unsaturated soil and exhibited the influence of #wdid—fluid coupling on the
localization analysis. In the framework of a tripltaformulation, unsaturated soil was
considered as a materially incompressible elasistigl or elasto-viscoplastic skeleton
saturated by two viscous pore-fluids, a materiatigompressible pore-liquid and a
materially compressible pore-gas. Assuming quagiestsituations, the numerical
computations proceed from weak formulations ofrttementum balance of the overall
triphasic material together with the mass balangeatons of the pore-fluids and
Darcy-like relations for the seepage velocities. &sresult, a system of coupled
differential-algebraic equations (DAE) occurred, isthwas solved using the finite
element method. They also studied the influenceéhef pore-gas constituent on the
material behaviour of partially saturated soil wigspect to fluid-flow simulations and
embankment and slope failure problems.

Khalili et al (2008) presented a fully coupled citasive model for describing the flow
and deformation behaviour of unsaturated soils. @lastic—plastic behaviour due to
loading and unloading was captured using the bmgndiurface plasticity. The
hydraulic hysteresis was accounted for throughstiiewater characteristic curve. The
coupling between fluid flow and deformation fieldss also established using the
effective stress parameters. They paid speciattaiteto the interrelations between the
effective stress and wetting and drying paths, &nel shift in the soil water
characteristic curve with the matrix deformatiomey also introduced a single set of
material parameters for characterization of theptaiconstitutive model.
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These contributions constitute major steps forwardconstitutive modelling of
unsaturated soils. However many of these model® lpmeven to be incapable of
dealing with different complex aspects of unsatdasoils behaviour in a consistent
and unified manner. Indeed, currently there existonstitutive models of unsaturated
soils in which a point-by-point matching of testalas observed in the laboratory can
be achieved.

In recent years, the use of artificial neural nekm@ANN) has been introduced as an
effective alternative to constitutive modelling @dmplex materials. As mentioned in
the previous chapters, ANN is a computer-based togléechnique for computation
and knowledge representation inspired by the neandlitecture and operation of the
human brain. Habibagahi ad Bamdad (2003) presemtedural network approach to
describe the mechanical behaviour of unsaturatés. 0 sequential architecture (that
Is, a multilayer perceptron network with feedbackpability) was chosen for the
network. The input layer consisted of nine neuravisgre six of them represented the
initial soil conditions and the remaining three raas were continuously updated for
each increment of axial strain based on outputs fifee previous increment. The output
layer consisted of three neurons representing satfedeviatoric stress, volumetric
strain, and change in suction at the end of eacteinent. A database of triaxial test
results from literature was used to train and ttestnetwork.

The use of artificial neural networks that are ¢arted directly from the experimental
data, offers a fundamentally different approacimtwdelling of the material behaviour.
Because of their ability to learn and generalizeeractions among many variables,
ANNSs have the potential to model various aspectaaterial behaviour.

Although neural networks have shown to be verycidfit in modelling the behaviour of
materials they do have shortcomings. One of thevlolaks of neural network is that the
optimum structure of ANN (e.g., number of inputsdden layers, and transfer
functions) must be identified a priori. This is ay done through a trial and error
procedure. The other major shortcoming is the blagk nature of ANN models as
described in Chapter 2.

In this section the evolutionary polynomial regresss implemented for modelling the
behaviour of unsaturated soils. The capabilitieshef technique are demonstrated by
application to a comprehensive set of unsaturatgdrexial data for a range of stresses
and drainage conditions. It is shown that the ERR capture various aspects of the
behaviour of unsaturated soils effectively.

4.2.2 Database

Results from a set of constant water content ticbeists on Lateritic gravel reported by
Toll (1988) were adopted for the analysis. Tablk iddicates the range of basic soil
properties. Table 4.2 shows the initial conditiaissoil specimens adopted for this
study and also indicates whether the results @raqoular test were used for training or
testing of the EPR models. This database consistheoresults from 23 different

unsaturated samples prepared using static or dgnaompression. However, for the
sake of consistency, only 14 specimens prepareth wiitic compression were
considered in this investigation. The experimeméslults (graphs) presented by Toll
(1988) were digitized. Digitization resulted in atabase including a total of 5153
patterns that were used for training and testindgp@efEPR models.
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Table4.1: Range of basic soil properties of the specimens

Properties Range
Initial water content (%) 17,26.3
Dry density (Mg/m3) 1.442,1.716
Suction (kPa) -9.5,5454
Axial strain (%) 0,11.52
Deviator stress (kPa) 0,930
Volumetric strain (%) -7.5,0.35
Mean net stress (kPa) 23.9,237.6

Table4.2: Initial conditions of soil specimens

Water  Dry Initial
Sample content density suction  ° EPR

(%) Mg/m?)  (kPa) (kPa) status
MGU1l 196 1.442 384 552 Train
MGU2 255 1.632 4 302 Train
MGU3 208 1531 149 350 Train
MGU4 214 1551 22 300 Train
MGU5 20.7 1.646 105 353 Train
MGU6 21 1.489 256 500 Test
MGU7 17 1.474 450 500 Train
MGU8 21.1 1587 186 352 Test
MGU10 25.1 1508 11 350 Test
MGU11 249 1506 26 350 Train
MGU14 26 1.706 5 350 Train
MGU15 25 1.702 12 399 Train
MGU22 243 1.708 78 473 Train
MGU23 25.8 1.705 54 324 Train

4.2.3 Data preparation

From among 14 tests, 11 were used for model cartgiruand 3 for validation. It was
checked to make sure that all parameter valuelerdsting data sets were within the
range of data chosen to be used for training ERRlameloping the models. Overall, 20
possibilities were available for choosing 3 setglatia to be used as the testing datasets
to meet the above criterion.

To select the most robust combination of the trgrand testing data sets, a statistical
analysis was performed on the input and outputrparar values (Table 4.3) of the
selected training and validation sets (all 20 gmwescombinations were considered).
The aim of the analysis was to ensure that thesstatl properties of the data in each of
the subsets were as close to the others as possidlehus represented the same
statistical population. The mean and standard tlewi@alues were calculated for every
single contributing parameter and for the trainiagd testing datasets for each
combination and the one for which these statistiGilies were the closest in the
training and testing data sets was chosen to ke ingeaining and testing stages in the
EPR model development process (Rezania, Javadsarstiolisi, 2008).
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Table 4.3: Parameters involved in the developed incremerfa Ehodels

Contributing parameters Model output
Qi1
W! pd lgal(p_ua)l S’Ev,i’qi!Aga s+]_
£

v,i+l

"w =initial water content;p, =dry density;&, = axial strain;(p-u,) = mean net stress;
S =suction; &, = volumetric strain;q = deviator stressj¢, = axial strain increment

4.2.4 EPR modelling procedure

As mentioned in chapter 3, before starting the wimhary procedure a number of
constraints can be implemented to control the &iracmf the models to be constructed
in terms of length of the equations, type of fumes used, number of terms, range of
exponents, number of generations, etc. It can be #eat there is great potential in
achieving different models for a particular problevhich enables the user to gain
additional information. Applying the EPR procedutiee evolutionary process starts
from a constant mean of output values. By increpshe number of evolutions it
gradually picks up the different participating paeders in order to form equations
representing the constitutive relationships. Eacldehis trained using the training data
and validated using the testing data provided kg uker (Rezania, Faramarzi and
Javadi, 2011). The level of accuracy at each stagegaluated based on the coefficient
of determination (CoD) i.e., the fitness functian a

ZN(Ya B Yp)z
ZN (Ya - %ZN Ya)

whereY, is the actual output valug,, is the EPR predicted value and N is the number

of data points on which the CoD is computed. If thedel fitness is not acceptable or
the other termination criteria (in terms of maximummber of generations and
maximum number of terms) are not satisfied, theemirmodel should go through
another evolution in order to obtain a new model.

To examine the efficiency of the proposed EPR aggran capturing the behaviour of
unsaturated soils, the database was used to lra@e different EPR models for deviator
stress (q), suction (s) and volume strgy) in terms of the contributing parameters
listed in Table (4.1).

CoD =1-—

2 4-1

425 EPR modelsfor unsaturated soils

A typical scheme to train most of the neural netloased material models for soils
includes an input set providing the network witformation relating to the current state
units (e.g., current stresses and strains) andaterward pass through the network that
yields the prediction of the next expected statestoéss or strain relevant to an input
strain or stress increment (Ghaboussi et al., 1998 to the incremental nature of soil
stress—strain modelling in practical applicatiotiss scheme has been utilized in this
research. The EPR models have eight input parasn@esummarized in Table 4.3. The
first two input parameters namely, gravimetric watentent, and dry density represent
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the initial conditions of the soil specimens ané thther parameters, namely; axial
strain, net mean stress, suction, volumetric stiamal deviator stress are being updated
incrementally during the training and testing based the outputs relating to the
previous increment of the axial strain. The ougpartameters are deviator stress, suction
and volumetric strain corresponding to the endchefihcremental step for the three EPR
models.

The data was divided into training and testing $€tble 4.2). One set was used for
training to develop the models and the other one weed for validation to appraise the
generalization capabilities of the trained modélwee separate models were developed
for deviator stress (q), suction (s) and volumedtrain (€,). After development of the

EPR models, from the 15 resultant equations foratew stress, 6 equations did not
include the effect of all contributing paramete#dsnong the remaining equations the

shortest one possible, with the highest coefficadritetermination value was selected as
the final model. The same procedure was followedhnoose the best fit equations for
volumetric strain and suction. Equations 4-2, 438 4-4 represent the incremental EPR
models for deviator stress, volumetric strain, @udtion respectively. It should be

noted that the proposed models are unit dependent.

- v5( 2 2
=388, 5389><103Afa 504¢,; , 291x10°(p-u,)el | 10032, + 114x10%(p-u, e, Z,, - %
W.E, Pq S W.0q4
2 - 13787 &,
L 124x100¢, [p} _ 3231x10°A¢, + 1.243A$a oMp-u,), 484x10°0¢, (4 + L e, g ne. py(p-u.) 4-2
w pd €a
2 2
+ 618A¢,.0;.q _18764A¢, 1868
€a(p - ua) €E\
18x107° 54251A¢, [p; (%,
sl =~ 41810 +1.004%,, + 769x10™¢’, A2 Th TE, 02A¢, - 411x10°As, [ 4-3
Wl}a(p _ua)
+ 009A¢, £, — 627x107°A¢, (&2 + 207x10°Ag,(p-u,)* +0.0027
o , > 520x10°W E,, 4-4
L= 8.83><120 g, 79.11q,2 __2935 , 0375 4 x W, 3.97><1§)3A£a +1015 ~1.706
pd (p_ua) (p_ua) (p_ua) ‘ga Wzg)d &a

Figure 4.1 shows typical deviator stress-axialistr@olumetric strain-axial strain, and
suction-axial strain curves predicted by the (inceatal) EPR models in Equations 4-2,
4-3 and 4-4 (dashed lines) against the experimeasailts for a test that was used in
training of the models (sample MGU22). ANN simutatiresults after Habibagahi and
Bamdad (2003) are also presented.

After training, the performance of the trained ERPRBdels was verified using 3 sets of
validation data which had not been introduced ®EFPR models during training. The
purpose of validation was to examine the capaddlitf the trained models to generalise
the training to conditions that have not been segrthe model during the training
phase. Figure 4.2 shows predictions made by thelojged EPR models against the
experimental data which were not previously seeeBiR and were used as validation
data (MGU 6). The CoD values of the EPR models éEqus 4-2, 4-3 and 4-4) are
given in Table (4-4).
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Figure4.1: Comparing the EPR model predictions with experiraktnaining data (MGU 22)
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Table4.4; CoD values for EPR models
CoD values for CoD values for

Equation training (%) testing (%)
Deviator stress (Equation 4.2.2) 99.96 99.85
Volumetric strain (Equation 4.2.3) 99.99 99.99
Suction (Equation 4.2.4) 99.99 99.98

Comparison of the results and the high CoD valeesife EPR models indicate the
excellent performance of these models in captuting underlying relationships

between contributing parameters and response o&tunaged soils and also in

generalizing the training to predict the behaviofithe soils under unseen conditions.
The results also show that EPR outperforms ANN igsdesults are a closer match to
the actual experimental data.

4.2.6 Predicting entire stress paths using the EPR models

In this section, the EPR models (Equations 4-2,ah8 4-4) are used to predict the
entire stress paths, incrementally, point by point:&,; s:&, and &,:&, spaces.
Results from three different sets of (testing) d@#GU6, 8, and 10) are used to
evaluate the ability of the incremental EPR modelgredict the complete behaviour of
unsaturated soil during the entire stress pathg. Vdlues of water content and dry
density represent the initial conditions of thel smid are constant throughout the tests.
Other contributing parameters are updated in eactemental step, considering the
values from the previous increment and the EPR tabdetputs in response to an axial
strain increment. Figure 4.3 illustrates the procedollowed for updating of the input
parameters and building the entire stress path &hrearing stage of a triaxial test.

At the start of the shearing stage in a conventibrexial experiment, the values of all
parameters are known. For example in a test om@lsaof unsaturated soil, the values
of (p-u).s ., .0 and g, are known from values of applied cell pressure, ai

pressure, water pressure and volume change atniheofethe previous stage (e.g.,
¢, =0 and g =0). Then, for a prescribed increment of axial stian, the values of

4., &,. and s, are calculated from the EPR models (Equations 4-2,and 4-4

respectively). For the next increment, the valués(-u,),.s ¢, .q and ¢, are
updated as:

S =S

qi = qi+1

gv,i = gv,i+1

(p-u.) = (p-u.) +[ 2252

ga,i = ga,i + A‘ga
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Qiu

i+l

gv,i +1

Figure4.3: Incremental procedure for predicting the entiresst path

In this way the second points on the curves ardigied. The incremental procedure is
continued until all the points on the three cureaes predicted and the curves are
established. Figures 4.4, 4.5 and 4.6 show the adsgms between the three complete
curves predicted using the EPR models followingaheve incremental procedure and
the actual experimental data as well as ANN sinwtatesults (Habibagahi and
Bamdad, 2003) for three tests. It should be ndtetl the data for these tests have not
been introduced to the EPR during the model bujldinocess. The predicted stress
paths are in excellent agreement with the experiaheasults. Despite the facts that (i)
the entire curves have been predicted point byt@oid; (ii) the errors of prediction of
the individual points are accumulated in this pradn, the EPR models are able to
predict the complete stress paths with a very ldghbree of accuracy. These are
testaments to the robustness of the developed EBReWwork for modelling of
unsaturated soils.

4.2.7 Senditivity analysis

A parametric study was carried out for further ekeation of the prediction capabilities

of the proposed EPR models and the extent to wthely represent the physical

relationships and the effects of different inputgmaeters on the model output. In a
typical testing data set (MGUG, with basic soil pedies given in Table 4.2, which was
not used in the model construction stage) all tiput parameters but the one being
examined were kept constant and the model preditior three different values

(within the maximum and minimum values of the pagten in the database within the
available range of data) of the parameter undetystuere investigated.
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The effect of dry density was examined by applytimg models (Equations 4-2, 4-3 and
4-4) to predict the changes in thes,, €,:&, and S:&, curves for three different
values of dry density (1.5, 1.6 and Mg/ m?®). The results are shown in Figure 4.7.

Figure 4.7a shows the influence of dry density vass-strain behaviour, while other
parameters are kept constant. As expected, witin@ease in dry density the stress-
strain curve shifts upwards, indicating that a si@nwith higher density has a higher
failure point and also a larger elastic moduluguFé 4.7c shows the influence of dry
density on variation of soil suction with axialatiing. For a soil sample, increasing dry
density increases the tendency for dilation of $henple which in turn results in an
increase in the suction during constant water cargleearing, as correctly predicted by

the model. Figure 4.7b shows the influencedgfon variation of volumetric strain.

The effect of water content of soil is evaluatedapplying the models to predict the

changes in the deviator stress-axial strain, sooal strain, and volumetric strain-

axial strain curves for 3 different values of watentent (18%, 21% and 24%). Figure
4.8a shows the effect of change in water contenthenstress-strain behaviour of
unsaturated soil. As expected, increasing the waiatent causes the curve to move
downwards indicating that a dryer sample has admnidhilure stress and a greater
stiffness (elastic modulus). Figure 4.8c shows gjeaterally for a soil sample increasing
water content decreases soil suction. Figure 4h@lws that, for the soil used in this

analysis, effect of water content on volumetriaistis negligible.

4.2.8 Discussion and conclusions

A number of EPR models were developed to modebuaraspects of unsaturated soil
behaviour. Incremental relationships were presertedas shown that the EPR models
can capture the underlying relationships betweemnowsa parameters directly from
experimental triaxial data and predict the unsataraoil behaviour with a very high
accuracy. The EPR models were also tested usimagtio@t were not used in the training
stage of the model development process; in this aayinbiased performance indicator
was obtained on the real prediction capabilityhef nodels.

The results showed the excellent ability of the ER&lels in generalizing the training
to predict the behaviour of unsaturated soils undeseen conditions. The proposed
EPR models outperformed the ANN model and providdokser results to the
experiments. The results of the sensitivity analgsinducted based on the EPR models
were also consistent with the expected behaviounséaturated soils.

It was shown that the incremental EPR models camdsel to predict the complete
stress paths in thg €,, &, : €, ands: &, spaces incrementally and point-by-point. The

errors of prediction of the individual points wexecumulated in this approach and still
the EPR models were able to predict the completssipaths with a very good degree
of accuracy. This is another indication of the mthess of the developed EPR
framework for modelling of unsaturated soils.
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4.3 Moddling of soil-water characteristic curve in
unsatur ated soils

4.3.1 Introduction

Soil-water characteristic curve (SWCC) contains angnt information regarding the
amount of water contained in the pores at a givaih fuction and the pore size
distribution corresponding to the stress statehim goil. SWCC can be viewed as a
function that describes the water storage capacity soil as it is subjected to various
suctions. Different aspects of unsaturated soibbiglur such as shear strength, volume
change, diffusivity, and adsorption are relatedstil-water characteristic curve. A
number of researchers have studied the relatiowdset the soil-water characteristic
curve and the shear strength of soils (e.g., (Bretllet al., 1995); (Vanapalli et al.,
1996)).

