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ABSTRACT  

     

Modelling behaviour of materials involves approximating the actual behaviour with that 

of an idealised material that deforms in accordance with some constitutive relationships. 

Several constitutive models have been developed for various materials many of which 

involve determination of material parameters with no physical meaning. ANN is a 

computer-based modelling technique for computation and knowledge representation 

inspired by the neural architecture and operation of the human brain. It has been shown 

by various researchers that ANNs offer outstanding advantages in constitutive 

modelling of material; however, these networks have some shortcoming. In this thesis, 

the Evolutionary Polynomial Regression (EPR) was introduced as an alternative 

approach to constitutive modelling of the complex behaviour of saturated and 

unsaturated soils and also modelling of a  number of other civil and geotechnical 

engineering materials and systems. EPR overcomes the shortcomings of ANN by 

providing a structured and transparent model representing the behaviour of the system. 

In this research EPR is applied to modelling of stress-strain and volume change 

behaviour of unsaturated soils, modelling of SWCC in unsaturated soils, hydro-thermo-

mechanical modelling of unsaturated soils, identification of coupling parameters 

between shear strength behaviour and chemical’s effects in compacted soils, modelling 

of permeability and compaction characteristics of soils, prediction of the stability status 

of soil and rock slopes and modelling the mechanical behaviour of rubber concrete. 

Comparisons between EPR-based material model predictions, the experimental data and 

the predictions from other data mining and regression modelling techniques and also the 

results of the parametric studies revealed the exceptional capabilities of the proposed 

methodology in modelling the very complicated behaviour of geotechnical and civil 

engineering materials. 
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Chapter 1  
 
 

INTRODUCTION 
 
 

1.1 General background 

  
Constitutive modelling involves approximating the actual behaviour of materials with 
that of an idealised material that deforms in accordance with some constitutive 
relationships. In the past decades several constitutive models have been developed for 
various materials. Most of these models involve determination of material parameters, 
many of which have no physical meaning. In spite of considerable complexities of 
constitutive theories, due to the erratic and complex nature of some materials such as 
soil, rock, etc, none of the existing constitutive models can completely describe the real 
behaviour of these materials under various stress paths and loading conditions. 
Because of significant advances in computational power and the development of more 
efficient solvers, the models are getting more and more sophisticated and realistic. 
Available packages provide new and improved interfaces, better visualization of the 
developed results, more options for automatic searching for design solutions, etc; but, 
the constitutive laws used in the analyses remain mostly unchanged from the ones used 
years ago (Faramarzi, 2011). Traditional material models are not capable of addressing 
the complexities inherent in natural geomaterials, like soils and rocks, in a unified way 
and normally are developed for specific applications and target specific problems. One 
of the main roles of constitutive modelling is their application in describing the material 
behaviour in numerical analyses.  
 
The finite element method is a very popular numerical modelling technique to find 
approximate solutions of partial differential equations (PDE). Most of the problems in 
engineering analysis and design can be represented as a single or a series of differential 
equations. These equations are used to explain the system response once it is subjected 
to external influences (loads, displacements, etc). Most differential equations do not 
have analytical solution and numerical techniques need to be used to find approximate 
solutions for this type of equations. Among numerical techniques available, the finite 
element method is one of the most powerful techniques for solving most engineering 
problems. In the finite element method the structure being analysed is divided into a 
large number of smaller parts called elements (Stasa, 1986). 
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The accuracy of the finite element analyses results greatly depends on the constitutive 
model chosen to represent the material behaviour. Therefore, one of the most important 
steps in finite element analysis is selecting the most appropriate constitutive model. 
Although there are a large number of constitutive models with high degrees of 
complexity, but none of these models are able to completely describe the real behaviour 
of some materials such as soils, rocks, composites, etc. under different loading 
conditions. Therefore alternative methods for describing the material behaviour would 
be very advantageous. 
 
In recent years, the use of artificial intelligence and data mining techniques has been 
introduced, as an alternative approach, for constitutive modelling of complex materials  
(Javadi and Rezania, 2009a). The use of artificial neural network (ANN) for modelling 
the behaviour of concrete was first introduced by Ghaboussi et al (1991). After that, 
other researchers continued to apply ANN to model the behaviour of other materials. 
Some of these works incorporated neural network-based material models (NNCMs) in 
finite element method to analyse engineering problems. Ghaboussi et al. (1998), Shin & 
Pande (2000) and Hashash et al. (2006) proposed the autoprogressive or self-learning 
approach to train neural network-based material models. These models included 
sequences of training a neural network (NN) embedded in the finite element method 
using measured values of displacements and forces of a structural or geotechnical test. 
The results from these works indicated that ANNs can be incorporated into the finite 
element method as alternative constitutive models. It was also shown that the trained 
ANNs incorporated in the finite element analysis provide better predictions of the 
behaviour of materials in comparison to the conventional/empirical models. In spite of 
all advantages, ANNs are also known to suffer from some shortcomings. One of the 
main disadvantages of the neural network-based constitutive models (NNCM) is that the 
optimum structure of the ANN (such as number of inputs, hidden layers, transfer 
functions, etc.) must be identified a priori which is usually obtained using time 
consuming trial and error procedures (Giustolisi and Savic, 2006). Another main 
drawback of the ANN approach is about the complexity of the network structure as 
ANN represents the knowledge in terms of weight matrices together with biases which 
are not accessible to the user. In other words ANN models do not provide any 
information on the way the inputs affect the output and therefore are considered as a 
black box class of models. The lack of interpretability of ANN models has stopped them 
from achieving their full potential in real world problems ( (Lu, AbouRizk and 
Hermann, 2001) and (Javadi and Rezania, 2009a)). 
 
In this thesis, a recently developed technique, named evolutionary polynomial 
regression (EPR), is considered as a powerful alternative to ANN. The proposed 
technique expresses the behaviour of the material being studied in terms of structured 
mathematical expressions. Giustolisi & Savic (2006) first introduced the use of EPR in 
modelling of hydroinformatics and environmental related problems. EPR is  a two-stage 
technique: in the first step EPR attempts to find symbolic structures using a genetic 
algorithm and in the second stage it estimates the constants using a linear least square 
technique. In this thesis the EPR  is used  to model constitutive behaviour of   complex 
civil enginnering systems including geomaterials and particularly unsaturated soils. 
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1.2 Aims 

This thesis aims at: 
 Introducing a new approach to modelling constitutive behaviour of complicated 

civil engineering materials. 
 Presenting important applications of the proposed methodology in modelling 

complicated civil/geotechnical engineering problems relating saturated and 
unsaturated soils and rubber concrete. 

 Discussing the advantages of the proposed methodology and the 
shortcomings/cautions that need to be considered in applying it. 

1.3 Objectives 

In this thesis EPR is employed, as an effective data mining and pattern recognition 
technique, to model some of the most complicated materials in civil and geotechnical 
engineering. The objectives of this thesis can be defined as:  

 Presenting most recent developments in using data mining techniques for 
material modelling.  

 Describing the model development procedure using the proposed evolutionary-
based data mining technique. 

 Modelling various aspects of the complex behaviour of unsaturated soils 
including (i) stress-strain and volume change behaviour; (ii) soil water 
characteristic curve (SWCC) and (iii) thermo-mechanical behaviour. 

 Identification of coupling parameters between shear strength behaviour and 
chemical’s effects in compacted soils. 

 Constitutive modelling of coarse grained soils. 
 Modelling permeability and compaction characteristics of soils and stability 

analysis of soil and rock slopes. 
 Modelling the mechanical behaviour of rubber concrete.  

1.4 Contribution to the knowledge 

Applications presented and discussed in this thesis are amongst the most important 
geotechnical and civil engineering systems and material modelling problems with very 
little knowledge about their erratic nature and complicated mechanical behaviour. In 
this research a novel methodology is presented to develop models to represent this 
complicated behaviour in the shape of a unique, explicit and easy to understand 
mathematical expression with the capability of predicting the real behaviour of the 
system based on the data acquired from experiments or field measurements with very 
high accuracy levels. Pros and cons of the proposed methodology and its advantages 
over the existing techniques used in civil engineering modelling and also any concerns 
relating to the use of the proposed method in practical engineering problems are 
discussed.  
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1.5 Layout of the thesis      

The thesis includes six chapters. In what follows a short description of the contents for 
every chapter is presented. 
Chapter one (current chapter) provides a general description and objectives of the thesis. 
It gives an overall insight into the thesis and describes the order in which the materials 
are arranged in the thesis. 
 
The second chapter presents a review of the literature on the most important and up-to-
date developments in using data mining techniques in material modelling. In this 
chapter a background on the conventional constitutive material modelling techniques as 
well as developments in using data mining techniques (in particular artificial neural 
networks) in material modelling are presented. 
 
In chapter three the new data mining technique, evolutionary polynomial regression 
(EPR), is described in detail. A general introduction is given to the most popular data 
mining techniques, including artificial neural network (ANN) and genetic programming 
(GP), and a detailed description of the evolutionary polynomial regression (EPR) 
technique is provided. The key features and important advantages of the proposed EPR 
technique are highlighted in this chapter. 
 
In chapter four, EPR based modelling of constitutive stress-strain and volume change 
behaviour, thermo-mechanical behaviour and the soil-water characteristic curve in 
unsaturated soils, and also the constitutive stress-strain and volume change behaviour of 
granular soils are presented. EPR is also used to identify the coupling parameters 
between shear strength behaviour and chemicals’ effects in compacted soils. After 
validation and verification, comparison of the predictions of the proposed models with 
experimental data as well as conventional models and artificial neural network results 
are presented. The results of sensitivity analyses of the proposed models are then 
presented to provide an understanding of the contributions of the involved parameters. 
 
In chapter five some other applications for EPR are presented including modelling the 
compaction and permeability of soils, predicting stability status of soil and rock slopes 
and also the mechanical behaviour of rubber concrete. Model verification results, 
comparison of the predictions of the proposed models with experimental data and 
conventional models as well as artificial neural network results (where available) are 
presented. Effects of different contributing parameters on the proposed models are also 
investigated. 
 
The concluding chapter, chapter 6, includes the main conclusions based on the contents 
of the present thesis and makes recommendations for further research. 
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CONSTITUTIVE MODELLING BASED 
ON DATA MINING TECHNIQUES 
 
 
 

2.1 Introduction 

In the past few decades, numerical modelling techniques, in particular the finite element 
method, have been used to analyse a wide range of engineering problems. These 
problems span over a range of different disciplines including civil and structural 
engineering, aerospace, biomedical engineering, automotive and geotechnical 
engineering, among others. The finite element method is considered as a very robust 
tool for analysis of complex engineering problems. In this method, the behaviour of the 
actual material is approximated with that of an idealised material that behaves according 
to predefined constitutive relationships. As a result, the choice of an appropriate 
constitutive model that adequately and accurately describes the behaviour of the actual 
material is a crucial step in the finite element analysis and affects the accuracy and 
reliability of finite element predictions (Faramarzi, Javadi and Ahangar-Asr, 2012).  
A wide range of different models have been presented to describe the constitutive 
behaviour of different materials including soils. The constitutive models for soils vary 
from simple elastic models (Hooke, 1675) to elasto-plastic models (e.g., Drucker and 
Prager (1952)), models created based on the critical state theory (Schofield and Worth, 
1968) and strain hardening models (Lade and Jakobsen, 2002; Lade, 1977), among 
many others. In these models determination of the model (material) parameters is one of 
the important stages of model development process and many of these parameters have 
very little or no physical meanings (Shin and Pande, 2000). In recent years data mining 
techniques are introduced as alternatives to conventional methods for constitutive 
modelling of complex systems.  
In this chapter, a history of the applications of the data mining-based constitutive 
modelling approaches is included. Advantages and disadvantages of the presented 
methodologies are also discussed.  

2.2 Conventional approach to constitutive modelling 

In developing conventional constitutive models, first a mathematical model is selected 
based on the understanding of the behaviour of the material or trends of the available 
data. In the next step, some appropriate physical tests are conducted on the samples of 
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the material in order to capture the behaviour of the material and to define the 
parameters of the model (model/material parameters). Accurate determination of these 
parameters is very important when these constitutive models are implemented into 
numerical models (such as FEM), as the accuracy of the numerical model predictions 
greatly depends on the accuracy with which the selected constitutive model describes 
the real behaviour of the material. Despite the considerable complexity of the existing 
constitutive theories and the fact that these theories encompass most of the 
characteristics of the material behaviour, due to the unpredictable and complex nature of 
some materials including soils and rocks, the existing constitutive models are not able to 
accurately describe the behaviour of such materials under various stress paths and 
loading conditions (Javadi and Rezania, 2008). 

2.3 Data mining techniques and constitutive modelling 

With the rapid development in information technology and computational software and 
hardware in the past few years, the use of computer-aided pattern recognition 
techniques has been introduced as an alternative approach to constitutive modelling of 
materials. Pattern recognition techniques, such as artificial neural network, fuzzy logic 
and genetic programming, can learn adaptively from data and generalise the captured 
behaviour.  

2.3.1 Artificial neural networks (ANN) 

Artificial neural networks (ANNs) are the most common pattern recognition procedures 
that have been widely used in constitutive modelling of materials. The use of ANN for 
material modelling was first introduced by Ghaboussi et al. (1991) for modelling the 
behaviour of concrete. This continued by the works of Ellis et al. (1992) and Ghaboussi 
et al. (1994) who applied the methodology to model the behaviour of geotechnical 
materials. The results of these and similar research works showed that the neural 
networks are able to capture and represent the nonlinear material behaviour with a good 
degree of accuracy. 
ANN models have the ability to work with large quantities of data. They can learn 
complex behaviour of systems by training with input and output sets of data. The most 
outstanding advantage of ANNs over conventional material models is their ability to 
capture complex relationships between parameters contributing to the system without 
the need to assume the form of the relations between input and output variables. 
The neural network assigns a given set of output vectors to a given set of input vectors. 
When applied to the constitutive description, the physical nature of these input-output 
data is determined by the measured quantities like stresses, strains, pore pressure, 
temperature, etc (Javadi, Tan and Elkassas, 2009). A typical representation of an ANN 
based model is shown in Figure 2.1. 



Chapter (2)                             Constitutive Modelling Based on Data Mining Techniques 

7 
 

                              

Figure  2.1: Typical neural network model  

In the above network, one input layer, one hidden layer, and one output layer are used to 
represent the neural network model. All neurons in each layer (e.g. input layer) are 
individually connected to the neurons in the next layer (e.g. hidden layer) with a 
“connection weight”. The knowledge stored in the developed network is hidden in the 
sets of connection weights and is used to make predictions of the output parameters.  
Training of the neural network is done by modifying its connection weights in an 
appropriate manner through the data set used for “training” of the network.  Training 
continues until the predicted output variables agree satisfactorily with the target values 
in the training data set. Networks trained in this way are generally termed back-
propagation neural networks. The “back-propagation” term refers to the algorithm 
through which the error observed in the predicted output variables is used to modify the 
connection weights and repeat the training until the most suitable network is obtained. 
However, ANNs also suffer from some shortcomings with the most important one being 
their back-box nature that prevents them from giving the user a clear insight and 
understanding to the model and the way that the involved parameters affect the model 
predictions. 

2.3.2 Nested adaptive neural network 

Nested adaptive neural network (NANN) was introduced by Ghaboussi and Sidarta 
(1998) and was applied to develop models to represent the constitutive behaviour of 
geotechnical materials. Ghaboussi and Sidarta (1998) applied this new type of neural 
network to develop models for drained and undrained behaviour of sands in triaxial 
tests. Nested adaptive neural network takes advantage of the nested structure of the 
material test data, and represents it in the layout of the neural network. Although the 
proposed new type of networks suggests the advantage of the nested structure; but, they 
show very little improvement towards removing the down sides of using ANNs in 
material modelling. 

Hidden layer 

Output layer 

Input layer 

Input 1 

Input 2 

Input 3 

Input 4 

Output 1 

Output 2 
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2.3.3 Application of neural network-based methods in material 
modelling 

Penumadu & Zhao (1999) modelled the stress-strain and volume change behaviour of 
sand and gravel under drained triaxial compression test conditions using neural 
network. Data from a large number of tests (around 250 triaxial test data) were used to 
train the neural network. The optimum structure of the neural network was found by 
trial and error. The proposed neural network had 3 hidden layers with 15 neurons in 
each layer, eleven neurons in the input layer and two outputs. The input and output 
parameters of the model were as follows: 
 
Inputs parameters: ���, ��, �� , ℎ, 	
, �, �
 , ∆�
, �́�, ��


 , ��
  
Output parameters: ��


��, ��
�� 
 
where ���, ��, �� represent equivalent particle size and their distribution, ℎ is an 
indicator of hardness of the material, 	
 is the shape factor, � is the void ratio, and �́� is 
the effective confining pressure. The current state of stress and strain was also 
represented with deviator stress	��


 , axial strain �
 and volumetric strain	��
 . For a 
specimen with given current state of stress and strain, the developed ANN model aimed 
to predict two outputs, deviator stress ��


�� and volumetric strain ��
�� for the next 
stress-strain state corresponding to an axial strain increment of 	∆�
. The results showed 
that the developed neural network model was able to capture the stress-strain behaviour 
of granular soil with an acceptable level of accuracy considering both non-linear stress-
strain relationship and volume change behaviours.  
In case of isotropic materials, or when isotropy can be assumed, a strategy was 
proposed by Shin and Pande (2002) to generate additional data from limited number of 
general homogeneous material test results to be used in training of neural network-
based constitutive models. In this strategy, by assuming that the material is isotropic, 
the stress-strain pairs of data are transformed. This is done by rotating the datum axes 
(X, Y and Z) from the axes with respect to which the material tests are done (1-2-3). 
This strategy increases the amount of training data so that there will be enough data 
lines for proper training of the neural network model. Shin and Pande (2002) solved a 
boundary value problem to evaluate their proposed methodology. In this problem a 
circular cavity in a plane stress plate was analysed using a finite element method in 
which the neural network-based constitutive model (NNCM) trained using their 
proposed strategy was used as the constitutive relationship. The results were compared 
to the ones from standard finite element analysis using conventional constitutive models 
and acceptable agreement was observed.  The only limitation with this strategy, 
according to the developers, is that it cannot be used for anisotropic materials. 
Penumadu & Zhao (1999) and Shin and Pande (2002) presented some important 
examples of applications of ANNs by suggesting methods of creating comprehensive 
input data for better training of the networks. Although the proposed technique to 
generate additional data helped improving the training experience of ANNs; however, 
no amendments to the actual methodology was suggested to improve the performance. 

2.3.4 Neural network-based finite element and discrete element 
models 

Javadi and colleagues investigated the application of neural networks in constitutive 
modelling of complex materials including soils. They developed a neural network based 



Chapter (2)                             Constitutive Modelling Based on Data Mining Techniques 

9 
 

finite element method (NeuroFEM) based on the incorporation of a back-propagation 
neural network (BPNN) in finite element analysis. The proposed model was validated 
and applied to solve different boundary value problems, mostly involving geotechnical 
engineering applications (e.g., (Javadi, Zhang and Tan, 2002); (Javadi and Zhang, 
2003); (Javadi, Tan and Elkassas, 2004a); (Javadi and Zhang, 2004b); (Javadi, Tan and 
Elkassas, 2005); (Javadi, Tan and Elkassas, 2009)). The results showed that neural 
network is very efficient in capturing the behaviour of complex materials and 
generalising the behaviour to unseen conditions. 
A closed-form solution for constructing material stiffness matrix using a neural 
network-based constitutive model was proposed by Hashash et al. (2004a). They also 
explained some of the problems concerning the numerical implementation of a neural 
network based constitutive model in finite element analysis. They proposed a procedure 
to establish the Jacobian (stiffness) matrix using neural network material models and 
implemented the matrix in ABAQUS through the user defined material subroutine 
(UMAT) and analysed some numerical examples including analysis of a beam bending 
problem and also the behaviour of a deep excavation. 
Furukawa and Hoffman (2004) used a neural network for modelling of material 
behaviour under monotonic and cyclic plastic deformation and implemented it in finite 
element analysis. Two neural networks were trained and developed; one was used to 
learn the back stress and the other network was trained with the drag stress. The back 
and drag stresses represented kinematic hardening Y, and isotropic hardening R 
respectively. A more detailed illustration of these networks is presented in the figure 
below. 
 

 

Figure  2.2: Neural network material models for back and drag stresses (Furukawa and 
Hoffman, 2004) 

In the above figure Y and R show the kinematic and isotropic hardenings respectively 
and pε  represents the plastic strain. The subscripts k, k-1 and k-2 represent current and 
two previous states of variables. Furukawa & Hoffman (2004) trained and validated the 
neural networks and then implemented the neural network based constitutive models in 
the commercial finite element software, MARC, using its user subroutine feature for 
external material models. To make this possible, they defined the stiffness (Jacobian) 
matrix, D, to describe the stress and strain relationship. 

 � � ��  2-1 
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D matrix was defined as the sum of the elastic (De) and plastic (Dp) matrices: 

The elastic matrix was derived using the Young’s modulus and Poisson’s ratio and only 
the plastic matrix was updated using the trained neural networks. To validate the 
performance of the proposed approach, two material models similar to Figure 2.2 were 
developed using real material data with monotonic plastic deformations. The results 
were compared with those of a conventional material model (Chaboche model) as well 
as experimental data. The same procedure was also followed for the case of cyclic 
plastic deformation and an acceptable agreement of results was reported. As the final 
stage, the proposed neural network based models representing the behaviour of the 
central part of a tensile specimen under cyclic loading were implemented in the finite 
element analysis package (MARC). Figure 2.3 illustrates the results. 
 

 

Figure  2.3: Comparison of experimental, FEA, ANN, best-fit Chaboche model and 
experimental results (Furukawa and Hoffman, 2004) 

A better prediction of the results is presented by the proposed neural network-based 
finite element model in comparison to the conventional Chaboche model. 
Nezami et al. (2006) used discrete element method (DEM) to generate stress-strain data 
in order to train neural network models for soils. The developed models were then 
implemented into the Real Time Simulation Method (RTSM) within which the model 
training process is done in a non-real time scale which is several times faster than the 
reality. This approach resulted in a much faster simulation process compared to the 
actual discrete element method simulation. Nezami et al (2006) used 2D and 3D 
examples to validate their proposed approach. They showed that the results of the neural 
network based models in RTSM framework provide more reasonable predictions in 
comparison to the DEM and can be obtained considerably faster. 

 DDDD = DDDDe + DDDDp  2-2 



Chapter (2)                             Constitutive Modelling Based on Data Mining Techniques 

11 
 

2.3.5 Rate-dependent neural network-based finite element material 
modelling 

A rate-dependent neural network-based material model with its implementation into 
finite element software was presented by Jung and Ghaboussi (2006a). In rate 
dependant material models, the material behaviour is considered to be dependent on 
both strains/stresses and the rate of strains/stresses. This assumption led to the 
development of a neural network model with the following structure: 

The following equations were used to define stress and strain rates: 

The developed neural network model was implemented into the commercial finite 
element software ABAQUS through its user material (UMAT) feature. A hypothetical 
material and structure was considered to verify the proposed methodology. Laboratory 
test data obtained by previous researchers were also used as an example of application 
of the proposed rate-dependent neural network-based material model. The structure 
used for testing was scaled by the factor of 1 to 8 with respect to the real bridge, and the 
time dependent strain variations were measured in mid span using three strain gauges 
located at the top, bottom, and middle of the bridge cross section as shown in Figure 
2.4. 
 

 (Unit: mm) 

Figure  2.4: Test specimen – Physical geometry (Jung and Ghaboussi, 2006a) 

To construct the beam for the experiment, concrete cylinders with diameter of 10 cm 
and height of 20 cm were made. Loading was applied to these samples and the 
corresponding time dependant strains were measured. The obtained stress-strain data 
were used to train the neural network-based material model. UMAT subroutine of 
ABAQUS was used to implement the developed neural network model to be used in the 
finite element analysis of the beam structure. The results of the analysis along with the 
measured strains are shown in the following figure. 