There are different methods available to obtainSM¢CC for a particular soil. SWCC
may be determined directly or indirectly in the dedtory. Direct methods include
pressure plate, Buchner funnel, tensiometers, agsspre membranes. These methods
measure the pore-water pressure in the soil or $e@oknown air pressure to the soil
and allow the water content to come to equilibriwnth the imposed air pressure.
Among these methods, conventional pressure plate(#&TM D 6836) is the most
common method. Indirect methods include filter paped heat dissipation sensors.
These methods use measurements or indicators ef wamtent or a physical property
that is sensitive to changes in water content; wvewehese experiments are costly and
time consuming and therefore several methods haee proposed in the literature to
determine SWCC values of unsaturated soils. Thethods can be classified into five
major groups described below ( (Johari, HabibagaldiGhahramani, 2006a)):

1. Fitting type equations for SWCC. In this group ofjuations simple
mathematical equations are fitted to the experialedata and the unknown
parameters are determined ( (Brooks and Corey,)1984n Genuchten, 1980);
(Pedroso and Williams, 2010)).

2. Correlating parameters of an analytical equatiotih Wwasic soil properties such
as grain size distribution, porosity and dry dgnsising regression analyses
( (Cresswell and Paydar, 1996); (Tomasella and Ettdd998); (Hutson and
Cass, 1987); (Aubertin, Ricard and Chapuis, 1998)).

3. Physico-empirical modelling of SWCC. This approadnverts the grain size
distribution into a pore size distribution, whichin turn related to a distribution
of water content and associated pore pressureedl(iffrd and Pham, 2006);
(Zapata, Houston and Walsh, 2003); (Fredlund, Wilaad Fredlund, 2002);
(Pereira and Fredlund, 2000)).

4. Artificial Intelligence (Al) methods such as neuraletworks, genetic
programming and other machine learning techniqae® fbeen used in various
disciplines of civil engineering ( (Xie et al., 28)Q (Muttil and Chau, 2006);
(Cheng, Ou and Chau, 2002)). Predicting SWCC uaitifijcial intelligence also
falls into this group ( (Johari and Javadi, 201Q)phari, Habibagahi and
Ghahramani, 2006a); (Johari, Habibagahi and Ghamgra006Db)).

In this research a new data mining technique, th@utionary Polynomial Regression
(EPR), is applied to modelling of soil-charactecisturve in unsaturated soils. It is
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shown that EPR may effectively be utilized to captand represent the soil-water
characteristic curve in unsaturated soils.

4.3.2 Database

Results from pressure plate tests performed on ity clay, sandy loam, and loam
reported by various researchers were adopted &atialysis. Table 4.5 indicates the
range of the properties of the soil used in thislgt Five parameters namely void ratio,
saturated water content, logarithm of suction ndized with respect to atmospheric air
pressure, clay content, and silt content were saleas the input. The output parameter
was the gravimetric water content correspondingh® assigned input suction (Table
4.6). This database consists of the results frofh dréssure plate tests together with
their grain size distributions. The experimentabufes (graphs) were digitized.
Digitization resulted in a database including altof 1890 patterns that were used for
training and testing of the developed EPR model.

4.3.3 Data preparation

To select the most suitable combination of thenirg and testing data, a similar
procedure detailed in section 4-2-3 was implementethis way, the most statistically
consistent combination was used for constructiot aaidation of the EPR model.
Results from 104 tests, 80% of the total data bases used for model construction and
the remaining 20% (26 tests) were utilized to \atkdthe developed EPR model.

Table4.5: Range of soil properties used in the experiments

Properties Range

Void ratio 0.458-2.846
Suction (kPa) 0.2-104,857.6
Specific gravity 2.28-2.92
Water content (%) 0.18-98.27
Dry density (kg/m3) 702-1,811
Saturated water content (%) 17.34-105.41
Clay content - <0.002mm - (%) 4.4-76.7

Silt content - 0.002mm to 0.075mm - (%) 10.3-87.5

Table 4.6: Parameters involved in the developed EPR mod8Vs€C”
Contributing parameters Model output

e, w, Su, Cc, Sc GWC
"e=void ratio; w= saturated water conters;, = log(Suction/ 100); Cc =Clay content;
S =silt content,GwcC=Gravimetric water content
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4.3.4 Modelling procedure

The data was divided into training and testing.sétse set was used for training to
develop the model and the other one was used ftdatian to appraise the
generalisation capabilities of the trained moddle Thaximum number of terms in the
EPR equation was set to 15. Among developed EPRelsiotthe one with the highest
coefficient of determination value was selectedefaresent the soil-water characteristic
curve:

148x10°°51® | 185uCc3 - 17% 51 [CelSe_ 40710 3SulSe+ 025%(Cc? _
e3[Cerse w Ce

3

GWC= 1.7x10 °wlSu

2 4-5
+225x107 w2 - 017elv+ 31162 _ 215w +0.10214
Ccls

In this equatiore, w, Sy Cc andScare void ratio, saturated water content, logaritfm
suction normalized with respect to atmospheric prgssure, clay content, and silt
content respectively. After training, the perforroarof the trained EPR model was
examined using the validation dataset which hadbeen introduced to EPR during
training. The purpose of validation was to exanthe capabilities of the trained model
in generalizing the training to conditions that @awt been seen by the model in the
training phase. Figure 4.9 compares the predictddeg of gravimetric water content
with the actual data for training and validatioages. The figure shows a very good
correlation between the predictions of the EPR rheael the actual data both for
modelling and validation datasets. Figures 4.10 41id compare gravimetric water
contents predicted using the Genetic ProgrammirR) (@odel presented by Johari et al
(2006a) and the approach proposed by Fredlund (@08l7) against the actual data for
the same training and validation datasets. Table adso shows the values of the
coefficient of determination for EPR, GP, and Fuedl et al (1997) methods for both
training and validation stages. Comparing Figure8, #4.10 and 4.11 and the
coefficients of determination for all three methadsTable 4.7 shows the robustness
and high capabilities of the proposed EPR modelpredicting the soil-water
characteristic curve in unsaturated soils.

Figures 4.12 and 4.13 show typical soil water ottarsstic curves predicted using the
proposed EPR model in comparison to the actualesuinom the database for training
and unseen validation data cases respectivelyrd-gjl4 compares the SWCC curves
predicted using of the EPR model with the ones ftbenGP and Fredlund et al (1997)
methods and the experimental data. Comparisoneofetbults highlights the capabilities
of the proposed EPR model in providing accuratediptions of the soil-water
characteristic curve in unsaturated soils.

Table4.7: CoD values for SWCC models
CoD values for CoD values for

Equation training (%) testing (%)
EPR Model 95.76 98.38
Genetic programming

(Johari et al, 2006a) 94 93
Fredlund et al (1997) 85 89
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Figure4.9: Actual versus predicted GWC for (a) training (C&5=76%) and (b) validation
(CoD=98.38%) data for EPR model
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Figure 4.10: Actual versus predicted GWC for (a) training (C&24%6) and (b) validation
(CoD=93%) data for GP model (Johari, Habibagahi@hdhramani, 2006a)
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Figure4.11: Actual versus predicted GWC for (a) training (C@b%b) and (b) validation
(CoD=89%) data for the model of Fredlund et al @frad, Fredlund and Wilson, 1997)
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Figure 4.12: Typical prediction results of the EPR model fairtiing data cases with saturated
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Figure 4.13: Typical prediction results of the EPR model folidation data cases with
saturated water contents of 54.23%, 71.07% and®2%27.9
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Figure 4.14: Comparison of the SWCCs predicted by the EPR, i@@PFaedlund et al (1997)
models and the actual data for two cases with atgdinvater contents of (a) 31.57% and (b)

29.63%

Table 4.8 and Figure 4.15 are also generated basd¢lde measured data and the EPR
based equation. They show that the developed EPdRImeaches the saturated water
content when suction tends to zero and also appesazero as suction tends to infinity.
It can be seen that the proposed EPR model sdatisfganeets the SWCC limits within
the range of data used to develop and validatenthaiel.
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Table4.8: SWCC limits

Sample Suction e Silt Clay Wsat GWC(EPR)
(kPa) content % content% % %
Train 0 0.8 62 20 29.63 27.15
Train 0 0.869 31 66 31.04 28.84
Train 0 2.69 29 63 95.05 96.83
Test 0 1.415 62 18 54.23 55.61
Test 0 1.919 51 48 71.07 73.30
Test 0 0.736 70 20 27.99 25.36
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Figure4.15: Soil-water characteristic curve limits

4.3.5 Parametric study

Figure 4.16 shows the results of the parametridystonducted based on the procedure
detailed in section 4.2.7, to investigate the efedacchanges in clay and silt contents on
the EPR model output. The results show an upwafdaithe SWCC by increasing the
clay and silt contents of the soil. This behaviofithe model is consistent with the
results from previous studies (Johari, Habibagaid Ghahramani, 2006a). Increasing
fine grained patrticles (silt and clay) caused tphectfic surface of the soil mixture to
increase leading to higher values of the graviroetiater content at a constant suction.
The effect of increasing clay content on gravineetsiater content at higher suction
values seemed to be more significant than its effetower soil suctions; whereas, the
effect of increasing silt content on the gravinetsater content was almost similar for
different suction values. The sensitivity of theRERmodel to void ratio (e) and initial
water content parameters are also presented irdsigul7a and 4.17b. Figure 4.17a
shows that all parameters being the same, at a givetion, a soil with a higher void
ratio will have lower water content as the suctiaould be more effective in draining
the soil with higher void ratio. Figure 4.17b alswows that all parameters (void ratio,
clay content and silt content) being the sameafgiven suction change, the amount of
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water drained will be more or less similar. Sohypothetically, soil “A” has a higher
initial water content than soil “B”, it will alsodve a higher water content at the end of
application of suction increment as the amounthainge is almost the same and mainly
dependent on the void ratio.

A study was also conducted to investigate the dejeendencies between different
contributing parameters to the proposed model. rEigul8 represents the effect of
change in saturated water content on predicted Gwuifion relationship for three
different values of silt content. Similar results three different values of clay content
are shown in Figure 4.19. It can be seen that fgiven saturated water content and a
given suction, increasing clay or silt (fines) amtincreases water retention capacity of
the soil.

Figure 4.20 shows the combined effects of voidoratnd silt content on the GWC-
suction relationships. It is shown that, as exgkd@ a given silt content value and at a
given suction, a higher void ratio will result ifaaver water content in the soil. Similar
results can be observed for the effects of voin ratd clay content (Fig. 4.21). Figure
4.22 shows the combined effects of void ratio aatdrated water content on the GWC-
suction relationships. It is shown that, as expkcter a given saturated water content
value and at a given suction, a higher void ratilb isult in a lower water content in
the soil. The results of sensitivity analysis shdwleat the EPR model has been able to
capture and represent different aspects of behavfounsaturated soil correctly.

4.3.6 Discussion and conclusions

Soil-water characteristic curve (SWCC) is one & thost important components of
any model for describing unsaturated soil behavitiudescribes the variation of soil
suction with changes in water content. SWCC cawib&ed as a function describing
the water storage capacity of the soil as it igeszibd to various soil suctions.

An EPR model was developed and validated usingabdae from pressure plate tests
performed on clay, silty clay, sandy loam, and loanils. The results of model
predictions were compared with actual data as agetivo other models.

A parametric study was conducted to evaluate tfeeedf the contributing parameters
on the predictions of the proposed EPR model. Coatbieffects of the parameters
were also considered in the sensitivity analysiswwastigate the interdependencies of
parameters and their effect on the soil-water ataretic curve and the extent to which
the developed models can represent the physicatiaeships between involved
parameters.

Comparison of the results showed that the devel&bt model provides very accurate
predictions for SWCC. The developed model presenttructured and transparent
representation of SWCC, allowing a physical intetation of the problem that gives
the user insight into the relationship between sb#-water characteristic curve and
various contributing parameters and is capableredlipting the unsaturated behaviour
of soils with reasonable accuracy. From the prattmoint of view, the EPR model
presented in this research is easy to use anddae®vesults that are more accurate than
or as accurate as the existing models.

The presented results show the robustness of toped EPR approach in modelling
of soil-water characteristic curve in unsaturateidssand that the developed model is
capable of providing a better understanding ofpiftublem and is easily interpretable by
the user.
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4.4 EPR modelling of thermo-mechanical behaviour of
unsaturated soils

4.4.1 Introduction

Extensive research has been done in the past detad@vestigate the effects of
temperature on different aspects of unsaturatddebaviour. A literature review of the
recent works is presented below.

4.4.1.1 Thermal effectson basic soil parameters

Over the past decades thermal effects in satusmiésihave been centre of attention of
researchers. The basic parameters of soils likedligmit, plastic limit, specific gravity,
and compaction characteristics are mainly consitiéoebe affected by temperature
variations. Temperature effects on liquid and jpdakmits were first investigated by
Youssef et al (1961). They conducted a seriessi ten compacted clay samples and
showed that increasing temperature caused reduitidoth liquid limit and plastic
limit at temperatures between°C4and 358C. Lagurous (1969) performed similar tests
on kaolinite, illite, monmorillonitic and monmomlhitic-illite clays at temperatures
ranging from 1.7C to 40.6C and found that an increase in temperature caased
reduction in liquid limit and plastic limit. He asshowed that the effects were most
significant on the monmorillonitic clays. Wang €(E990) also reported that there were
no thermal effects on the Atterberg limits over pematures ranging from 20 to
400°C for kaolinite and 2L to 500C for bentonite. They also observed that the
specific gravity of kaolinite and bentonite werd sensitive to temperature in the range
between 28C and 400C. Towhata et al (1994) also reported that thereeweo
significant effects of preheating up to 200on the liquid and plastic limits of the kaolin
and bentonite clay. Effect of temperature on spk ifically with a high clay content)
compaction was investigated by Hogentogler (198@)performed compaction tests in
the laboratory on several predominantly clay sand reported that as the temperature
increases and causes the optimum moisture comtetgdrease, the maximum dry unit
weight increases accordingly. Burmister (1964) a¢gmrted similar results.

4.4.1.2 Effectsof temperature on volume change behaviour

The effects of temperature on the volume changewetr of saturated soils have also
been investigated by many researchers e.g. Cani@amel Mitchell (1968), Plum and
Esrig (1969), Habibagahi (1973), Demars and Chgl882), Houston et al (1985),
Eriksson (1989), Hueckel and Baldi (1990), Towlettal (1993), Boudali et al (1994),
Tanaka (1995), Crilly (1996), Fox and Edil (199Bglage et al (2000) and Graham et
al (2001).

Campanella and Mitchell (1968) conducted a serfeisagropic triaxial consolidation
tests on a saturated illite (remoulded) at diffetemperatures. The results showed that
the compressibility index was independent of terapee, but the preconsolidation
pressure decreased with increasing temperaturestigation of the variation of the
compressibility index with temperature was alsodrarted by Plum and Esrig (1969).
They carried out one-dimensional consolidationstest illite and Newfield clay and
showed that the compressibility index of the matevaried with temperature. Their
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finding was not in agreement with the observatioh€ampanella and Mitchell (1968).
However, the changes in the compressibility indeihwemperature were not
remarkable at high stresses. Eriksson (1989) andl&bet al (1994) repeated the tests
that were performed with Plum and Esrig (1969) ahd results revealed that
temperature had no affect on the compressibiligices. Graham et al (2001) also
presented similar results for the case of isotropitsolidation.

Decrease in the preconsolidation pressure with ¢eatpre was also investigated by
Habibagahi (1973), Eriksson (1989), Boudali etl&l94), and Graham et al (2001) and
led to similar results to the ones reported by Camefla and Mitchell (1968). This
effect causes the entire compression curve to nmwards smaller effective stresses
with increasing temperature. Some research worke hlso shown that as temperature
increases, the soil becomes more compressible livading-reloading regions (e.g.
Eriksson (1989); Takaka (1995)). However, resultstie contrary have also been
reported by Campanella and Mitchell (1968) and{(l1996).

Researchers have also shown that heating normadlysotidated and lightly
overconsolidated soils under constant effectivesstrinduces volume contraction;
whereas, cooling the same type of soil causes isgel(e.g. see Paaswell (1967);
Campanella and Mitchell (1968); Plum and Esrig @9@aldi et al (1988); Hueckel
and Baldi (1990); Towhata et al (1993); Boudalak(1994); Delage et al (2000)). The
experimental results have also indicated that dte of consolidation of clays increases
with the increasing temperature (e.g. Paaswell {t96nd Towhata et al (1993)).
Paaswell (1967) showed that in a given effectivesst condition, the greater the
increase in temperature, the greater the volumeti@raction. He showed that the
volumetric contraction decreases with increasingrcansolidation ratio and turns into
expansion at large overconsolidation ratios. Simiksults were also reported from
other researchers (e.g. Plum and Esrig (1969);iBslal (1988); Hueckel and Baldi
(1990); Towhata et al (1993); Delage et al (200Dglage et al (2000) showed that, in
an increasing temperature condition, heavily ovesotidated soils dilate at low
temperatures but contract at high temperatures.

The behaviour of normally consolidated soils unchgries of heating and cooling was
investigated by a number of researchers such ap&stia and Mitchell (1968), Plum
and Esrig (1969), Demars and Charles (1982), Huexld Baldi (1990) and Towhata
et al (1993). The experimental results showed t@atvolume contraction of normally
consolidated soils caused by heating under constfiattive stress could not be
recovered by later cooling. The results also shotired normally consolidated soils
become overconsolidated when subjected to cyclerntal loading. Additionally,
Demars and Charles (1982) found that irreversildiime contraction due to cyclic
thermal loading does not depend on effective camjinpressure for normally
consolidated soils; however, it is a function ofemonsolidation ratio in case of
overconsolidated soils. Plum and Esrig (1969) anddkel and Baldi (1990) indicated
that after heating, soils continue to behave ag #ne normally consolidated. Towhata
et al (1993) also found that heating creates aiguesconsolidated behaviour.
Investigations by Campanella and Mitchell (1968un and Esrig (1969), Houston et
al (1985), Towhata et al (1993), and Fox and E#896) showed that temperature
affects the primary consolidation as well as th@edary compression. Campanella and
Mitchell (1968) showed that the larger the incremstemperature, the greater the rate
of secondary compression. They also found thdtafgpecimens cooled before heating,
the change in the rate of secondary compressiondwmismall in case that the initial
temperature of the sample was not exceeded. FoxEdid(1996), Plum and Esrig
(1969), Houston et al (1985) and Towhata et al 319®vealed that the rate of
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secondary compression exponentially varies withpemature variations. They also
observed that cooling causes a decrease in thefrageondary compression.

4.4.1.3 Effectsof temperatureon porewater pressure

Change in temperature may induce significant chamgere water pressure and as this
causes a change in effective stress, it can ledailtoe in a specimen under constant
deviator stress.

Temperature-induced pore water pressure has beastigated by a number of
researchers (e.g. Campanella and Mitchell (1968mRnd Esrig (1969); Hueckel and
Baldi (1990); Hueckel and Pellegrini (1992); Tan&k895) and Graham et al (2001)).
General results have shown that the pore waterspresincreases with increase in
temperature and decreases when the temperaturs. dfest results presented by
Campanella and Mitchell (1968) also showed thatcifudic temperature change results
in a hysteretic change in pore water pressure. pdre water pressure developed in
saturated soils during heating-cooling cycles imgel a rise in pore water pressure
during heating, while the subsequent cooling caassasbstantial decrease in pore water
pressure. The drop observed in pore water preskuineg cooling was more than twice
the increase during heating. They also observetl @héarge pore-water pressure
increase induced by heating may cause a largeensile strain and a possible
mechanical failure. Tanaka (1995) and Graham €2@D1) showed that temperature
induced pore water pressure could be normalisedhbyinitial effective confining
pressure but not by the pre-consolidation pressure.

Heating induced failure in saturated soils was atsestigated by Hueckel and Baldi
(1990). They conducted a series of undrained alabasts at constant deviator stress
and showed that a rise in pore water pressure @uaonotonic heating causes the
sample to fail.

4.4.1.4 Effectsof temperatureon shear strength and stress/strain characteristics

Investigators have been conducted to study thectsffef temperature on the shear
strength and the stress/strain characteristicsatirated soils. Experimental results
reported by Hueckel and Baldi (1990), and Grahamalet(2001) showed that
temperature had no effect on the critical state iimthe deviator stress/ mean effective
stress plane. Lingnua (1993) and Houston et al§)188idied the uniqueness of the
critical state line in the deviator stress/ medeative stress plane. They found a small
shift in the critical state line with changes imfgerature. The shrinkage of yield locus
with increasing temperature was also observed enettperimental results of Hueckel
and Baldi (1990), Tanaka et al (1997), Cui et 80 and Graham et al (2001).

Sherif and Burrous (1969) and Maruyama (1969) stlidne effects of temperature on
shear strength by conducting unconfined compreststs on normally consolidated
saturated clays. The results showed that increasemperature causes the pore water
pressure to increase and reduces the undrained stieagth of the soil. Lagurous
(1969) carried out unconfined compression testifferent temperatures on compacted
soil specimens at optimum moisture content. Befesting, the compacted specimens
were kept in a chamber to achieve the testing teatyre. The results revealed that
unconfined compressive strength increases witreastng temperature. The increase in
the unconfined compressive strength was attribiddlde evaporation of water from the
soil specimens in the testing chamber. Water ewdjoor caused the degree of
saturation to drop and the suction in the specitoeimcrease. An increase in suction
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resulted in an increase in the effective stresd,thus unconfined compressive strength
increased with elevating temperature.

Hueckel and Baldi (1990) conducted drained triateats on overconsolidated Pontida
silty clay samples, which had been heated undenebtecondition. The results showed
that an increase in temperature lowered the peadr dtrength and reduced the dilation
of the samples towards the critical state. Sinee d¢kcess pore-water pressure was
allowed to dissipate during heating, the effectateess of the samples remained
constant. However, the size of the yield locus eased with increasing temperature, so
the peak shear strength decreased as the tempeiratteased. Similarly, the reduction
in the size of the yield locus reduced the oversotidation ratio of the samples, and
thus less dilation was observed during shearingtdsvthe critical state.

Lingnau et al (1995) performed consolidated undmhitriaxial compression tests on
lightly overconsolidated sand-bentonite speciméysapplying heat and cell pressure
under drained conditions and then shearing the smpndrained at constant
temperature. The results showed that the undrastezhr strength reduced with
increasing initial temperature. Kuntiwattanakul at (1995) also conducted several
consolidated undrained triaxial tests along diffiérleeating and consolidation paths. It
was revealed that, for normally consolidated clake, undrained shear strength and
stiffness of specimens were highly affected by ingaunder an initially drained
condition. However, they remained unaffected foeroensolidated clay. It was argued
that an increase in the temperature created cosipres normally consolidated soils,
which reduced with increasing overconsolidatiomotathus, the thermal effect on the
undrained shear strength was more pronounced imailyr consolidated soils as
compared to overconsolidated soils.

4.4.1.5 Hydro-thermo-mechanical modelsfor unsaturated soils

Hydro-thermo-mechanical models have been propogedrnumber of researchers over
the past decades to represent the behaviour otwatsd soils. Philip and deVries
(1957) introduced a model representing the coupksat and moisture transfer in rigid
porous media under the combined gradients of tesmbyrer and moisture. de Vries
(1958) included moisture and latent heat storagbernvapour phase, and the advection
of sensible heat by water in their previous mo&aephocleous (1978), Milly (1982),
Thomas and King (1991) and Thomas and Sansom (19@&ljfied the Philip and
deVries model using matric suction rather than nwdtric moisture content as the
model’'s primary variable. Ewen and Thomas (1989 d&mmomas and Li (1997)
validated the theory presented by Philip and ded/(L957) both in the laboratory and
in the field revealing reasonable agreement betwbkentheoretical analyses and the
laboratory/field results.

Geraminegad and Saxena (1986) developed a modsideoimg the effect of matrix
deformation on moisture, heat and gas flow throtlgh porous media. Mechanical
behaviour of the soil in their model was definedemrms of "stress state surface" and
"independent stress state variables". The totassttensor in excess of air pressure (net
stress) and suction were considered to be indepéndethis model ( (Matyas and
Radhakrishna, 1968); (Fredlund and Morgenstern/0)9Tater on, Thomas and He
(1997) presented a coupled version of this fornmutatMatrix displacement vector was
considered as a primary variable in their modet] #re coupling effects between the
temperature and deformation and the energy balagoation was improved in this
model by including moisture and latent heat storagine vapour phase, in addition to
the advection of heat by water previously accouritedoy de Vries (1958). Similar
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formulations were also presented by Gawin et a®%)9and Zhou et al (1998). Gawin
et al (1995) introduced the constitutive laws @ #olid phase using the effective stress
concept. They used the degree of saturation asftbetive stress parameter and also
retained the degree of saturation as the main cauplement between the air and water
flow fields.

Booker and Smith (1989) and Britto et al (1989) estgated simulating the
consolidation and pore-water pressure around himdgys buried in saturated clay.
These models consider only the reversible volunaaga of the soil due to a change in
temperature.

Khalili and Loret (2001) presented an alternatilieory for heat and mass transport
through deformable unsaturated porous media. Thegnded their previous work
(Loret and Khalili, 2000) on fully coupled isotheatrflow and deformation in variably
saturated porous media to include thermal coupdifgcts. The bases used to develop
the governing equations included the equations qufilierium, the effective stress
concept, Darcy's law, Fourier's law and the corsem equations of mass and energy.
The thermo-hydro-mechanical coupling processes ideresd in their model were:
thermal expansion, thermal convection by movingdfldluid flux due to temperature
gradient and phase exchange (vaporisation, contiemsa

Wenhua et al (2004) presented a thermo-hydro-mézddafTHM) constitutive model
for unsaturated soils. The influences of tempeeatur the hydro-mechanical behaviour
in unsaturated soils were considered in this mdéetticularly, the thermal softening
phenomenon, i.e. decreases in value of pre-cordimiid pressure and in critical value
of the suction of the SI (suction increase) curvia Wweating process, was quantitatively
modelled using experimental data. Francois and uial®008) introduced an
unconventional constitutive model for unsaturateidss A generalized effective stress
framework was adopted that included a number afnsit thermo-hydro-mechanical
connections to represent the stress state in theTsw coupled constitutive aspects
were used to fully describe the non-isothermal behet of unsaturated soils. The
mechanical constitutive part was built on the cpte®f bounding surface theory and
multi-mechanism plasticity, but the water retentahraracteristics were described using
elasto-plasticity.

Another thermo-hydro-mechanical (THM) constitutivedel for unsaturated soils was
proposed by Dumont et at (2010). In this reseaheh dffective stress concept was
extended to unsaturated soils with the introductibra capillary stress. This capillary
stress was based on a micro-structural model aledlated from attraction forces due
to water menisci. The effects of desaturation dmalthermal softening phenomenon
were modelled with the minimal number of materiatgmeters.

A thermo-elastic-plastic model was also suggestgd Uzhaipichat (2005) for
unsaturated soils based on the effective stressiple by taking the thermo-mechanical
and suction coupling effects into account. The rteeelastic-plastic constitutive
equations for stress-strain relations and changésid content were established in this
model. Uchaipichat and Khalili (2009) published thesults of an experimental
investigation on thermo-hydro-mechanical behaviofran unsaturated silt. They
conducted an extensive array of isothermal and ismihermal tests including
temperature controlled soaking and desaturatiampéeature and suction controlled
isotropic consolidation, and suction controlledrthal loading and unloading tests.

In this thesis models are presented, based on tewwduy polynomial regression, to
predict the complex thermo-mechanical behaviowrrsfaturated soils. The results from
the experimental investigations on compacted samiasilt using triaxial apparatus at
different temperatures (Uchaipichat and Khalili09p were used for developing and
evaluating the EPR models. The input parametetheimodel were considered to be
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the over consolidation ratio, mean net stressialrsuction, temperature, initial degree
of saturation, axial strain, deviator strain anduwtetric strain and the models were
developed to predict the stress-strain statuseokthl corresponding to an increment in
the axial strain and based on the current devsstiess and volumetric strain values.
The EPR model predictions are compared with theegxgental results. A sensitivity

analysis is also conducted to investigate the &ffetcontributing parameters including
temperature on the developed EPR models.

4.4.2 Database

The results from triaxial experiments on samplesafunsaturated soil reported by
Uchaipichat and Khalili (2009) were used to devetbp EPR-based models. These
experiments were conducted at constant suctionstaoh temperature and constant
water content stress paths including: i) tempeeatmd suction controlled isotropic
loading tests, ii) temperature controlled desatninatests, iii) suction controlled thermal
loading tests, iv) constant water content therroatling tests, and v) temperature and
suction controlled shear strength tests.

The tests were performed on silt samples compawttdte laboratory. The soil samples
were obtained from the Bourke region of New Southl&¥, Australia. The index
properties of the soil are presented in Table BiQures 4.23 and 4.24 show the soil
water characteristic curve and the compaction ctowéhe soil respectively.

Table4.9: Index properties of the silt used in the testsuiBe silt)

Properties Values
Liquid Limit (%) 20.5
Plastic Limit (%) 14.5
Specific Gravity 2.65
Air Entry Value (kPa) 18
Maximum dry unit weight from standard proctor test

(kN/m?) 18.8
Optimum moisture content from standard proctor (st 12.5
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Figure4.24: Compaction curve obtained from standard compactésitfor the silt used in the
tests (Uchaipichat, 2005)

4.4.3 Data preparation

Results from 27 temperature and suction-contradledar tests were used to develop
models to predict the shear strength and volumstrain behaviour of unsaturated soil
including the thermal effects. All the tests wermnducted in a modified triaxial
equipment depicted in figure 5.2B8chaipichat and Khalili, 2009)The temperature and
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matric suction values varied from Z5to 60C and 0 to 300 kPa respectively. The
effective cell pressures of 50, 100 and 150 kPaewesed in the experiments. The
implemented testing procedure was consolidatechedatest and the deviatoric stress
was applied by increasing the axial stress whike ¢bll pressure was kept constant.
Figures 4.26 to 4.28 show the experiment resuktsl ig develop and validate the EPR
models.
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Figure 4.25: Modified triaxial equipment (Uchaipichat and Khia2009)
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Figure 4.28: Suction and temperature controlled shear teststial mean effective stress of

150 kPa (Uchaipichat and Khalili, 2009)

The total number of cases in the database wasativitto training and testing datasets.
From the database 22 cases (approximately 80%) wsaeé to train and develop the
EPR models while the remaining 5 cases (about 20&6¢ kept unseen to the EPR
during model construction and were used to validlatedeveloped models. A similar
procedure to that explained in section 4-2-3 waedu® select the most statistically
consistent training and testing sets to be utilirethe development of the presented

models.
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Table 4.10: Parameters involved in the developed incremerfe& Ehodels
Contributing parameters Model output

Gi+1
£

OCR, Ppot, Su;, T, ST, 84, Qi) Eiy Ay

v,i+l

" OCR =overconsolidation ratip P, =mean net stress (kPa)Su; =initial suction (kPa);
T =temperature °C); Sr;=initial degree of saturationg,=axial strain; g;=deviator stress (kPa);
&y;=volumetric strain;Ag,=axial strain incrementy;,,= deviator stress corresponding to the next

increment of axial strain (kPaj,;,; = volumetric strain corresponding to the next inceeinof axial
strain.

4.4.4 EPR modelsfor shear strength and volume change behaviour of
unsatur ated soils considering the temper atur e effects

The modelling procedure was similar to the one @reld in case of modelling hydro-
mechanical behaviour of unsaturated soils in thggnmeng of this chapter. Constraints
were implemented to control the structure of thedet® to be constructed in terms of
the length and complexity of the developed EPR rspdiype of implemented
functions, number of terms, range of the exponasésl and the number of generations
to complete the evolutionary process. As the mougfrocess progressed the accuracy
level at every stage was evaluated using the Btegsation (Equation 4-1).

Due to the incremental nature of soil stress—stmadlelling in practical applications,
the incremental procedure was utilized in this aese The developed EPR models
include nine input parameters as summarized iner4dio.

Some input parameters including the overconsobdatatio, initial mean net stress,
initial suction, temperature and initial degree s#turation represented the initial
conditions of the soil samples, but volumetric istrand deviator stress were updated
incrementally as the training and testing stagemynessed based on the predicted
previous values (of deviator stress and volumetiiain) corresponding to the previous
increment of axial strain. The output parameterseviiee deviator stress and volumetric
strain corresponding to an increment of the axrairs.

After completion of the modelling process, 44 arid rBodels were developed for
deviatoric stress and volumetric strain respegtivetom among the developed models
some did not include all the defined parametersnpsts to the equations and were
removed and the remaining were considered and cadpa terms of the robustness of
the equations based on the coefficient of detertimnasensitivity analysis and also the
length of the equations and the best models saigsiyll these criteria were chosen as
final models. Equations 4.6and 4.7 represent thB Bf®dels for deviator stress and
volumetric strain respectively. As noted abovesémodels are unit dependent.
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0.06g% —3.81 X 10™*Su; - T2 - Sr; - €, + 6.73 - OCR® - &,

di+1 = 0CR3 X q;
1455.02 - g,
+ F——
Ppet - S1i- qi
N 23.11Su; - Sr; - A, - P2, - q; — 8.67 X 10° - OCR® - ¢, 4-6
Pr?et “q; )
378.26 ¢, " Ae, — 0.07 - OCR " €5 " q;
+ o a 9, 48.871¢, + 0.13¢,, 2
T-q L
+0.91q; — 5.05517 — 0.1T — 0.12 - OCR - q; * Ae, + 19.81
gVi+1
_ 106 X 1073Sr; - q; " Ae, N 9.87 X 1077Sr; - 2 — 4.09
B OCR - ¢, Ppet
1.31 X 1077Suj - Sr? e, — 0.98T + 1.09 x 107373 = 9.15 x 107*T3 - Sr; 4.7
+ 2
T

N 2.52 x 10™*¢, > — 0.89S17 - A¢,

ST'i
X 107*q; — 4.44 x 1073q; - Ae, + 0.01P,,,; - Ae, + 0.1

+ 0.834¢, + 098¢, — 0.05¢,, * Ae, — 2.24

Figures 4.29, 4.30 and 4.31 show deviator stregd-stxain and volumetric strain-axial

strain curves predicted using EPR models (Equatiés®& and 4-7) against the

experimental results for the tests used in thaitrgiof the model development process
with figure 4.29 showing the worst predicted dataec

After training, the performance of the trained ERPRBdels was verified using 5 sets of
validation data which had not been introduced t&® ERring training. The purpose of

validation was to examine the generalisation cdpiasi of the developed models to

conditions that were seen by the model duringthieing phase. Figures 4.32, 4.33 and
4.34 show predictions made by the developed EPRelnaahainst the experimental

data for the testing dataset. The CoD values oEfPR models (Equations 4-6, 4-7) are
given in Table 4.11.

Table4.11: Coefficient of determination values for the préasemmodels
COD values for COD values for

Equation training (%) testing (%)
Deviator stress 99.85 99.44
Volumetric strain 99.99 99.86
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Figure 4.29: Comparison between the EPR model predictions e¥tierimental data for
deviator stress (a) and volumetric strain (b) — R3€&, Mean net stress=50 kPa, T2R2%p

94



Chapter (4) Applion of EPR for Constitutive Modelling of Soils

250
= 200
o
=
-
& 150
a
g
@ 100
.g @ Experiment
S
3 .
& 5o =@—EPR prediction

0
0 5 10 15 20 25

Axial strain (%)

(@)

w
n

w
o

N
(6

N
o

=
wn

® Experiment

Volumetric strain gvi+1(%)

1.0 —@—EPR prediction
0.5
0.0
0 5 10 15 20 25

Axial strain (%)

(b)
Figure 4.30: Comparison between the EPR model predictions extierimental data for
deviator stress (a) and volumetric strain (b) —R®€, Mean net stress=100 kPa, T=2p

95



Chapter (4) Applion of EPR for Constitutive Modelling of Soils

300

250
200

150

100 @ Seriesl

Deviator stress qi+1 (kPa)

—@—Series2
50

0 5 10 15 20 25
Axial strain (%)

(@)

3 ¢ Experiment
2 =—@—EPR prediction

Volumetric strain evi+1(%)
N

0 5 10 15 20 25

Axial strain (%)

(b)

Figure4.31: Comparison between the EPR model predictions extierimental data for
deviator stress (a) and volumetric strain (b) — R3C.33, Mean net stress=150 kPa, T%60

96



Chapter (4) Applion of EPR for Constitutive Modelling of Soils

180
160 0001080800006 6810000040g 440
140
120
100
80
60
40
20

@ Experiment

@ EPR prediction

Deviatoric stress qi+1 (kPa)

0 5 10 15 20 25
Axial strain (%)

(@)

=R e
~ O

. Mm”

o N

@ Experiment

(o)}

@ EPR prediction

©c @ o B P
00

H

Volumetric strain gvi+1(%)

o ©
o N

0 5 10 15 20 25
Axial strain (%)

(b)

Figure 4.32: Comparison between the EPR model validation ptiedis with experimental data
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Figure 4.34: Comparison between the EPR model validation ptiedis with experimental data
for deviator stress (a) and volumetric strain (WPER=2, Mean net stress=100 kPa, T%B0

Comparison of the results showed the exceptionadluéties of the developed models
in capturing the shearing and volume change bebhawbunsaturated soils considering
the temperature effects and generalising the bebato unseen cases.