 ��  = ��  NNNNNNNN"� , � #�, � #�, � , ��  , ��  #�, ��  #�$  2-3 

 ��  =
1

Δ'
"� ( � #�$  2-4 

 �� =
1

Δ'
"� ( � #�$  2-5 
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Figure  2.5: Measured and predicted strains at mid-span (Jung and Ghaboussi, 2006a) 

The results (Figure 2.5) show that in spite of the considerable differences between the 
experimental measurements and neural network-based finite element predictions 
concerning the bottom gauge, an overall reasonable agreement was obtained.  
Kessler et al. (2007) presented an implementation of a neural network (ANN) material 
model in the finite element software, ABAQUS, through its user subroutine VUMAT. 
They developed a neural network model using a database for 6061 Aluminium under 
compression and in different temperature conditions. They tried different neural 
network structures and different input parameters and finally used the following inputs 
for training of the neural network: 
 

ln"�$ , ln"��$ , ln"�$ ,
1
+

, ',-./,0	1,',	23	3/24	5'0�55�5	,	1	5'0,6	5 
 
where ε and ε� are strain and strain rate parameters respectively, σ is stress, and T is 
temperature. VUMAT was used to implement the developed neural network model in 
ABAQUS to conduct the finite element analysis and the results were compared with 
those from two conventional material models embedded in ABAQUS: power law model 
and tabular data. The results showed that the neural network-based finite element model 
provided more accurate predictions than the others. Besides, some parameters needed to 
be defined a priori in the case of conventional models, while no parameter identification 
was required in the neural network modelling technique. No explanation of the 
procedure through which the models were implemented in the finite element analysis 
using ABAQUS is provided in Kessler et al. (2007). 
Utilizing numerical techniques including finite element and discrete element methods 
for numerical modelling of neural network-based constitutive models and developing 
rate-dependent ANN models with the capability of jointing with commercial finite 
element analysis software (ABAQUS) using UMAT and VUMAT subroutines has been 
a remarkable improvement to numerical artificial intelligence modelling. However, the 
black box nature of neural network-based constitutive modelling still limits its 
applications in engineering practice. 
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2.3.6 Neural network-based constitutive modelling of FRPs 

A neural network based constitutive model for fibre reinforced polymeric (FRP) 
composites was proposed by Haj-Ali and Kim (2007). Four different combinations of 
neural network models were considered in this study. Off-axis compression and tension 
tests were conducted with coupons cut from a monolithic composite plate manufactured 
by pultrusion process to obtain the required data for training the neural network models. 
The parameters considered as inputs of the neural network were ���, 	�99, :�9 and the 
outputs were inelastic or total strains; which created the four different combinations. 
Good agreement was reported between the experimental results and the neural network 
predictions. A notched composite plate with an open hole was tested to evaluate the 
developed finite element model using the created neural network model.  ABAQUS 
user subroutine was used to implement the neural network model in the finite element 
analysis. Comparison of the finite element analysis result with the experimental data for 
an arbitrary point where the response of the structure was linear revealed that the model 
was able to predict the linear behaviour of the composite; however, a small diversion of 
predicted results from the experimental data was observed as the strains increased. The 
results were not compared at any point around the hole where the behaviour was 
expected to show nonlinearity. A parametric study could also be useful to show 
contributions of involved input parameters; however, this is not very practical due to 
black-box nature of neural networks. 

2.3.7 Recurrent neural network-based models 

Najjar and Huang (2007) used a recurrent neural network to develop a model to 
simulate the behaviour of clay under plane strain loading conditions. The results showed 
that the developed model was capable of assessing the effect of strain rate and stress 
history on the behaviour of the clay being studied. However, according to the authors, 
the model cannot be used to solve boundary value problems directly. This problem 
could be addressed if the authors could have more clear insight into the developed 
constitutive model. A sensitivity analysis could help find the most and least effective 
parameters and removing the ineffective parameters and emphasizing on the key ones 
could lead to development of better models, but the black box nature of ANNs limits the 
user access to only the weight matrices and biases which are not easily interpretable. 

2.3.8 Neural network-based models for materials under cyclic 
loading 

Yun et al. (2008a) and Yun et al. (2006a) used a neural network approach for modelling 
the cyclic behaviour of materials including hysteresis. In the investigation of the 
hysteric behaviour of materials, one strain value may correspond to more than one stress 
and this could potentially prevent neural network from learning the hysteretic and/or 
cyclic behaviour of materials properly. Yun et al. (2008a) and Yun et al. (2006a) 
introduced two new internal variables (additional input parameters) to the neural 
network based material model to help ANN learn the hysteretic and/or cyclic behaviour 
of materials. The structure of the neural network was as follows: 

 � � �;<<(� , � #�, � #�, =>, , Δ?>, )  2-6 
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where � , is the current strain; � #�, is the previous state of strain, � #�, is the previous 
state of stress, �  is the current stress, and =>, , and	Δ?>,  are additional internal 
parameters defined as: 

The developed constitutive model was implemented into the ABAQUS software using 
the UMAT subroutine. The material tangent stiffness matrix was defined as:  

where	 Δ� = �� Δ� ( Δ�  �� 	and	 Δ� = �� Δ� ( Δ�  �� . Three sets of data were 
used to evaluate the neural network-based material model two of which were real 
experimental data and the third one was a simulated data set. Data from a cyclic test on 
a plain concrete sample were first used to train a neural network-based material model 
(Equation 2-6). The neural network model predictions, experimental data as well as the 
results from an analytical model are presented in the following figure:  

 

Figure  2.6: Neural network model simulation results against analytical model predictions and 
experimental data (Yun, Ghaboussi and Elnashai, 2008a) 

The developed neural network model was also exposed to a new (previously unseen) 
series of data in order to evaluate the generalisation capabilities of the model. The 
results are presented in Figure 2.7. 
As the second example, two experimental data sets from two different steel beam-
column connections were used to train and validate another neural network based model 
to predict the cyclic behaviour of the material. In none of the above examples the neural 
network-based material models were implemented into finite element analysis. The 
third example was a three-floor building modelled using the finite element software 
ABAQUS. In this example, the Lemaitre-Chaboche model was used as the material 
model. Data were extracted and used to train another neural network model the structure 
of which was presented as: 

 =>, = � #�� #�		and		Δ?>, = 	 � #�Δ�   2-7 
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Figure  2.7: Neural network model predictions on an unseen data set (Yun, Ghaboussi and 
Elnashai, 2008a) 

where K>, = = + Δ?L,M is an additional input parameter (similar to and a combination 
of the two previously introduced internal variables in previous examples). The 
developed neural network model was incorporated into a non-linear finite element 
analysis code and was used as the constitutive model to make predictions on the cyclic 
behaviour of the beam sections. Comparison of the results revealed an acceptable 
agreement of the neural network-based finite element analysis predictions with the 
original data despite minor differences at some points where comparisons were made.  
 
The neural network model developed by Yun et al. (2008a) and Yun et al. (2006a) to 
predict the behaviour of materials under cyclic loadings for beam-column connections 
was extended by Yun et al. (2008b) by adding some other mechanical and design input 
parameters. The structure of this neural network model is: 

where n represents the nth loading (or time) step, θ and M represent the rotational 
displacement and moment respectively and =N, =O #� P Q #� and Δ?N, = O #� P
Δθ  are the two additional internal variables used to accelerate the learning of neural 
network of hysteretic behaviour. S(DV1... DVj) is also the ith mechanical parameter 
which is a function of design variables (DV). 
In order to validate the proposed neural network model, two different types of 
connections including extended-end-plate (EEP) and top-and-seat-angle with double 
web-angle (TSADWA) connections, were considered and exposed to cyclic and 
earthquake loading conditions. ABAQUS was used for the numerical simulation. The 
developed synthetic data were then used to develop a neural network model for the 
extended-end-plate connection. Depth of the beam (1T), thickness of the end plate ('F) 
and diameter of the connecting bolt (3T) were used as design variables. 

In case of the top-and-seat-angle with double web-angle connection type, real 
experimental data were available and employed to train and validate the neural network 
material model. In spite of some discrepancies, in both cases good agreement between 
the neural network model predictions and actual data was observed. 

 O = OU<<"Q , Q #�, O #�, =N, , Δ?N, , S
"�V�, … , �VX 	))  2-10 

 O � OU<<(Q , Q #�, O #�, =N, , Δ?N, , S"1T , 'F, 3T$$  2-11 
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Kim et al. (2010) presented a comparison between two different approaches for 
modelling of steel beam-to-column connections. The first approach investigated was a 
component-based model where all components of connection were idealized by 
assuming one-dimensional springs. Constitutive relationships defining the behaviour of 
every spring were defined in to represent the actual and comprehensive response of a 
joint (Figure 2.8). 
 

 

Figure  2.8: A top-and-seat angle connection with double web angles, actual and idealized (Kim, 
Ghaboussi and Elnashai, 2010) 

Two experimental data sets from literature, (Calado et al. (2000) and Kukreti and 
Abolmali (1999)), were used to validate the proposed component-based modelling 
approach. Comparison of the experimental and component-based model results for both 
examples are shown in the following figures (Figures 2.9 and 2.10). 
 

 
 

Figure  2.9: Experimental and analytical hysteretic responses for the case suggested by Calado 
et al. (2000) 

 
It can be seen that the component-based model has been capable of predicting the 
general behaviour of the connection; however, predicting every detail does not seem to 
be possible using this methodology. 
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Figure  2.10: Comparisons of experimental and analytical results for the case suggested by 
Kukreti and Abolmali (1999) 

 
As the second approach, the nonlinear hysteretic neural network model proposed by 
Yun et al. (2008a) was employed to model the stress-strain behaviour of the 
connections. The neural network-based model was first verified using the synthetic data 
which were generated using the Ramberg-Osgood model. The proposed neural network-
based approach was also applied to two experimental data cases to provide further 
verification to the component-based model.  
Comparison of the results of the proposed neural network based model with the 
experimental data showed that the neural network model is able to predict the overall 
pinched hysteretic loops with a better accuracy than the component-based model. A 
third approach which was a combination of the two approaches proposed earlier in their 
study was proposed by the authors for future investigation. The third suggested 
approach would involve the most effective mechanical and informational aspects of the 
complex behaviour of connections. 
Neural networks were used to develop models for materials and connections under 
cyclic and hysteretic loading; however the problem with the proposed neural network 
models for connections was that the models were limited to prediction of the global 
responses of the joints and were not able to represent the contribution of individual 
components and therefore could not provide the user with an insight into the underlying 
mechanics of the components.  

2.4 Auto-progressive and self-learning neural network and 
its application in constitutive modelling 

2.4.1 Auto-progressive approach 

Ghaboussi et al. (1998) proposed a methodology, called auto-progressive approach, for 
training neural network material models. In this approach the acquired information from 
a global load-deflection response of a structural test was used as data for training the 
neural network model. Neural networks require large number of data lines to be able to 
capture and learn the material behaviour and model the material response.  It is usually 
not possible to obtained comprehensive data from a single test on one sample of the 
material. The proposed approach was based on the fact that a structural test contains a 
large and diverse amount of data (e.g., different patterns of stresses and strains) that can 
be used for training of the neural network. In this methodology an iterative non-linear 
finite element analysis of the test specimen was implemented to extract and gradually 
improve the stress-strain data for training of the neural network. This approach needs 
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data from structural tests to be defined a priori which may not be available in some 
practical cases. 
Sidarta and Ghaboussi (1998) used the auto-progressive training technique to develop a 
neural network-based constitutive model for modelling geotechnical materials. They 
used a non-uniform material test, a triaxial test with end friction, which provides non-
uniform distribution of stresses and strains. The measured boundary forces and 
displacements obtained from this test were implemented into a finite element model of 
the test in order to generate the input and output data for training the neural network 
material model using the auto-progressive methodology. 

2.4.2  Self-learning finite element method 

Shin and Pande (2000) also presented a self-learning finite element code with an 
implemented neural network based constitutive model which was considered to replace 
the conventional material models. The proposed methodology was similar to the auto-
progressive approach proposed by Ghaboussi and his co-workers (Ghaboussi et al., 
1998). Two boundary value problems were considered including a two-bar structure in 
which one of the bars was constructed from an ideally plastic or a strain softening 
material and the other was linear elastic. For the non-linear bar, the load-deformation 
data was generated artificially using analytical relationships and were used for training 
of the neural network-based constitutive model. In the second example a plane stress 
panel of linear elastic material under vertical point loading from top was simulated. The 
displacements at a number of points were extracted from the analysis and used to train a 
neural network-based constitutive model. It was shown that the positions of monitoring 
points could affect the training of the neural network and consequently the convergence 
of the predictions of the developed neural network model towards the standard 
solutions. The position of the loading was also changed in order to show that the neural 
network-based model has been trained enough to be used in analysis of any boundary 
value problem in which the material law corresponds to the trained neural network 
model. 
Another approach was suggested by Shin and Pande (2001) to construct the tangential 
stiffness matrix of the material. This methodology used partial derivatives of the neural 
network-based constitutive model which was developed based on total stress and strain 
data. The developed stiffness matrix was incorporated into a self-learning finite element 
code developed by the authors and the developed finite element model was validated by 
application to analysis of a rock specimen with fixed ends under uniaxial cylindrical 
compression.  
Shin and Pande (2003) also used the self-learning neural network-based finite element 
code to identify elastic constants for orthotropic materials from a structural test. They 
proposed a two-step methodology. In the first step, the measured data from analysis of a 
structure were used to train a neural network model which was implemented into a finite 
element code. In the next step, the trained neural network-based constitutive model was 
used to construct the constitutive stiffness matrix using the following equation to obtain 
the material elastic parameters. 
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Figure 2.11 shows the inputs and outputs of the developed neural network model and its 
optimal structure. Strain vectors were considered as the inputs of the developed model 
and the stress vectors were the outputs. 
 

 

Figure  2.11: Structure of the neural network based constitutive model (Shin and Pande, 2003) 

The same methodology was then applied to the case of a plane stress problem involving 
a panel with a circular hole located in its centre subjected to compression. Synthetic 
structural test data, including displacements obtained from 66 nodes at 5 loading stages 
from finite element analysis of the panel with assumed values for the nine independent 
orthotropic elastic constants, were used as the training data. The material showed linear 
elastic behaviour and after 3cycles of self-learning a good agreement was obtained with 
target results used as reference. The predicted orthotropic elastic constants were also in 
good agreement with the reference values. The nine elastic constants were: 
 
[\, [], [^ , _\], _]^ , _\^ , `\], `]^, `\^ 
 

The neural network-based stiffness matrices were not symmetric and altogether 36 
elastic constants were achieved. The off diagonal terms were averaged to symmetrise 
these matrices. A relatively large number of nodes were needed to monitor the 
displacements of a structure with a relatively simple geometry and simple linear elastic 
behaviour. This could mean that in the case of more complicated and nonlinear 
problems using this method could suggest some limitations.  
Hashash et al. (2003) considered a braced excavation and used measured lateral 
deflections of the walls and settlements of the surface of the structure in different 
construction stages to extract and capture the constitutive behaviour of the soil using the 
auto-progressive approach. They obtained synthetic data for training of the neural 
network model by simulating the excavation problem using the finite element method. 
The constitutive model used for the soil in the simulation stage in the finite element 
analysis was the modified cam clay model. Two finite element models of the problem 
were prepared in order to start the auto-progressive procedure. The first one was used to 
simulate soil removal and installation of the bracing at nth stage of excavation and the 
second one was implemented to apply monitored deformations of the same excavation 
stage. The first finite element model and the second one were used to obtain stresses 
and strains respectively and the stress-strain pairs were used to train a neural network 
based soil model. At the very beginning of the model development procedure the 
material behaviour was totally unknown and the two finite element models were used to 
initialise with developing the neural network-based model representing the linear elastic 
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behaviour. The procedure was repeated until the entire excavation stages were 
simulated. At the end of the process, a neural network-based material model, which was 
trained with a comprehensive set of data, was created through the iterative process. 
Comparison of the results showed that the methodology proposed in this paper was 
capable of capturing the behaviour of the material from a series of finite element 
analyses of the excavation model and the incrementally learning from field 
observations. 
Hashash et al. (2004b) proposed a general and systematic procedure for probing 
constitutive models. The following general strain probe equation, composed of all six 
independent components of the strain tensor, was implemented to explore the 
constitutive model behaviour: 

True triaxial strain probe (TTSP) and plane-strain strain probe (PSSP) were considered 
as two specific cases of probing to investigate the application of the above equation in 
studying material behaviour. Von Mises, Modified Cam Clay, and MIT-E3 (an elasto-
plastic constitutive model for overconsolidated clays) were used as three different 
models to demonstrate the true triaxial probing procedure. In case of the plane strain 
probing an artificial neural network model was considered. The proposed neural 
network model was trained using the auto-progressive algorithm in a braced excavation 
problem using MIT-E3 constitutive model. The neural network based model showed a 
good performance and provided good predictions of the surface settlements and lateral 
displacements concerning the excavation problem. But, at the time of implementing the 
probing procedure to find the yield loci of the neural network model, it was revealed 
that the neural network model had not been able to capture the correct shape of the loci; 
however, the overall size of the response surface was similar to MIT-E3 model. 
Although the data were generated synthetically using the results of FE analysis the 
authors claimed that the reason for this (model not capturing the correct shape of the 
loci) can be the lack of training data available for neural network model development.  

2.4.3 Self-Sim methodology 

Hashash et al. (2006a) introduced Self-Sim (self-learning simulation) methodology. 
They described the newly suggested procedure as a software analysis framework to 
implement and extend the auto-progressive algorithm. The modelling procedure and 
steps of the suggested Self-Sim methodology were the same as the auto-progressive 
method introduced by Ghaboussi et al. (1998) and Hashash et al (2003). The 
performance of the Self-Sim technique was validated using a simulated excavation case 
history. Synthetic data (including lateral wall deflections and surface settlements) 
obtained using a finite element model employing the MIT-E3 as soil constitutive model 
were used to train the neural network. Results from five example problems, including 
three numerical examples and two actual case histories, were used to validate the 
capabilities and performance of Self-Sim in predicting the behaviour of a deep 
excavation. The results showed that the proposed methodology was able to help obtain 
sufficient data on behaviour of the soil and the models developed using this 
methodology were able to predict the soil behaviour with acceptable accuracy. 
Hashash et al. (2006b) used load-displacement measurements along with their suggested 
Self-Sim methodology to characterize the constitutive behaviour of granular materials in 
general and a particular case of extra-terrestrial soil.  The steps suggested for Self-Sim 

 a"Δ���)9 + (Δ�99)9 + (Δ���)9 + (Δ��9)9 + (Δ�9�)9 + (Δ���)9 � 0b>  2-13 
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presented in this work (Hashash, Ghaboussi and Jung, 2006b) are the same as Hashash 
et al (2006a). They assumed an in-situ test being conducted on an extra-terrestrial soil in 
which the applied load and resultant deformation were being recorded. Two finite 
element models were created for the considered domain and the measured loads and 
displacements in each case were applied to the models in an incremental manner. 
Stresses were obtained from the first model where measured loads were applied. 
Measured displacements and the compatibility principal were used to obtain strains 
using the second finite element model. As all the measurements could be taken in situ, 
the acquiring and transferring process of extra-terrestrial soils, which would be an 
expensive process, was avoided. Additionally, as in the Self-Sim methodology no priori 
assumptions are needed for developing constitutive relationship for materials, this 
methodology can be considered as a strong alternative that can be used to investigate the 
behaviour of unknown and new materials like extra-terrestrial soils. 

2.4.4  Auto-progressive algorithm for rate dependant material 
models 

Jung and Ghaboussi (2006b) presented an extended version of the auto-progressive 
algorithm which included rate dependant material models. In the new auto-progressive 
algorithm, rates of stresses and strains were also measured from finite element 
simulation models. To validate the proposed methodology a hypothetical cylinder with 
variable diameter, made of a visco-elastic material was considered (Figure 2.12). 

 

Figure  2.12: Structure of the simulated experiment and the implemented creep function (Jung 
and Ghaboussi, 2006b) 

The structural test shown in Error! Reference source not found. and its global 
response was used to develop a neural network-based rate dependant material model 
which was then employed to solve a new boundary value problem. An important aspect 
of the neural network-based model was that it was capable of learning the effects of 
time step. If the neural network based model was trained using only one time step, its 
predictions for other time steps would be poor ( (Jung and Ghaboussi, 2006a); (Jung and 
Ghaboussi, 2006b)). Considering this fact Jung and Ghaboussi (2006b) suggested the 
model to be trained using different time step data. The methodology was applied to the 
results from actual experiments with the aim of capturing the non-linear creep behaviour 
of a super alloy. 
Aquino and Brigham (2006) also employed the auto-progressive or self-learning finite 
element methodology to develop a neural network-based thermal constitutive model. 
Similar to the previous applications of this methodology, the main steps followed were 
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pre-training or initialising of the neural network model, developing and using two 
simulated finite element models, and training the neural network material model. 
In order to verify the capabilities of the proposed methodology a steel plate with a 
prescribed heat flux on one side and 100 ˚C temperature as boundary condition on the 
other three sides was simulated (Figure 2.13). 
 

 

Figure  2.13: Simulated steel plate experiment (Aquino and Brigham, 2006) 

This experiment was simulated numerically to generate synthetic data. A random noise 
was introduced into the simulated data to evaluate the stability of the self-learning finite 
element-based methodology. Three test cases were considered. The self-learning 
algorithm started with pre-training of a neural network model by generating random 
temperature, temperature gradient, and also their corresponding heat flux data using the 
Fourier law. Two finite element models were eventually created. The temperature and 
temperature gradient data were extracted from the second finite element model and were 
used as inputs, and the heat flux vectors were extracted from the first finite element 
analysis and were used as outputs. The neural network model was trained using the 
generated data and the inputs and outputs of the model were: 

Inputs: 
cd
c\

, cd
c]

, ,	1		+ 

Outputs: e\ , 		e] 

where: 
cd

c\
, cd

c]
 are gradients in x and y directions respectively and T represents 

temperature. e\ , 	and		e] are heat flux vectors in x and y directions. 
The results showed that the self-learning methodology was able to help develop neural 
network thermal constitutive models using noisy data.  
Modelling time-dependant behaviour of concrete at the time of construction of a 
segmental bridge was investigated by Jung et al. (2007) using the previously introduced 
Self-Sim methodology. They used Self-Sim to develop neural network models using 
stresses, strains, and their corresponding rates from early stages of construction to 
predict future stress-strain states of the structure as the construction continued. The 
proposed methodology was used to analyse Pipiral Bridge, a concrete segmental bridge 
that was built employing the balanced cantilever method in Colombia. The neural 
network model used in this application had 2 hidden layers, each layer made of 14 
nodes, 7 inputs and 1 output parameter (Figure 2.14). 
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Figure  2.14: Rate-dependent neural network material model (Jung, Ghaboussi and Marulanda, 
2007) 

 The input and output parameters for the neural network model were considered to be: 

where	5 � � ( f �g/3, � = � ( f �g/3. The superscripts n and n-1 represent the 
current and the previous time steps.  
The proposed constitutive equation was iteratively solved using the following equation: 

The current strain state together with previous states of other parameters, were obtained 
from the results of finite element analyses and the rate-dependent neural network model 
was used to predict the creep of concrete. 
Two different implementations of the Self-Sim methodology were proposed to predict 
the deflection of a segmental bridge (Figure 2.15). In the first approach, when a 
construction case had a repetition of many cantilevers, the first two cantilevers were 
used to calibrate the neural network model and the remaining ones were predicted using 
the calibrated neural network model. In the second approach the neural network-based 
model had already been trained using data from earlier segments and was used to 
predict the deflections of the remaining segments in the same cantilever. However it 
should be noted that data mining based models like the ones developed using neural 
networks cannot be relied on 100% when they are used to make predictions beyond the 
range of data that they have experienced during the training phase. The authors (Jung, 
Ghaboussi and Marulanda, 2007) suggested adding previously obtained data from other 
resources like data from laboratory tests, field measurements and synthetic data 
generated using conventional constitutive models to their current database in order to 
improve the prediction capabilities of the proposed Self-Sim methodology and possibly 
predicting the deflections of the remaining segments.  
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Figure  2.15: (a) learn from the current cantilever and predict deflections of the remaining 
cantilevers (b) learn from the earlier segments and predict the deflections of the remaining 

segments (Jung, Ghaboussi and Marulanda, 2007) 

Fu et al. (2007) and Hashash et al. (2006c)  implemented the Self-Sim methodology to 
develop constitutive models for soils based on laboratory test data. They applied the 
methodology to two simulated laboratory tests including a triaxial compression test and 
a triaxial torsional shear test. A neural network-based constitutive model was developed 
using the extracted soil data from the laboratory test simulations to represent the 
behaviour of the soil. The developed model was then used to predict the load-settlement 
behaviour of a simulated strip footing.  
Yun et al. (2008c) and Yun et al. (2006b) used self-learning simulation to model the 
cyclic behaviour of beam-column connections in steel frames. They used a similar 
neural network model to the one presented by Yun et al. (2008a) and (2008b) for 
predicting the cyclic and hysteretic behaviour of beam-column connections. The 
structure and input and output parameters of the neural network model were as: 

where =N, = O #�Q #� and Δ?N, = O #�ΔQ  are two internal variables, O=moment, 
Q=rotation, OU<<: j�

→j is the functional mapping to be established through neural 
networks.  n indicates nth time (or loading) step. An intuitive description of the two 
internal variables is presented in the following figure. 

 
(a)                                                     (b) 

Figure  2.16: Internal variables defined for the neural network based cyclic connection model: 
(a) displacement control form and (b) stress resultant control form (Yun, Ghaboussi and 

Elnashai, 2008c) 

The following equation was used to obtain tangential stiffness from the neural network-
based model for the connection. 

 O = OU<<"Q , Q #�, O #�, =N, , Δ?N, $  2-16 
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where Δk = ΔkM�� ( ΔkM   and Δl = ΔlM�� ( ΔlM  
The self-learning simulation methodology presented by Yun et al. (2008c) was 
enhanced with a new algorithmic formulation suggested for the neural network-based 
cyclic material model. Numerically simulated data as well as actual data were used to 
validate the improved self-learning simulation method presented for prediction of cyclic 
behaviour of connections. As mentioned above, in the Self-Sim methodology, in the 
second step of the modelling procedure, two finite element models (A, B) run parallel to 
each other to update and improve the neural network based material model. From 
models A and B, force and displacement values are obtained respectively and are 
applied as stress strain pairs to train the neural network model. At each load step (or 
time step), two FE analyses (FEM-A and FEM-B) are performed: in the FEM-A, the 
measured forces are applied; and, in the FEM-B, the measured displacements are 
enforced. The local stress resultant vector at the connections from FEM-A represents 
acceptable approximation of the actual stress resultant vector. The local displacement 
vector from FEM-B is considered to be a good approximation of the actual 
displacement vector. Two different cases were considered to construct the stiffness 
matrices based on the FEM-A and FEM-B as shown in Figures 2.17 and 2.18. 

 

Figure  2.17: Case I: Algorithmic tangential stiffness formulation during the self-learning 
simulation process (Yun, Ghaboussi and Elnashai, 2008c) 

 

 m =
∂Δk
∂Δl
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Figure  2.18: Case II: Algorithmic tangential stiffness formulation during the self-learning 
simulation process (Yun, Ghaboussi and Elnashai, 2008c) 

Yun et al (Yun, Ghaboussi and Elnashai, 2008c) showed that the neural network-based 
model from case I provides a better prediction in comparison to case II for the examples 
presented in their paper.  
Hashash and Song (2008) implemented the self-learning simulation (Self-Sim) 
technique to capture and predict behaviour of soils through neural network models. 
They presented three different examples including a triaxial test with frictional loading 
plates, deformation due to deep excavations and site response as a result of horizontal 
shaking. Hashash and Song (2008) showed that the developed model is capable of 
predicting the soil behaviour with a good accuracy, but as the authors stated, selecting 
parameters of Self-Sim and neural network is an empirical and important process and 
requires personal experience. This can be considered as a drawback for the neural 
network models.  
Another application of the Self-Sim methodology in analysis of dynamical behaviour of 
soils was suggested by Tsai and Hashash (2008). They described the implementation of 
the Self-Sim methodology and the process of integrating field data measurements and 
numerical simulations of seismic site responses with the aim of obtaining the underlying 
cyclic response of soils. They applied the Self-Sim methodology to study one-
dimensional seismic site response in steps. 
Step 1:  The ground responses corresponding to shaking of the base were measured in 
selected points in different depths in the soil. Base shaking and the obtained 
measurements were used to make sets of field measurement data. Initially a neural 
network-based soil model was pre-trained using stress-strain data concerning the linear 
elastic behaviour over a limited range of strains.  
Step 2(a):  The initial neural network model was implemented in a FE model and was 
used to simulate the site response and the acceleration from the deepest point in a 
downhole array was measured and was applied at the bottom of the soil column. By 
conducting a dynamic equilibrium analysis, the stresses and strains were computed all 
along the soil column. Because the base acceleration and the applied boundary forces 
are accurate, in the Self-Sim approach it was assumed that the computed equilibrium 
stresses corresponding to the applied boundary forces provide an acceptable 
approximation of the actual stresses experienced by the soil, but computed strains were 
discarded because they may not match the expected results.  
Step 2(b):  In a similar site response analysis approach and using the same neural 
network model, the measured displacements from a downhole array were applied as 
additional boundary conditions and stresses and strains were also computed in the soil 
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column. It was assumed that the applied displacements were accurate and therefore the 
corresponding computed strains were considered to be an acceptable approximation of 
the true field strain experienced by the soil. 
Stresses and strains obtained from steps 2(a) and 2(b) respectively formed stress-strain 
pairs that approximate the soil constitutive response. The obtained stress-strain pairs 
were used to update the neural network based material model through retraining. The 
entire process was repeated several times using the full ground motion time series until 
the ground responses similar to the measured ones were acquired. An illustration of the 
process is presented in the following figure. 

 

Figure  2.19: Self-Sim algorithm applied to a downhole array (Tsai and Hashash, 2008) 

Tsai and Hashash (2008) also applied this procedure to a synthetically generated 
downhole array data to create models. In order to evaluate the capability of the model in 
capturing the dynamic behaviour of soils the proposed methodology was applied to 
three different synthetically created case examples including a single soil layer under a 
sinusolidal motion, a uniform but multilayer soil profile under seismic motion, and a 
non-uniform multilayer soil profile under seismic motion. The results from application 
of the proposed modelling approach revealed that the Self-Sim was able to provide 
acceptable predictions of the site response in all considered cases. To evaluate the 
predictive capabilities of the material model created based on individual events, it was 
assumed that there were two more recordings available. Site response analyses (with FE 
incorporated NN material model obtained from a given event) were performed using 
input motions of the other two events. The results showed that in some cases the 
prediction of surface response is not accurate. The difference between the predated and 
expected results was because the site response analyses had been experiencing a 
different range of strains which had not been introduced to the neural network model 
development procedure at the training stage, as mentioned by Tsai and Hashash (2008). 
Further to this, the three different individually extracted stress-strain behaviour 
regarding three different events were combined to create a more comprehensive 
database to be used to train a new neural network material model with the aim of 
increasing the accuracy of the predicted results. Comparison of the results revealed that 
despite the significant difference in one case between the predicted response spectra and 
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the expected one, the prediction of the new NN material model was improved compared 
to the previous results (Tsai and Hashash, 2008). 
Self-Sim methodology was also used to capture the drained behaviour of sand based on 
data from triaxial test with fully frictional loading platens (Hashash et al., 2009). Three 
series of isotropic drained triaxial tests were conducted on different loose, medium, and 
dense specimens. The triaxial tests were simulated using the finite element method and 
the Self-Sim approach was used to extract the non-uniform stress-strain behaviour of 
the material considering external load and displacement measurements. The results of 
this study showed that the Self-Sim methodology was able to capture the behaviour of 
the soil specimens accurately. Hashash et al. (2009) mentioned that integration of Self-
Sim methodology and laboratory testing can make it possible to use a single laboratory 
test to generate multiple stress paths, instead of applying the current practice of using a 
laboratory test for creating only one stress path.  
Two different methodologies used for learning the behaviour of deep excavations in 
urban environment were compared by Hashash et al. (2010). They implemented the 
genetic algorithm (GA) and Self-Sim methodology to help the neural network learn the 
behaviour of the soil in a deep excavation. In the first approach a genetic algorithm was 
implemented to optimise the material parameters of an existing material model, which 
was the hardening soil model of PLAXIS, and the second approach was including a 
combination of the finite element method and artificial neural network (ANN) and was 
employed to capture the behaviour of soil. In this proposed procedure no predefined 
constitutive models were required. The above mentioned two approaches were used to 
analyse a case study in Lurie Centre excavation in Chicago, USA. It was observed that 
GA and Self-Sim were able to reproduce the deformations of the wall reasonably well; 
however it came out that the hardening soil model implemented into the FE model in 
the GA approach was not capable of reproducing the magnitude or the shape of the 
settlement profile behind the wall (Figure 2.20). The graph on the right hand side of the 
figure shows the settlement of the surface. In this graph the difference between the 
results of the GA-based approach and the measured values can be easily seen. This 
difference for results related to Self-Sim seems to be negligible. This can be an 
indication of the fact that the GA-based approach highly depends on the constitutive 
model selected and the results would be different if a different soil constitutive model 
was used in implementing the genetic algorithm approach. Although, considering the 
left side of the figure both approaches have provided acceptable predictions, it can be 
easily observed that none of the methods have been able to predict the exact 
deformations of the wall. 

Figure  2.20: Comparison of the computed (a) lateral wall deformations and (b) surface 
settlements using GA and Self-Sim of the excavation (Hashash et al., 2010) 
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Jung and Ghaboussi (2010) used the auto-progressive method to train neural network-
based constitutive models considering the load-displacement measurements from 
structural monitoring. After pre-training the neural network model, the method was 
applied to inverse identification of creep in a concrete beam. The results of the auto-
progressive model were then compared to the experimental results (Figure 2.21). 

 

Figure  2.21: Representation of the convergence of mid-span deflections during the auto-
progressive training (Jung and Ghaboussi, 2010) 

In order to improve the prediction capabilities of the proposed methodology Jung and 
Ghaboussi (2010) added the shrinkage effect to the neural network model parameters. 
The results showed that considering shrinkage had an improving effect on the 
predictions made by the neural network model but this improvement does not seem to 
be very noticeable (Figure 2.22). 
 

 

Figure  2.22: Representation of the convergence of mid-span deflections during the auto-
progressive training (Jung and Ghaboussi, 2010) 

Predicting the long-term behaviour of concrete structures based on their short-term 
behaviour was also investigated by Jung and Ghaboussi (2010). They used the auto-
progressive methodology to conduct this study with not very satisfactory results. 
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2.4.5 Mathematics and information-based hybrid modelling 
framework 

Ghaboussi et al. (2010) considered the suggestions made by Kim et al. (2010), and 
developed a hybrid modelling framework utilizing mathematics and information-based 
methodologies (HMIM). The proposed method combines the mathematical models of 
engineered systems, which were developed considering physics and mechanical laws, 
with artificial neural network-based models created using auto-progressive and Self-
learning Simulation procedures. In the HMIM, neural networks only keep the 
information that is presented in the experimental data and the mathematical models are 
not able to capture them because of their complex nature. The proposed HMIM 
methodology was applied to modelling of a steel beam-to-column connection. In this 
example the components of the connection were divided into two parts: (i) 
Mathematical-based components and (ii) Information-based components. The 
components in which the underlying mechanics are well-developed are very suitable for 
the mathematical modelling and these types of models can provide accurate predictions. 
The remaining components with more complicated behaviour or where there has not 
been enough investigation to model their behaviour mathematically will lay into the 
informational modelling category. Kukreti and Abolmaali (1999) conducted an 
experiment on top-and-seat-angle connection which was exposed to the methodology 
proposed by Ghaboussi et al. (2010) to evaluate its capabilities. In this connection, the 
angles and column panel zones were considered as mathematical-based and the slip and 
ovalisations were assumed to be information-based components. For the calculation 
purposes, the mathematical-based components were idealized as one-dimensional 
springs with reliable constitutive equations for every component. In case of the 
information-based components, the auto-progressive methodology was used to generate 
neural network-based model. The predictions of the behaviour of the connection under 
cyclic loading by the presented hybrid model were compared with the ones from an 
analytical model as well as the experimental results (Figure 2.23). This comparison 
revealed that the hybrid model was able to predict the behaviour of the considered type 
of connection better than the analytical method. In this case, in contrary to the normal 
procedure, the whole data set was used to train the model and it was not divided into 
training and testing data cases. 
 

 

Figure  2.23: Comparison of the predictions of the hybrid and analytical models with the 
experimental data (Ghaboussi, Kim and Elnashai, 2010) 

The effect of different measurement and monitoring instrumentations and their 
considered locations in an excavation project and also the impact of the quality of 
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information being extracted for modelling the behaviour of the excavation using the 
self-learning simulation technique was investigated by Osouli et al (2010). Synthetic 
data were generated using finite element analysis considering the MIT-E3 constitutive 
model. The generated data represented measurements from different locations of an 
excavation project including surface settlement, wall deflection and other data and were 
used to study the relationship between selecting the suitable field instrumentations and 
the quality of the material behaviour captured during the learning (training) process. 
The results showed that considering inclinometers placed behind the wall and also 
measuring forces in the struts in addition to the measurements of lateral wall deflections 
and surface settlement can improve the quality of extracted soil behaviour to a great 
extent. A real case of a deep excavation project in Taiwan was considered to verify the 
results of this study. 

2.4.6 Self-Sim approach for analysing a 3D problem 

Hashash et al. (2011) also considered the Self-Sim approach for analysing a three-
dimensional deep excavation. They provided a description of the numerical issues 
concerning the problem, including the problems faced in developing the proposed three-
dimensional model. The capabilities of the proposed method in capturing the behaviour 
of soil using the measured wall deformation and surface settlement from a 3D problem 
were highlighted. 
The new auto-progressive, Self-Sim and mathematics and information-based hybrid 
modelling framework self-learning methodologies for 2 and 3D problems suggested by 
Ghaboussi et al. (1998) and (2010), Sidarta and Ghaboussi (1998), Hashash et al. 
(2006a) and (2011) and Jung and Ghaboussi (2006b), presented in section 2.4, are  
efficient ways of training neural networks with very little data available and were 
successfully applied to practical examples. Although these works are major 
contributions to development of NNCM approach, the main shortcomings of ANN 
remain unresolved.  

2.5 Conclusions 

Many researchers have used ANNs as a useful tool for developing constitutive models 
for different materials as well as models to describe the behaviour of complex 
engineering systems. 
Despite the great capabilities and advantages of the neural network in constitutive 
modelling of materials and its successful implementation in the finite element and 
discrete element analysis of different problems, this technique is also known to suffer 
from a number of shortcomings. One of the negative points that can be considered in a 
neural network-based modelling system is that the optimum structure of the neural 
network including number of input layers, hidden layers and transfer functions need to 
be identified a priori through a time consuming trial and error procedure. Another main 
drawback of the neural network approach is the large complexity of the structure of the 
proposed network. This is because the neural network stores and represents the 
knowledge in the form of weights and biases which are not easily accessible to the user. 
The lack of interpretability of ANN models has inhibited them from achieving their full 
potential in real world problems ( (Lu, AbouRizk and Hermann, 2001); (Javadi and 
Rezania, 2009a)). As a matter of fact, neural network-based models do not provide clear 
and easily accessible information on the way that input parameters affect the output(s) 
and are considered as a black-box class of modelling methodologies.  
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In this thesis, a new data mining technique, evolutionary polynomial regression (EPR), 
is proposed for modelling the complex constitutive behaviour of geomaterials and a 
number of civil engineering systems. The proposed method overcomes most of the 
issues and drawbacks associated with neural networks and other previously mentioned 
material modelling procedures. EPR provides a transparent representation of models in 
terms of mathematical (polynomial) expressions to describe the complex behaviour of 
materials / systems and there is no need to provide any prior information to develop the 
models. A detailed description of the technique is provided and its application in 
modelling different important aspects of saturated and unsaturated soils and also a 
number of other geotechnical and civil engineering problems is presented. 
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Chapter 3Chapter 3Chapter 3Chapter 3  
 
 

EVOLUTIONARY POLYNOMIAL 
REGRESSION (EPR) 
 
 

3.1 Introduction 

Developing material models using data mining techniques (and particularly the artificial 
neural networks) was discussed in the previous chapter. It was shown that these 
techniques have been able to be trained using experimental and/or numerical simulation 
data and/or the field measurements to capture and reproduce the material behaviour. It 
was also shown that these developed models can be implemented in numerical analysis 
techniques like the finite element method.  
Amongst all data mining techniques the artificial neural networks (ANN) and genetic 
programming (GP) techniques are the most popular and widely used methods. The 
artificial neural networks make use of many processing elements called neurons. These 
neurons are connected to each other by links of different weights and all together form a 
“black box” system called artificial neural network. When large amounts of data exist, 
artificial neural networks can easily learn and capture very complicated relations 
between contributing parameters through training with the provided data. A suitably 
trained network can accurately represent the behaviour of the system. Artificial neural 
networks are able to model highly complex and nonlinear processes without the need to 
assume any pre-specified structure for the relationships between considered input and 
output parameters. Although the artificial neural networks can be considered a robust 
and capable modelling technique; they also suffer from some drawbacks. The main 
drawback of ANNs is that the structure of a neural network including model inputs, 
transfer functions, number of hidden layers and their neurons should be identified a 
priori. Another disadvantage is that the structure of ANN is generally very complex and 
the acquired knowledge is represented in the form of weight matrices and biases which 
are not easily accessible to the user and any engineering judgment on the developed 
models remains very difficult. Over-fitting problem is also another issue with artificial 
neural network-based modelling techniques (Giustolisi and Savic, 2006; Giustolisi and 
Laucelli, 2005). 
Genetic programming (GP), another popular and extensively used modelling approach, 
is also an evolutionary based computing method and generates structured representation 
of the considered system. Koza (1992) proposed a symbolic regression based genetic 
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programming methodology which has been used very frequently with interested 
researchers since then. GP develops mathematical expressions with the aim of fitting a 
set of data points using the evolutionary process which is the nature of genetic 
programming. Similar to most other evolutionary modelling techniques, populations of 
solutions, which are mathematical expressions in case of genetic programming, are 
manipulated by symbolic regression using operations very much like the evolutionary 
processes that are already on operation in nature. The genetic programming 
methodology imitates the natural selection at the time that the ‘fitness’ of the solutions 
in the available population improves through successive generations. Due to the nature 
of the genetic programming technique global explorations is possible and the user is 
able to obtain more information on the behaviour of the system. In other words by using 
this technique the user is able to gain an insight into the way that the input and output 
parameters are related. Despite very distinct advantages, the genetic programming 
technique is also known to suffer from some shortcomings and limitations. Previous 
research works have proven that this technique is not very powerful in finding constant 
values and it also tends to produce functions that grow in length over time (Giustolisi 
and Savic, 2006). 
The Evolutionary Polynomial Regression (EPR), a new data mining technique, is 
introduced in this chapter with the advantage of overcoming some problems associated 
with artificial neural networks and genetic programming. EPR is a two-stage process 
that uses a combination of Genetic Algorithm (GA) and Least Square (LS) regression. 
In EPR an evolutionary searching method is used to find the exponents of polynomial 
expressions using a genetic algorithm engine and the parameters of the model are 
determined using the least squares method (Giustolisi and Savic, 2006). 

3.2 Evolutionary algorithms 

In artificial intelligence-based methodologies optimal solutions are searched for and 
found from among a finite set of solutions by implementing evolutionary algorithms 
(EAs). The main idea behind evolutionary algorithms / techniques is to mimic natural 
evolutions and their corresponding aspects like mutation, selection, and crossover in 
generating solutions to optimization problems (Faramarzi, 2011). Two most commonly 
used evolutionary algorithms are genetic algorithm (GA) and genetic programming 
(GP). A brief description of genetic algorithm is presented below as it is a part of the 
suggested evolutionary technique in this thesis. 

3.3 Genetic algorithm (GA) 

Genetic algorithms are search algorithms based on the mechanics of natural selection 
and natural genetics. Genetic algorithms are combination of the survival of the fittest 
between string structures together with a randomized (but controlled and structured) 
information exchange to create a search algorithm with some of the innovative styles of 
human search (Doglioni, 2004). Genetic algorithms seek to maximize the fitness of the 
population by selecting the fittest individuals, based on Darwin’s theory of survival of 
the fittest, and using their genetic information in mating and mutation operations to 
create a new population of solutions. Although the process involves randomized 
operations, however genetic algorithms are not simple random walk. Genetic algorithms 
utilize historical information in an efficient way to find new search points with expected 
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improved performance. Genetic algorithms have been developed by John Holland and 
his co-workers in the University of Michigan (Goldberg, 1989). 
Genetic algorithm is a global optimization technique and can be implemented to a wide 
variety of problems with large and complex search spaces. Because of their high 
capabilities and potential, they have received a lot of attention and have been used by 
many researchers. The most distinct advantage of the genetic algorithm over other 
traditional optimization methods is that it does not need derivatives of the function and 
works on the function evaluations only to search for optimums. Genetic algorithm 
searches among a population of available points rather than focusing on a single point. 
It can consider design spaces consisting of a mix of continuous and discrete variables 
and therefore, it has a better chance of finding global optimums (Doglioni, 2004). 
In spite of all the advantages, genetic algorithms also suffer from some limitations. One 
of the main disadvantages of genetic algorithm techniques is that although as global 
optimization techniques they have good initial convergence characteristics, but they 
may slow down considerably once the region of optimal solutions has been identified 
(Javadi et al (2005b), Abramson and Abela (1992)).  
Many research works have used genetic algorithm as an effective optimization tool to 
solve various engineering problems. The results of these studies have proven that the 
genetic algorithm can be successfully employed as a strong optimization tool to 
engineering optimization problems. 

3.4 Evolutionary polynomial regression 

3.4.1 Introduction 

In order to simplify the understanding of the differences between mathematical 
modelling approaches, colours are used to group these modelling techniques 
considering their required level of prior information. In this type of categorization, 
models are considered to be white-box, black-box, or grey-box models. Brief 
descriptions of these types of models are presented below (Giustolisi and Savic, 2006): 
 

• A white-box model is a model with known variables, parameters, and underlying 
physical laws. It explains the relationship of the system in form of a set of 
mathematical equations or a single one.  

• Black-box models are systems for which there is no prior information available. 
These are data-driven or regressive models, for which the functional form of 
relationships between variables and the numerical parameters in those functions 
are unknown and need to be estimated. 

• Grey-box models are conceptual models whose mathematical structure can be 
derived through conceptualisation of physical phenomena or through 
simplification of differential equations describing the phenomena under 
consideration. These models usually need parameter estimation by means of 
input/output data analysis, though the range of parameter values is normally 
known. 

White-box models have the ability to describe the underlying relationships between the 
contributing parameters of the desired systems considering only the physics principles 
which can be considered as a great positive point. On the other hand developing white-
box models can be difficult due to the fact that the underlying mechanisms are not 
always totally understood by the users or the samples that are used in the lab to conduct 
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experiments providing the required understanding of the phenomenon, may not be an 
entirely perfect representation of the real environment being considered. 
If one wants to contextualize the evolutionary polynomial data mining technique into 
one of the categories defined above, EPR is classified as a symbolic grey box technique 
which is able to identify and construct structured model expressions for a given data 
(Giustolisi and Savic, 2006). Table 3.1 shows the classification of the most commonly 
used modelling techniques. 

Table  3.1: Classification of EPR and other modelling techniques (Doglioni, 2004) 
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3.4.2 EPR procedure 

The evolutionary polynomial regression works as a two-stage technique. Firstly it 
searches for symbolic structures using a specific but simple genetic algorithm and in the 
second stage EPR estimates the constant values for the model by solving a linear Least 
Square (LS) problem.  

3.4.2.1 Evolutionary structural identification 

General formulation of the EPR expression is given as (Giustolisi and Savic, 2006): 

 � = 	��(�, 	(�
, ��


��� + ��	  3-1 

where � is the estimated output of the system; �� is a constant value; � is a function 
constructed by the process; � is the matrix of input variables; 	 is a function defined by 
the user; and � is the number of terms of the expression excluding bias ��. 
 
At the first stage of the modelling process, EPR identifies the structure of the model. To 
do this the equation 3-1 is transformed into the following form (vector form): 

 ��×�(�, �
 = 	 ���									��×
� � × ���				�� 			…			�
�� = ��×� × ��×�� 	  3-2 

where ��×�(�, �
  is the least square estimate vector of N target values ��×    is the vector of ! = � + 1 parameters �� , # = 1:�, �%!	�� 
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��×� is a matrix formed by �, for bias ��, and � vectors of variables &� that for a fixed # are a product of the independent predictor vectors of variables/inputs, � =〈��			�( 	…			�)〉. 
 