4.4.5 Predicting entire stress paths using the developed EPR models

The EPR models represented as Equations 4-6 andef&’ used to predict the entire
stress paths, incrementally, point by pointgins, and €, : £, spaces. The results from

three different sets of (testing) data were utdizeo evaluate the ability of the
incremental EPR models to predict the complete mbemechanical behaviour of
unsaturated soil during the entire stress paths. idiues of overconsolidation ratio,
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confining stress, initial suction, temperature amtdal degree of saturation were kept
constant throughout the test. Other contributingapeeters were updated in each
incremental step of axial strain considering valwesresponding to the previous
increment and the EPR models outputs in responae txial strain increment. Figure
(4.35) illustrates the procedure followed for upnigtof the input parameters and
building the entire stress path for the shearimgestof a triaxial test. For a prescribed
increment of axial straing,, the values ofq,,, &, are calculated using the EPR

models. For the next increment, the values,pfq andg, are updated as:
qi = qi+1

&

Vi

=&

v,i+l

ga,i = ‘ga,i +A£a

In this way the second points on the curves ardigied. The incremental procedure is
continued until all the points on the curves aedpted and the curves are established.
Figures 4.36, 4.37 and 4.38 show the comparisowdsgt the three complete curves
predicted using the EPR models following the abmaemental procedure and the

actual experimental data. It should be noted that data for these tests were not
introduced to the EPR during the model developrpentess.

The predicted results are in a very close agreeméhtthe experimental results and

considering the fact that the entire curves hawnh@edicted point by point and the

errors of prediction of the individual points arecamulated, it can be easily seen that
EPR models were able to predict the complete stpasiss with a high degree of

accuracy which can be an indication of the robisstroé the developed EPR framework
for modelling thermo-mechanical behaviour of unssted soils.

4.4.6 Sendtivity analysis

Similar to the previously represented EPR modelsariier sections of this chapter, a
parametric study was carried out on a validatidno$elata to evaluate the response of
the models to changes in input parameters. Thisdeas through a basic approach to
sensitivity analysis by fixing all but one inputriable to their mean values and varying
the remaining one within the range of its maximumd eninimum values.
Figures 4.39 to 4.42 show the results of the pat@enstudy conducted to investigate
the effect of changes in confining pressure (j@fiiect of the mean net stress and the
overconsolidation ratio), suction, degree of sdionaand temperature on the developed
models.
As expected, any increase in the values of theimogf pressure and suction in the soil
sample causes the shear strength of the soil aadtla volumetric strain to increase
(Figures 4.39 and 4.40). Any increase in the degfesaturation of the soil will cause
the soil suction to drop and will result in lowdrear strength and also expansion in the
soil sample. This effect was also correctly presticby the presented EPR models
(Figure 4.41). The developed model for deviatoessralso correctly predicts drop in
the shear strength as the temperature increasegevho the increasing effect of
temperature on the volumetric strain is negligifligure 4.42).
The results of the parametric study indicated thatdeveloped EPR models have been
able to capture the underlying physical patternsvéen the contributing parameters
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and the shear and volumetric behaviour of unsadrabils under various temperatures
correctly.
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Figure 4.35: Incremental procedure for predicting the entiress path
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strain model predictions
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Figure 4.42: Effect of changes in temperature on (a) deviatsiriess and (b) volumetric strain
model predictions

4.4.7 Discussion and conclusions

Evolutionary Polynomial Regression was used to kbgvdwo models to predict

deviatoric (shear) stress and volumetric strairaiEtur of unsaturated soil considering
the temperature effects. It was shown that thegmtesl models have the capability to
predict the entire stress paths by implementingrtbeemental approach. The capability
of the models in making accurate predictions oftiekaviour of unsaturated soils was
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shown using appropriate graphs and tables consglemnseen validation data sets that
were not introduced to EPR in the model developratage.

A parametric study was conducted to study the 8eitgiof the models to variation of
each of the contributing parameters. Using theltegigraphs, it was shown that the
developed EPR models were capable of capturingetigerature effect as well as the
effect of other parameters (confining pressuretiesa@nd initial degree of saturation)
correctly and accurately from the provided rawxiaatest data.

45 Stress-strain and volume change behaviour of granular
soils

45.1 Introduction

The shear strength of cohesionless soil such akaah gravel under varying drainage
conditions has been a topic of significant interkest the last four decades. Many
research works have contributed significantly te tinderstanding of the important
factors that control the shear strength behavidursand and gravel for drained

conditions. A comprehensive set of data from liem@was collected and used to model
stress-strain and volume change behaviour of cohless soils. This section presents
the development of EPR models for granular soilaguthis database. Comparison is
made between EPR model predictions and the Expetahdata. Sensitivity analysis

outcomes and the relevant discussions are presentieel following section.

Considerable amount of experimental data has badslished in the literature
contributing significantly to the understandingtbé important factors that control the
shear strength behaviour of granular soils in dm@irconditions. There has been
tremendous interest in the research community tdeinthe shear stress and volume
change behaviour of cohesionless soil and becaugs well defined conditions of
stress and strain on the cylindrical specimens ynoéthe models developed to date are
predominantly based on triaxial compression tet.dehe majority of the past research
effort has been devoted to modelling of soil bebawiusing the elasticity/plasticity
based approach with some success (Rowe and Bdreief).

The EPR models developed in this study were pratilsed on a large database
comprising data from 177 triaxial tests with thenaf providing comprehensive models
that could be used to predict the behaviour of gjearsoils.

4.5.2 Database and the parameters involved in development of the
models

Previous experimental research has shown thatntipertant factors that govern the
behaviour of cohesionless soil (sand and graved) is mineralogy, particle shape,

particle size and its distribution, void ratio asldo the effective confining stress level
(Dayakar and Rongda, 1999). The experimental dséalieom a large number of

contributions from literature (shown in Table 4.123s used to develop the models in
this research. The database includes the effedtsechbove factors systematically in a
comprehensive manner using a large number of dfdrrexial compression tests.
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Table4.12: Data sources used to create the database (Dayadt&ongda, 1999)

Reference

Lee and Seed (1967)

Lee, Seed and Dunlop (1967)
Leslie (1975)

Lo and Roy (1973)

Marachi et al (1969)

Miura and Yamanouchi (1975)
Miura and O-Hara (1979)
Ponce and Bell (1971)
Ramamurthy et al (1974)
Raymond and Davies (1978)

Raymond and Diyaljee (1979)

Wu (1957)
Erzin (2004)

Experimental soil description
Sacramento river sand
Antioch sand

Napa basalt

New Hogan metavolcanic
Carters Dam quartzite
Cougar basalt

Sonora dolomite

Laurel sandstone

Buchanan weathered granite

Back mine quartz sand
St. Marc limestone sand
Aluminum oxide sand
Pyramid dam material
Napa basalt

Toyoura sand

Ube decomposed granite
Quartz sand
Badarpur sand

Coteau dolomite
Kenora granite
Nouvelle igneous
Sudburg slag
Grenville marble
Kimberly float

St. Isodore limestone
Brandon gravel

St. Bruno shale

Fluvioglacial sand
Anatolian sands

The objective was to develop EPR-based modelspiesent the deviator stress-axial
strain, and volumetric strain-axial strain relasbips for granular soils with varying
mineralogy, particle shape, uniformity coefficierfefficient of curvature, effective
particle size, void ratio, and effective confinipgessure.

Data from a total of 177 triaxial compression tegése obtained from literature. Using
the approach proposed by Hardin (1985), the miogyaland grain shape were
quantified in the database using crushing hardreess,average particle shape factor.
The crushing hardnesh, (a mineralogy factor) is approximately equal te gctratch
hardness as defined by Moh's Scale. It takes &\&#ld, 6, and 3 for quartz, feldspar,
and calcite respectively (Dayakar and Rongda, 1989 shape facton{) defines the
degree of angularity or sphericity, and is equaktfor angular, 20 for sub-angular, 17
for sub-round, and 15 for round shape (DayakarRongda, 1999).
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4.5.3 Data preparation

The data preparation process was similar to thegolare followed in section 4-2-3. 138
tests (80%) were used to train EPR and to consthectnodels and the remaining 39
tests were used for validation of the models.

Table 4.13: Parameters involved in the developed EPR models

Contributing parameters Model output
D50| CJ) CC) h1 r};,e, 03 qi+1
ga ’ Agau Q) gV,i EV,i+1

" Dso (Mm) = average grain size, Cu = coefficient offarmity, C. = coefficient of curvature;
h= hardness of the minerak, =axial strain, B = shape factor;£, = volumetric strain;

q = deviator stress;AE, =axial strain increment, e= void ratia;= effective confining
pressure.

4.5.4 Developing the EPR models

As mentioned in the case of unsaturated soil mimgglh typical scheme to train most
of the neural network based material models fdssncludes an input set providing the
network with information relating to the currentatg units (e.g., current stresses and
strains) and then a forward pass through the né&twetds the prediction of the next
expected state of stress or strain relevant to rguti strain or stress increment
((Ghaboussi et al., 1998); (Dayakar and Rongda9)9®ue to the incremental nature
of soil stress—strain modelling in practical apalions, the same scheme was also used
in this research to model the behaviour of granulaterials.

The EPR models had 11 input parameters (Table 4.8y, C,, C., h, n; e and a3
represent the initial conditions of the soil spesmis. The other three parameters,
namely; axial strain, volumetric strain, and demiastress are updated incrementally
during the training and testing based on the ostfroim the previous increment of the
axial strain. The output parameters are the devistit@ss and the volumetric strain
corresponding to the end of the incremental stepaaa calculated using the two EPR
models.

The training of the EPR resulted in developmerfeaf equations for deviator stress. Of
these, 2 equations did not include the effect b€ahtributing parameters. Among the
remaining equations the most appropriate and efficione based on the model
performance (fithess), complexity and also the itgig analysis results was selected
as the final model. The same procedure was aldowet to choose the best fit
equation for the volumetric strain. Equations 4r8 4-9 represent the (unit dependent)
incremental EPR models for deviator stress andmelatrain respectively.
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Figures 4.43 to 4.45 show deviator stress-axialrsiand volumetric strain-axial strain
curves predicted by the EPR models in EquationsaaeB4-9 against the experimental
results for data sets that were used to train theets.

A comparison was also made between the predictbtitee ANN models suggested by
Dayakar and Rongda (1999) and EPR results forréiieing data cases. Typical results
are presented in Figure 4.46.

After training, the performance of the trained EBdels was verified using 39 sets of
validation data which had not been introduced t&RERiring training. This was to
evaluate the generalisation capabilities of theettgyed models to unseen cases. Figures
4.47 to 4.49 show predictions made by the develoR®&R models against the
experimental data which were not previously seenEPAR and were only used to
validate the models. A comparison was also madba Wié predictions of the ANN
models suggested by Dayakar and Rongda (1999).

Comparison of the results and the high CoD valeestfe EPR models indicate the
excellent performance of these models in captuiing underlying relationships
between the contributing parameters and deviatesstand volumetric strain response
of granular soils and also in generalizing thenirag to predict the behaviour of these
soils under unseen conditions. The results alsa shat EPR over performs ANN and
its results are a closer match to the actual exygerial data.

The incremental procedure was continued until bé points on the curves were
predicted and the curves were established. Figlek to 4.54 show the comparison
between the four complete curves predicted usiagefAR models following the above
incremental procedure and the actual experimeesallts for 4 data sets.
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Figure4.43. (a) Deviator stress-axial strain and (b) volumestrain-axial strain curves
predicted by the EPR models compared to experirhdata ¢; = 2932 kPa) — training data
case
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Figure 4.44. (a) Deviator stress-axial strain and (b) voluneestrain-axial strain curves
predicted by the EPR models compared to experirhdata ¢; = 11767 kPa) — training data
case
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Figure 4.45: (a) Deviator stress-axial strain and (b) volumetti@in-axial strain curves
predicted by the EPR models compared to experirhdata ¢; = 1961 kPa) — training data
case
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Figure 4.46: (a) Deviator stress-axial strain and (b) voluneestrain-axial strain curves
predicted by the EPR models compared to experirhdata and ANN model predictions
(o3 = 275 kPa) — training data case
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Figure4.47: (a) Deviator stress-axial strain and (b) volumettrain-axial strain curves
predicted by the EPR models compared to experirhdata and ANN model predictions
(o3 = 11767 kPa) — testing data case
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Figure 4.48: (a) Deviator stress-axial strain and (b) voluneestrain-axial strain curves
predicted by the EPR models compared to experirhdata and ANN model predictions
(03 = 19613 kPa) — testing data case
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Figure 4.49: (a) Deviator stress-axial strain and (b) voluneestrain-axial strain curves
predicted by the EPR models compared to experirhdata and ANN model predictions
(03 = 5515 kPa) — testing data case

The CoD values of the EPR models (Equations 4-8a@gare given in Table (4.14).

Table4.14: COD values for EPR models
COD values for COD values for

Equation

training (%) testing (%)
Deviator stress (Equation 5.2.1) 99.99 99.98
Volumetric strain (Equation 5.2.2) 99.99 99.99
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45.5 Predicting entire stress paths using the EPR models

In this section, the EPR models (Equations 4-8 44®) are used to predict the entire
stress paths, incrementally, point by point,gn&, and &,:&, spaces. Results from

four different sets of (testing) data were use@ualuate the ability of the incremental
EPR models to predict the complete behaviour ofigea soils during the entire stress
paths. The values of average grain size, coeffigierf uniformity and curvature,
hardness, shape factor, void ratio and the corirgressure represented the initial
conditions of the soil and were considered const@mbughout the test. Other
contributing parameters including axial strain @he current values of deviator stress
and volumetric strain were updated in each increaiestep, considering the values
from the previous increment and the EPR modelsutsitin response to an axial strain
increment. Figure 4.50 illustrates the proceduréovieed for updating of the input
parameters and building the entire stress patthéoshearing stage of a triaxial test.

At the start of the shearing stage in a conventitrexial experiment, the values of all

parameters are known. Then, for a prescribed inen¢iof axial strain ¢, ) the values
of 4., &,., are calculated from the EPR models (Equationsa#eB4-9 respectively).
For the next increment, the values&yf, ,q and¢,; are updated as:

0 =G

Evi = E&uin

ga,i = ga,i + A“Ea

2\
h ° \\\ : Qi+1

€ "//'
° "l/;&\ EPR -£v .
-

A 4
N
\\~

Figure 4.50: Incremental procedure for predicting the entiresst path
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Figure4.51: (a) Deviator stress-axial strain and (b) voluneestrain-axial strain curves
predicted by the EPR models compared to experirhdata ¢; = 413 kPa) — testing data
case, entire stress path prediction.
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Figure 4.52: (a) Deviator stress-axial strain and (b) volunoestrain-axial strain curves
predicted by the EPR models compared to experirhdata ¢; = 19613 kPa) — testing data
case, entire stress path prediction.
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Figure 4.53: (a) Deviator stress-axial strain and (b) volunoestrain-axial strain curves
predicted by the EPR models compared to experirhdata ¢; = 8276 kPa) — testing data
case, entire stress path prediction.
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Figure 4.54: (a) Deviator stress-axial strain and (b) voluneestrain-axial strain curves
predicted by the EPR models compared to experirhdata ¢; = 2068 kPa) — testing data
case, entire stress path prediction.

The data for these tests have not been introducdtetEPR during the model building
process. The predicted results are in very goodesgent with the experimental results
and, similar to the unsaturated soil models diseubgfore, in spite of the facts that the
entire curves have been predicted point by poidtaso the errors of prediction of the
individual points are accumulated in this prediatigtill the EPR models are able to
predict the complete stress paths. This showsBER& framework is very effective and
robust in modelling the behaviour of granular soils

45.6 Senditivity analysis

Results of the sensitivity analysis (conductedescdbed in section 4.4.6) are shown in
Figures 4.55 to 4.57.

As expected increasing the average particle sibécfwindicates that the soil grains are
getting coarser) causes the shear strength ofboiheogncrease (Figures 4.55a). In case
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of granular soils the best way to compact a sorh@a is vibration rather than
compression. This is because of the friction betwbe coarse grains which increases
under compression and makes it more difficult Far $oil grains to move and fill up the
voids. Figure 4.55b shows the negligible effecinafease in particle size on volumetric
strain in granular soils.

Increasing the shape factor parameter shows thgailaty of the soil increases
resulting in higher friction and subsequently highlkear strength; however, as the soil
grains gets more angular the possibility of crughof the angular grains under stress
also increases. Figure 4.56 shows that, due toghesing effects of increase in friction
and crushing of angular soil grains, the overdiafof increasing the shape factor, on
shear strength and volumetric strain of granulds $® negligible.

Increasing void ratio causes the shear strengtiidp and also the volumetric strain to
increase under shearing. These effects are algectlyr predicted by the proposed
models (Figure 4.57).
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Figure 4.55: Sensitivity analysis results considering the dftdaverage grain siZ@so on EPR
model predictions for (a) deviator stress and @yimetric strain.
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Figure 4.56: Sensitivity analysis results considering the dftdcshape factomf) parameter on
EPR model predictions for (a) deviator stress dmaddlumetric strain.
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Figure 4.57: Sensitivity analysis results considering the dftdcsoid ratio parameter (e) on
EPR model predictions for (a) deviator stress dmaddlumetric strain.

4.5.7 Discussion and conclusions

Two models were developed based on the evolutiopadynomial regression to
describe the deviator stress-axial strain and vetumstrain-axial strain behaviour of
granular soils. It was shown that the EPR models capture the underlying
relationships between various parameters directdynfexperimental triaxial data and
predict the granular soil behaviour with a veryth@gccuracy. The EPR models were
also tested using data that were not used in gwairig of the EPR models; in this way,
an unbiased performance indicator was obtainedemdal prediction capability of the
models. The results revealed that the EPR-base@lmace capable of generalizing the
training to predict the behaviour of granular seoifgler conditions have not previously
seen by EPR in the training stage.

Through the comparison of the results it was showat the proposed EPR models
outperform ANN and provide closer results to thpesknents.
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The EPR models also successfully predicted the taimptress paths ine, ande, : ¢,
spaces incrementally and point-by-point for unsesses of data.