Initially EPR starts from Equation Error! Reference source not found. and searches 
for the best structure which is meant to be a combination of vectors of independent 
variables (inputs parameters)	�+��:). The matrix of inputs � is: 

 � =	
,-
--
--
./�� /�( /�0 … /�)/(� /(( /(0 … /()/0� /0( /00 … /0)… … … … …/�� /�� /�� … /�)12

22
22
3
= 	 ��� �( �0 … �)�		  3-3 

 
where the 456 column of � represents the candidate variable for the #56 term of 
Equation Error! Reference source not found.. Therefore the #56 term of Equation 
Error! Reference source not found. can be written as 

 ��×�� =	 �(��
78(�,�
 ∙ (�(
78(�,(
 ∙ (�0
78(�,0
 ∙. . .∙ (�)
78(�,)
�	  3-4 

 where, �� is the #56 column vector in which its elements are products of candidate 
independent inputs and 78 is a matrix of exponents. Therefore, the problem is to find 
the matrix 78)×
 of exponents whose elements can be values within user-defined 
bounds. For example, if a vector of candidate exponents for inputs,	�, (chosen by user) 
is 7� = �0, 1, 2� and number of terms (�
 (excluding bias) is 4, and the number of 
independent variables (4
 is 3, then the polynomial regression problem is to find a 
matrix of exponents	78=×0. An example of the ES matrix can be seen in Equation 3-5: 

 78 = 	
,-
--
.0 1 20 1 11 2 01 1 012

22
3		  3-5 

Substituting the above matrix into Equation 3-4 will give the following set of 
mathematical expressions: 

 

�� = (��
� ∙ (�(
� ∙ (�0
( = �( ∙ �0(	�( = (��
� ∙ (�(
� ∙ (�0
� = �( ∙ �0	�0 = (��
� ∙ (�(
( ∙ (�0
� = �� ∙ �((	�= = (��
� ∙ (�(
� ∙ (�0
� = �� ∙ �(	
 3-6 

 And the expression of Equation Error! Reference source not found.3-2 would be: 

 
� = 	�� + �� ∙ �� + �( ∙ �( + �0 ∙ �0 + �= ∙ �=					= 	 �� +	�� ∙ �( ∙ �0( +	�( ∙ �( ∙ �0 +	�0 ∙ �� ∙ �(( + �= ∙ �� ∙ �(	  3-7 
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Each row in the 78 matrix expresses the exponents of the candidate variable of the #56 
term in Equations Error! Reference source not found.3-1 and Error! Reference 
source not found.3-2. Each exponent in matrix 78 corresponds to a value in the 7� 
vector. This allows the transformation of the symbolic regression problem into the 
problem of finding the best	78, which is the best structure of the EPR equation. 
 
It is noteworthy that the EPR can also construct non-polynomial mathematical 
expressions. There is a possibility of assuming the function 		 to be the natural 
logarithm, hyperbolic tangent, hyperbolic secant, exponential or have a structure similar 
to one of the following expressions (Doglioni, 2004): 

 
� = 	�� +��� ∙ (��
78(�,�
 ∙ …	∙


���
(�)
78(�,)


∙ 	>(��
78(�,)?�
@ ∙ …	∙ 	>(�)
78(�,()
@ 
case 1 

 

 � = 	�� +��� ∙ 	>(��
78(�,�
 ∙ …	∙ (�)
78(�,)
@

���  case 2 

 

 
� = 	�� +��� ∙ (��
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 ∙ …	∙


���
(�)
78(�,)


∙ 	>(��
78(�,)?�
 ∙ …	∙ (�)
78(�,()
@ 
case 3  3-8 

 

 � = 	A B�� +��� ∙ (��
78(�,�
 ∙ …	∙ (�)
78(�,)


��� C		 case 4  

Standard genetic algorithm is used as the global search tool to find the best form for the 
Equation  3-7 . Chromosomes, which are sets of character strings, similar to the ones that 
can be found in Deoxyribonucleic acid (DNA) in the bodies of the living creatures, are 
used to code the parameters needing to be optimised. In standard genetic algorithm 
binary codes, which are 0 and 1 characters, are implemented to form the chromosomes. 
Integer GA coding is used here to determine the location of the candidate exponents of 
the 7� matrix in the matrix	78 (Doglioni, 2004).  
Values of the adjustable parameters �� are also computed by the EPR after the 
evolutionary identification of the structure, by implementing the linear Least Square 
(LS) method and minimising the sum of squared errors (SSE) considered as the cost 
function (Giustolisi and Savic, 2006). 

3.4.2.2 Least square solution 

Calculation of the values of �� in Equation  3-7 is an inverse problem that corresponds to 
solving an over-determined linear system in form of a least square problem. This 
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problem can normally be solved using Gaussian elimination technique (Giustolisi and 
Savic, 2006).  
A random population of exponent vectors is first created and assigned to the columns of 
the input matrix. A population of structures for equations is then created. The least 
square technique is subsequently used to develop a set of equations to be exposed to the 
fitness criteria. If the considered complexity and fitness criteria are met, then the results 
will be shown and otherwise, the creation of another exponents pool will be passed to 
GA and this procedure will be repeated until the defined criteria for developing the 
models are satisfactorily met. A typical flow diagram representing EPR procedure is 
shown in Figure 3.1. 
 

 
 

Figure  3.1: Flow diagram for representing the evolutionary polynomial regression procedure 
(Doglioni, 2004) 
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3.4.3 Objective functions used in the evolutionary polynomial 
regression 

During the modelling process, different objective functions are provided for EPR to be 
optimised. This is done with the aim of developing the best symbolic model 
representing the system being modelled. EPR has the ability to operate in single and 
multi-objective configurations. Figure 3.2 depicts a summary of main available 
objective functions in the proposed EPR technique. 
Multidimensional strategies are introduced in EPR modelling technique for selecting 
models considering a comprehensive complexity analysis including number of terms, 
number of inputs and also the fitness of the models. The best modelling approach is 
obviously the one that can provide the simplest model fitting the application purpose. 
The “principle of parsimony” also states that in case of availability of multiple and 
equivalent models describing one system, the simplest model should be chosen to 
explain the available set of data. Considering this, one can conclude that the fitness in 
regression-based models should also include a measure of trade-off between the 
complexity of the model and the quality of fit. This could be achieved in the following 
ways (Doglioni, 2004): 

I. In single-objective configuration, an objective function must be used to control 
the fitness of the models preventing unnecessary complexities from entering into 
the models. 

II. At least two objective functions should be introduced if the multi-objective 
configuration is used. In this case one of the objective functions is aimed to 
control the fitness of the models, while at least another one is needed to control 
the model complexity. The advantage of the multi objective approach is that it 
returns a set of non-dominated models, each one presenting fitness and 
complexity features. There is no need for the user to assume the number of 
building blocks a priori. The user will only need to set the maximum number of 
terms and the control on the complexity will let the number of building blocks 
vary considering the fitness of the model (Giustolisi and Savic, 2006). 

 

 
 

Figure  3.2: Main objective functions/strategies available in EPR methodology (Doglioni, 2004) 
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3.4.3.1 Single-objective strategy 

Once experimental, field or simulation-based data is available; a regression-based 
technique being used to model the desired phenomena needs to search among a large or 
infinite number of possible models to be able to find an explanation for those data. The 
EPR technique does the search among all possible models by changing the exponents 
for the columns of matrix � and searching for the best-fit set of parameters	�. However, 
in order to avoid complexity, there is a need for an objective function ensuring the best 
fit. Unwanted unnecessary complexity can be defined as “bringing additional terms into 
the model or combinations of input parameters that introduce noise to the raw data” and 
is not the real representative of the target system. 
An important aim of this methodology is finding ways of avoiding the over-fitting 
problem. Following strategies are introduced to help face this problem (Giustolisi and 
Savic, 2006):  

1. Penalising the complexity of the expression by minimising the number of terms 
2. Controlling the variance of �� constants (the variance of estimates) with respect 

to their values 
3. Controlling the variance of �� ∙ �� terms with respect to the variance of residuals 
4. Cross-validation of the models 
5. Optimisation of the SSE evaluated on the simulation (off-line prediction) of the 

phenomenon performed by the models 
Detailed explanation of these strategies can be found in Doglioni (2004) 

3.4.3.2 Multi-objective strategy 

Earlier editions of EPR used single-objective genetic algorithm (SOGA) strategy to 
explore the formulae space. This exploration is achieved by first assuming the 
maximum number of terms � in the pseudo-polynomial expressions shown in Equation 
Error! Reference source not found. and then sequentially exploring the formulae 
space having one, two … and � terms. However, the SOGA-based EPR methodology 
has the following disadvantages (Giustolisi and Savic, 2009): 

a) As the number of polynomial terms � increases, the performance of the SOGA-
based EPR methodology decreases exponentially. More terms means more GA 
runs. 

b) Interpretation of the results of SOGA-based EPR is very difficult in some 
occasions. The identified models can either be ranked based on their fitness to 
data or considering their structural complexity. Ranking the models chosen 
based on structural complexity requires some subjective judgment, and therefore 
this process can be biased by the analyst’s experience rather than being only 
based on some mathematical criteria. 

c) During the searching process for the formulae with # terms, the ones with fewer 
terms are not presented; however, these formulas could have a better accuracy 
than the previously found ones with # − 1 terms (Giustolisi and Savic, 2009). 

To overcome the above mentioned shortcomings, multi-objective genetic algorithm 
strategy (MOGA) was introduced to the evolutionary polynomial regression 
methodology with the aim of searching for the best model structures that comply with 
the fitness and  include limited structural complexity (Giustolisi and Savic, 2009). Two 
different objective functions are defined to control the fitness and complexity. The 
objectives represented by the functions are mutually conflicting, and then their 
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optimisation returns a trade-off surface of models. The multi-objective strategy in 
hybrid evolutionary computing helps the user with: 

a) Finding a set of feasible symbolic models 
b) Making a robust choice 
c) Having a set of models with variable parsimony levels in an efficient 

computational time 
Multi objective genetic algorithm-based evolutionary polynomial regression (MOGA-
EPR) takes advantage of a multi-model strategy by varying the structural parsimony, 
which is the number of constant values in the equation, and working on the objective 
function used in single-objective EPR. Then, MOGA-EPR finds the set of symbolic 
expressions that perform well according to two (or more) conflicting criteria considered 
simultaneously; the level of agreement between simulated and observed measurements 
and structural parsimony of the expressions obtained. The implemented objective 
functions are: 

a) Maximizing the fitness 
b) Minimizing the total number of input parameters selected by the modelling 

strategy 
c) Minimizing the length of the model expression (decreasing the number of terms 

in the developed model) 
Ranking of the developed models is done considering the Pareto dominance criterion. 
By using the MOGA-EPR the computational time needed by the multiple executions of 
EPR reduces. In the case of SOGA-EPR this time would only be enough for one of the 
objective functions introduced in the model development process. The best possible 
models from among all developed models are chosen and presented to the user based on 
the MOGA-EPR methodology. The Pareto set of solutions seems to be the best set of 
expressions required for the analysis of the problem (Giustolisi and Savic, 2009). 
The most commonly used objective functions implemented to measure the fitness of the 
symbolic structures are based on the Sum of Squared Errors (SSE) or on the 
Penalisation of Complex Structures (PCS). The result of the single-objective EPR 
optimization is normally made of a set of models that all are good in an equal manner. It 
is normally easier to rank these models considering their sum of squared errors, rather 
than according to their structural complexity. As a matter of fact, putting the models in 
order according to their structural complexity can be quite complicated (Giustolisi and 
Savic, 2009). The multi-objective strategy is implemented to improve both the post-
processing and the general modelling framework of the basic evolutionary polynomial 
regression. MOGA strategy allows ranking the developed models considering both the 
Coefficient of Determination (CoD) and the structural complexity. Objective functions 
implemented in multi objective genetic algorithm-based evolutionary polynomial 
regression are (Giustolisi and Savic, 2009): 

a)  (1-CoD), which is equal to the SSE, 
 

 

CoD = 	1 − H − 1H 	 ∑ �(�J − �K
(��
∑ L(�K − 1H∑ �M
� (N�

= 1 − 4 ∙ SSE 

4 = 2(H − 1

∑ L(�M − 1H∑ �M
� (N�

 
 3-9 

where �M is the vector of actual (measured or experimental) data, �J values are the 
corresponding predicted ones and H is the number of data lines based on which the 
coefficient of determination is obtained. 



Chapter (3)                                                   Evolutionary Polynomial Regression (EPR) 

43 

 

b) The number of constant values �Q (# of �Q) and 
c) The total number of input parameters involved in the symbolic expression (% 

of	�R). 
It is noteworthy that the total number of input parameters corresponds to the number of 
times that each input is involved in the symbolic expression. The user must set the 
maximum number of constant values, which puts an upper limit on the maximum 
number of the symbolic expression inputs. MOGA-EPR tries to find the best non-
dominated models with respect to both structural complexity and fitness performance 
which is placed on the best Pareto front. In other words, a direct multi-model 
methodology is provided where the post-processing phase is improved using MOGA-
EPR returning models ranked considering both their fitness and structural complexity. 
Another outstanding feature of the new MOGA-EPR is that, this strategy applies extra 
pressure on achieving structural parsimony. The reason for this is that a large number of �Q	values or a large total number of inputs can only be introduced in case that there is a 
justification by the fitness of the model. It must be noted that the Pareto dominance 
criterion and the function need to be minimised. Objective functions can be used in a 
double-objective configuration or all together (Giustolisi and Savic, 2009): 

a) Coefficient of Determination versus % of	�R 
b) Coefficient of Determination versus % of	�Q 
c) Coefficient of Determination versus [(% of	�R) and (% of	�Q)] 

By choosing the Pareto dominance criterion for the multi-objective optimisation the 
following advantages can be obtained: 

a) Less searching time is required: It is reasonably fast for few objective functions 
in comparison with the total amount of time required by multiple single-
objective sessions. 

b) Simultaneous action: It deals simultaneously with multiple solutions. 
c) Uniformity of the suggested solutions: It is able to provide a uniformly 

distributed range of Pareto solutions. 
Figure 3.3 shows a typical outlook of the MOGA-EPR on operation.  
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Figure  3.1: A typical outlook of multi-objective EPR on operation 

3.4.4 EPR user interface 

EPR has been coded using MATLAB® in POLITECNICO DI BARI University, Italy, by 
Professor Giustolisi and his co-workers in collaboration with Professor Savic in 
University of Exeter, UK. EPR is provided with a user-friendly interface, (following 
figure): 
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Figure  3.2: User interface of the evolutionary  polynomial regression  code  

Within this graphical user interface (GUI), the user can set up the modelling phase 
according to the features described in the previous sections. Moreover, the user can 
decide on the number of generations of the GA by setting the proper value in the “Gen” 
box. This value corresponds to a proportionality factor which will be multiplied for the 
maximum length of the expression (maximum number m of monomial building blocks) 
and for the total number of inputs. Another option is about the possibility of seeding the 
population with random elements from the previous parental set. This option efficiently 
works when large data sets are available and in single-objective configuration. In multi-
objective search the seed option does not seem to add any advantage in the GA phase 
(Giustolisi and Savic, 2009). Finally, the option “bias” refers to the possibility of 
looking for symbolic expression containing the term	��. If the bias option is not 
selected, EPR will automatically exclude all those expressions containing ��, otherwise 
EPR will search for both types of expression with and without 	�� term (Doglioni, 
2004). 

3.4.5 Application of the evolutionary polynomial regression technique 
in modelling engineering problems 

EPR is successfully employed to model various problems and systems in many 
engineering disciplines including structural, environmental and geotechnical 
engineering. Rezania et al (Rezania, Faramarzi and Javadi, 2011) used EPR to predict 
the earthquake-induced soil liquefaction and lateral displacement. A 3D surface was 
developed discriminating between the cases of occurrence and non-occurrence of 
liquefaction using the evolutionary polynomial regression. Faramarzi et al (2011) 
employed EPR to model and predict the behaviour of steel plate shear walls (SPSW) 
under cyclic behaviour. The results of a number of actual experiments on cyclic 
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behaviour of SPSW structures were used to develop EPR models with the aim of 
predicting lateral deformations of SPSWs under cyclic loading. Some other research 
works were also published including the ones from the author of this thesis (e.g.; 
(Ahangar-Asr et al (2012); (2011a); (2011b); (2010)); (Faramarzi, Javadi and Ahangar-
Asr, 2013); (Cuisinier et al., 2013)). 

3.5 Conclusions 

In this chapter the Evolutionary Polynomial Regression (EPR) methodology was 
introduced as a new data mining technique. EPR is a two-stage process that uses a 
Genetic Algorithm (GA) and Least Squares (LS) regression to develop models 
representing data. Both single-objective and multi-objective modelling strategies were 
explained with sufficient details. The advantages of EPR in overcoming some problems 
associated with artificial neural networks and genetic programming were represented 
along with detailed explanation of the related formulations. The user interface of the 
programme and past applications of the methodology were also presented in this 
chapter. 
 
In the next two chapters important applications of EPR in geotechnical and civil 
engineering problems will be presented. 
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Chapter 4Chapter 4Chapter 4Chapter 4  
 
 

APPLICATION OF EPR FOR 
CONSTITUTIVE MODELLING OF 
SOILS 
 
 
 

4.1 Introduction 

Constitutive modelling is an important element of finite element analysis. In 
conventional constitutive modelling, initially a suitable constitutive model is selected 
from a range of available models and then the parameters of the model are identified 
from suitable physical tests on representative samples of the material. Therefore, the 
accuracy with which the selected constitutive model describes the real behaviour of the 
material has significant effect on the accuracy and reliability of the numerical 
predictions. In the past few decades a number of constitutive models have been 
developed to describe the complex behaviour of geomaterials.  Due to erratic and 
complex nature of soils, none of the existing constitutive models can completely 
describe the real behaviour of these materials under various stress paths and loading 
conditions. 
In this chapter the evolutionary polynomial regression technique is applied to 
constitutive modelling of different soils.  Five different applications are considered 
including (i) modelling of mechanical behaviour of unsaturated soils,  (ii) modelling of 
soil-water characteristic curve for unsaturated soils, (iii) thermo-mechanical behaviour 
of unsaturated soils, (iv) stress-strain and volume change behaviour of granular soils  
and (v) identification of coupling parameters between shear strength behaviour and 
chemical’s effects in compacted soils. 
Comparisons of the results of the proposed EPR models with experimental data, and 
conventional models and also artificial neural network model results in some cases are 
presented. Sensitivity analyses of the proposed models are presented with the aim of 
understanding the level of contribution of the involved parameters in the EPR models. 
In what follows a review of the relevant literature, development of the EPR models, 
comparison of the results with previous models and the sensitivity analysis are 
presented for modelling the mechanical stress-strain behaviour of unsaturated soils 
(Section 4.2), soil-water characteristic curve in unsaturated soils (Section 4.3), thermo- 
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mechanical behaviour of unsaturated soils (Section 4.4), stress-strain and volume 
change behaviour of granular soils (Section 4.5) and  coupling parameters between 
shear strength behaviour and chemical’s effects in compacted soils of unsaturated soils 
(Section 4.6).  

4.2 Constitutive modelling of unsaturated soils 

4.2.1 Introduction 

The mechanical behaviour of unsaturated soils has been the subject of numerous 
investigations over the past few decades. Some notable contributions are presented here. 
Toll (1990) proposed a framework to describe the shear behaviour of an unsaturated soil 
in terms of total stresses and suctions in the soil. His proposed model was based on the 
critical state model for saturated soils incorporating additional variables needed to 
formulate the behaviour of unsaturated soil. The effects of total stress and suction were 
considered separately to avoid the possibility of treating the two stress components as 
equivalent. The framework was based on coupling of volumetric and shearing 
behaviour. It incorporated separate stress state variables and included degree of 
saturation as a controlling variable.  
Alonso et al (1990) presented a constitutive model to describe the stress-strain 
behaviour of partially saturated soils. The model was formulated within the framework 
of hardening plasticity using two independent stress variables: the excess of total stress 
over air pressure and the suction. The mode1 was able to represent the fundamental 
features of the behaviour of partially saturated soils which had been treated separately 
by previously proposed models. On reaching saturation, this mode1 becomes a 
conventional critical state model. However, as the experimental evidence was lacking at 
the time, the model was kept simple in order to provide a basic framework from which 
extensions could be possible. The mode1 was intended for slightly or moderately 
expansive partially saturated soils.  
Wheeler and Sivakumar (1995) used data collected from a series of controlled suction 
triaxial tests on samples of compacted white kaolin to develop an elasto-plastic critical 
state framework for unsaturated soil. The framework was defined in terms of four state 
variables: mean net stress, deviator stress, suction and specific volume. An isotropic 
normal compression hyperline, a critical state byperline and a state boundary 
hypersurface were included within the proposed framework. For states situated inside 
the state boundary hypersurface the soil behaviour was assumed to be elastic with 
movement over the state boundary hypersurface corresponding to expansion of the yield 
surface in stress space. The proposed critical state model for unsaturated soil would 
have possible applications at three different levels, as described by Wheeler & 
Sivakumar (1995): (i) in providing a qualitative framework that would enhance 
fundamental understanding of the mechanical behaviour of unsaturated soil, (ii) in 
guiding the choice of drained and undrained strength or stiffness parameters to be used 
in conventional calculations of collapse load or deformation and (iii) in providing a 
formalized elasto-plastic constitutive model that could be incorporated within numerical 
formulations, such as the finite element method, for the solution of boundary value 
problems. However, in this model, similar to some other sophisticated constitutive 
models for unsaturated soils, within a numerical formulation for the solution of real 
boundary value problems, it is difficult to measure all the relevant soil parameters such 
as elastic constants, the suction-dependent parameters, etc.  
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Kogho et al (1993) discussed several theoretical aspects for preparation of constitutive 
equations governing the behaviour of unsaturated soils. They described possible pore 
water states including insular air, fuzzy and pendular saturation which were considered 
to examine the mechanical behaviour of unsaturated soils. They also classified the 
suction effects into two categories: (i) increase in suction that induces an increase in 
effective stress values and (ii) increase in suction that causes both the yield stress and 
stiffness of the soil skeleton to increase. According to this research, taking the three 
saturation conditions (insular air saturation, fuzzy saturation and pendular saturation) 
into account in modelling the behaviour of unsaturated soils is practical.  
Bolzon et al. (1996) extended the elasto-plastic constitutive model developed by Pastor 
et al. (1990), which has been extensively validated for fully saturated soil behaviour, to 
include partially saturated soil behaviour. They particularly investigated soil stiffness 
changes induced by suction together with the process of collapse (i.e. irreversible 
compressive volumetric strains) of soil on wetting. They introduced Bishop's stress and 
suction as the stress parameters to describe the behaviour of partially saturated soils 
under isotropic conditions. For full saturation, when suction is equal to zero, Bishop's 
stress reduces to total stress in excess of pore water pressure, which is the stress 
measure considered in the original saturated model. Stress paths different from the 
isotropic one can also be dealt with in the general framework established by Pastor et al. 
(1990). Bolzon et al. (1996) introduced a few additional parameters to Pastor et al 
(1990) saturated soil model with the aim of characterizing the material response to 
suction changes.  
Loret and Khalili (2000) proposed a framework to define the constitutive behaviour of 
unsaturated soils which was developed within the theory of mixtures applied to three-
phase porous media. Each of the three phases is endowed with its own strains and 
stresses. Elastic and elastic-plastic constitutive equations were developed. Particular 
emphasis was put on the interactions between the phases both in the elastic and plastic 
regimes. Nevertheless, the clear structure of the constitutive equations required a 
minimum number of material parameters and the soil-water characteristic curve was 
directly used to identify these parameters. Following this work which was an extension 
of the elasto–plastic models of saturated soils to unsaturated states within a three-phase 
framework, Loret and Khalili (2000) stated their main concern to be on the behaviour of 
the solid skeleton. They described a model for the elasto–plastic behaviour of 
unsaturated soils requiring minimal number of material parameters to define the effect 
of desaturation. These material parameters were identified and the application of the 
model was demonstrated using the data reported by Wheeler and Sivakumar (1995) that 
included results from first wetting, followed by consolidation and finally triaxial 
compression tests. They aimed to develop an elasto-plastic model for unsaturated soils 
with the least possible deviation from the classic saturated soil models and therefore, 
they chose the modified Cam-Clay model as the plastic driver.  
Gallipoli et al. (2003) presented an elasto-plastic model for unsaturated soils that took 
explicitly into account the mechanisms with which suction affects mechanical behaviour 
of soil, as well as their dependence on degree of saturation. The proposed model was 
formulated in terms of constitutive variables directly related to suction mechanisms. 
The analysis of experimental data on isotropic compression tests suggested that the 
quotient between the void ratio of an unsaturated soil and the void ratio corresponding 
to the saturated state at the same average soil skeleton stress is a unique function of the 
bonding effect due to water menisci at the inter-particle contacts. The same result was 
obtained when examining critical states at different suctions. Based on these 
observations, an elasto-plastic constitutive model was developed using a single yield 
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surface, the size of which was controlled by volumetric hardening. It was shown that the 
model could reproduce many important features of unsaturated soil behaviour.  
Wheeler et al. (2003) developed an anisotropic elasto-plastic model for soft clays. 
Experimental data from multistage drained triaxial stress path tests on Otaniemi clay 
from Finland supported their proposed shape of the yield curve and the proposed 
relationship describing the change of yield curve inclination with plastic straining. They 
also suggested procedures for determining the initial inclination of the yield curve and 
the values of the two additional soil constants within their model. They compared their 
model simulations with experimental data and the Modified Cam Clay model. They 
attributed the discrepancies observed in comparison of the results to the role of 
destructuration in the sensitive Otaniemi clay.  
Borja (2004) presented a mathematical framework for analysis of deformation and 
strain localization of partially saturated granular media using three-phase continuum 
mixture theory. He developed conservation laws governing a three-phase mixture to 
identify energy-conjugate expressions for constitutive modelling. Energy conjugate 
expressions identified relate a certain measure of effective stress to the deformation of 
the solid matrix, the degree of saturation to the matrix suction, the pressure in each 
phase to the corresponding intrinsic volume change of this phase and the seepage forces 
to the corresponding pressure gradients. He used the second law of thermodynamics to 
obtain the dissipation inequality; from the principle of maximum plastic dissipation a 
condition for the convexity of the yield function was driven. Then, he formulated 
expressions describing conditions for the onset of tabular deformation bands under 
locally drained and locally undrained conditions. His proposed model changes to the 
classical modified Cam-Clay model in saturated conditions. He also presented 
numerical examples to demonstrate the performance of the return mapping algorithm 
and illustrated the localization properties of the model as functions of imposed 
deformation and matrix suction histories.  
Ehlers et al. (2004) investigated the deformation and the localization behaviour of 
unsaturated soil and exhibited the influence of the solid–fluid coupling on the 
localization analysis. In the framework of a triphasic formulation, unsaturated soil was 
considered as a materially incompressible elasto-plastic or elasto-viscoplastic skeleton 
saturated by two viscous pore-fluids, a materially incompressible pore-liquid and a 
materially compressible pore-gas. Assuming quasi-static situations, the numerical 
computations proceed from weak formulations of the momentum balance of the overall 
triphasic material together with the mass balance equations of the pore-fluids and 
Darcy-like relations for the seepage velocities. As a result, a system of coupled 
differential-algebraic equations (DAE) occurred, which was solved using the finite 
element method. They also studied the influence of the pore-gas constituent on the 
material behaviour of partially saturated soil with respect to fluid-flow simulations and 
embankment and slope failure problems.  
Khalili et al (2008) presented a fully coupled constitutive model for describing the flow 
and deformation behaviour of unsaturated soils. The elastic–plastic behaviour due to 
loading and unloading was captured using the bounding surface plasticity. The 
hydraulic hysteresis was accounted for through the soil water characteristic curve. The 
coupling between fluid flow and deformation fields was also established using the 
effective stress parameters. They paid special attention to the interrelations between the 
effective stress and wetting and drying paths, and the shift in the soil water 
characteristic curve with the matrix deformation. They also introduced a single set of 
material parameters for characterization of the coupled constitutive model. 
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These contributions constitute major steps forward in constitutive modelling of 
unsaturated soils. However many of these models have proven to be incapable of 
dealing with different complex aspects of unsaturated soils behaviour in a consistent 
and unified manner. Indeed, currently there exist no constitutive models of unsaturated 
soils in which a point-by-point matching of test data as observed in the laboratory can 
be achieved. 
In recent years, the use of artificial neural network (ANN) has been introduced as an 
effective alternative to constitutive modelling of complex materials. As mentioned in 
the previous chapters, ANN is a computer-based modelling technique for computation 
and knowledge representation inspired by the neural architecture and operation of the 
human brain. Habibagahi ad Bamdad (2003) presented a neural network approach to 
describe the mechanical behaviour of unsaturated soils. A sequential architecture (that 
is, a multilayer perceptron network with feedback capability) was chosen for the 
network. The input layer consisted of nine neurons, where six of them represented the 
initial soil conditions and the remaining three neurons were continuously updated for 
each increment of axial strain based on outputs from the previous increment. The output 
layer consisted of three neurons representing values of deviatoric stress, volumetric 
strain, and change in suction at the end of each increment. A database of triaxial test 
results from literature was used to train and test the network. 
The use of artificial neural networks that are constructed directly from the experimental 
data, offers a fundamentally different approach to modelling of the material behaviour.  
Because of their ability to learn and generalize interactions among many variables, 
ANNs have the potential to model various aspects of material behaviour. 
Although neural networks have shown to be very efficient in modelling the behaviour of 
materials they do have shortcomings. One of the drawbacks of neural network is that the 
optimum structure of ANN (e.g., number of inputs, hidden layers, and transfer 
functions) must be identified a priori. This is usually done through a trial and error 
procedure. The other major shortcoming is the black box nature of ANN models as 
described in Chapter 2. 
In this section the evolutionary polynomial regression is implemented for modelling the 
behaviour of unsaturated soils. The capabilities of the technique are demonstrated by 
application to a comprehensive set of unsaturated soil triaxial data for a range of stresses 
and drainage conditions. It is shown that the EPR can capture various aspects of the 
behaviour of unsaturated soils effectively.   

4.2.2 Database 

Results from a set of constant water content triaxial tests on Lateritic gravel reported by 
Toll (1988) were adopted for the analysis. Table 4.1 indicates the range of basic soil 
properties. Table 4.2 shows the initial conditions of soil specimens adopted for this 
study and also indicates whether the results of a particular test were used for training or 
testing of the EPR models. This database consists of the results from 23 different 
unsaturated samples prepared using static or dynamic compression. However, for the 
sake of consistency, only 14 specimens prepared with static compression were 
considered in this investigation. The experimental results (graphs) presented by Toll 
(1988) were digitized. Digitization resulted in a database including a total of 5153 
patterns that were used for training and testing of the EPR models. 
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Table  4.1: Range of basic soil properties of the specimens 
Properties Range 

Initial water content (%)  17,26.3  

Dry density (Mg/m3)  1.442,1.716 

Suction (kPa) -9.5,545.4 

Axial strain (%)  0,11.52 

Deviator stress (kPa) 0,930 

Volumetric strain (%) -7.5,0.35 

Mean net stress  (kPa) 23.9,237.6 

 
 
 
 

Table  4.2: Initial conditions of soil specimens 

EPR 
status 

3σ  

(kPa) 

Initial 
suction 

(kPa) 

Dry 
density 
(Mg/m3) 

Water 
content 

(%) 
Sample 

Train 552 384 1.442 19.6 MGU1 
Train 302 4 1.632 25.5 MGU2 
Train 350 149 1.531 20.8 MGU3 
Train 300 22 1.551 21.4 MGU4 
Train 353 105 1.646 20.7 MGU5 
Test 500 256 1.489 21 MGU6 
Train 500 450 1.474 17 MGU7 
Test 352 186 1.587 21.1 MGU8 
Test 350 11 1.508 25.1 MGU10 
Train 350 26 1.506 24.9 MGU11 
Train 350 5 1.706 26 MGU14 
Train 399 12 1.702 25 MGU15 
Train 473 78 1.708 24.3 MGU22 
Train 324 54 1.705 25.8 MGU23 

4.2.3 Data preparation 

From among 14 tests, 11 were used for model construction and 3 for validation. It was 
checked to make sure that all parameter values in the testing data sets were within the 
range of data chosen to be used for training EPR and developing the models. Overall, 20 
possibilities were available for choosing 3 sets of data to be used as the testing datasets 
to meet the above criterion.  
To select the most robust combination of the training and testing data sets, a statistical 
analysis was performed on the input and output parameter values (Table 4.3) of the 
selected training and validation sets (all 20 possible combinations were considered). 
The aim of the analysis was to ensure that the statistical properties of the data in each of 
the subsets were as close to the others as possible and thus represented the same 
statistical population. The mean and standard deviation values were calculated for every 
single contributing parameter and for the training and testing datasets for each 
combination and the one for which these statistical values were the closest in the 
training and testing data sets was chosen to be used in training and testing stages in the 
EPR model development process (Rezania, Javadi and Giustolisi, 2008). 
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Table  4.3: Parameters involved in the developed incremental EPR models* 
Contributing parameters Model output 

w , dρ  , aε , ( )aup − , is , iv,ε ,
iq , aε∆  

1+iq  

1+is  

1, +ivε  

* =w initial water content; =dρ dry density; =aε axial strain; ( ) =− aup mean net stress;  

=s suction; =vε volumetric strain; =q deviator stress; =∆ aε axial strain increment 

4.2.4 EPR modelling procedure 

As mentioned in chapter 3, before starting the evolutionary procedure a number of 
constraints can be implemented to control the structure of the models to be constructed 
in terms of length of the equations, type of functions used, number of terms, range of 
exponents, number of generations, etc. It can be seen that there is great potential in 
achieving different models for a particular problem which enables the user to gain 
additional information. Applying the EPR procedure, the evolutionary process starts 
from a constant mean of output values. By increasing the number of evolutions it 
gradually picks up the different participating parameters in order to form equations 
representing the constitutive relationships. Each model is trained using the training data 
and validated using the testing data provided by the user (Rezania, Faramarzi and 
Javadi, 2011). The level of accuracy at each stage is evaluated based on the coefficient 
of determination (CoD) i.e., the fitness function as 
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where aY  is the actual output value; pY  is the EPR predicted value and N is the number 

of data points on which the CoD is computed. If the model fitness is not acceptable or 
the other termination criteria (in terms of maximum number of generations and 
maximum number of terms) are not satisfied, the current model should go through 
another evolution in order to obtain a new model. 
To examine the efficiency of the proposed EPR approach in capturing the behaviour of 
unsaturated soils, the database was used to train three different EPR models for deviator 
stress (q), suction (s) and volume strain ( )vε  in terms of the contributing parameters 
listed in Table (4.1).  

4.2.5 EPR models for unsaturated soils 

A typical scheme to train most of the neural network-based material models for soils 
includes an input set providing the network with information relating to the current state 
units (e.g., current stresses and strains) and then a forward pass through the network that 
yields the prediction of the next expected state of stress or strain relevant to an input 
strain or stress increment (Ghaboussi et al., 1998). Due to the incremental nature of soil 
stress–strain modelling in practical applications, this scheme has been utilized in this 
research. The EPR models have eight input parameters as summarized in Table 4.3. The 
first two input parameters namely, gravimetric water content, and dry density represent 
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the initial conditions of the soil specimens and the other parameters, namely; axial 
strain, net mean stress, suction, volumetric strain, and deviator stress are being updated 
incrementally during the training and testing based on the outputs relating to the 
previous increment of the axial strain. The output parameters are deviator stress, suction 
and volumetric strain corresponding to the end of the incremental step for the three EPR 
models.   
The data was divided into training and testing sets (Table 4.2). One set was used for 
training to develop the models and the other one was used for validation to appraise the 
generalization capabilities of the trained models. Three separate models were developed 
for deviator stress (q), suction (s) and volumetric strain ( vε ). After development of the 

EPR models, from the 15 resultant equations for deviator stress, 6 equations did not 
include the effect of all contributing parameters. Among the remaining equations the 
shortest one possible, with the highest coefficient of determination value was selected as 
the final model. The same procedure was followed to choose the best fit equations for 
volumetric strain and suction. Equations 4-2, 4-3 and 4-4 represent the incremental EPR 
models for deviator stress, volumetric strain, and suction respectively. It should be 
noted that the proposed models are unit dependent. 
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Figure 4.1 shows typical deviator stress-axial strain, volumetric strain-axial strain, and 
suction-axial strain curves predicted by the (incremental) EPR models in Equations 4-2, 
4-3 and 4-4 (dashed lines) against the experimental results for a test that was used in 
training of the models (sample MGU22). ANN simulation results after Habibagahi and 
Bamdad (2003) are also presented. 
After training, the performance of the trained EPR models was verified using 3 sets of 
validation data which had not been introduced to the EPR models during training. The 
purpose of validation was to examine the capabilities of the trained models to generalise 
the training to conditions that have not been seen by the model during the training 
phase. Figure 4.2 shows predictions made by the developed EPR models against the 
experimental data which were not previously seen by EPR and were used as validation 
data (MGU 6). The CoD values of the EPR models (Equations 4-2, 4-3 and 4-4) are 
given in Table (4-4). 
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                  (a) 

       
                    (b) 

         
                      (c) 

Figure  4.1: Comparing the EPR model predictions with experimental training data (MGU 22) 
and ANN predictions for deviator stress, volumetric strain, and suction 
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            (a) 

  
              (b)                                                   

 
              (c) 

Figure  4.2: Comparing the EPR model predictions with experimental testing data and ANN 
predictions (MGU 6) for deviator stress, volumetric strain, and suction 
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Table  4.4: CoD values for EPR models 

Equation  
CoD values for 

training (%) 
CoD values for 

testing (%) 
Deviator stress (Equation 4.2.2) 99.96 99.85 

Volumetric strain (Equation 4.2.3) 99.99 99.99 

Suction (Equation 4.2.4) 99.99 99.98 

 
Comparison of the results and the high CoD values for the EPR models indicate the 
excellent performance of these models in capturing the underlying relationships 
between contributing parameters and response of unsaturated soils and also in 
generalizing the training to predict the behaviour of the soils under unseen conditions. 
The results also show that EPR outperforms ANN and its results are a closer match to 
the actual experimental data. 

4.2.6 Predicting entire stress paths using the EPR models 

In this section, the EPR models (Equations 4-2, 4-3 and 4-4) are used to predict the 
entire stress paths, incrementally, point by point, in aq ε: ; as ε:  and av εε :  spaces.  

Results from three different sets of (testing) data (MGU6, 8, and 10) are used to 
evaluate the ability of the incremental EPR models to predict the complete behaviour of 
unsaturated soil during the entire stress paths. The values of water content and dry 
density represent the initial conditions of the soil and are constant throughout the tests. 
Other contributing parameters are updated in each incremental step, considering the 
values from the previous increment and the EPR models’ outputs in response to an axial 
strain increment. Figure 4.3 illustrates the procedure followed for updating of the input 
parameters and building the entire stress path for a shearing stage of a triaxial test. 
At the start of the shearing stage in a conventional triaxial experiment, the values of all 
parameters are known. For example in a test on a sample of unsaturated soil, the values 
of  iia sup ,)( − ia,,ε iq,  and iv,ε  are known from values of applied cell pressure, air 

pressure, water pressure and volume change at the end of the previous stage (e.g., 
0, =iaε  and 0=iq ). Then, for a prescribed increment of axial strain, aε∆ , the values of 

1+iq , 1, +ivε  and 1+is  are calculated from the EPR models (Equations 4-2, 4-3 and 4-4 

respectively). For the next increment, the values of iia sup ,)( − ia,,ε iq,  and iv,ε   are  

updated as: 
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 Figure  4.3: Incremental procedure for predicting the entire stress path 
 

In this way the second points on the curves are predicted. The incremental procedure is 
continued until all the points on the three curves are predicted and the curves are 
established. Figures 4.4, 4.5 and 4.6 show the comparisons between the three complete 
curves predicted using the EPR models following the above incremental procedure and 
the actual experimental data as well as ANN simulation results (Habibagahi and 
Bamdad, 2003) for three tests. It should be noted that the data for these tests have not 
been introduced to the EPR during the model building process. The predicted stress 
paths are in excellent agreement with the experimental results. Despite the facts that (i) 
the entire curves have been predicted point by point and;  (ii) the errors of prediction of 
the individual points are accumulated in this prediction, the EPR models are able to 
predict the complete stress paths with a  very high degree of accuracy. These are 
testaments to the robustness of the developed EPR framework for modelling of 
unsaturated soils. 

4.2.7 Sensitivity analysis 

A parametric study was carried out for further examination of the prediction capabilities 
of the proposed EPR models and the extent to which they represent the physical 
relationships and the effects of different input parameters on the model output. In a 
typical testing data set (MGU6, with basic soil properties given in Table 4.2, which was 
not used in the model construction stage) all the input parameters but the one being 
examined were kept constant and the model predictions for three different values 
(within the maximum and minimum values of the parameter in the database within the 
available range of data) of the parameter under study  were investigated.  



Chapter (4)                                  Application of EPR for Constitutive Modelling of Soils 

59 

 

The effect of dry density was examined by applying the models (Equations 4-2, 4-3 and 
4-4) to predict the changes in the aq ε: , av εε :  and as ε:  curves for three different 

values of dry density (1.5, 1.6 and 1.7 3/ mMg ). The results are shown in Figure 4.7. 
Figure 4.7a shows the influence of dry density on stress-strain behaviour, while other 
parameters are kept constant. As expected, with an increase in dry density the stress-
strain curve shifts upwards, indicating that a sample with higher density has a higher 
failure point and also a larger elastic modulus. Figure 4.7c shows the influence of dry 
density on variation of soil suction with axial straining. For a soil sample, increasing dry 
density increases the tendency for dilation of the sample which in turn results in an 
increase in the suction during constant water content shearing, as correctly predicted by 
the model. Figure 4.7b shows the influence of dρ  on variation of volumetric strain. 
The effect of water content of soil is evaluated by applying the models to predict the 
changes in the deviator stress-axial strain, suction-axial strain, and volumetric strain-
axial strain curves for 3 different values of water content (18%, 21% and 24%). Figure 
4.8a shows the effect of change in water content on the stress-strain behaviour of 
unsaturated soil. As expected, increasing the water content causes the curve to move 
downwards indicating that a dryer sample has a higher failure stress and a greater 
stiffness (elastic modulus). Figure 4.8c shows that generally for a soil sample increasing 
water content decreases soil suction. Figure 4.8b shows that, for the soil used in this 
analysis, effect of water content on volumetric strain is negligible. 

4.2.8 Discussion and conclusions 

A number of EPR models were developed to model various aspects of unsaturated soil 
behaviour. Incremental relationships were presented. It was shown that the EPR models 
can capture the underlying relationships between various parameters directly from 
experimental triaxial data and predict the unsaturated soil behaviour with a very high 
accuracy. The EPR models were also tested using data that were not used in the training 
stage of the model development process; in this way, an unbiased performance indicator 
was obtained on the real prediction capability of the models.  
The results showed the excellent ability of the EPR models in generalizing the training 
to predict the behaviour of unsaturated soils under unseen conditions. The proposed 
EPR models outperformed the ANN model and provided closer results to the 
experiments. The results of the sensitivity analysis conducted based on the EPR models 
were also consistent with the expected behaviour of unsaturated soils. 
It was shown that the incremental EPR models can be used to predict the complete 
stress paths in the aq ε: , av εε :  and as ε:  spaces incrementally and point-by-point. The 

errors of prediction of the individual points were accumulated in this approach and still 
the EPR models were able to predict the complete stress paths with a very good degree 
of accuracy. This is another indication of the robustness of the developed EPR 
framework for modelling of unsaturated soils. 
 
 
 
 
 
 
 
 



Chapter (4)                                  Application of EPR for Constitutive Modelling of Soils 

60 

 

 

        
                  (a) 

                         
                       (b) 

               
                   (c) 

Figure  4.4: Comparison between the incremental EPR model predictions of an unseen data set 
with experimental data and ANN predictions for deviator stress, volumetric strain, and suction 

(MGU 10) 
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          (a) 

 
            (b) 

 
             (c) 

Figure  4.5: Comparison between the incremental EPR model predictions of an unseen data set 
with experimental data and ANN predictions for deviator stress, volumetric strain, and suction 

(MGU 8) 
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                   (a) 

 

   
                    (b) 

       
                    (c) 

Figure  4.6: Comparison between the incremental EPR model predictions of an unseen data set 
with experimental data and ANN predictions for deviator stress, volumetric strain, and suction 

(MGU 6) 
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               (b)                                                

 
               (c) 

 
Figure  4.7: Influence of dry density on predicted parameters 
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                (a) 

   
                     (b)           

 
                 (c) 

 Figure  4.8: Influence of water content on predicted parameters 
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4.3 Modelling of soil-water characteristic curve in 
unsaturated soils 

4.3.1 Introduction 

Soil-water characteristic curve (SWCC) contains important information regarding the 
amount of water contained in the pores at a given soil suction and the pore size 
distribution corresponding to the stress state in the soil. SWCC can be viewed as a 
function that describes the water storage capacity of a soil as it is subjected to various 
suctions. Different aspects of unsaturated soil behaviour such as shear strength, volume 
change, diffusivity, and adsorption are related to soil-water characteristic curve. A 
number of researchers have studied the relation between the soil-water characteristic 
curve and the shear strength of soils (e.g., (Fredlund et al., 1995); (Vanapalli et al., 
1996)). 
There are different methods available to obtain the SWCC for a particular soil. SWCC 
may be determined directly or indirectly in the laboratory. Direct methods include 
pressure plate, Buchner funnel, tensiometers, and pressure membranes. These methods 
measure the pore-water pressure in the soil or impose a known air pressure to the soil 
and allow the water content to come to equilibrium with the imposed air pressure. 
Among these methods, conventional pressure plate test (ASTM D 6836) is the most 
common method. Indirect methods include filter paper and heat dissipation sensors. 
These methods use measurements or indicators of water content or a physical property 
that is sensitive to changes in water content; however, these experiments are costly and 
time consuming and therefore several methods have been proposed in the literature to 
determine SWCC values of unsaturated soils. These methods can be classified into five 
major groups described below ( (Johari, Habibagahi and Ghahramani, 2006a)): 
 

1. Fitting type equations for SWCC. In this group of equations simple 
mathematical equations are fitted to the experimental data and the unknown 
parameters are determined ( (Brooks and Corey, 1964); (Van Genuchten, 1980); 
(Pedroso and Williams, 2010)).  

2. Correlating parameters of an analytical equation with basic soil properties such 
as grain size distribution, porosity and dry density using regression analyses  
( (Cresswell and Paydar, 1996); (Tomasella and Hodnett, 1998);  (Hutson and 
Cass, 1987); (Aubertin, Ricard and Chapuis, 1998)). 

3. Physico-empirical modelling of SWCC. This approach converts the grain size 
distribution into a pore size distribution, which is in turn related to a distribution 
of water content and associated pore pressure ( (Fredlund and Pham, 2006); 
(Zapata, Houston and Walsh, 2003); (Fredlund, Wilson and Fredlund, 2002); 
(Pereira and Fredlund, 2000)). 

4. Artificial Intelligence (AI) methods such as neural networks, genetic 
programming and other machine learning techniques have been used in various 
disciplines of civil engineering ( (Xie et al., 2006); (Muttil and Chau, 2006); 
(Cheng, Ou and Chau, 2002)). Predicting SWCC using artificial intelligence also 
falls into this group ( (Johari and Javadi, 2010); (Johari, Habibagahi and 
Ghahramani, 2006a); (Johari, Habibagahi and Ghahramani, 2006b)). 
 

In this research a new data mining technique, the Evolutionary Polynomial Regression 
(EPR), is applied to modelling of soil-characteristic curve in unsaturated soils. It is 
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shown that EPR may effectively be utilized to capture and represent the soil-water 
characteristic curve in unsaturated soils.   

4.3.2 Database 

Results from pressure plate tests performed on clay, silty clay, sandy loam, and loam 
reported by various researchers were adopted for the analysis. Table 4.5 indicates the 
range of the properties of the soil used in this study. Five parameters namely void ratio, 
saturated water content, logarithm of suction normalized with respect to atmospheric air 
pressure, clay content, and silt content were selected as the input. The output parameter 
was the gravimetric water content corresponding to the assigned input suction (Table 
4.6). This database consists of the results from 130 pressure plate tests together with 
their grain size distributions. The experimental results (graphs) were digitized. 
Digitization resulted in a database including a total of 1890 patterns that were used for 
training and testing of the developed EPR model.  

4.3.3 Data preparation 

To select the most suitable combination of the training and testing data, a similar 
procedure detailed in section 4-2-3 was implemented. In this way, the most statistically 
consistent combination was used for construction and validation of the EPR model. 
Results from 104 tests, 80% of the total data base, were used for model construction and 
the remaining 20% (26 tests) were utilized to validate the developed EPR model. 
 