4.6 |ldentification of coupling parameters between shear
strength behaviour and chemicals effects in compacted
soilswith EPR

4.6.1 Introduction

In the concept of nuclear waste storage, the #iabiithe galleries will be ensured with
a concrete lining and this repository will be baltéd after use. Among other functions,
this backfill will limit the convergence of the dglies after the concrete lining breaks
(i.e. after thousands of years); it should alsost@m the bentonite seals during their
hydration. One key point is the degradation of ¢bacrete lining of the galleries that
will generate alkali-rich and high-pH solutes (Amsten et al., 1989) that will then
diffuse into the backfill. This will give rise to phenomenon called the hyperalkaline
plume. Under extremely alkaline conditions, i.e. pH12, most of the usual soil
minerals undergo extensive physicochemical transditions ( (Huertas et al., 2000);
(Boardman, Glendinning and Rogers, 2001)). Verylph water causes the dissolution
of the soil primary minerals accompanied by thaerfation of secondary minerals like
calcium silicate hydrates (CSH) and calcium alun@niaydrates (CAH) (pozzolanic
reactions) ((Bauer and Berger, 1998); (Bauer anttié/e1999); (Chermak, 1993);
(Ramirez et al., 2002); (Claret et al., 2002)). Mgeochemical modelling studies have
also been performed ( (Savage, Noy and Mihara, 2QG2ucher et al., 2004)).
However, only very few studies have been carrigdoouthese processes at the scale of
compacted clay samples to characterise potentehokmechanical couplings between
such high-pH water circulation and its impact oa gfeomechanical behaviour (shear
strength, compressibility, permeability, etc.). Retl et al (2005) concluded that these
physico-chemical reactions should alter the backfilysical properties, like porosity
changes associated with permeability variation.d§hg the interaction between
Friedland Ton clay and low-pH cement water Puscl €2003) identified a slight drop
in the clay hydraulic conductivity. Robinet (200&)owed that permeability of MX-80
bentonite was not sensitive to alkaline fluid clation but to the temperature of the
experiment. Karnland (2005) subjected MX-80 sampteseveral alkaline water types
(NaOH and Ca(OH)2 solutions). Their results shovleat the swelling pressure in
bentonite is strongly reduced by exposure to Na@Hiti®ns while little effect on
swelling pressure was found in the samples exptus€ad(OH)2 solutions.

Cuisinier et al ( (2008) and (2009)) carried owtady to depict the influence of the
circulation of very high-pH water on the hydro-manltal behaviour of compacted
argillite, pure or mixed with an additive (sandntmnite or quicklime), that are the
candidate materials to be used for backfilling. Gemmechanical behaviour and the
microstructure of the considered materials werdistliover a period of alkaline water
circulation of 12 months. The impact of the alkalifluid on the geomechanical
properties of the materials appeared to be a divection of the nature of the additive.
The geomechanical behaviour of the sand — argifiiteture remained almost stable
over a period of 12 months of alkaline water ciatigin while, over the same period,
dramatic modification of the lime — argillite mixeuwas observed. The subsequent step
of this research would be to identify the key cauplparameter(s) between the
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chemical stress imposed by the alkaline water @tmn and the alteration of the
hydro-mechanical behaviour of the tested mixtuféss is required to be able to assess
the sensitivity of a given mixture, different frotime one experimentally tested, to the
circulation of alkaline water.

The large amount of tested configurations, the thfferent mixtures, and experimental
conditions have rendered difficult the determinatad such coupling parameter(s) and
due to this the EPR was used to model the comptdrxohmechanical behaviour of the
soil during alkaline fluid circulation.

An EPR model was developed and evaluated basedsniits from test data involving
various additives circulation times (i.e. 0, 3,a8d 12 month). Four cases of data, not
employed for the training phase, were chosen todeel in the testing stage to evaluate
the generalization capabilities of the developedieholn the last section, a parametric
study was carried out where all parameters wereodéeir mean values except the one
being monitored that was changed from its minimuanthte maximum value in the
training and testing data sets. The results ofahaysis were used to identify coupling
parameter(s) between chemical effects and sheargskr behaviour alteration in order
to assess the sensitivity of compacted soil tolia&avater circulation.

4.6.2 Experimentsand data

Data used to develop the EPR models were acquiosa the works of Cuisinier and
his colleagues ( (2008), (2009)). The selected nahteorresponds to the callovo-
oxfordian argillite where the French undergrountiolatory has been built. After
sampling, the Manois Argillite (MA) was carefullyomogenised and crushed into a
very fine grain powder. Chemical and XRD analyselcated that the MA contains 26
to 32 % calcite, 22 to 27 % quartz, and 41 to 48l&ys. The clays were mainly illite,
kaolinite and an interstratified illite-smectitehd specific surface determined with BET
was 40.4 + 1 tg™.

For the study of the backfilling of deep galleriisee different additives intended to
improve the hydro-mechanical properties of thelbtegiwere considered. The first was
a 50 % sand and 50 % MA mixture on a dry-weightidsashe addition of sand
increases the dry density and the frictional charatics of the compacted argillite
((Dixon, Gray and Thomas, 1985); (Mollins, Stewantl Cousens, 1999)). The selected
sand was calcareous sand produced in a quarrytineadvleuse-Haute Marne site. It
contained more than 95 % calcite, with the remanminerals being quartz and
ankerite. Its characteristics are given in Tabl&4.

Table 4.15: Properties of the tested materials

Material Liquid Plasticity Solid Cation
limit index density exchange
(LL%) (P1%) (Mg/m®)  capacity
(meq/1009)
MHM argillite® 31 17.9 2.7 6-14
MA 51 11.2 2.68 23
Calcareous sand Non-plastic Non-plastic 2.71 -
MX-80° 520 458 2.65 97

2Data of MHM argillite from Deroo (Deroo, 2002)
® Data from Marcial et al (Marcial, Delage and C2@02) and Neaman et al (Neaman, Pelletier and
Villieras, 2003)
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The second additive was MX-80 bentonite, which a@lgcted to enhance the sealing
properties of the backfill through improved swaedliDixon, Gray and Thomas, 1985).
The properties of MX-80 are also given in Table54 This clay contains more than 80
% montmorillonite with sodium and calcium as exdajeable cations and 86.1 % of the
particles are smaller thandn The mixture used was 20 % MX-80 and 80 % MA on a
dry-weight basis.

The third additive considered was quicklime, whitiproves both the cohesion and the
friction angle of clayey materials ( (Fossberg, 39¢Brandl, 1981)). When added to a
soil, lime induces physico-chemical reactions thi@icrease the mechanical
characteristics of the soil ( (Little, 1995); (Bell996); (Le Runigo et al., 2009)). The
quicklime used in that study was composed of mbea 97 % of pure CaO. A lime
content of 4 % with the remainder MA on a dry-weidgasis was selected for the
experimental program.

Results from 33 consolidated undrained triaxialste®nducted on samples of argillite
(MA), lime-MA, sand-MA, bentonite-MA mixtures, sudgjted to different periods of
exposure to alkaline water circulation, were usaddievelopment and validation of the
EPR model. Of the total of 33 cases, 29 caseserklat different circulation times (i.e.
0, 3, 6, 12 months) were used for training of tikREModel. Of these 29 cases, 11 cases
were related to no circulation (O month of circidaj, 5 cases to 3 months, 2 cases to 6
months and 11 cases to 12 months of circulationhef alkaline water through the
samples. The remaining 4 cases (each relatingdiffexent soil and circulation time)
were kept unseen during the model development psoemd used to evaluate the
developed model.

4.6.3 EPR model

Eight parameters were used as input for the EPRemiadluding dry density 4, ),
alkaline water circulation timet{, axial strain €,), pore pressureu(), effective
confining pressure d;), porosity of macro-porese( ), porosity of micro-porese,),

and the specific surface of the solil particlss) The only output was considered to be
the deviatoric stresso{-o;). The following equation represents the (unit aejent)
EPR model developed through the above mentionetefdroe:

-295x10°; 468 001  107x10°%, +597x10°e; (i 13656 _565x10°Au

O_Y _O_Y =
v piEs piE & e, [BS e ss’
-5 3 3 13 2 -
299x10°°u B2 - 323x10%e2 — 0 Em L E WY ) oy 109X10°6, LBy 5 0,0 4-10
3 'm SSg ™M SS pd

, 20480, (&, (8] b, _172x10°p} (&
ss & &

m

& +456331

Figure 4.58 shows typical results of the trainifighte EPR model for sand-argillite,
lime-argillite and MX-80-argillite mixtures at shgly different confining pressures after
12 months of circulation. The results are compavél actual measurements and it is
shown that the EPR model has been able to capterdeeghaviour of the mixtures with a
good accuracy.
Figure 4.59 presents typical results of testinghef developed EPR model for pure
argillite at confining pressure of 295kPa with nacglation, lime-argillite at confining
pressure of 274kPa after 6 months of circulatiod &hX-80-argillite at confining
pressure of 270kPa after 12 months circulatioms BEhown that the developed model
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has also been able to generalize the trainingnditons that were not introduced to the
model during the training process. The valuesoefftcient of determination for testing
and training data are 93.2% and 94.24% respectively

4.6.4 Sendtivity analysis

This sensitivity analysis (conducted as detaileddation 4.4.6) aimed at determining a
possible coupling parameter that could explaincti@nges in shear strength behaviour
observed after the circulation of the alkalinedlui

The sensitivity analysis was carried out considgriour parameters (dry density,
macropore void ratio, micropore void ratio and sfpesurface). It can be seen that the
dry density did not permit to explain differenceasmaximum shear strength that have
been observed in the experimental study (Figur@)4Bven though there is a tendency
for the maximum shear strength to increase withiramease in dry density, the
calculated variation is much more limited (165-1B8k compared to what has been
observed experimentally for the tested mixturesnffrhundred kPa up to several
thousands of kPa). The same conclusion can be dirawnthe sensitivity analysis for
the macropore void ratio (eM).

However, the results of the sensitivity analysi©ovetd that the variation of the
maximum deviatoric stress for all the tested sampkn be explained mainly by the
value of the specific surface of the samples, aafpgcwhen its value is below
100 nf.g* and to a lesser extent by the micropore void r&om a physical point of
view, specific surface can be used as an indicatdhe nature of the material as it
reflects its clay content and therefore its meatanbehaviour before circulation. The
addition of MX-80 bentonite to the Manois argillitesults in a high value of the
specific surface, which results in lowering of thechanical characteristics compared to
the initial material (Table 4.16). The addition lohe leads to the flocculation and
aggregation of the clay particles that is respdadir a decrease in the specific surface
of the Manois argillite, and increase of the mian@pvoid ratio. This was associated
with a strong effect on the shear strength behawegause addition of lime led to the
formation of cementitious compounds responsible tha increase in shear strength
(Table 4.16) as evidenced by several authors €L.iftD95). The effect of the alkaline
water circulation may also alter the specific scefaf the tested material. Indeed, the
main effect of the alkaline fluid circulation wae tnduce the dissolution of clay
particles (Huertas et al., 2000), that could resuli decrease in the specific surface of
the soil. The dissolved compounds may react with dhlcium to form cementitious
compounds responsible for the increase in sheangitr. The formation of new
cementitious compounds can lead to a closure ofsthallest pores of the soil as
evidenced by some researchers who studied limettesils at microstructural level

( (Choquette, Berube and Locat, 1987); (Bin et24Q7)).

Combination of the two parameters, specific surfaoe micropore void ratio, allowed
the explanation of the behaviour of the mixtureMéinois argillite and of MX-80
bentonite. This sensitivity analysis shows that iedel has also been able to capture
and represent the behaviour of the individual mixtun fact, in case of this mixture,
the circulation led to a strong increase of spedifirface (-25 fag™) and an increase of
the macropore void ratio without significant mod#tion of the micropore void ratio.

131



Chapter (4) Apglion of EPR for Constitutive Modelling of Soils

500 (a)
500 -

400 -

300 -~ —es—EPR
—e— Experiment

200 -
100 -
0

Deviatoric stress (kPa)

T v T v Y
4 6 8 10
Axial Strain (%)

—

O -
N

5000

1(b)

4000

1 —=—EPR
3000 —e— Experiment

2000

Deviatoric stress (kPa)

1000

| . I ’ I . |
& 6 8 10
Axial Strain (%)

O
N_

400

300 -

200 -

100 -

—e—EPR

Deviatoric stress (kPa)

—e— Experiment

' | v I ’ | . | . |
0 2 4 6 8 10
Axial Strain (%)

Figure 4.58: Typical training results of the EPR model: (a) &angillite, 0’3=569kPa, (b)
Lime-argillite 0,=587, (c) MX-80-argillite,0, =557kPa, after 12 months circulation.

132



Chapter (4) Apglion of EPR for Constitutive Modelling of Soils

300
©
o
X
» 200 -
[72]
o
>
L
§ 100 ~
3 —=—EPR
> —e— Experiment
=)
0 ¥ T T T T T T T i T ) T T
0 2 4 6 8 10 12 14
Axial Strain (%)
5000
s 1(b)
~ 4000 -
- i —=—EPR
g 3000 - —e— Experiment
% .
2 2000 -
L )
©
'S 1000 -
[}
D -
0 : : : : :
0 2 4 6
Axial Strain (%)
300
s |(c)
=
@ 200 -
o
>
L
S 100
3 ——EPR
3 —e— Experiment
0 1 ! I N I ! 1

I ! |

0 2 = 6 8 10
Axial Strain (%)
Figure 4.59: Typical testing results of the EPR model: (a) Rargllite, o; =295kPa, No
circulation; (b) Lime-argillitec;, =274, 6 month circulation; (c) MX-80-argilliter, =270kPa,
12 months circulation.

133



Chapter (4) Apglion of EPR for Constitutive Modelling of Soils

300
(a) 7ooo<(b)
.
1 \
2501 6000{ |
| .
= 200. § 5000 I'.
% ...0"’....... = ‘
A JUUTRSTT @ 4000
£ 150- £ |
w w
L £ 3000
S S \
= o \
> 1o 3 2000/ \
(=) (] "
-
\\‘
50 1000 | .
‘-“"“o.oooo"
0
0 . , . .
1,4 16 18 0 50 100 150 200
Dry density (%) Specific curface (m?/g)
250 : 1200
(c) (d) .
e 1000 | J
200 ,-" s
- .
— i —~ 8004 »
© ¥ o .
Q. v o ]
X 150 v x [ ]
o { w | |
@ b4 @ 600- -
= ’ = -
w / 7] .-
o v (8]
- y . L
2 100 ’,‘ 5 400 -I
o ’ o -
3 / s u
o a
! 200+
504 f
J
. o/
02 0.4 06 08 02 0.4 06
Macropore void ratio (eM) (-) Micropore void ratio (em) (-)

Figure 4.60: Sensitivity analysis considering effect of (a) dgnsity, (b) specific surface, (c)
macroporosity and (d) microporosity

134



Chapter (4)

Applion of EPR for Constitutive Modelling of Soils

Table 4.16: Properties of the tested materials

Mixture Circulation ~ Water Dry Specific  Effective Effective
period content weight surface  friction  cohesion
(months) (%) Mg.m? (migh) angle(®  (kPa)
Pure argillite 0 23 1.61 156.6 18.6 25.6
12 27.5 1.54 142 22.2 9.5
50% Argillite + 0 15.5 1.83 67.5 28.9 0
50% sand
3 17.1 1.86 71.7
6 14.9 1.85 67.5 26.8 )
12 16.2 1.88 74.6
80% Argillite + 0 255 1.54 205.6 18.1 0
20% MX-80
12 34.5 1.34 182.6 13.5 30
96% Argillite + 4% 0 255 1.55 51.4 39.5 50.3
lime
3 29 1.49 24.5
6 29.9 1.47 19.6 53.7 282.5
12 29.7 1.48 12.2

#No significant influence of circulation duration ehear strength parameter

4.6.5 Discussion and conclusions

Results from a comprehensive study on the impath®falkaline fluid circulation on
mechanical behaviour of several mixtures, made byingn Manois Argillite and
different additives was used to model the complgdrérmechanical behaviour of the
soil during alkaline fluid circulation using the autionary polynomial regression
(EPR).

Overall, the results showed that the EPR modeahddafrom pure experimental data,
was able to capture and correctly represent manysigdl characteristics of the
behaviour of the different mixtures consideredhe study and the effect of the alkaline
fluid circulation, with a high accuracy for botlaimning and unseen testing sets of data.
This model was then used to perform a sensitiviiglysis in order to identify the best
possible coupling parameters between chemical'®cefland the shear strength
behaviour. It appeared that the most appropriatanpeter is the specific surface of the
mixture. In the model, the specific surface penmitake into account differences at the
initial state (before circulation), reflecting themposition of the mixture, i.e. the nature
of the additive, and the differences in their steteength behaviour. Moreover, specific
surface is sensitive to the alkaline fluid circidatduration, and its impact on the shear
strength behaviour of each individual mixture. Téesser extent, the micropore void
ratio appeared to be a coupling parameter, evamgththe shear strength behaviour of
the different mixtures is less sensitive to it.

4.7 Conclusions

In this chapter the application of EPR in modellihg stress-strain and volume change
behaviour of saturated and unsaturated soils wesepted. The temperature effects on
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the mechanical behaviour, and also the soil-wal@racteristic curve in unsaturated
soils were modelled. The entire stress paths fesststrain and volumetric strain-axial
strain behaviours were successfully reproducedgusiae developed models for relevant
cases. EPR modelling was also successfully uséiddacoupling parameters between
shear strength behaviour and chemical's effects compacted soils. Detailed

explanations of the modelling procedures and timsigeity analyses of the developed
models were presented.

The results showed that the developed models wapabte of predicting complex

behaviour of saturated and unsaturated soils atstyra

In the next chapter, further applications of theRERethodology to other geotechnical
and civil engineering problems will be presented.
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Chapter 5

OTHER GEOTECHNICAL AND CIVIL
ENGINEERING APPLICATIONS OF
EPR

5.1 Introduction

This chapter presents the application of EPR toeldgv models for predicting
compaction characteristics and permeability ofssastability status of soil and rock
slopes and the mechanical behaviour of rubber etacr

Permeability (K), maximum dry density (MDD) and ioptim moisture content (OMC)
are modelled as functions of some physical progerof soil. EPR models are
developed based on results from a series of dleestsiin, compaction and permeability
tests from literature. The tests included stand®mbctor tests, constant head
permeability tests and falling head permeabilitstseconducted on soils made of four
components, bentonite, limestone dust, sand, antkgmixed in different proportions.
EPR methodology is also introduced as an effidieal for stability analysis of soil and
rock slopes. The main parameters contributing ¢obihaviour of slopes, namely, unit
weight, apparent cohesion, friction angle, slopgl@rand pore water pressure are used
in the development of the EPR models. The develaopedels are used to predict the
factor of safety of slopes against failure for dtiods not used in the model building
process.

Evolutionary polynomial regression is also usegredict the mechanical behaviour of
rubber concrete. A model is developed relating ¢chenpressive strength of rubber
concrete to a number of physical parameters thatkaown to contribute to the
mechanical behaviour of rubber concrete.