 

Table  4.5: Range of soil properties used in the experiments 

Properties Range 

Void ratio 0.458–2.846 

Suction (kPa) 0.2–104,857.6 

Specific gravity 2.28–2.92 

Water content (%)  0.18–98.27 

Dry density (kg/m3) 702–1,811 

Saturated water content (%) 17.34–105.41 

Clay content - <0.002mm - (%) 4.4–76.7 

Silt content - 0.002mm to 0.075mm - (%) 10.3–87.5 
 
 
 
 

Table  4.6: Parameters involved in the developed EPR model of SWCC * 
Contributing parameters Model output 

e, w  , Su, Cc , Sc GWC  
* =e void ratio; =w  saturated water content; =uS ( )100  log Suction ; =cC clay content; 

 =cS silt content; =GWC Gravimetric water content 
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4.3.4 Modelling procedure 

The data was divided into training and testing sets. One set was used for training to 
develop the model and the other one was used for validation to appraise the 
generalisation capabilities of the trained model. The maximum number of terms in the 
EPR equation was set to 15. Among developed EPR models, the one with the highest 
coefficient of determination value was selected to represent the soil-water characteristic 
curve: 
 
  

 

 4-5 

 
In this equation e, w, Su, Cc and Sc are void ratio, saturated water content, logarithm of 
suction normalized with respect to atmospheric air pressure, clay content, and silt 
content respectively. After training, the performance of the trained EPR model was 
examined using the validation dataset which had not been introduced to EPR during 
training. The purpose of validation was to examine the capabilities of the trained model 
in generalizing the training to conditions that have not been seen by the model in the 
training phase. Figure 4.9 compares the predicted values of gravimetric water content 
with the actual data for training and validation stages. The figure shows a very good 
correlation between the predictions of the EPR model and the actual data both for 
modelling and validation datasets. Figures 4.10 and 4.11 compare gravimetric water 
contents predicted using the Genetic Programming (GP) model presented by Johari et al 
(2006a) and the approach proposed by Fredlund et al (1997) against the actual data for 
the same training and validation datasets. Table 4.7 also shows the values of the 
coefficient of determination for EPR, GP, and Fredlund et al (1997) methods for both 
training and validation stages. Comparing Figures 4.9, 4.10 and 4.11 and the 
coefficients of determination for all three methods in Table 4.7 shows the robustness 
and high capabilities of the proposed EPR model in predicting the soil-water 
characteristic curve in unsaturated soils. 
Figures 4.12 and 4.13 show typical soil water characteristic curves predicted using the 
proposed EPR model in comparison to the actual curves from the database for training 
and unseen validation data cases respectively. Figure 4.14 compares the SWCC curves 
predicted using of the EPR model with the ones from the GP and Fredlund et al (1997) 
methods and the experimental data. Comparison of the results highlights the capabilities 
of the proposed EPR model in providing accurate predictions of the soil-water 
characteristic curve in unsaturated soils.  
 

Table  4.7: CoD values for SWCC models 

Equation  
CoD values for 

training (%) 
CoD values for 

testing (%) 
EPR Model 95.76 98.38 
Genetic programming  
(Johari et al, 2006a) 

94 93 

Fredlund et al (1997) 85 89 
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(a) 
 

 
(b) 

 
Figure  4.9: Actual versus predicted GWC for (a) training (CoD=95.76%) and (b) validation 

(CoD=98.38%) data for EPR model 
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(a) 
 

 
(b) 

 
Figure  4.10: Actual versus predicted GWC for (a) training (CoD=94%) and (b) validation 

(CoD=93%) data for GP model (Johari, Habibagahi and Ghahramani, 2006a) 
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         (a) 

 

 
       (b) 

 
Figure  4.11: Actual versus predicted GWC for (a) training (CoD=85%) and (b) validation 
(CoD=89%) data for the model of Fredlund et al (Fredlund, Fredlund and Wilson, 1997) 
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Figure  4.12: Typical prediction results of the EPR model for training data cases with saturated 
water contents of 29.63%, 31.04% and 95.05% 

 

 
 

Figure  4.13: Typical prediction results of the EPR model for validation data cases with 
saturated water contents of 54.23%, 71.07% and 27.99% 
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     (a) 

 

 
   (b) 

 
Figure  4.14: Comparison of the SWCCs predicted by the EPR, GP and Fredlund et al (1997) 
models and the actual data for two cases with saturated water contents of (a) 31.57% and (b) 

29.63% 
 

Table 4.8 and Figure 4.15 are also generated based on the measured data and the EPR 
based equation. They show that the developed EPR model reaches the saturated water 
content when suction tends to zero and also approaches zero as suction tends to infinity. 
It can be seen that the proposed EPR model satisfactorily meets the SWCC limits within 
the range of data used to develop and validate the model. 
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Table  4.8: SWCC limits 
Sample Suction 

(kPa) 
e Silt 

content % 
Clay 
content % 

Wsat  
% 

GWC(EPR) 
% 

Train 0 0.8 62 20 29.63 27.15 
Train 0 0.869 31 66 31.04 28.84 
Train 0 2.69 29 63 95.05 96.83 
Test 0 1.415 62 18 54.23 55.61 
Test 0 1.919 51 48 71.07 73.30 
Test 0 0.736 70 20 27.99 25.36 
 
 

 
 

Figure  4.15: Soil-water characteristic curve limits 

4.3.5 Parametric study 

Figure 4.16 shows the results of the parametric study conducted based on the procedure 
detailed in section 4.2.7, to investigate the effect of changes in clay and silt contents on 
the EPR model output. The results show an upward shift of the SWCC by increasing the 
clay and silt contents of the soil. This behaviour of the model is consistent with the 
results from previous studies  (Johari, Habibagahi and Ghahramani, 2006a). Increasing 
fine grained particles (silt and clay) caused the specific surface of the soil mixture to 
increase leading to higher values of the gravimetric water content at a constant suction. 
The effect of increasing clay content on gravimetric water content at higher suction 
values seemed to be more significant than its effect at lower soil suctions; whereas, the 
effect of increasing silt content on the gravimetric water content was almost similar for 
different suction values. The sensitivity of the EPR model to void ratio (e) and initial 
water content parameters are also presented in Figures 4.17a and 4.17b. Figure 4.17a 
shows that all parameters being the same, at a given suction, a soil with a higher void 
ratio will have lower water content as the suction would be more effective in draining 
the soil with higher void ratio. Figure 4.17b also shows that all parameters (void ratio, 
clay content and silt content) being the same, for a given suction change, the amount of 
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water drained will be more or less similar. So, if hypothetically, soil “A” has a higher 
initial water content than soil “B”, it will also have a higher water content at the end of 
application of suction increment as the amount of change is almost the same and mainly 
dependent on the void ratio. 
A study was also conducted to investigate the interdependencies between different 
contributing parameters to the proposed model. Figure 4.18 represents the effect of 
change in saturated water content on predicted GWC-suction relationship for three 
different values of silt content. Similar results for three different values of clay content 
are shown in Figure 4.19. It can be seen that for a given saturated water content and a 
given suction, increasing clay or silt (fines) content increases water retention capacity of 
the soil.  
Figure 4.20 shows the combined effects of void ratio and silt content on the GWC-
suction relationships. It is shown that, as expected, for a given silt content value and at a 
given suction, a higher void ratio will result in a lower water content in the soil. Similar 
results can be observed for the effects of void ratio and clay content (Fig. 4.21). Figure 
4.22 shows the combined effects of void ratio and saturated water content on the GWC-
suction relationships. It is shown that, as expected, for a given saturated water content 
value and at a given suction, a higher void ratio will result in a lower water content in 
the soil. The results of sensitivity analysis showed that the EPR model has been able to 
capture and represent different aspects of behaviour of unsaturated soil correctly. 

4.3.6 Discussion and conclusions 

Soil–water characteristic curve (SWCC) is one of the most important components of 
any model for describing unsaturated soil behaviour. It describes the variation of soil 
suction with changes in water content. SWCC can be viewed as a function describing 
the water storage capacity of the soil as it is subjected to various soil suctions.  
An EPR model was developed and validated using a database from pressure plate tests 
performed on clay, silty clay, sandy loam, and loam soils. The results of model 
predictions were compared with actual data as well as two other models.  
A parametric study was conducted to evaluate the effect of the contributing parameters 
on the predictions of the proposed EPR model. Combined effects of the parameters 
were also considered in the sensitivity analysis to investigate the interdependencies of 
parameters and their effect on the soil-water characteristic curve and the extent to which 
the developed models can represent the physical relationships between involved 
parameters.  
Comparison of the results showed that the developed EPR model provides very accurate 
predictions for SWCC. The developed model presents a structured and transparent 
representation of SWCC, allowing a physical interpretation of the problem that gives 
the user insight into the relationship between the soil-water characteristic curve and 
various contributing parameters and is capable of predicting the unsaturated behaviour 
of soils with reasonable accuracy. From the practical point of view, the EPR model 
presented in this research is easy to use and provides results that are more accurate than 
or as accurate as the existing models.  
The presented results show the robustness of the proposed EPR approach in modelling 
of soil-water characteristic curve in unsaturated soils and that the developed model is 
capable of providing a better understanding of the problem and is easily interpretable by 
the user.  
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(b) 

Figure  4.16: Changes in SWCC with (a) clay content and (b) silt content 
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            (a) 

 

 
            (b) 

 
Figure  4.17: Sensitivity analysis results of SWCC model considering (a) void ratio and (b) 

water content 
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Figure  4.18: Effect of change in saturated water content on predicted GWC-suction relationship 

for different silt contents 

 
 

Figure  4.19: Effect of change in saturated water content on predicted GWC-suction relationship 
for different clay contents 
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             (a) 

 
              (b) 

 
              (c) 

Figure  4.20: Combined effects of void ratio and silt content on GWC-suction relationship 
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       (b) 

 
        (c) 

Figure  4.21: Combined effects of void ratio and clay content on GWC-suction relationship 
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               (b) 

 

 
                    (c) 

Figure  4.22: Combined effects of void ratio and saturated water content on GWC-suction 
relationship 
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4.4 EPR modelling of thermo-mechanical behaviour of 
unsaturated soils 

4.4.1 Introduction 

Extensive research has been done in the past decades to investigate the effects of 
temperature on different aspects of unsaturated soil behaviour. A literature review of the 
recent works is presented below. 

4.4.1.1  Thermal effects on basic soil parameters 

Over the past decades thermal effects in saturated soils have been centre of attention of 
researchers. The basic parameters of soils like liquid limit, plastic limit, specific gravity, 
and compaction characteristics are mainly considered to be affected by temperature 
variations. Temperature effects on liquid and plastic limits were first investigated by 
Youssef et al (1961). They conducted a series of tests on compacted clay samples and 
showed that increasing temperature caused reduction in both liquid limit and plastic 
limit at temperatures between 14oC and 35oC. Lagurous (1969) performed similar tests 
on kaolinite, illite, monmorillonitic and monmorillonitic-illite clays at temperatures 
ranging from 1.7oC to 40.6oC and found that an increase in temperature caused a 
reduction in liquid limit and plastic limit. He also showed that the effects were most 
significant on the monmorillonitic clays. Wang et al (1990) also reported that there were 
no thermal effects on the Atterberg limits over temperatures ranging from 20oC to 
400oC for kaolinite and 20oC to 500oC for bentonite. They also observed that the 
specific gravity of kaolinite and bentonite were not sensitive to temperature in the range 
between 20oC and 400oC. Towhata et al (1994) also reported that there were no 
significant effects of preheating up to 200oC on the liquid and plastic limits of the kaolin 
and bentonite clay. Effect of temperature on soil (specifically with a high clay content) 
compaction was investigated by Hogentogler (1936). He performed compaction tests in 
the laboratory on several predominantly clay soils and reported that as the temperature 
increases and causes the optimum moisture content to decrease, the maximum dry unit 
weight increases accordingly. Burmister (1964) also reported similar results. 

4.4.1.2 Effects of temperature on volume change behaviour 

The effects of temperature on the volume change behaviour of saturated soils have also 
been investigated by many researchers e.g. Campanella and Mitchell (1968), Plum and 
Esrig (1969), Habibagahi (1973), Demars and Charles (1982), Houston et al (1985), 
Eriksson (1989), Hueckel and Baldi (1990), Towhata et al (1993), Boudali et al (1994), 
Tanaka (1995), Crilly (1996), Fox and Edil (1996), Delage et al (2000) and Graham et 
al (2001).  
Campanella and Mitchell (1968) conducted a series of isotropic triaxial consolidation 
tests on a saturated illite (remoulded) at different temperatures. The results showed that 
the compressibility index was independent of temperature, but the preconsolidation 
pressure decreased with increasing temperature. Investigation of the variation of the 
compressibility index with temperature was also conducted by Plum and Esrig (1969). 
They carried out one-dimensional consolidation tests on illite and Newfield clay and 
showed that the compressibility index of the material varied with temperature. Their 
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finding was not in agreement with the observations of Campanella and Mitchell (1968). 
However, the changes in the compressibility index with temperature were not 
remarkable at high stresses. Eriksson (1989) and Boudali et al (1994) repeated the tests 
that were performed with Plum and Esrig (1969) and the results revealed that 
temperature had no affect on the compressibility indices. Graham et al (2001) also 
presented similar results for the case of isotropic consolidation. 
Decrease in the preconsolidation pressure with temperature was also investigated by 
Habibagahi (1973), Eriksson (1989), Boudali et al (1994), and Graham et al (2001) and 
led to similar results to the ones reported by Campanella and Mitchell (1968). This 
effect causes the entire compression curve to move towards smaller effective stresses 
with increasing temperature. Some research works have also shown that as temperature 
increases, the soil becomes more compressible in unloading-reloading regions (e.g. 
Eriksson (1989); Takaka (1995)). However, results to the contrary have also been 
reported by Campanella and Mitchell (1968) and Crilly (1996). 
Researchers have also shown that heating normally consolidated and lightly 
overconsolidated soils under constant effective stress induces volume contraction; 
whereas, cooling the same type of soil causes swelling; (e.g. see Paaswell (1967); 
Campanella and Mitchell (1968); Plum and Esrig (1969); Baldi et al (1988); Hueckel 
and Baldi (1990); Towhata et al (1993); Boudali et al (1994); Delage et al (2000)). The 
experimental results have also indicated that the rate of consolidation of clays increases 
with the increasing temperature (e.g. Paaswell (1967); and Towhata et al (1993)). 
Paaswell (1967) showed that in a given effective stress condition, the greater the 
increase in temperature, the greater the volumetric contraction. He showed that the 
volumetric contraction decreases with increasing overconsolidation ratio and turns into 
expansion at large overconsolidation ratios. Similar results were also reported from 
other researchers (e.g. Plum and Esrig (1969); Baldi et al (1988); Hueckel and Baldi 
(1990); Towhata et al (1993); Delage et al (2000)). Delage et al (2000) showed that, in 
an increasing temperature condition, heavily overconsolidated soils dilate at low 
temperatures but contract at high temperatures. 
The behaviour of normally consolidated soils under cycles of heating and cooling was 
investigated by a number of researchers such as Campanella and Mitchell (1968), Plum 
and Esrig (1969), Demars and Charles (1982), Hueckel and Baldi (1990) and Towhata 
et al (1993). The experimental results showed that the volume contraction of normally 
consolidated soils caused by heating under constant effective stress could not be 
recovered by later cooling. The results also showed that normally consolidated soils 
become overconsolidated when subjected to cyclic thermal loading. Additionally, 
Demars and Charles (1982) found that irreversible volume contraction due to cyclic 
thermal loading does not depend on effective confining pressure for normally 
consolidated soils; however, it is a function of overconsolidation ratio in case of 
overconsolidated soils. Plum and Esrig (1969) and Hueckel and Baldi (1990) indicated 
that after heating, soils continue to behave as they are normally consolidated. Towhata 
et al (1993) also found that heating creates a quasi-overconsolidated behaviour. 
Investigations by Campanella and Mitchell (1968), Plum and Esrig (1969), Houston et 
al (1985), Towhata et al (1993), and Fox and Edil (1996) showed that temperature 
affects the primary consolidation as well as the secondary compression. Campanella and 
Mitchell (1968) showed that the larger the increase in temperature, the greater the rate 
of secondary compression. They also found that if the specimens cooled before heating, 
the change in the rate of secondary compression would be small in case that the initial 
temperature of the sample was not exceeded. Fox and Edil (1996), Plum and Esrig 
(1969), Houston et al (1985) and Towhata et al (1993) revealed that the rate of 
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secondary compression exponentially varies with temperature variations. They also 
observed that cooling causes a decrease in the rate of secondary compression. 

4.4.1.3 Effects of temperature on pore water pressure 

Change in temperature may induce significant change in pore water pressure and as this 
causes a change in effective stress, it can lead to failure in a specimen under constant 
deviator stress. 
Temperature-induced pore water pressure has been investigated by a number of 
researchers (e.g. Campanella and Mitchell (1968); Plum and Esrig (1969); Hueckel and 
Baldi (1990); Hueckel and Pellegrini (1992); Tanaka (1995) and Graham et al (2001)). 
General results have shown that the pore water pressure increases with increase in 
temperature and decreases when the temperature drops. Test results presented by 
Campanella and Mitchell (1968) also showed that the cyclic temperature change results 
in a hysteretic change in pore water pressure. The pore water pressure developed in 
saturated soils during heating-cooling cycles involves a rise in pore water pressure 
during heating, while the subsequent cooling causes a substantial decrease in pore water 
pressure. The drop observed in pore water pressure during cooling was more than twice 
the increase during heating. They also observed that a large pore-water pressure 
increase induced by heating may cause a large irreversible strain and a possible 
mechanical failure. Tanaka (1995) and Graham et al (2001) showed that temperature 
induced pore water pressure could be normalised by the initial effective confining 
pressure but not by the pre-consolidation pressure. 
Heating induced failure in saturated soils was also investigated by Hueckel and Baldi 
(1990). They conducted a series of undrained triaxial tests at constant deviator stress 
and showed that a rise in pore water pressure due to monotonic heating causes the 
sample to fail. 

4.4.1.4 Effects of temperature on shear strength and stress/strain characteristics 

Investigators have been conducted to study the effects of temperature on the shear 
strength and the stress/strain characteristics of saturated soils. Experimental results 
reported by Hueckel and Baldi (1990), and Graham et al (2001) showed that 
temperature had no effect on the critical state line in the deviator stress/ mean effective 
stress plane. Lingnua (1993) and Houston et al (1985) studied the uniqueness of the 
critical state line in the deviator stress/ mean effective stress plane. They found a small 
shift in the critical state line with changes in temperature. The shrinkage of yield locus 
with increasing temperature was also observed in the experimental results of Hueckel 
and Baldi (1990), Tanaka et al (1997), Cui et al (2000) and Graham et al (2001). 
Sherif and Burrous (1969) and Maruyama (1969) studied the effects of temperature on 
shear strength by conducting unconfined compression tests on normally consolidated 
saturated clays. The results showed that increase in temperature causes the pore water 
pressure to increase and reduces the undrained shear strength of the soil. Lagurous 
(1969) carried out unconfined compression tests at different temperatures on compacted 
soil specimens at optimum moisture content. Before testing, the compacted specimens 
were kept in a chamber to achieve the testing temperature. The results revealed that 
unconfined compressive strength increases with increasing temperature. The increase in 
the unconfined compressive strength was attributed to the evaporation of water from the 
soil specimens in the testing chamber. Water evaporation caused the degree of 
saturation to drop and the suction in the specimen to increase. An increase in suction 
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resulted in an increase in the effective stress, and thus unconfined compressive strength 
increased with elevating temperature. 
Hueckel and Baldi (1990) conducted drained triaxial tests on overconsolidated Pontida 
silty clay samples, which had been heated under drained condition. The results showed 
that an increase in temperature lowered the peak shear strength and reduced the dilation 
of the samples towards the critical state. Since the excess pore-water pressure was 
allowed to dissipate during heating, the effective stress of the samples remained 
constant. However, the size of the yield locus decreased with increasing temperature, so 
the peak shear strength decreased as the temperature increased. Similarly, the reduction 
in the size of the yield locus reduced the over consolidation ratio of the samples, and 
thus less dilation was observed during shearing towards the critical state. 
Lingnau et al (1995) performed consolidated undrained triaxial compression tests on 
lightly overconsolidated sand-bentonite specimens, by applying heat and cell pressure 
under drained conditions and then shearing the samples undrained at constant 
temperature. The results showed that the undrained shear strength reduced with 
increasing initial temperature. Kuntiwattanakul et al (1995) also conducted several 
consolidated undrained triaxial tests along different heating and consolidation paths. It 
was revealed that, for normally consolidated clays, the undrained shear strength and 
stiffness of specimens were highly affected by heating under an initially drained 
condition. However, they remained unaffected for overconsolidated clay. It was argued 
that an increase in the temperature created compression in normally consolidated soils, 
which reduced with increasing overconsolidation ratio. Thus, the thermal effect on the 
undrained shear strength was more pronounced in normally consolidated soils as 
compared to overconsolidated soils. 

4.4.1.5 Hydro-thermo-mechanical models for unsaturated soils 

Hydro-thermo-mechanical models have been proposed by a number of researchers over 
the past decades to represent the behaviour of unsaturated soils. Philip and deVries 
(1957) introduced a model representing the coupled heat and moisture transfer in rigid 
porous media under the combined gradients of temperature and moisture. de Vries 
(1958) included moisture and latent heat storage in the vapour phase, and the advection 
of sensible heat by water in their previous model. Sophocleous (1978), Milly (1982), 
Thomas and King (1991) and Thomas and Sansom (1995) modified the Philip and 
deVries model using matric suction rather than volumetric moisture content as the 
model’s primary variable. Ewen and Thomas (1989) and Thomas and Li (1997) 
validated the theory presented by Philip and de Vries (1957) both in the laboratory and 
in the field revealing reasonable agreement between the theoretical analyses and the 
laboratory/field results. 
Geraminegad and Saxena (1986) developed a model considering the effect of matrix 
deformation on moisture, heat and gas flow through the porous media. Mechanical 
behaviour of the soil in their model was defined in terms of "stress state surface" and 
"independent stress state variables". The total stress tensor in excess of air pressure (net 
stress) and suction were considered to be independent in this model ( (Matyas and 
Radhakrishna, 1968); (Fredlund and Morgenstern, 1977)). Later on, Thomas and He 
(1997) presented a coupled version of this formulation. Matrix displacement vector was 
considered as a primary variable in their model, and the coupling effects between the 
temperature and deformation and the energy balance equation was improved in this 
model by including moisture and latent heat storage in the vapour phase, in addition to 
the advection of heat by water previously accounted for by de Vries (1958). Similar 
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formulations were also presented by Gawin et al (1995), and Zhou et al (1998). Gawin 
et al (1995) introduced the constitutive laws of the solid phase using the effective stress 
concept. They used the degree of saturation as the effective stress parameter and also 
retained the degree of saturation as the main coupling element between the air and water 
flow fields. 
Booker and Smith (1989) and Britto et al (1989) investigated simulating the 
consolidation and pore-water pressure around hot cylinders buried in saturated clay. 
These models consider only the reversible volume change of the soil due to a change in 
temperature.  
Khalili and Loret (2001) presented an alternative theory for heat and mass transport 
through deformable unsaturated porous media. They extended their previous work 
(Loret and Khalili, 2000) on fully coupled isothermal flow and deformation in variably 
saturated porous media to include thermal coupling effects. The bases used to develop 
the governing equations included the equations of equilibrium, the effective stress 
concept, Darcy's law, Fourier's law and the conservation equations of mass and energy. 
The thermo-hydro-mechanical coupling processes considered in their model were: 
thermal expansion, thermal convection by moving fluid, fluid flux due to temperature 
gradient and phase exchange (vaporisation, condensation). 
Wenhua et al (2004) presented a thermo-hydro-mechanical (THM) constitutive model 
for unsaturated soils. The influences of temperature on the hydro-mechanical behaviour 
in unsaturated soils were considered in this model. Particularly, the thermal softening 
phenomenon, i.e. decreases in value of pre-consolidation pressure and in critical value 
of the suction of the SI (suction increase) curve with heating process, was quantitatively 
modelled using experimental data. Francois and Laloui (2008) introduced an 
unconventional constitutive model for unsaturated soils. A generalized effective stress 
framework was adopted that included a number of intrinsic thermo-hydro-mechanical 
connections to represent the stress state in the soil. Two coupled constitutive aspects 
were used to fully describe the non-isothermal behaviour of unsaturated soils. The 
mechanical constitutive part was built on the concepts of bounding surface theory and 
multi-mechanism plasticity, but the water retention characteristics were described using 
elasto-plasticity.  
Another thermo-hydro-mechanical (THM) constitutive model for unsaturated soils was 
proposed by Dumont et at (2010). In this research the effective stress concept was 
extended to unsaturated soils with the introduction of a capillary stress. This capillary 
stress was based on a micro-structural model and calculated from attraction forces due 
to water menisci. The effects of desaturation and the thermal softening phenomenon 
were modelled with the minimal number of material parameters. 
A thermo-elastic-plastic model was also suggested by Uchaipichat (2005) for 
unsaturated soils based on the effective stress principle by taking the thermo-mechanical 
and suction coupling effects into account. The thermo-elastic-plastic constitutive 
equations for stress-strain relations and changes in fluid content were established in this 
model. Uchaipichat and Khalili (2009) published the results of an experimental 
investigation on thermo-hydro-mechanical behaviour of an unsaturated silt. They 
conducted an extensive array of isothermal and non-isothermal tests including 
temperature controlled soaking and desaturation, temperature and suction controlled 
isotropic consolidation, and suction controlled thermal loading and unloading tests. 
In this thesis models are presented, based on evolutionary polynomial regression, to 
predict the complex thermo-mechanical behaviour of unsaturated soils. The results from 
the experimental investigations on compacted samples of silt using triaxial apparatus at 
different temperatures (Uchaipichat and Khalili, 2009) were used for developing and 
evaluating the EPR models. The input parameters of the model were considered to be 
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the over consolidation ratio, mean net stress, initial suction, temperature, initial degree 
of saturation, axial strain, deviator strain and volumetric strain and the models were 
developed to predict the stress-strain status of the soil corresponding to an increment in 
the axial strain and based on the current deviator stress and volumetric strain values. 
The EPR model predictions are compared with the experimental results. A sensitivity 
analysis is also conducted to investigate the effects of contributing parameters including 
temperature on the developed EPR models. 