Data sources and data preparation processes aeserted and discussed. Validity and
efficiency of the produced models are shown by camng the proposed model
predictions with field measurement, experimentahdand conventional models where
applicable.
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5.2 Modelling of permeability and compaction characteristics
of soils

5.2.1 Introduction

In construction of many civil engineering structuiich as road embankments, loose
soil must be compacted to a desired density andrveantent. In other projects such as
earth dams and compacted soil liners for contairdagtaminated solid and liquid
wastes, the soil should be compacted for the derast well as the permeability
requirements. The permeability of compacted soisyvmuch depends on the
compaction condition. The required compaction igally expressed in terms of degree
of compaction (dry density) and water content & #oil. To achieve the required
degree of compaction, the water content must beitseaptimum value. Thus, both the
maximum dry density and optimum water content asestial parameters for design of
compacted earthwork. Furthermore, for soil liningnstruction, the permeability of
compacted soil liner must be very low. Since petigy maximum dry density and
optimum water content are normally determined ftome-consuming laboratory tests,
it is desirable to have prediction models capablepredicting compacted soil
characteristics based on some easily measurabscphproperties of soils.

Many research works have been conducted to relatmgability and compaction
characteristics of soils to their physical propesti The physical properties used
generally include plasticity characteristics (liguimit, plastic limit, shrinkage limit,
and plasticity index), specific gravity, and grasize distribution that are easily
attainable from relatively straightforward laborgtdests. However, the specific index
properties used in various correlation equatiofferdconsiderably. Rowan and Graham
(1948) used gradation, specific gravity and shmyekdimit in their correlation
equations. Davidson and Gardiner (1949) eliminate®l specific gravity from the
equations of Rowan and Graham (1948), but inclydasticity index. Turnbull (1948)
related the optimum moisture content with gradatwhile Jumikis (1946) correlated
the optimum moisture content with liquid limit apthsticity index.

Ring et al (1962) developed two sets of correlaiqnations, one for optimum moisture
content and the other for maximum dry density. Phgsical properties used were
liquid limit, plastic limit, plasticity index, By, content of particles finer than 0.001 mm,
and fineness average (FA). The fineness averagedei@smined as one-sixth of the
summation of the percentages of soil mass finar tha.10, No.40 and N0.200 sieves.
Liquid limit alone was correlated with both maximudry density and optimum
moisture content by Ramiah et al. (1970) and Bkttal. (1998). Linveh and Ishai
(1978) also developed some relationships usingifepegravity and liquid limit as
input. Gupta and Larson (1979) presented a modepredicting packing density of
soils from grain size distribution.

The permeability of a soil varies with many fact@sch as soil density, water content,
degree of saturation, void ratio and soil structéveailable correlations between these
factors and permeability include those of Carma®3{), Burmister (1954), Lambe
(1951), Michaels and Lin (1954), Olson (1963), Mat et al. (1965), and Garcia-
Bengochea et al. (1979). Various relationships betwpermeability and grain size
distribution of soils have been reported. Hazerll )} Suggested that, for filter sands
having relatively uniform particles, the permedbilis directly proportional to the
square of the effective grain size;pDZunker (1930) developed a theoretical linear
relationship, in full logarithmic scales, betwedre tgrain size and permeability for
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spherical particles of uniform size. Taylor (1948ymulated a theoretical equation,
based on the capillary tube model, for flow througbrous media, relating the
permeability with a representative grain size. @Qaering of the effect of grain size on
permeability, Burmister (1954) recommended that typge of grading (namely, the
shape of gradation curve), range of grain size,thacffective grain size (namely;dp
must be taken into account. For a given type oflatian and grain size range, he found
that the permeability can be better related with than with Qo. Horn (1971) related
the permeability with the mean grain size on theidaf Zunker's work in 1930. Chen
et al. (1977) found that the permeability is stignglated with @y, and Hauser (1978)
related the permeability with the aggregate sizsefl on the previous research works it
can be concluded that the permeability is stromiglgendent on grain size distribution.
However, a general correlation equation betweemeability and gradation applicable
to a wide range of soils is not yet available. Bwvelop such a relationship, the entire
spectrum of grain size distribution must be congdeMore importantly, the density or
void ratio of the soil mass should also be consider

Taking into account a much broader range of inftuggm factors, Wang and Huang
(1984) developed regression equations for predjatmaximum dry density, optimum
water content, and permeability for two levels oimpaction degree (90 and 95%).
Najjar et al (1996) used neural networks to deteentihe optimum moisture content and
maximum dry density of soils. Sinha and Wang (20p8)posed models based on
artificial neural networks (ANNSs) to predict therpeability, maximum dry density,
and the optimum moisture content.

EPR models are proposed in this section as alteesato ANN models suggested by
Sinha and Wang in 2008. EPR models were developegklate permeability (K),
maximum dry density (MDD) and optimum moisture @it (OMC) to physical
properties of soils. The results of EPR model pralis were compared with those of a
neural network model, a correlation equation fraerature and the experimental data.
A parametric study was also conducted to assessetted of contribution of each
parameter to the developed models.

5.2.2 Database

Some experimental data from literature (Sinha arahyly 2008) were used to develop
the EPR models. Table 5.1 includes the gradatiopesties of soils, Table 5.2 contains
the compaction test data as well as some physiogkpies, and Table 5.3 summarizes
the permeability test data. The data are from & m@ide of four different major
components (gravel, sand, limestone dust and beetavith different proportions. The
bentonite contained Na-Montmorillonite as the priynalay mineral. The limestone
dust was a by-product of limestone quarry, whictl hagrain size ranging from 0.002
mm to 0.047 mm.

The sand component was a well-graded fine aggreate for making Portland cement
concrete. Its grain size ranged from 0.074 mm 76 4am. The gravel component was a
coarse aggregate having a particle size range 7@40.05 mm. All the tests were
conducted following the standard testing procedstgailated in the ASTM Standard,
e.g., ASTM D-422 for mechanical analysis, ASTM DB4®r liquid limit, and ASTM
D-424 for plastic limit tests. The laboratory corofian tests were conducted by using
the standard Proctor compaction effort in accordawmith the standard test procedures
of ASTM D-558. The details of testing procedure apdults of analysis have been
presented by Sinha and Wang in their 2008 paper.
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Tableb5.1: Graduation and physical properties of the teds ¢8inha and Wang, 2008)

Soil Nominal gradation (%) Actual gradation (%) Specific Atterberg limits Grain Size
No. Clay Silt Sand Gravel Clay Silt Sand Gravel gravity LL(%) PL(%)  <No.  <No. 40 ;g(())
1) %) (3) 4 (5) (6) (7) (8) 9) (10) (11) (12) (13) (14) (15)
1 100 0 0 0 84 16 0 0 2.76 495 46 100 100 100
2 80 20 0 0 71 28 1 0 2.76 444 36 100 100 99
3 60 40 0 0 57 41 2 0 2.76 351 36 100 100 98
4 40 60 0 0 44 53 3 0 2.75 203 38 100 99 97
5 20 80 0 0 30 70 0 0 2.87 84 31 100 100 98
6 0 100 0 0 17 83 0 0 2.75 24 22 100 100 97
7 0 60 20 0 13 63 24 0 2.73 0 0 100 88 76
8 0 60 40 0 10 47 43 0 2.72 0 0 100 77 57
9 0 40 60 0 31 63 0 2.7 0 0 100 66 37
10 0 20 80 0 16 81 0 2.68 0 0 100 55 19
11 0 0 100 0 0 100 0 2.67 0 0 100 44 0
12 20 80 0 16 81 0 2.69 136 25 100 55 19
13 20 20 60 0 20 18 62 0 2.7 132 23 100 66 38
14 20 40 40 0 24 34 42 0 2.73 94 26 100 70 58
15 20 60 20 0 28 50 22 0 2.74 81 27 100 88 78
16 40 40 20 0 40 38 22 0 2.74 222 38 100 88 78
17 40 20 40 0 37 22 41 0 2.72 240 35 100 78 59
18 40 0 60 0 33 6 61 0 271 277 29 100 66 39
19 60 0 40 0 50 10 40 0 2.73 389 32 100 78 60
20 60 20 20 0 54 25 21 0 2.74 362 42 100 89 79
21 80 0 20 0 67 18 20 0 2.76 467 39 100 89 80
22 0 90 10 0 0 90 10 2.67 0 0 90 40 0
23 0 20 70 10 3 16 71 10 2.72 0 0 90 51 10
24 0 40 50 10 7 32 51 10 2.76 0 0 90 62 39
25 0 60 30 10 10 48 32 10 281 0 0 90 74 58
26 0 80 10 10 14 64 12 10 2.86 0 0 90 85 78
27 0 90 0 10 16 72 2 10 2.88 0 0 90 90 88
28 10 10 70 10 10 9 71 10 2.69 75 15 90 51 19
29 10 30 50 10 23 26 41 10 2.75 60 10 90 72 49
30 10 50 30 10 17 42 31 10 2.72 50 10 90 74 59
31 10 70 10 10 21 57 12 10 2.84 45 20 90 85 78
32 10 80 0 10 22 62 2 10 2.86 50 25 90 90 88
33 30 10 50 10 27 12 51 10 271 210 30 90 62 39
34 30 30 30 10 30 28 32 10 2.73 175 35 90 73 59
35 30 50 10 10 34 44 12 10 2.74 165 40 90 84 78
36 30 60 0 10 35.6 53 1.8 9.6 2.84 162 47 90 90 89
37 50 10 30 10 44 16 30 10 2.74 342 32 90 74 60
38 50 30 10 10 47 32 11 10 2.74 330 40 90 85 79
39 50 40 0 10 49.2 40 1.2 9.6 2.75 322 37 90 90 89
40 70 10 10 10 61 19 10 10 2.74 445 40 90 85 80
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Table5.1: Continued

Soil Nominal gradation (%) Actual gradation (%) Specific Atlfﬁqritt)srg Grain Size

NO- Clay sit Sand Gravel Clay sit Sand Gravel 9V (Lo/';) (f/; o e e
1) (2) (3) 4 (5) (6) ) (8) 9) (10) (11) (12) 13) (14 (19)
41 70 20 0 10 63 26 1 10 2.75 435 40 90 90 89
42 90 0 0 10 76 14 0 10 2.75 495 46 81 90 90
43 0 80 20 0 0 81 19 2.67 0 0 81 36 0
44 0 20 60 20 4 15 62 19 2.69 0 0 81 47 19
45 0 40 40 20 7.2 31.2 424 19 2.71 0 0 81 58 38
46 0 60 20 20 11 47 23 19 2.72 0 0 81 69 58
47 0 80 0 20 14 64 2 20 2.86 24 22 81 81 78
48 20 0 60 20 17 3 61 19 2.7 170 30 81 47 20
49 20 20 40 20 21 19 41 19 271 140 25 81 58 39
50 20 40 20 20 24 34 22 19 2.73 110 25 81 69 58
51 20 60 0 20 28 50 3 19 2.74 110 40 81 80 78
52 40 0 40 20 36 6 39 19 2.72 340 32 81 60 42
53 40 20 20 20 38 22 21 19 2.72 300 40 81 69 60
54 40 40 0 20 41 38 2 19 2.75 285 40 81 80 79
55 60 0 20 20 51 10 20 19 2.74 455 40 81 70 61
56 60 20 0 20 55 25 19 2.75 425 40 81 81 80
57 80 0 0 20 68 13 19 2.75 495 46 81 81 81
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Table5.2: Compaction test data and gradations of test £Sifdha and Wang, 2008)

SoilNo.  Wopt (%)  Vqmax(kg/m*) (wesrgmm) (10?1rs1m) Mclj(ljnu?lTs(SESn) Cg:flfggirgltt)zw lz%l
1) 2 (3) (4) (%) (6) (7) (8)
1 28 1297 35 56 0.37 10.36 71
2 31 1289 6 5 0.621 22 58
3 29 1362 14 10 0.472 25 45
4 28 1450 29 13 1123 37.69 33
5 28 1458 42 40 1.282 14 19
6 26 1490 54 140 152 479 5
7 21 1602 100 300 2.024 0.47 6
8 16 1714 1500 200 2.48 80 4
9 11 1762 3500 160 2.857 225 2
10 105 1898 3600 630 3.276 71.43 0
11 14 1826 4500 19000 3.68 2.95 0
12 13 1874 3700 46 3.043 1043.48 13
13 10 1666 2300 40 2.861 850 15
14 20 1618 140 30 2175 416.67 17
15 24 1546 70 25 1741 44 19
16 28 1474 42 15 1527 53.33 31
17 17 1602 85 12 1.924 708.33 31
18 13 1704 2200 11 237 290.91 28
19 15 1554 20 5.6 1.865 1517.86 42
20 27 1450 16 7 1.286 54.29 44
21 30 1386 7 5 1.035 24 57
22 13 1890 5500 18000 3.949 417 0
23 125 2058 4100 600 3521 96.67 0
24 12 1922 2300 270 3.097 140.74 2
25 16 1788 120 190 2.667 63.16 3
26 22 1706 70 160 2218 5.94 4
27 24 1618 60 150 1.996 5.13 5
28 10 1914 4200 220 3.417 263.64 8
29 135 1962 2500 140 2972 150 18
30 175 1704 120 100 2538 128 10
31 235 1629 65 70 2114 12.68 11
32 275 1578 57 60 1.887 12 12
33 16 1770 2300 18 2.745 2000 22
34 20 1722 120 23 2.323 565.22 24
35 25 1602 60 26 1.916 38.46 25
36 29 1525 41 30 1.666 20 25
37 20 1504 50 6 2.083 1666.67 36
38 28 1498 25 8 1.661 75 38
39 325 1450 21 11 1.44 38.18 39
40 27 1474 9.5 5.5 1.406 36.36 50
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Table5.2: Continued

. D D Fineness Uniformity F

0, 3 50 10 0.001

SoilNo.  Wopt (%) Vymax(kg/m*) (15 mm) (10° mm) Modulus(F,)  Coefficient (U) (%)

1) (2) (3) (4) )] (6) (7 (8)
a1 30 1426 ) 5 12 3 52
42 24 1394 44 38 0.955 21.05 64
43 8.5 2026 6200 18500 4218 5.14 0
44 95 2122 4600 700 3.79 102.86 2
45 12 2018 3000 280 3.374 160.71 3
46 15 1764 190 190 2.952 78.95 5
47 225 1682 70 150 2.482 6.33 6
48 8 1922 4800 40 3.551 1825 14
49 12 1970 2800 35 3129 1760 16
50 195 1738 140 44 2.707 295.45 18
51 26 1618 70 60 2.243 183 24
52 115 1802 2500 6.8 2816 6176.47 31
53 20 1714 90 11 2.462 1181.82 31
54 24 1570 40 16 203 50 32
55 18 1618 20 6.5 2212 523.08 43
56 18 1538 15 75 1.79 45.33 45
57 30 1474 6 44 1.556 28.41 57

143



Chapter (5) Other Geotechnical €ivil Engineering Applications of EPR

Table0.1: Permeability test data (Sinha and Wang, 2008)

) Permeability Permeability Void Ratio  Void Ratio
Soil No. 7 7
(107 crys)lked (107 €Y S)[Kes] (es0) (es9)
1) ) ) 4 (5)
1 0.00052 0.00036 1.362 1.238
2 0.0005 0.00025 1.377 1.252
3 0.017 0.014 1.225 1.133
4 0.258 0.75 1.107 0.996
5 1 0.64 1.095 1.072
6 90 45 1.174 0.942
7 11 1.15 0.983 0.793
8 270 44 0.762 0.654
9 120 27 0.717 0.627
10 5000 8400 0.568 0.497
11 5211 48 0.653 0.566
12 0.013 0.003 0.594 0.512
13 0.35 0.18 0.817 0.722
14 1.7 13 0.912 0.811
15 0.51 0.5 0.969 0.065
16 0.041 0.029 1.064 13.956
17 0.0031 0.00215 0.904 0.804
18 0.001 0.00081 0.678 0.589
19 0.0038 0.0004 0.951 0.849
20 0.0014 0.00091 1.099 0.989
21 0.0007 0.0006 1.204 1.088
22 15000 3200 0.49 0.412
23 800 100 0.468 0.39
24 200 60 0.594 0.511
25 75 20 0.747 0.655
26 350 42 0.862 0.764
27 24 7.5 0.977 0.873
28 10 2.5 0.561 0.479
29 550 25 0.566 0.575
30 40 9 0.733 0.595
31 50 36 0.936 0.834
32 19 12 1.013 0.907
33 0.5 0.04 0.7 0.611
34 0.52 0.42 0.761 0.688
35 5.2 1.2 0.9 0.8
36 6.3 1.7 1.068 0.959
37 0.016 0.0048 0.902 0.802
38 0.043 0.034 1.032 0.925
39 0.19 0.056 1.107 0.966
40 0.0034 0.0028 1.065 0.956

5.2.3 Data preparation

The similar procedure detailed in section4-2-3 wsed to choose the most statistically
consistent training and testing data sets to bd uséraining and validation stages in
EPR model development process.
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5.2.4 EPR mode for maximum dry density (MDD)

Five input parameters were used for the EPR made\iDD including dry density of

solid phasdy,) expressed inkg/m*), fineness modulus (Fm), effective grain sizeqD

expressed in (mm), plastic limit (PL) expressed%), and liquid limit (LL) expressed

in percentage (%). The only output was the maxinduyndensity. The (unit dependent)
EPR model developed for maximum dry density is:

\/
MDD = —lB’SX;O(Dlo) +192(D,,) - 661x10°(D,,) (PL [LL +52 35Fm? +138507
s 0-1
Figure 5.1 shows a comparison between the rest@iitteoEPR model training and
testing and the actual experimental data. Tablgfedents the values of the coefficient
of determination (CoD) for the models. The tablevg$ that the EPR model performs
well and represents a very accurate predictionifigeen cases of data.