4.4.2 Database 

The results from triaxial experiments on samples of an unsaturated soil reported by 
Uchaipichat and Khalili (2009) were used to develop the EPR-based models. These 
experiments were conducted at constant suction, constant temperature and constant 
water content stress paths including: i) temperature and suction controlled isotropic 
loading tests, ii) temperature controlled desaturation tests, iii) suction controlled thermal 
loading tests, iv) constant water content thermal loading tests, and v) temperature and 
suction controlled shear strength tests.  
The tests were performed on silt samples compacted in the laboratory. The soil samples 
were obtained from the Bourke region of New South Wales, Australia. The index 
properties of the soil are presented in Table 4.9. Figures 4.23 and 4.24 show the soil 
water characteristic curve and the compaction curve for the soil respectively. 
 

 
Table  4.9: Index properties of the silt used in the tests (Bourke silt) 

Properties Values 

Liquid Limit (%)  20.5 

Plastic Limit (%)  14.5 

Specific Gravity 2.65 

Air Entry Value (kPa) 18 
Maximum dry unit weight from standard proctor test 
(kN/m3) 

18.8 

Optimum moisture content from standard proctor test (%) 12.5 
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Figure  4.23: Soil-Water characteristic curve for the silt used in the tests  (Uchaipichat, 2005) 
 

 
Figure  4.24: Compaction curve obtained from standard compaction test for the silt used in the 

tests (Uchaipichat, 2005) 

4.4.3 Data preparation 

Results from 27 temperature and suction-controlled shear tests were used to develop 
models to predict the shear strength and volumetric strain behaviour of unsaturated soil 
including the thermal effects. All the tests were conducted in a modified triaxial 
equipment depicted in figure 5.25 (Uchaipichat and Khalili, 2009). The temperature and 
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matric suction values varied from 25°C to 60°C and 0 to 300 kPa respectively. The 
effective cell pressures of 50, 100 and 150 kPa were used in the experiments. The 
implemented testing procedure was consolidated drained test and the deviatoric stress 
was applied by increasing the axial stress while the cell pressure was kept constant. 
Figures 4.26 to 4.28 show the experiment results used to develop and validate the EPR 
models. 
 
 
 
 
 
 

 
Figure  4.25: Modified triaxial equipment (Uchaipichat and Khalili, 2009) 
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Figure  4.26: Suction and temperature controlled shear tests at initial mean effective stress of 50 

kPa (Uchaipichat and Khalili, 2009) 
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Figure  4.27: Suction and temperature controlled shear tests at initial mean effective stress of 

100 kPa (Uchaipichat and Khalili, 2009) 
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Figure  4.28: Suction and temperature controlled shear tests at initial mean effective stress of 

150 kPa (Uchaipichat and Khalili, 2009) 
 
The total number of cases in the database was divided into training and testing datasets. 
From the database 22 cases (approximately 80%) were used to train and develop the 
EPR models while the remaining 5 cases (about 20%) were kept unseen to the EPR 
during model construction and were used to validate the developed models. A similar 
procedure to that explained in section 4-2-3 was used to select the most statistically 
consistent training and testing sets to be utilized in the development of the presented 
models. 
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Table  4.10: Parameters involved in the developed incremental EPR models* 
Contributing parameters Model output 

���, ���� , ��� , �, ��� , �
, �� , � � , ∆�
 
1+iq  

1, +ivε  

 * 	��� =overconsolidation ratio	; ���� =mean net stress (kPa); ��� =initial suction (kPa); 
� =temperature (℃);		���=initial degree of saturation; �
=axial strain; ��=deviator stress (kPa); 
� �=volumetric strain; ∆�
=axial strain increment; ��%&= deviator stress corresponding to the next 
increment of axial strain (kPa);

 
=+1,ivε  volumetric strain corresponding to the next increment of axial 

strain. 

4.4.4 EPR models for shear strength and volume change behaviour of 
unsaturated soils considering the temperature effects 

The modelling procedure was similar to the one explained in case of modelling hydro-
mechanical behaviour of unsaturated soils in the beginning of this chapter. Constraints 
were implemented to control the structure of the models to be constructed in terms of 
the length and complexity of the developed EPR models, type of implemented 
functions, number of terms, range of the exponents used and the number of generations 
to complete the evolutionary process. As the modelling process progressed the accuracy 
level at every stage was evaluated using the fitness equation (Equation 4-1). 
Due to the incremental nature of soil stress–strain modelling in practical applications, 
the incremental procedure was utilized in this research. The developed EPR models 
include nine input parameters as summarized in Table 4.10.   
Some input parameters including the overconsolidation ratio, initial mean net stress, 
initial suction, temperature and initial degree of saturation represented the initial 
conditions of the soil samples, but volumetric strain and deviator stress were updated 
incrementally as the training and testing stages progressed based on the predicted 
previous values (of deviator stress and volumetric strain) corresponding to the previous 
increment of axial strain. The output parameters were the deviator stress and volumetric 
strain corresponding to an increment of the axial strain. 
After completion of the modelling process, 44 and 31 models were developed for 
deviatoric stress and volumetric strain respectively. From among the developed models 
some did not include all the defined parameters as inputs to the equations and were 
removed and the remaining were considered and compared in terms of the robustness of 
the equations based on the coefficient of determination, sensitivity analysis and also the 
length of the equations and the best models satisfying all these criteria were chosen as 
final models. Equations 4.6and 4.7 represent the EPR models for deviator stress and 
volumetric strain respectively. As noted above, these models are unit dependent. 
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��%& =
0.06��
 − 3.81 × 10-.��� ∙ �
 ∙ ��� ∙ �
 + 6.73 ∙ ���2 ∙ �


���3 × ��
+ 1455.02 ∙ �

���� ∙ ��� ∙ ��

+ 23.11��� ∙ ��� ∙ ∆�7 ∙ ����
 ∙ �� − 8.67 × 108 ∙ ���3 ∙ �

����3 ∙ ��

+ 378.26 ∙ � 9 ∙ ∆�7 − 0.07 ∙ ��� ∙ �

 ∙ ��
� ∙ ��

+ 48.87∆�7 + 0.13� 9


+ 0.91�� − 5.05���3 − 0.1� − 0.12 ∙ ��� ∙ �� ∙ ∆�7 + 19.81 

 

 4-6 

 

� 9;<
= 1.06 × 10-3��� ∙ �� ∙ ∆�7

��� ∙ �7
+ 9.87 × 10-=��� ∙ ��3 − 4.09

����
+ 1.31 × 10-=���3 ∙ ���
 ∙ �7 − 0.98� + 1.09 × 10-3�3 − 9.15 × 10-.�3 ∙ ���

�


+ 2.52 × 10-.� 9
 − 0.89���
 ∙ ∆�7
���

+ 0.83∆�7 + 0.98� 9 − 0.05� 9 ∙ ∆�7 − 2.24

× 10-.�� − 4.44 × 10-3�� ∙ ∆�7 + 0.01���� ∙ ∆�7 + 0.1 

 

 4-7 

 

 
Figures 4.29, 4.30 and 4.31 show deviator stress-axial strain and volumetric strain-axial 
strain curves predicted using EPR models (Equations 4-6 and 4-7) against the 
experimental results for the tests used in the training of the model development process 
with figure 4.29 showing the worst predicted data case.  
After training, the performance of the trained EPR models was verified using 5 sets of 
validation data which had not been introduced to EPR during training. The purpose of 
validation was to examine the generalisation capabilities of the developed models to 
conditions that were seen by the model during the training phase. Figures 4.32, 4.33 and 
4.34 show predictions made by the developed EPR models against the experimental 
data for the testing dataset. The CoD values of the EPR models (Equations 4-6, 4-7) are 
given in Table 4.11. 
 
 
 

Table  4.11: Coefficient of determination values for the presented models 

Equation  
COD values for 

training (%) 
COD values for 

testing (%) 
Deviator stress 99.85 99.44 

Volumetric strain 99.99 99.86 
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                                                                   (a) 

 
                                                                   (b) 
 

Figure  4.29: Comparison between the EPR model predictions with experimental data for 
deviator stress (a) and volumetric strain (b) – (OCR=4, Mean net stress=50 kPa, T=25°C) 
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(a) 

 
(b) 

Figure  4.30: Comparison between the EPR model predictions with experimental data for 
deviator stress (a) and volumetric strain (b) – (OCR=2, Mean net stress=100 kPa, T=40°C) 
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           (a) 

 

 
            (b) 

 
Figure  4.31: Comparison between the EPR model predictions with experimental data for 

deviator stress (a) and volumetric strain (b) – (OCR=1.33, Mean net stress=150 kPa, T=60°C) 
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   (a) 

 

 
(b) 

 
Figure  4.32: Comparison between the EPR model validation predictions with experimental data 

for deviator stress (a) and volumetric strain (b) – (OCR=4, Mean net stress=50 kPa, T=40°C) 
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             (a) 

 

 
            (b) 

 
Figure  4.33: Comparison between the EPR model validation predictions with experimental data 
for deviator stress (a) and volumetric strain (b) – (OCR=2, Mean net stress=100 kPa, T=25°C) 
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          (a) 

 

 
          (b) 

 
Figure  4.34: Comparison between the EPR model validation predictions with experimental data 
for deviator stress (a) and volumetric strain (b) – (OCR=2, Mean net stress=100 kPa, T=60°C) 

 
Comparison of the results showed the exceptional capabilities of the developed models 
in capturing the shearing and volume change behaviour of unsaturated soils considering 
the temperature effects and generalising the behaviour to unseen cases. 

4.4.5 Predicting entire stress paths using the developed EPR models 

The EPR models represented as Equations 4-6 and 4-7 were used to predict the entire 
stress paths, incrementally, point by point, in aq ε:  and av εε :  spaces.  The results from 

three different sets of (testing) data were utilized to evaluate the ability of the 
incremental EPR models to predict the complete thermo-mechanical behaviour of 
unsaturated soil during the entire stress paths. The values of overconsolidation ratio, 
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confining stress, initial suction, temperature and initial degree of saturation were kept 
constant throughout the test. Other contributing parameters were updated in each 
incremental step of axial strain considering values corresponding to the previous 
increment and the EPR models outputs in response to an axial strain increment. Figure 
(4.35) illustrates the procedure followed for updating of the input parameters and 
building the entire stress path for the shearing stage of a triaxial test. For a prescribed 
increment of axial strain, aε∆ , the values of 1+iq , 1, +ivε  are calculated using the EPR 

models. For the next increment, the values of ia,ε iq,  and iv,ε   are  updated as: 

 
 
 
 
 
 
 
 

In this way the second points on the curves are predicted. The incremental procedure is 
continued until all the points on the curves are predicted and the curves are established. 
Figures 4.36, 4.37 and 4.38 show the comparison between the three complete curves 
predicted using the EPR models following the above incremental procedure and the 
actual experimental data. It should be noted that the data for these tests were not 
introduced to the EPR during the model development process.  
The predicted results are in a very close agreement with the experimental results and 
considering the fact that the entire curves have been predicted point by point and the 
errors of prediction of the individual points are accumulated, it can be easily seen that 
EPR models were able to predict the complete stress paths with a high degree of 
accuracy which can be an indication of the robustness of the developed EPR framework 
for modelling thermo-mechanical behaviour of unsaturated soils. 

4.4.6 Sensitivity analysis 

Similar to the previously represented EPR models in earlier sections of this chapter, a 
parametric study was carried out on a validation set of data to evaluate the response of 
the models to changes in input parameters. This was done through a basic approach to 
sensitivity analysis by fixing all but one input variable to their mean values and varying 
the remaining one within the range of its maximum and minimum values. 
Figures 4.39 to 4.42 show the results of the parametric study conducted to investigate 
the effect of changes in confining pressure (joint effect of the mean net stress and the 
overconsolidation ratio), suction, degree of saturation and temperature on the developed 
models.  
As expected, any increase in the values of the confining pressure and suction in the soil 
sample causes the shear strength of the soil and also the volumetric strain to increase 
(Figures 4.39 and 4.40).  Any increase in the degree of saturation of the soil will cause 
the soil suction to drop and will result in lower shear strength and also expansion in the 
soil sample. This effect was also correctly predicted by the presented EPR models 
(Figure 4.41). The developed model for deviator stress also correctly predicts drop in 
the shear strength as the temperature increases; however the increasing effect of 
temperature on the volumetric strain is negligible (Figure 4.42). 
The results of the parametric study indicated that the developed EPR models have been 
able to capture the underlying physical patterns between the contributing parameters 
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and the shear and volumetric behaviour of unsaturated soils under various temperatures 
correctly. 
 

 
Figure  4.35: Incremental procedure for predicting the entire stress path 

 
 
 
 
 
 
 



Chapter (4)                                  Application of EPR for Constitutive Modelling of Soils 

102 

 

 
           (a) 

 
       (b) 

Figure  4.36: Comparison between the EPR model predictions (point-by-point predictions of 
entire stress paths) with experimental data for deviator stress (a) and volumetric strain (b) – 

(OCR=4, Mean net stress=50 kPa, T=40°C) 
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           (a) 

 
              (b) 

Figure  4.37: Comparison between the EPR model predictions (point-by-point predictions of 
entire stress paths) with experimental data for deviator stress (a) and volumetric strain (b) – 

(OCR=2, Mean net stress=100 kPa, T=25°C) 
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            (a) 

 
           (a) 

Figure  4.38: Comparison between the EPR model predictions (point-by-point predictions of 
entire stress paths) with experimental data for deviator stress (a) and volumetric strain (b) – 

(OCR=2, Mean net stress=100 kPa, T=60°C) 
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                                                                      (a) 

 

 
            (b) 

Figure  4.39: Effect of changes in confining pressure on (a) deviatoric stress and (b) volumetric 
strain model predictions 
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                                                                      (a) 

 

 
            (b) 

 
Figure  4.40: Effect of changes in suction on (a) deviatoric stress and (b) volumetric strain 

model predictions 
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                                                                      (a) 

 

 
            (b) 

Figure  4.41: Effect of changes in degree of saturation on (a) deviatoric stress and (b) volumetric 
strain model predictions 
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                                                                    (a) 

 
            (b) 

 
Figure  4.42: Effect of changes in temperature on (a) deviatoric stress and (b) volumetric strain 

model predictions 

4.4.7 Discussion and conclusions 

Evolutionary Polynomial Regression was used to develop two models to predict 
deviatoric (shear) stress and volumetric strain behaviour of unsaturated soil considering 
the temperature effects. It was shown that the presented models have the capability to 
predict the entire stress paths by implementing the incremental approach. The capability 
of the models in making accurate predictions of the behaviour of unsaturated soils was 
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shown using appropriate graphs and tables considering unseen validation data sets that 
were not introduced to EPR in the model development stage. 
 
A parametric study was conducted to study the sensitivity of the models to variation of 
each of the contributing parameters. Using the resulted graphs, it was shown that the 
developed EPR models were capable of capturing the temperature effect as well as the 
effect of other parameters (confining pressure, suction and initial degree of saturation) 
correctly and accurately from the provided raw triaxial test data. 

4.5 Stress-strain and volume change behaviour of granular 
soils 

4.5.1 Introduction 

The shear strength of cohesionless soil such as sand and gravel under varying drainage 
conditions has been a topic of significant interest for the last four decades. Many 
research works have contributed significantly to the understanding of the important 
factors that control the shear strength behaviour of sand and gravel for drained 
conditions. A comprehensive set of data from literature was collected and used to model 
stress-strain and volume change behaviour of cohesionless soils. This section presents 
the development of EPR models for granular soils using this database. Comparison is 
made between EPR model predictions and the Experimental data. Sensitivity analysis 
outcomes and the relevant discussions are presented in the following section.  
 
Considerable amount of experimental data has been published in the literature 
contributing significantly to the understanding of the important factors that control the 
shear strength behaviour of granular soils in drained conditions. There has been 
tremendous interest in the research community to model the shear stress and volume 
change behaviour of cohesionless soil and because of its well defined conditions of 
stress and strain on the cylindrical specimens, many of the models developed to date are 
predominantly based on triaxial compression test data. The majority of the past research 
effort has been devoted to modelling of soil behaviour using the elasticity/plasticity 
based approach with some success (Rowe and Barden, 1964). 
 
The EPR models developed in this study were produced based on a large database 
comprising data from 177 triaxial tests with the aim of providing comprehensive models 
that could be used to predict the behaviour of granular soils. 

4.5.2 Database and the parameters involved in development of the 
models 

Previous experimental research has shown that the important factors that govern the 
behaviour of cohesionless soil (sand and gravel) are its mineralogy, particle shape, 
particle size and its distribution, void ratio and also the effective confining stress level 
(Dayakar and Rongda, 1999). The experimental database from a large number of 
contributions from literature (shown in Table 4.12) was used to develop the models in 
this research. The database includes the effects of the above factors systematically in a 
comprehensive manner using a large number of drained triaxial compression tests. 
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Table  4.12: Data sources used to create the database (Dayakar and Rongda, 1999) 
Reference  Experimental soil description 

Lee and Seed (1967) Sacramento river sand 

Lee, Seed and Dunlop (1967) Antioch sand 

Leslie (1975) Napa basalt 
New Hogan metavolcanic 
Carters Dam quartzite 
Cougar basalt 
Sonora dolomite 
Laurel sandstone 
Buchanan weathered granite 

Lo and Roy (1973) Back mine quartz sand 
St. Marc limestone sand 
Aluminum oxide sand 

Marachi et al (1969) Pyramid dam material 
Napa basalt 

Miura and Yamanouchi (1975) Toyoura sand 

Miura and O-Hara (1979) Ube decomposed granite 

Ponce and Bell (1971) Quartz sand 

Ramamurthy et al (1974) Badarpur sand 

Raymond and Davies (1978) Coteau dolomite 
Kenora granite 
Nouvelle igneous 
Sudburg slag 

Raymond and Diyaljee (1979) Grenville marble 
Kimberly float 
St. Isodore limestone 
Brandon gravel 
St. Bruno shale 

Wu (1957) Fluvioglacial sand 

Erzin (2004) Anatolian sands 
 
The objective was to develop EPR-based models to represent the deviator stress-axial 
strain, and volumetric strain-axial strain relationships for granular soils with varying 
mineralogy, particle shape, uniformity coefficient, coefficient of curvature, effective 
particle size, void ratio, and effective confining pressure. 
Data from a total of 177 triaxial compression tests were obtained from literature. Using 
the approach proposed by Hardin (1985), the mineralogy and grain shape were 
quantified in the database using crushing hardness, and average particle shape factor. 
The crushing hardness, h (a mineralogy factor) is approximately equal to the scratch 
hardness as defined by Moh's Scale. It takes a value of 7, 6, and 3 for quartz, feldspar, 
and calcite respectively (Dayakar and Rongda, 1999). The shape factor (ns) defines the 
degree of angularity or sphericity, and is equal to: 25 for angular, 20 for sub-angular, 17 
for sub-round, and 15 for round shape (Dayakar and Rongda, 1999).  
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4.5.3 Data preparation 

The data preparation process was similar to the procedure followed in section 4-2-3. 138 
tests (80%) were used to train EPR and to construct the models and the remaining 39 
tests were used for validation of the models.  
 

Table  4.13: Parameters involved in the developed EPR models* 
 

* D50 (mm) = average grain size, Cu = coefficient of uniformity, Cc = coefficient of curvature; 

h= hardness of the mineral; =aε axial strain; ns = shape factor; =vε volumetric strain;  

=q deviator stress; =∆ aε axial strain increment; e= void ratio; σ3= effective confining 

pressure. 

4.5.4 Developing the EPR models 

As mentioned in the case of unsaturated soil modelling, a typical scheme to train most 
of the neural network based material models for soils includes an input set providing the 
network with information relating to the current state units (e.g., current stresses and 
strains) and then a forward pass through the network yields the prediction of the next 
expected state of stress or strain relevant to an input strain or stress increment 
((Ghaboussi et al., 1998); (Dayakar and Rongda, 1999)). Due to the incremental nature 
of soil stress–strain modelling in practical applications, the same scheme was also used 
in this research to model the behaviour of granular materials.  
 
The EPR models had 11 input parameters (Table 4.13).  D50, Cu, Cc, h, ns, e and σ3 
represent the initial conditions of the soil specimens. The other three parameters, 
namely; axial strain, volumetric strain, and deviator stress are updated incrementally 
during the training and testing based on the outputs from the previous increment of the 
axial strain. The output parameters are the deviator stress and the volumetric strain 
corresponding to the end of the incremental step and are calculated using the two EPR 
models.   
The training of the EPR resulted in development of few equations for deviator stress. Of 
these, 2 equations did not include the effect of all contributing parameters. Among the 
remaining equations the most appropriate and efficient one based on the model 
performance (fitness), complexity and also the sensitivity analysis results was selected 
as the final model. The same procedure was also followed to choose the best fit 
equation for the volumetric strain. Equations 4-8 and 4-9 represent the (unit dependent) 
incremental EPR models for deviator stress and volume strain respectively. 
 

Contributing parameters Model output 
D50,  Cu, Cc, h, ns, e, σ3 

aε , aε∆ , qi, iv,ε  
1+iq  

1, +ivε  
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Figures 4.43 to 4.45 show deviator stress-axial strain and volumetric strain-axial strain 
curves predicted by the EPR models in Equations 4-8 and 4-9 against the experimental 
results for data sets that were used to train the models. 
A comparison was also made between the predictions of the ANN models suggested by 
Dayakar and Rongda (1999) and EPR results for the training data cases. Typical results 
are presented in Figure 4.46. 
After training, the performance of the trained EPR models was verified using 39 sets of 
validation data which had not been introduced to EPR during training. This was to 
evaluate the generalisation capabilities of the developed models to unseen cases. Figures 
4.47 to 4.49 show predictions made by the developed EPR models against the 
experimental data which were not previously seen by EPR and were only used to 
validate the models. A comparison was also made with the predictions of the ANN 
models suggested by Dayakar and Rongda (1999).  
Comparison of the results and the high CoD values for the EPR models indicate the 
excellent performance of these models in capturing the underlying relationships 
between the contributing parameters and deviator stress and volumetric strain response 
of granular soils and also in generalizing the training to predict the behaviour of these 
soils under unseen conditions. The results also show that EPR over performs ANN and 
its results are a closer match to the actual experimental data. 
The incremental procedure was continued until all the points on the curves were 
predicted and the curves were established. Figures 4.51 to 4.54 show the comparison 
between the four complete curves predicted using the EPR models following the above 
incremental procedure and the actual experimental results for 4 data sets.  
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              (a) 

 
              (b) 

Figure  4.43:  (a) Deviator stress-axial strain and (b) volumetric strain-axial strain curves 
predicted by the EPR models compared to experimental data (?3 = 2932	H�7) – training data 

case 
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              (a) 

 
              (b) 

Figure  4.44: (a) Deviator stress-axial strain and (b) volumetric strain-axial strain curves 
predicted by the EPR models compared to experimental data (?3 = 11767	H�7) – training data 

case 
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              (a) 

 
              (b) 

Figure  4.45: (a) Deviator stress-axial strain and (b) volumetric strain-axial strain curves 
predicted by the EPR models compared to experimental data (?3 = 1961	H�7) – training data 

case 
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              (a) 

 
              (b) 

Figure  4.46: (a) Deviator stress-axial strain and (b) volumetric strain-axial strain curves 
predicted by the EPR models compared to experimental data and ANN model predictions 

(?3 = 275	H�7) – training data case 
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              (a) 

 
              (b) 

Figure  4.47:  (a) Deviator stress-axial strain and (b) volumetric strain-axial strain curves 
predicted by the EPR models compared to experimental data and ANN model predictions 

(?3 = 11767	H�7) – testing data case 
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              (a) 

 
              (b) 

Figure  4.48: (a) Deviator stress-axial strain and (b) volumetric strain-axial strain curves 
predicted by the EPR models compared to experimental data and ANN model predictions 

(?3 = 19613	H�7) – testing data case 
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              (a) 

 
              (b) 

Figure  4.49: (a) Deviator stress-axial strain and (b) volumetric strain-axial strain curves 
predicted by the EPR models compared to experimental data and ANN model predictions 

(?3 = 5515	H�7) – testing data case 
 
 
The CoD values of the EPR models (Equations 4-8 and 4-9) are given in Table (4.14). 
 