Table 0.2: Coefficient of determination for predicted MDD uabk

M odel COD values (%)
Evolutionary Polynomial Regression 96
(EPR) (for unseen testing data )
Artificial Neural Network 98
(ANN)- Sinha and Wang (2008)
Wang and Huang (1984) 95

The results of the parametric study are shown gurei 5.2. The procedure followed is
explained in detail in section 4.4.6. It is showatt according to this model, density of
the solid phase, effective grain size, plastic tiamd liquid limit have no significant

effect on MDD. The main contributing factor appetrse the fineness modulus. To
consider this, another model was developed by ramgahe parameters with negligible
effects as:

MDD = 2148[ Fm+118439 0-2

Figure 5.3 shows a comparison between the restiitteoEPR model training and
testing and the actual experimental data. The gabdiehe coefficient of determination
(CoD) for the training and testing stages of thedetowere 90.78% and 90.29%
respectively. Sensitivity analysis results (Figird) show that increasing fineness
modulus (i.e., soil getting coarser) causes theimax dry density to increase.
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Figure 0.1: Comparison between the predicted maximum dry teeasid the actual values
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Figure 0.2; Parametric study results of the maximum dry dgregiainst; (a): density of the
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liquid limit (to be continued)
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5.2.5 EPR model for optimum moisture content (OMC)

Three input variables were used to develop the BRigel for OMC including the
fineness modulus (Fm), coefficient of uniformity)(land plastic limit (PL). The EPR
model developed to predict the optimum moisturgemins:

-5 3 -3
947 357Tx107PL° _ 456x107U | 1 75x10pL2 - 636Fm +3409

OoMC =—— .
Fm® [U Fm Fm 0-3

The optimum moisture content of soils predictechgghe EPR model was compared
with the experimental data (Figure 5.5). The valoksoefficient of determination for
the models are also shown in Table 5.5. The resudisated excellent performance of
the proposed EPR model. Figure 5.6a (sensitiviglyams results - see section 4.4.6)
shows that as the fineness modulus increases (thesgget coarser), the optimum
moisture content decreases. This is consistent with expected behaviour
(Venkatarama and Gupta, 2008). The effect of adefft of uniformity on OMC is
shown in Figure 5.6b. The higher the coefficientuafformity, the larger the range of
particle sizes in the soil and hence the lower dpgmum moisture content (Craig,
1998).
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Table 0.3: Coefficient of determination for predicted OMC was

M odel COD values (%)
Evolutionary Polynomial Regression (EPR) 94
(for unseen testing data )
Artificial Neural Network 92
(ANN) - (Sinha and Wang, 2008)
Wang and Huang (1984) 89

Again, this trend is correctly predicted by the mlodrigure 5.6¢ shows that increasing
plastic limit results in the increase in the optimmoisture content due to the increase
in the specific surface of the soil grains. A samiltrend of variation of optimum
moisture content with plastic limit is reported $gdharan and Nagaraj (2005). The
results also show that optimum moisture contengresatly affected by the fineness
modulus and the coefficient of uniformity and piasimit appear to have less effect on
the optimum moisture content of soil.

5.2.6 EPR model for coefficient of permeability (K)

Five input parameters were used for the EPR mamtethie coefficient of permeability
including degree of compaction (P) expressed in (A®an grain size ({9 expressed in
(mm), effective grain size (f9) expressed in (mm), plastic limit (PL) expressed%),
and the liquid limit (LL) expressed in (%). The {udependent) EPR model developed
to predict the permeability coefficient is:

2 —_—
Log,,(K) = _60025(1+ 0.46(D50)J 12196 002PL"  342LL-198312

P P* ) 0of (0w (D

-9 3
153x10 (E)DS)") *472 | 509x10™ PL2(1+ 774x10°LL(D,,) - 266x10°LL [PL(D,,))+138
ho 0-4

The results of the developed EPR model are compaitedhe actual experimental data
(Figure 5.7) as well as two other prediction mod@&lsble 5.6). The EPR model gives
excellent prediction of the coefficient of permd#piof soils. Figure 5.8 shows the
results of the parametric study for the EPR pernhigaimodel (see section 4.4.6). It is
shown that increasing the degree of compactionedses the volume of voids and
hence decreases the permeability of the soil. Assthl becomes coarser (increasing
D10) the permeability coefficient increases up to apafter which it increases at a very
slow rate. Increasing the plasticity index is adi¢ator of the greater fines content in
the soil and hence results in decrease in perniyafillotz, Benson and Boutwell,
1998). The results show that the plasticity indeas ithe greatest effect on the
permeability while the effects of degree of compmactand effective grain size are
relatively moderate.
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Table 0.4: Coefficient of determination for predicted K vatue

M odel COD values (%)
Evolutionary Polynomial Regression (EPR) 92
(for unseen testing data )
Artificial Neural Network 90
(ANN)
Wang and Huang (1984) 89

5.2.7 Discussion and conclusion

The process of compaction is extensively emplopetie construction of embankments
and strengthening sub-grades of roads and runvkiayecent years the use of pattern
recognition methods such as artificial neural nekwbas been introduced as an
alternative method for predicting compaction chiaastics and permeability of soils.
These methods have the advantages that they doremptire any simplifying
assumptions in developing the model. However, newwtavork based models also have
some shortcomings as highlighted in chapter 2hls tesearch a new approach was
presented to describe the relationships betweemmegadility and compaction
characteristics, and some physical properties itf.so

Three separate EPR models were developed and tealidasing a database of
experiments involving test data on compaction aadngability characteristics of a
number of soils. The results of the model predidiovere compared with the
experimental data as well as results from othedipen models including a neural
network. A parametric study was conducted to evaluhe effects of different
parameters on permeability and compaction chaiatitsr of soils. Comparison of the
results shows that the developed EPR models proxgde accurate predictions. They
can capture and represent various aspects of coimpand permeability behaviour of
soils directly from experimental data.
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5.3 A new approach for prediction of the stability of soil and
rock slopes

5.3.1 Introduction

Estimation of the stability of a rock or soil slopgea complex problem due to the
heterogeneous nature of soil and rock massesatpe humber of parameters involved,
and the difficulty in determining the geotechnigarameters. In practice, only an
approximate general description of the physical gedmetric characteristics of the
slope can usually be obtained. Therefore, it ifiadift to determine the values of the
essential input parameters accurately.

Traditional limit equilibrium techniques are the shacommonly used methods for
analysis of stability of slopes. In this approatife shape and location of the critical
failure surface are assumed rather than determihésialso assumed that the soil (or
rock) moves as a rigid block with movements onlgurang on the failure surface. The
factor of safety (FS) is defined as the ratio @afcteon over action, expressed in terms of
moments or forces, depending on the mode of faiameé the geometry of the slip
surface considered. In rotational mechanisms ddriaifor example, factor of safety is
defined, in terms of moments about the centre efftilure arc, as the ratio of the
moment of the resisting shear forces along theurilsurface over the moment of
weight of the failure mass. These computationalhoas vary in terms of degrees of
accuracy, depending on the degree of appropriaeniethe simplifying assumptions
for the situation under investigation.

In rock masses, the potential mechanism of faibae be wedge or planar, depending
on the orientation of joint sets. In highly fraedrrocks this mechanism can be
rotational. In evaluating the stability of slopeings limit equilibrium methods, it is
necessary to determine the shape and location eofcthical slip surface and the
minimum value of factor of safety correspondinghat surface. This usually involves
analyzing a large number of possible trial slipfaces.

In the methods introduced by Taylor (1937) and 8isl{1961) the slip surface is
approximated with an arc of a circle. Other metheds Janbu (1954), Spencer (1967),
Sarma (1975), and Hoek and Bray (1981) assumergiffeshapes for the slip surface.
The accuracy of these methods depends on the agsuompade in developing the
method and the accuracy with which shear strengthrpeters can be determined. In all
cases, it is assumed that the soils are isotramichmogeneous. These assumptions
often lead to reasonable predictions when appkedibly.

Stability analysis using charts is another methnad is less complicated and provides a
rapid and potentially useful means of preliminalypse stability estimation (Duncan,
1996).

Although the conventional methods of stability seé have been widely used for
analysis of stability of soil and rock slopes, thesiethods have a number of
shortcomings. For example, the existing methodstability analysis for slopes on
cohesive soils are based on (a) assuming a slipceuand a centre about which it
rotates, (b) studying the equilibrium of the forcasting on this surface, and (c)
repeating the analysis on several different t@@lufe surfaces from different centres,
until the most critical slip surface is found. Timest critical slip surface is the one that
yields the lowest factor of safety. In these methoal number of assumptions and
simplifications have been made in order to redbeecomputational time and cost and
the complexity of the analysis. For example, thifa slip surface is assumed to be of
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a specific predetermined shape, and the inter-Blim®s may be ignored, etc. However,
repeating the procedure for a large number of sadgfecan still be computationally
intensive and costly.

In recent years, the use of artificial neural neksohas been introduced as an
alternative approach for analysis of stability ddpes. Sakellariou and Ferentinou
(2005) used neural networks to acquire the relatign between the parameters
involved in analysis of stability of slopes. Theged the models introduced by Hoek
and Bray (1981) in order to produce test data tmlate the quality of training of their
proposed artificial neural network model.

In this research, new models are presented usiolytenary polynomial regression
(EPR) for stability analysis of soil and rock slep@&he proposed technique is capable
of capturing the behaviour of slopes from the dcffiald or experimental) data and
making accurate predictions for other unseen cdSB® models are developed and
validated using results from sets of field datae Tesults show that the proposed
approach is very effective and robust in modeltimg behaviour of slopes and provides
a unified approach to analysis of slope stabilitgbtems. Results from a sensitivity
analysis show that the models can predict varioge@s of behaviour of slopes
correctly.

5.3.2 Database

The input data consists of six input parametetiéncase of circular failure mechanism
for cohesive soils and eight input parameters énctiise of wedge failure mechanism for
rocks. The output of the EPR models presents arfaftsafety that demonstrates the
status of stability of the slope.

Two data sets, overall consisting of 67 case ssudfeslopes with circular critical
failure mechanism were used in this study (Sakelleand Ferentinou, 2005). Of these,
25 cases involve dry soil conditions (13 failed, stdble) and 42 cases involve wet
conditions (20 failed, 22 stable). The third data consists of 22 case studies of rock
slopes analyzed for wedge failure mechanism. Adlesainvolve dry soil conditions;
with 10 cases of failed slope and 12 cases of estabdpes (Sah, Sheorey and
Upadhyama, 1994). These data cover a wide rangarafneter values.

The main parameters contributing to the stabilifyaoslope can, in general, be
categorised in two classes of geotechnical pragsednd geometrical characteristics of
the slope. More specifically, the parameters usedifcular failure mechanism in soils
(Figure 5.9a) are unit weight/§, apparent cohesion (c), angle of internal fricfi ,

slope angl€s), height (H), and pore water pressure paranejer

The data was divided into two sets (based on théasi statistical procedure introduced
in previous sections); one set was used for devedop of the EPR model and the other
one was used for validation and evaluation of tbhaegalization capabilities of the

developed EPR model.
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Figure0.9: (a) Circular failure mechanism; (b) Wedge failarechanism
(Sakellariou and Ferentinou, 2005)
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5.3.3 EPR modsd for circular failure mechanism

From the total of 67 cases in the database, 57scasee used to develop the EPR

model and the remaining 10 cases were used asrunases to validate the developed

EPR model. Among the resultant equations develtyyelPR process the one with the

highest value of coefficient of determination (Coilgs selected (Equation 5-5).

F :_1:1/2_94 ~18[1 +tarjp) 259~ 21&arB)| + 0014¢ - 519x10°c? +0817
0-5

Figure 5.10 shows the comparison of the resultenms of factors of safety predicted
by the EPR model together with the ones from ANMalgsis (Sakellariou and
Ferentinou, 2005) and the field data for the tragrecases. The results of the EPR model
predictions were in close agreement with the fadth and with values predicted by the
ANN model.

Once training was completed, the performance otrieed EPR model was validated
using the testing data that were not used duriegntbdel development process. The
purpose of validation was to examine the capadsliof the trained model to generalize
the training to conditions that had not been sagmd the training phase. Equation 5-5
was used to predict the factor of safety for theeem data cases and the results are
shown in Figure 5.11. A very good agreement caisden between the model results
and the field data demonstrating the excellent lgifipaof the EPR-based model in
generalizing the relationship to unseen cases.(di2 values for the developed EPR
models as well as the ANN are shown in Table 5.7.
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Figure 0.10: Comparison of EPR training results with those fraN and field measurements
for circular failure mechanism.
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Figure 0.11: Comparison of EPR testing results with ones frokNAand field measurements
for circular failure mechanism.

Table0.5: COD values for ANN and EPR models for soil slopes

Model COD valuesfor training  COD valuesfor testing
(%) (%)
Artificial Neural
Network
(ANN) 97.6 93.7

Sakellariou and
Ferentinou (2005)

Evolutionary
Polynomial 98.3 97.1
Regression (EPR)

It was shown that the EPR model outperforms the Ahddlel both in terms of the CoD

values for the training and testing and also priogida transparent and easy-to-use

expression (as opposed to the black box model df AN

A parametric study was also carried out followihg fprocedure described in section
4.4.6. The results (shown in Figure 5.12) indi¢hgs:

(i) The factor of safety increases with increasing weitght, apparent cohesion and
angle of friction of the soil and decreases withréasing angle of the slope,
height of the slope and pore water pressure irslitty@e. The trends of variations
of all these parameters are consistent with theergd behaviour of slopes.

(i) The parameters: internal friction angle, apparestiesion, slope angle and
height are the most effective parameters on stalofislopes.

(il)The effect of unit weight on stability appears te kess than the other
contributing parameters, for the cases used inldprent of this model.

The results of the parametric study show that theebped EPR model has been able to

capture, with a very good accuracy, the importdnysical characteristics of behaviour

of slopes and the relationship between the slagd@lgy and its contributing factors.
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Figure0.12: Sensitivity analysis results for EPR model devetbfor circular failure
mechanism (to be continued)
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5.3.4 EPR model for wedge failure mechanism

The data set used for development of EPR modelafalysis of wedge failure
mechanism in rocks consists of 22 case studies.thidse cases involve dry soall
conditions; with 10 cases of failed slope and 1sesaf stable slopes (Sah, Sheorey and
Upadhyama, 1994). The main parameters contribiidinige stability of a rock slope are
unit weight (), apparent cohesiong,) and(c,), angles of internal frictior{g,) and
(@), angle of the line of intersection of the two Io'sets(wp), slope angle(.///f) and
height (H), where A and B refer to the two jointssgsee figure 5.9b).

20 cases of data were used to develop the EPR maadethe remaining 2 cases were
used as unseen cases to validate the developednBB&. From the models developed
by the EPR process the one with the highest valuwefficient of determination was
selected.

00028 2091 _
(tang,)* (H +10)
5x107*c; dany (tant,[/f )2 +1.2%x107* )% - 088

229tang , dang, +0.0150%. +
H +10 °

O.l](tanz/Jf )3 +

0-6

Figure 5.13 shows the comparison of the resultenms of factors of safety predicted
by the EPR model with the ones from ANN analys&kglariou and Ferentinou, 2005)
and field measurements for the training cases.rébglts of the EPR model are in very
close agreement with the field measurements amdveéth the values predicted by the
ANN model.

After training, the performance of the trained ER®del was validated using the
testing data that were not used during the modetldpment process. Equation 5-6 was
used to predict the factor of safety for the unsdsga cases and the results are presented
in Figure 5.14. A close agreement can also be betmeen the model results and the
field data demonstrating the excellent capabilitiels the EPR-based model in
generalizing the relationship to unseen cases.(di@ values for the developed EPR
model and the ANN model are shown in Table 5.8.
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Figure 0.13: Comparison of EPR training results with those frdNN and field data for
wedge failure mechanism.
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Figure 0.14: Comparison of EPR testing results with those fAddN and field data for wedge
failure mechanism

Table 0.6: CoD values for ANN and EPR models for rock slopes

Model COD valuesfor COD valuesfor
training (%) testing (%)
Artificial Neural
Network 99.9 )

(ANN) - Sakellariou and
Ferentinou (2005)

Evolutionary Polynomial
Regression (EPR) 99.7 96.2

It is shown that the results of the EPR model dioseatch those of the ANN model in
terms of the CoD value for the training. It is worhoting that Sakellariou and
Ferentinou (2005) did not report the CoD valuetlar testing data.

Also, the results of the parametric study (see@eet.4.6) indicate that (Figure 5.15):

(i) The factor of safety increases with increasing weiight, apparent cohesion and
internal friction angle on both failure planes aetreases with increasing angle
of the slope. The trends of variations of theseupaters are consistent with the
expected behaviour of slopes.

(if) The parameters; internal friction angle, apparehiesion, slope angle and unit
weight are the most effective parameters on stglaifirock slopes.

(ii)The effect of the joint sets’ intersection angled ahe slope height on the
stability factor of safety appears to be negligible

5.3.5 Discussion and conclusion

Analysis of stability of soil and rock slopes iscamplex geotechnical engineering
problem due to the heterogeneous nature of sodsracks and the participation of a
large number of factors involved. Traditional meathoare based on simplifying
assumptions and usually require trial and errocedares that are time demanding and
computationally expensive. In recent years theaigmttern recognition methods such
as artificial neural network has been introducedraglternative method for analysis of
stability of slopes based on field data. These pdghave the advantage that they do
not require any simplifying assumptions in devehgpthe model. However, the neural
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network based models also suffer from a numbehoftsomings that are highlighted in
previous sections.

A new EPR approach was presented in this workheranalysis of stability of soil and
rock slopes. Two separate EPR models were develapedalidated using a database
of case histories involving field data on charastas of soil and rock and the stability
status of slopes. The results of model predictisese compared with field data as well
as results from a neural network model. Parametucliies were also conducted to
evaluate the effects of different parameters obilgia of slopes, and the extent to
which the developed models can represent the pdlysielationships between
contributing parameters.

Comparison of the results showed that the devel&pd® models provide very accurate
predictions for stability of slopes. The developewdels present structured and
transparent representation of the systems, allovinghysical interpretation of the
problem that gives the user an insight into thatr@hship between the stability status of
a slope and various contributing parameters. Froactigal point of view, the EPR
models are easy to use and provide results thatnare accurate than the existing
methods.
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Figure 0.15: Sensitivity analysis results for EPR model devetbfor factor of safety for wedge
failure mechanism (to be continued).
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Figure 5.15: Sensitivity analysis results for EPR model devetbfor factor of safety for wedge
failure mechanism (continued).
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Figure5.15: Sensitivity analysis results for EPR model devetbfor factor of safety for wedge
failure mechanism (continued).

5.4 Modéeling mechanical behaviour of rubber concrete using
evolutionary polynomial regression

5.4.1 Introduction

Disposal of waste tyres is one of the most crusmaironmental problems all around the
world. The conventional solution has been to sttrem on empty land, which
indirectly creates other problems because theyrbedoe hazard or insect and animal
habitation ( (Siddigue and Naik, 2004); (Sukont&siikand Chaikaew, 2006)).
Accumulation of discarded waste tyres has also lzeemjor concern because waste
rubber is not easily biodegradable, even afterrg Iperiod of landfill treatment. A
number of innovative solutions have been proposednéet the challenges of tyre
disposal. The use as a fuel or as a componentaffilusomposite materials has been
considered as alternative to disposal of the wasdiber ( (Williams, Besler and Taylor,
1990), (Eldin and Senouci, 1992) (Eldin and Seno@®R3), (Sinn, Kaminsky and
Janning, 1976), (Farcasiu, 1993), (Atal and Levenii®95)). Because of high capital
investment involved, using tyres as a fuel for cetrgln is technically feasible but
economically may not be very attractive (Siddiqued aNaik, 2004). Therefore,
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recycling of waste tyres in innovative applicatioesems to be a more effective
approach. There has been some interest in usingetlyeled waste tyre products in a
number of applications. In recent years, much mrebedas been carried out to
investigate the possibilities for reuse of abandotyges by grinding them into small
particles (crumb rubber or tyre chips) and usingsphalts, sealants, and rubber sheets.
Of particular interest has been the use of waststgs aggregate in Portland cement
concrete (Sukontasukkul and Chaikaew, 2006). Vari@msearchers have investigated
the use of tyre rubber in the production of corer&ildin and Senouci (1993) studied
the strength and toughness properties of the ctascreontaining two types of tyre
rubber. Khatip and Bayomy (1999) used recycled tyreber as aggregate in the
concrete mixtures with different rubber contentspdu (1995) studied the physical and
mechanical properties of the rubber concrete. Bamde et al (2003) examined the
physico-mechanical properties of cement-rubber amigs with two types of rubber
aggregates with the aim of developing a highly defitble material. All of these studies
have revealed that the addition of rubber aggregktads to reduction in the basic
engineering properties of concrete. The reductiothe strength appears to be more
remarkable with increasing the rubber content & ¢bmposite. Guneyisi et al (2004)
incorporated silica fume into rubber concrete tmidish the strength loss caused by the
use of rubber aggregates. The experimental studghiad using of both crumb rubber
and tyre chips at 2.5%, 5%, 10%, 15%, 25% and 59%otal aggregate volume and a
silica fume content of 0%, 5%, 10%, 15%, and 20%wbight of cement. They reported
that compressive strength of the produced concddeseased with the increase in the
rubber content. However, the silica fume had a tpasieffect on increasing the
mechanical properties of the rubber concrete. Ttseanple evidence that the strength
of the concrete decreases with the use of tyreewisbconcrete. However, there exists
no explicit formulation in literature to predictishstrength loss. An appropriate model is
required to describe the behaviour of rubber cdadreengineering applications. In this
research work EPR is proposed to model the mechldmetaviour of rubber concrete.

5.4.2 Database

Data from an experimental study (Guneyisi et aD4)0wvas used to develop an EPR
model to describe the compressive strength of nubbecrete. Guneyisi et al (2004)
carried out a program of experiments to study th@pressive strength of the rubber
concrete with and without silica fume. Two typesye rubber (crumb rubber and tyre
chips) were used as fine and coarse aggregatdiproduction of rubber concrete
mixtures. Six different rubber contents varyingnfr@.5% to 50% by total volume of
aggregate were used. The samples of concrete Witk fsime were produced by partial
replacement of cement with silica fume at varyimgoants of 5-20%. In total, 70
concrete mixtures were tested. Out of the 70 coaarextures, 56 cases were used to
train the model while the remaining data were usdaeésting the developed model. The
same training and testing datasets as those us@ditgyisi et al (2004) for developing
ANN and GP models were used in this study to altbsect comparison between the
results of the EPR model with those of ANN and Gédets. The training and testing
data are shown in Tablé® and5.10respectively.

169



Chapter (5) Other Geotechnical €ivil Engineering Applications of EPR

Table0.7: EPR Training data (Guneyisi, Gesoglu and Oztu2804)

Data (kg(/:mS SF W SP CA FA CR TC Fc
No. (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (Mpa)
450 0.00001 180 13.5 1062.2 687.82 0.00001 0.00001 75.8
2 427.5 225 180 135 1057.96 685.06 0.00001  0.00001 81
3 405 45 180 135 1053.68 682.29 0.00001  0.00001 82.7
4 382.5 67.5 180 13.5 1049.4 679.52 0.00001 0.00001 84
5 350 0.00001 210 5.25 1076.4 697 0.00001  0.00001 53.8
6 3325 175 210 5.25 1073.1 694.8 0.00001  0.00001 56.8
7 315 35 210 5.25 1069.7 692.7 0.00001 0.00001 57.7
8 297.5 52,5 210 5.25 1066.4 690.5 0.00001  0.00001 60.3
9 450 0.00001 180 135 1035.7 670.6 5.4 10.1 70.4
10 427.5 22.5 180 13.5 1031.5 667.9 5.4 10 72.5
11 405 45 180 135 1027.3 665.2 5.4 10 75.4
12 382.5 67.5 180 135 1023.2 662.5 5.4 9.9 78.3
13 350 0.00001 210 5.25 1049.5 679.6 55 10.2 47
14 3325 175 210 5.25 1046.2 677.5 55 10.1 50.2
15 315 35 210 5.25 1043 675.4 55 10.1 52.5
16 297.5 52.5 210 5.25 1039.8 673.3 55 10.1 55.4
17 450 0.00001 180 135 1009.1 653.4 10.9 20.1 62.8
18 427.5 225 180 135 1005.1 650.8 10.9 20 67.8
19 405 45 180 13.5 1001 648.2 10.8 19.9 68.2
20 382.5 67.5 180 135 996.9 645.5 10.8 19.9 68
21 350 0.00001 210 5.25 1022.6 662.1 11 204 51.5
22 3325 17.5 210 5.25 1019.4 660.1 11 20.3 43.1
23 315 35 210 5.25 1016.3 658.1 11 20.2 46.1
24 297.5 52,5 210 5.25 1013.1 656 10.9 20.2 49.3
25 450 0.00001 180 13.5 956 619 21.8 40.2 50.7
26 427.5 225 180 135 952.2 616.6 21.7 40 55.3
27 405 45 180 135 948.3 614.1 21.6 39.9 56.3
28 382.5 67.5 180 13.5 944.5 611.6 21.5 39.7 55.6
29 350 0.00001 210 5.25 968.8 627.3 22.1 40.7 318
30 3325 175 210 5.25 965.8 625.4 22 40.6 35.8
31 315 35 210 5.25 962.8 623.4 21.9 40.5 37.6
32 297.5 52,5 210 5.25 959.8 621.5 21.9 40.4 41.3
33 450 0.00001 180 135 902.9 584.7 32.7 60.3 40.3
34 427.5 22.5 180 13.5 899.3 582.3 32.6 60.1 44.5
35 405 45 180 135 895.6 579.9 324 59.8 45.1
36 382.5 67.5 180 135 892 577.6 32.3 59.6 46.4
37 350 0.00001 210 5.25 914.9 592.4 33.1 61.1 24.3
38 3325 175 210 5.25 912.1 590.6 33 60.9 28.8
39 315 35 210 5.25 909.3 588.8 32.9 60.7 314
40 297.5 52.5 210 5.25 906.5 587 32.8 60.5 32.8
41 450 0.00001 180 135 796.7 515.9 54.5 100.5 26.4
42 427.5 225 180 135 793.5 513.8 54.3 100.1 29.6
43 405 45 180 13.5 790.3 511.7 54.1 99.7 30.5
44 382.5 67.5 180 135 787.1 509.6 53.8 99.3 318
45 350 0.00001 210 5.25 807.3 522.7 55.2 101.9 16.2
46 3325 17.5 210 5.25 804.8 521.1 55 101.5 18.2
47 315 35 210 5.25 802.3 519.5 54.9 101.2 20.1
48 297.5 52,5 210 5.25 799.8 517.9 54.7 100.9 21.2
49 450 0.00001 180 13.5 531.1 343.9 109 201 10.5
50 427.5 22.5 180 13.5 529 3425 108.5 200.2 11.2
51 405 45 180 135 526.8 341.1 108.1 199.4 11.6
52 382.5 67.5 180 13.5 524.7 339.8 107.7 198.6 11.7
53 350 0.00001 210 5.25 538.2 348.5 1104 203.7 7.1
54 3325 175 210 5.25 536.5 347.4 110.1 203.1 7.2
55 315 35 210 5.25 534.9 346.3 109.7 202.5 8.1
56 297.5 52.5 210 5.25 533.2 345.3 109.4 201.8 8.4
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Table 0.8: EPR testing data (Guneyisi, Gesoglu and Ozturdd4 @

Data C SF W SP CA FA CR TC Fc
No. (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (Mpa)
1 360 920 180 135 1045.13 676.75 0.00001  0.00001 85.77
280 70 210 5.2 1063.1 688.4 0.00001  0.00001 59.7
3 360 20 180 135 1019 659.8 5.4 9.9 79.1
4 280 70 210 5.2 1036.5 671.2 5.5 10.1 56.4
5 360 20 180 135 992.9 642.9 10.7 19.8 69.4
6 280 70 210 5.2 1009.9 654 10.9 20.1 51.3
7 360 20 180 135 940.6 609.1 21.4 39.6 61.7
8 280 70 210 5.2 956.8 619.5 21.8 40.2 41.2
9 360 20 180 135 888.4 575.2 32.2 59.3 47
10 280 70 210 5.2 903.6 585.1 32.7 60.4 34.2
11 360 20 180 135 783.8 507.6 53.6 98.9 31.8
12 280 70 210 5.2 797.3 516.3 54.5 100.6 23.1
13 360 920 180 135 522.6 338.4 107.2 197.8 11.7
14 280 70 210 5.2 531.5 344.2 109.1 201.2 8.6

Table0.9: COD values (%) for LR, GP, ANN and, EPR modelssldasn testing data

M odel COD valu%( fc)
Linear Regression 86.89
Genetic Programming 98.18
Artificial Neural Network (ANN) 99.94
Evolutionary Polynomial Regression (EPR) 99.5

5.4.3 EPR models

From the total of 70 cases in the database, 56scasee used to develop the EPR
model and the remaining cases were used as unsses to validate the developed
model. Among the resultant equations developedguBiPR, the one with the highest
value of coefficient of determination (CoD) wasestéd for the compressive strength
parameter (.):

3 05 3 3 2 05
(2o 9BBIFA _ proi0d e [CF{WJ EE C_A] TC - 3791FA (ﬂj & ECRJ
SP2 [TA® [{w/C) C FA CA®[BP% ( C TC 0-7

05 3
-14 w A TC +10021
C CA

where C, SF, W, SP, CA, FA, CR, and TC are cemsilica fume, water,
superplasticizer, coarse aggregate, fine aggregateb rubber, and tyre chips contents
respectively. The proposed model is also unit ddeen Figures 5.16 and 5.17 show
the comparisons between the EPR model predictiothistive experimental data for the
training and unseen testing cases respectively.
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Figure 0.16: Performance of the EPR model on training cases
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Figure0.17: Performance of the EPR model on testing cases

A very close agreement between the EPR model giea$scand the experimental data
can be seen in the graphs. The coefficient of detettion value for the EPR model is
also compared to the ones for linear regressidificeal neural network and genetic
programming techniques. The results are shown InteTa 11 and indicate that EPR has
been able to capture and reproduce the compressimegth behaviour of the rubber
concrete with a high accuracy. It is shown thatERR model outperforms the Linear
Regression model and provides results comparalileose of the neural networks and
GP models.

The results of the parametric study (see sectidi6yfor the compressive strength
model of the rubber concrete are shown in Figut8.5The results show that increasing
the amount of fine grained aggregate and tyre atdgeseases the compressive strength
of the mixture, but any increase in the coarsengahiaggregate content improves the
compressive strength of the rubber concrete. Téicansistent with the expected
behaviour of rubber concrete. It is shown thatERR model developed directly from
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experimental data has been able to capture theressipe strength behaviour of rubber
concrete correctly.
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Figure 0.18: Results of the parametric study conducted on #ie Eompressive strength model
for rubber concrete
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5.4.4 Outlineand conclusions

Considerable increase in the amount of waste tigads to serious environmental
problems in many parts of the world. Stockpilingsofap tyres is undesirable due to the
potential fire hazard resulting in environmentaimdages. These problems produce an
urgent need to find new methods of reusing andctewy of waste tyres. As waste tyres
do not easily decompose, engineers have been ttgifigd different ways of reusing
them in building industry. The use of waste tyresaggregate in concrete has been
introduced as an effective way of reducing the [gnmls associated with the disposal of
this waste material. In order to use rubber coec@$ a structural material, an
appropriate model is required to describe the bielawf this composite material.

In this research work, EPR approach was proposednfadelling the compressive
strength of the rubber concrete. An EPR model wvasldped and validated using a
database of case histories involving test datahamacteristics of rubber concrete. The
results of the model predictions were compared withexperimental data and results
from linear regression, genetic programming andalewetwork models. A parametric
study was conducted to evaluate the effects okmdifft parameters on compressive
strength of the rubber concrete and the extent clwthe developed model can
represent the physical relationships between th&ibating parameters. Comparison of
the results showed that the developed EPR modelida® accurate predictions for
compressive strength of the rubber concrete.

5.5 Conclusions

In this chapter EPR models were developed to reptesompaction characteristics
(including maximum dry density and optimum moisteantent) and permeability of
soils. Stability status of rock and soil slopes atgb compressive strength of rubber
concrete were modelled using the EPR methodolagyalll cases parametric studies
were conducted and the roles of different contmgutparameter in the developed
models were analysed in detail. Sensitivity analysitcomes and also comparing EPR
predictions with the results from previously deyed models reported in the literature
revealed robustness and accuracy of the develompetklsnin predicting the complex
behaviour of soil systems and engineering materials
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Chapter G

SUMMARY, CONCLUSIONS AND
RECOMMENDATIONS FOR FUTURE
WORK

6.1 Summary of the present work

EPR-based modelling methodology was presented for modelling of behaviour of
geomaterials and civil engineering systems. EPR can be described as a hybrid data
mining technique that searches for symbolic structures using a genetic algorithm and
estimates the constant values of such structures by the least squares method. Thisis a
generic methodology and can be extended to be used for other types of materials and
systems. By implementing this methodology the behaviour of the material (e.g. stress-
strain behaviour) is captured and represented within evolutionary-based structured
polynomial expressions. Models are developed based on training of EPR with raw data
directly extracted from laboratory experiments or field measurements without any type
of pre-processing. The effectiveness of the proposed approach was validated through
application to modelling of various aspects of behaviour of saturated and unsaturated
soils and rubber concrete. The developed models showed that using EPR for modelling
the behaviour of materials is very promising. No prior assumptions of the material
behaviour are made and nothing else but datais used to develop the models.

Where relevant, the EPR models were used to predict the material behaviour over the
entire stress paths that had not been seen by EPR at the training stage of the model. The
developed models were compared to the existing conventiona material models,
regresson models and artificial neural network models (where available) and their
advantages were highlighted. These results showed that EPR can be successfully
employed to analyse different geotechnical and other civil engineering problems.
Applying the proposed methodology to predict the complex and nonlinear behaviour of
geotechnical problems with high levels of success was a firm evidence of excellent
capabilities of the EPR methodology.
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The following are the achievements of this research in modelling the behaviour of
geotechnical and civil engineering materials using the proposed EPR framework:
» Constitutive modelling of unsaturated Soils
* Modeling of soil-water characteristic curve (SWCC) in unsaturated Soils
* Modéling of thermo-mechanical behaviour of unsaturated soils
» Developing models to describe the stress-strain and volume change behaviour of
granular soils
* Identification of coupling parameters between shear strength behaviour and
chemical effectsin compacted soils
A number of other applications are also presented including:
* Modelling of permeability and compaction characteristics of soils
* Prediction of the stability of soil and rock slopes
* Modéling of mechanical behaviour of rubber concrete
Sensitivity analysis (parametric study) was conducted in all modelling cases, taking the
advantage of the clear mathematical structure of EPR models, to investigate the effect of
different contributing parameters on the developed models and to find out the most and
least effective parameters in the behaviour of the desired engineering material / system.

6.2 Limitations of the proposed EPR methodology

EPR models perform very well at interpolation; however, they are not as good at
extrapolation and in order to be able to use the developed models for practical purposes,
the available training data for devel oping EPR models must cover the ranges of stresses
and strains that will possibly be applied or generated in the real world cases. So, caution
should be taken in using EPR model predictions in practical cases if the models are not
trained to cover the input data ranges.

Also, similar to other data mining techniques, sufficient data is required for EPR to be
able to develop appropriate models and too small databases may not lead to creation of
suitable models.

6.3 Conclusions

The evolutionary polynomial regression technique works in a similar way as artificia
neural networks and has all the advantages of ANN. But it provides the user with the
additional advantage of developing a structured and transparent mathematical
representation of the model in the form of a polynomia expression. Different types of
functions can be introduced to the EPR by the user based the physical understanding of
the problem to help accelerate finding the best possible and the most fit and robust
model. EPR provides a unified framework for constitutive modelling of all materials
particularly the ones with complicated behaviour and those for which constitutive
models are not well developed. All parameters that are known to affect the system can
be introduced to be included in the EPR model. More importantly, there is no need for
any arbitrary choice of the constitutive (mathematical) models, no material parameters
are to be identified and the model is trained directly based on the experimenta data
and/or field measurements. So, EPR-based material models can be considered as the
shortest route from experimental research (data) to material modelling. Additionaly, if
more experimental data or field measurements become available to the user, the quality
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of the EPR prediction can be improved by learning from the additional data through
retraining the EPR, and as a result the EPR model becomes more effective,
comprehensive and robust.

In spite of some limitations with the proposed methodology (discussed above), the
developed models in this thesis showed the robustness and great capabilities of EPR in
modelling different aspects of the very complicated constitutive behaviour of saturated
and unsaturated soils and other civil engineering problemsincluding stability analysis of
slopes and a so the compressive strength behaviour of rubber concrete.

6.4 Recommendationsfor futureresearch work

* The presented methodology was applied to model the complicated shear and
volume change behaviour of unsaturated soils considered under anisotropic
loading (application of deviatoric stresses). Further investigations can be made
to model the behaviour of this type of soils under isotropic loading, different
unloading rel oading conditions and various stress paths.

* Implementing the developed EPR constitutive models for unsaturated soils into
the finite element models is very challenging due to the multi-phase nature of
these soils but developing a numerical representation would be very useful in
understanding the behaviours of unsaturated soils in more complicated cases.

e Other areas in geotechnical engineering like soil reinforcement, swelling
behaviour of fine grained soils and aso the behaviour of saturated and
unsaturated soils under earthquake loading can also be considered for future
applications of the proposed EPR modelling technique to understand the
complicated behaviour of the soils and the soil-reinforcement interaction.

e Huge structures like high-rise buildings or different types of dams cause huge
stresses in foundations. Because of existence of considerable number of
monitoring devices measuring settlements and any other changes in the
structures and foundations, the recorded data can be used to develop EPR
models for further investigation of the real foundation-structure interactions to
provide a better understanding of the problem and reduce the potential risk of
damages to these structures that can be very costly in serious cases.
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