 

Table  4.14: COD values for EPR models 

Equation  
COD values for 

training (%) 
COD values for 

testing (%) 
Deviator stress (Equation 5.2.1) 99.99 99.98 

Volumetric strain (Equation 5.2.2) 99.99 99.99 

 

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0 5 10 15 20 25 30 35

V
o

lu
m

e
tr

ic
 s

tr
a

in
 (

E
v

i+
1

)

Axial strain (%)

Experiment

EPR

ANN



Chapter (4)                                  Application of EPR for Constitutive Modelling of Soils 

120 

 

4.5.5 Predicting entire stress paths using the EPR models 

In this section, the EPR models (Equations 4-8 and 4-9) are used to predict the entire 
stress paths, incrementally, point by point, in aq ε:  and av εε :  spaces.  Results from 

four different sets of (testing) data were used to evaluate the ability of the incremental 
EPR models to predict the complete behaviour of granular soils during the entire stress 
paths. The values of average grain size, coefficients of uniformity and curvature, 
hardness, shape factor, void ratio and the confining pressure represented the initial 
conditions of the soil and were considered constant throughout the test. Other 
contributing parameters including axial strain and the current values of deviator stress 
and volumetric strain were updated in each incremental step, considering the values 
from the previous increment and the EPR models outputs in response to an axial strain 
increment. Figure 4.50 illustrates the procedure followed for updating of the input 
parameters and building the entire stress path for the shearing stage of a triaxial test. 
At the start of the shearing stage in a conventional triaxial experiment, the values of all 
parameters are known. Then, for a prescribed increment of axial strain ( aε∆ ) the values 

of 1+iq , 1, +ivε  are calculated from the EPR models (Equations 4-8 and 4-9 respectively). 

For the next increment, the values of ia,ε iq,  and iv,ε   are  updated as: 

aiaia

iviv

ii qq

εεε
εε

∆+=
=

=

+

+

,,

1,,

1

 

    
Figure  4.50: Incremental procedure for predicting the entire stress path 
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                                                           (a) 

 
                                                           (b) 
 

Figure  4.51: (a) Deviator stress-axial strain and (b) volumetric strain-axial strain curves 
predicted by the EPR models compared to experimental data (?3 = 413	H�7) – testing data 

case, entire stress path prediction. 
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                                                           (a) 

 
                                                           (b) 
 

Figure  4.52: (a) Deviator stress-axial strain and (b) volumetric strain-axial strain curves 
predicted by the EPR models compared to experimental data (?3 = 19613	H�7) – testing data 

case, entire stress path prediction. 
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                                                                      (a) 

 
                                                                       (b) 
 

Figure  4.53: (a) Deviator stress-axial strain and (b) volumetric strain-axial strain curves 
predicted by the EPR models compared to experimental data (?3 = 8276	H�7) – testing data 

case, entire stress path prediction. 
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                                                                           (a) 

 
                                                                          (b) 

Figure  4.54: (a) Deviator stress-axial strain and (b) volumetric strain-axial strain curves 
predicted by the EPR models compared to experimental data (?3 = 2068	H�7) – testing data 

case, entire stress path prediction. 
The data for these tests have not been introduced to the EPR during the model building 
process. The predicted results are in very good agreement with the experimental results 
and, similar to the unsaturated soil models discusses before, in spite of the facts that the 
entire curves have been predicted point by point and also the errors of prediction of the 
individual points are accumulated in this prediction, still the EPR models are able to 
predict the complete stress paths. This shows that EPR framework is very effective and 
robust in modelling the behaviour of granular soils. 

4.5.6 Sensitivity analysis 

Results of the sensitivity analysis (conducted as described in section 4.4.6) are shown in 
Figures 4.55 to 4.57.  
As expected increasing the average particle size (which indicates that the soil grains are 
getting coarser) causes the shear strength of the soil to increase (Figures 4.55a). In case 
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of granular soils the best way to compact a soil sample is vibration rather than 
compression. This is because of the friction between the coarse grains which increases 
under compression and makes it more difficult for the soil grains to move and fill up the 
voids. Figure 4.55b shows the negligible effect of increase in particle size on volumetric 
strain in granular soils. 
Increasing the shape factor parameter shows that angularity of the soil increases 
resulting in higher friction and subsequently higher shear strength; however, as the soil 
grains gets more angular the possibility of crushing of the angular grains under stress 
also increases. Figure 4.56 shows that, due to the opposing effects of increase in friction 
and crushing of angular soil grains, the overall effect of increasing the shape factor, on 
shear strength and volumetric strain of granular soils is negligible. 
Increasing void ratio causes the shear strength to drop and also the volumetric strain to 
increase under shearing. These effects are also correctly predicted by the proposed 
models (Figure 4.57). 

 
                                                                       (a) 

 
                                                                       (b) 
Figure  4.55: Sensitivity analysis results considering the effect of average grain size D50 on EPR 

model predictions for (a) deviator stress and (b) volumetric strain. 
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                                                                      (a) 

 
                                                                        (b) 
Figure  4.56: Sensitivity analysis results considering the effect of shape factor (ns) parameter on 

EPR model predictions for (a) deviator stress and (b) volumetric strain. 
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                                                                      (a) 

 
                                                                       (b) 

Figure  4.57: Sensitivity analysis results considering the effect of void ratio parameter (e) on 
EPR model predictions for (a) deviator stress and (b) volumetric strain. 

4.5.7 Discussion and conclusions 

Two models were developed based on the evolutionary polynomial regression to 
describe the deviator stress-axial strain and volumetric strain-axial strain behaviour of 
granular soils. It was shown that the EPR models can capture the underlying 
relationships between various parameters directly from experimental triaxial data and 
predict the granular soil behaviour with a very high accuracy. The EPR models were 
also tested using data that were not used in the training of the EPR models; in this way, 
an unbiased performance indicator was obtained on the real prediction capability of the 
models. The results revealed that the EPR-based models are capable of generalizing the 
training to predict the behaviour of granular soils under conditions have not previously 
seen by EPR in the training stage.  
Through the comparison of the results it was shown that the proposed EPR models 
outperform ANN and provide closer results to the experiments.  

9200

9250

9300

9350

9400

9450

9500

9550

9600

9650

9700

0.0 0.2 0.4 0.6 0.8 1.0 1.2

D
e

v
ia

to
r 

st
re

ss
 -

q
i+

1
 (

k
P

a
)

Void ratio (e)

-5.700

-5.650

-5.600

-5.550

-5.500

0.0 0.2 0.4 0.6 0.8 1.0 1.2

V
o

lu
m

e
tr

ic
 s

tr
a

in
 (

E
v

i+
1

)

Void ratio (e)



Chapter (4)                                  Application of EPR for Constitutive Modelling of Soils 

128 

 

The EPR models also successfully predicted the complete stress paths in aq ε:  and av εε :  
spaces incrementally and point-by-point for unseen cases of data. 

4.6 Identification of coupling parameters between shear 
strength behaviour and chemicals effects in compacted 
soils with EPR 

4.6.1 Introduction 

In the concept of nuclear waste storage, the stability of the galleries will be ensured with 
a concrete lining and this repository will be backfilled after use. Among other functions, 
this backfill will limit the convergence of the galleries after the concrete lining breaks 
(i.e. after thousands of years); it should also constrain the bentonite seals during their 
hydration. One key point is the degradation of the concrete lining of the galleries that 
will generate alkali-rich and high-pH solutes (Anderson et al., 1989) that will then 
diffuse into the backfill. This will give rise to a phenomenon called the hyperalkaline 
plume. Under extremely alkaline conditions, i.e. pH > 12, most of the usual soil 
minerals undergo extensive physicochemical transformations ( (Huertas et al., 2000); 
(Boardman, Glendinning and Rogers, 2001)). Very high pH water causes the dissolution 
of the soil primary minerals accompanied by the formation of secondary minerals like 
calcium silicate hydrates (CSH) and calcium aluminate hydrates (CAH) (pozzolanic 
reactions) ((Bauer and Berger, 1998); (Bauer and Velde, 1999); (Chermak, 1993); 
(Ramírez et al., 2002); (Claret et al., 2002)). Many geochemical modelling studies have 
also been performed ( (Savage, Noy and Mihara, 2002); (Gaucher et al., 2004)).  
However, only very few studies have been carried out on these processes at the scale of 
compacted clay samples to characterise potential chemo-mechanical couplings between 
such high-pH water circulation and its impact on the geomechanical behaviour (shear 
strength, compressibility, permeability, etc.). Rodwell et al (2005) concluded that these 
physico-chemical reactions should alter the backfill physical properties, like porosity 
changes associated with permeability variation. Studying the interaction between 
Friedland Ton clay and low-pH cement water Pusch et al (2003) identified a slight drop 
in the clay hydraulic conductivity. Robinet (2005) showed that permeability of MX-80 
bentonite was not sensitive to alkaline fluid circulation but to the temperature of the 
experiment. Karnland  (2005) subjected MX-80 samples to several alkaline water types 
(NaOH and Ca(OH)2 solutions). Their results showed that the swelling pressure in 
bentonite is strongly reduced by exposure to NaOH solutions while little effect on 
swelling pressure was found in the samples exposed to Ca(OH)2 solutions.   
Cuisinier et al ( (2008) and (2009)) carried out a study to depict the influence of the 
circulation of very high-pH water on the hydro-mechanical behaviour of compacted 
argillite, pure or mixed with an additive (sand, bentonite or quicklime), that are the 
candidate materials to be used for backfilling. The geomechanical behaviour and the 
microstructure of the considered materials were studied over a period of alkaline water 
circulation of 12 months. The impact of the alkaline fluid on the geomechanical 
properties of the materials appeared to be a direct function of the nature of the additive. 
The geomechanical behaviour of the sand – argillite mixture remained almost stable 
over a period of 12 months of alkaline water circulation while, over the same period, 
dramatic modification of the lime – argillite mixture was observed. The subsequent step 
of this research would be to identify the key coupling parameter(s) between the 
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chemical stress imposed by the alkaline water circulation and the alteration of the 
hydro-mechanical behaviour of the tested mixtures. This is required to be able to assess 
the sensitivity of a given mixture, different from the one experimentally tested, to the 
circulation of alkaline water.  
The large amount of tested configurations, the four different mixtures, and experimental 
conditions have rendered difficult the determination of such coupling parameter(s) and 
due to this the EPR was used to model the complex hydro-mechanical behaviour of the 
soil during alkaline fluid circulation.   
An EPR model was developed and evaluated based on results from test data involving 
various additives circulation times (i.e. 0, 3, 6, and 12 month). Four cases of data, not 
employed for the training phase, were chosen to be used in the testing stage to evaluate 
the generalization capabilities of the developed model. In the last section, a parametric 
study was carried out where all parameters were set to their mean values except the one 
being monitored that was changed from its minimum to the maximum value in the 
training and testing data sets. The results of this analysis were used to identify coupling 
parameter(s) between chemical effects and shear strength behaviour alteration in order 
to assess the sensitivity of compacted soil to alkaline water circulation.  

4.6.2 Experiments and data 

Data used to develop the EPR models were acquired from the works of Cuisinier and 
his colleagues ( (2008), (2009)). The selected material corresponds to the callovo-
oxfordian argillite where the French underground laboratory has been built. After 
sampling, the Manois Argillite (MA) was carefully homogenised and crushed into a 
very fine grain powder. Chemical and XRD analyses indicated that the MA contains 26 
to 32 % calcite, 22 to 27 % quartz, and 41 to 49 % clays. The clays were mainly illite, 
kaolinite and an interstratified illite-smectite. The specific surface determined with BET 
was 40.4 ± 1 m2.g-1.  
For the study of the backfilling of deep galleries, three different additives intended to 
improve the hydro-mechanical properties of the argillite, were considered. The first was 
a 50 % sand and 50 % MA mixture on a dry-weight basis. The addition of sand 
increases the dry density and the frictional characteristics of the compacted argillite 
((Dixon, Gray and Thomas, 1985); (Mollins, Stewart and Cousens, 1999)). The selected 
sand was calcareous sand produced in a quarry near the Meuse-Haute Marne site. It 
contained more than 95 % calcite, with the remaining minerals being quartz and 
ankerite. Its characteristics are given in Table 4.15.  
 

Table  4.15: Properties of the tested materials 
Material  Liquid 

limit 
(LL%) 

Plasticity 
index 
(PI%) 

Solid 
density 
(Mg/m3) 

Cation 
exchange 
capacity 

(meq/100g) 
MHM argillitea 31 17.9 2.7 6-14 

MA 51 11.2 2.68 23 

Calcareous sand Non-plastic Non-plastic 2.71 - 

MX-80b 520 458 2.65 97 
a Data of MHM argillite from Deroo (Deroo, 2002) 
b Data from Marcial et al (Marcial, Delage and Cui, 2002) and Neaman et al (Neaman, Pelletier and 
Villieras, 2003) 
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The second additive was MX-80 bentonite, which was selected to enhance the sealing 
properties of the backfill through improved swelling (Dixon, Gray and Thomas, 1985). 
The properties of MX-80 are also given in Table 4.15. This clay contains more than 80 
% montmorillonite with sodium and calcium as exchangeable cations and 86.1 % of the 
particles are smaller than 2 µm. The mixture used was 20 % MX-80 and 80 % MA on a 
dry-weight basis.  
The third additive considered was quicklime, which improves both the cohesion and the 
friction angle of clayey materials ( (Fossberg, 1965); (Brandl, 1981)). When added to a 
soil, lime induces physico-chemical reactions that increase the mechanical 
characteristics of the soil ( (Little, 1995); (Bell, 1996); (Le Runigo et al., 2009)). The 
quicklime used in that study was composed of more than 97 % of pure CaO. A lime 
content of 4 % with the remainder MA on a dry-weight basis was selected for the 
experimental program.  
Results from 33 consolidated undrained triaxial tests conducted on samples of argillite 
(MA), lime-MA, sand-MA, bentonite-MA mixtures, subjected to different periods of 
exposure to alkaline water circulation, were used for development and validation of the 
EPR model. Of the total of 33 cases, 29 cases related to different circulation times (i.e. 
0, 3, 6, 12 months) were used for training of the EPR model. Of these 29 cases, 11 cases 
were related to no circulation (0 month of circulation), 5 cases to 3 months, 2 cases to 6 
months and 11 cases to 12 months of circulation of the alkaline water through the 
samples. The remaining 4 cases (each relating to a different soil and circulation time) 
were kept unseen during the model development process and used to evaluate the 
developed model.  

4.6.3 EPR model 

Eight parameters were used as input for the EPR model including dry density (dρ ), 
alkaline water circulation time (t ), axial strain ( aε ), pore pressure (u ), effective 
confining pressure (3σ ′ ), porosity of macro-pores (Me ), porosity of micro-pores (me ), 
and the specific surface of the soil particles (SS). The only output was considered to be 
the deviatoric stress ( 31 σσ ′−′ ). The following equation represents the (unit dependent) 
EPR model developed through the above mentioned procedure: 
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Figure 4.58 shows typical results of the training of the EPR model for sand-argillite, 
lime-argillite and MX-80-argillite mixtures at slightly different confining pressures after 
12 months of circulation. The results are compared with actual measurements and it is 
shown that the EPR model has been able to capture the behaviour of the mixtures with a 
good accuracy. 
Figure 4.59 presents typical results of testing of the developed EPR model for pure 
argillite at confining pressure of 295kPa with no circulation, lime-argillite at confining 
pressure of 274kPa after 6 months of circulation and MX-80-argillite at confining 
pressure of 270kPa after 12 months circulation. It is shown that the developed model 
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has also been able to generalize the training to conditions that were not introduced to the 
model during the training process.  The values of coefficient of determination for testing 
and training data are 93.2% and 94.24% respectively.  

4.6.4 Sensitivity analysis 

This sensitivity analysis (conducted as detailed in section 4.4.6) aimed at determining a 
possible coupling parameter that could explain the changes in shear strength behaviour 
observed after the circulation of the alkaline fluid.  
The sensitivity analysis was carried out considering four parameters (dry density, 
macropore void ratio, micropore void ratio and specific surface). It can be seen that the 
dry density did not permit to explain differences in maximum shear strength that have 
been observed in the experimental study (Figure 4.60). Even though there is a tendency 
for the maximum shear strength to increase with an increase in dry density, the 
calculated variation is much more limited (165-190kPa) compared to what has been 
observed experimentally for the tested mixtures (from hundred kPa up to several 
thousands of kPa). The same conclusion can be drawn from the sensitivity analysis for 
the macropore void ratio (eM).  
However, the results of the sensitivity analysis showed that the variation of the 
maximum deviatoric stress for all the tested samples can be explained mainly by the 
value of the specific surface of the samples, especially when its value is below 
100 m2.g-1 and to a lesser extent by the micropore void ratio. From a physical point of 
view, specific surface can be used as an indicator of the nature of the material as it 
reflects its clay content and therefore its mechanical behaviour before circulation. The 
addition of MX-80 bentonite to the Manois argillite results in a high value of the 
specific surface, which results in lowering of the mechanical characteristics compared to 
the initial material (Table 4.16). The addition of lime leads to the flocculation and 
aggregation of the clay particles that is responsible for a decrease in the specific surface 
of the Manois argillite, and increase of the micropore void ratio. This was associated 
with a strong effect on the shear strength behaviour because addition of lime led to the 
formation of cementitious compounds responsible for the increase in shear strength 
(Table 4.16) as evidenced by several authors (Little, 1995). The effect of the alkaline 
water circulation may also alter the specific surface of the tested material. Indeed, the 
main effect of the alkaline fluid circulation was to induce the dissolution of clay 
particles (Huertas et al., 2000), that could result in a decrease in the specific surface of 
the soil. The dissolved compounds may react with the calcium to form cementitious 
compounds responsible for the increase in shear strength. The formation of new 
cementitious compounds can lead to a closure of the smallest pores of the soil as 
evidenced by some researchers who studied lime-treated soils at microstructural level  
( (Choquette, Berube and Locat, 1987); (Bin et al., 2007)). 
Combination of the two parameters, specific surface and micropore void ratio, allowed 
the explanation of the behaviour of the mixture of Manois argillite and of MX-80 
bentonite. This sensitivity analysis shows that the model has also been able to capture 
and represent the behaviour of the individual mixture. In fact, in case of this mixture, 
the circulation led to a strong increase of specific surface (-25 m2.g-1) and an increase of 
the macropore void ratio without significant modification of the micropore void ratio. 
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Figure  4.58: Typical training results of the EPR model: (a) Sand-argillite, 3σ ′ =569kPa, (b) 

Lime-argillite 3σ ′ =587, (c) MX-80-argillite, 3σ ′ =557kPa, after 12 months circulation. 
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Figure  4.59: Typical testing results of the EPR model: (a) Pure argillite, 3σ ′ =295kPa, No 

circulation; (b) Lime-argillite 3σ ′ =274,  6 month circulation; (c) MX-80-argillite, 3σ ′ =270kPa, 
12 months circulation. 
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Figure  4.60: Sensitivity analysis considering effect of (a) dry density, (b) specific surface, (c) 

macroporosity and (d) microporosity 
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Table  4.16: Properties of the tested materials 
Mixture  Circulation 

period 
(months) 

Water 
content 

(%) 

Dry 
weight 

(Mg . m-3) 

Specific 
surface 
(m2g-1) 

Effective 
friction 
angle (°) 

Effective 
cohesion 

(kPa) 
Pure argillite 0 23 1.61 156.6 18.6 25.6 

12 27.5 1.54 142 22.2 9.5 

50% Argillite + 
50% sand 

0 15.5 1.83 67.5 28.9 0 

3 17.1 1.86 71.7   

6 14.9 1.85 67.5 26.8* 0* 

12 16.2 1.88 74.6   

80% Argillite + 
20% MX-80 

0 25.5 1.54 205.6 18.1 0 

12 34.5 1.34 182.6 13.5 30 

96% Argillite + 4% 
lime 

0 25.5 1.55 51.4 39.5 50.3 

3 29 1.49 24.5   

6 29.9 1.47 19.6 53.7* 282.5* 

12 29.7 1.48 12.2   
a No significant influence of circulation duration on shear strength parameter 

4.6.5 Discussion and conclusions 

Results from a comprehensive study on the impact of the alkaline fluid circulation on 
mechanical behaviour of several mixtures, made by mixing Manois Argillite and 
different additives was used to model the complex hydro-mechanical behaviour of the 
soil during alkaline fluid circulation using the evolutionary polynomial regression 
(EPR).   
Overall, the results showed that the EPR model, trained from pure experimental data, 
was able to capture and correctly represent many physical characteristics of the 
behaviour of the different mixtures considered in the study and the effect of the alkaline 
fluid circulation, with a high accuracy for both training and unseen testing sets of data. 
This model was then used to perform a sensitivity analysis in order to identify the best 
possible coupling parameters between chemical’s effect and the shear strength 
behaviour. It appeared that the most appropriate parameter is the specific surface of the 
mixture. In the model, the specific surface permit to take into account differences at the 
initial state (before circulation), reflecting the composition of the mixture, i.e. the nature 
of the additive, and the differences in their shear strength behaviour. Moreover, specific 
surface is sensitive to the alkaline fluid circulation duration, and its impact on the shear 
strength behaviour of each individual mixture. To a lesser extent, the micropore void 
ratio appeared to be a coupling parameter, even though the shear strength behaviour of 
the different mixtures is less sensitive to it. 

4.7 Conclusions 

In this chapter the application of EPR in modelling the stress-strain and volume change 
behaviour of saturated and unsaturated soils was presented. The temperature effects on 
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the mechanical behaviour, and also the soil-water characteristic curve in unsaturated 
soils were modelled. The entire stress paths for stress-strain and volumetric strain-axial 
strain behaviours were successfully reproduced using the developed models for relevant 
cases. EPR modelling was also successfully used to find coupling parameters between 
shear strength behaviour and chemical’s effects in compacted soils. Detailed 
explanations of the modelling procedures and the sensitivity analyses of the developed 
models were presented. 
The results showed that the developed models were capable of predicting complex 
behaviour of saturated and unsaturated soils accurately. 
In the next chapter, further applications of the EPR methodology to other geotechnical 
and civil engineering problems will be presented.  
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OTHER GEOTECHNICAL AND CIVIL 
ENGINEERING APPLICATIONS OF 
EPR 
 

5.1 Introduction 

This chapter presents the application of EPR to develop models for predicting 
compaction characteristics and permeability of soils, stability status of soil and rock 
slopes and the mechanical behaviour of rubber concrete.  
Permeability (K), maximum dry density (MDD) and optimum moisture content (OMC) 
are modelled as functions of some physical properties of soil. EPR models are 
developed based on results from a series of classification, compaction and permeability 
tests from literature. The tests included standard Proctor tests, constant head 
permeability tests and falling head permeability tests conducted on soils made of four 
components, bentonite, limestone dust, sand, and gravel, mixed in different proportions. 
EPR methodology is also introduced as an efficient tool for stability analysis of soil and 
rock slopes. The main parameters contributing to the behaviour of slopes, namely, unit 
weight, apparent cohesion, friction angle, slope angle, and pore water pressure are used 
in the development of the EPR models. The developed models are used to predict the 
factor of safety of slopes against failure for conditions not used in the model building 
process.  
Evolutionary polynomial regression is also used to predict the mechanical behaviour of 
rubber concrete. A model is developed relating the compressive strength of rubber 
concrete to a number of physical parameters that are known to contribute to the 
mechanical behaviour of rubber concrete. 
Data sources and data preparation processes are represented and discussed. Validity and 
efficiency of the produced models are shown by comparing the proposed model 
predictions with field measurement, experimental data and conventional models where 
applicable.   
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5.2 Modelling of permeability and compaction characteristics 
of soils 

5.2.1 Introduction 

In construction of many civil engineering structures such as road embankments, loose 
soil must be compacted to a desired density and water content. In other projects such as 
earth dams and compacted soil liners for containing contaminated solid and liquid 
wastes, the soil should be compacted for the density as well as the permeability 
requirements. The permeability of compacted soils very much depends on the 
compaction condition. The required compaction is usually expressed in terms of degree 
of compaction (dry density) and water content of the soil. To achieve the required 
degree of compaction, the water content must be near its optimum value. Thus, both the 
maximum dry density and optimum water content are essential parameters for design of 
compacted earthwork. Furthermore, for soil lining construction, the permeability of 
compacted soil liner must be very low. Since permeability, maximum dry density and 
optimum water content are normally determined from time-consuming laboratory tests, 
it is desirable to have prediction models capable of predicting compacted soil 
characteristics based on some easily measurable physical properties of soils. 
Many research works have been conducted to relate permeability and compaction 
characteristics of soils to their physical properties. The physical properties used 
generally include plasticity characteristics (liquid limit, plastic limit, shrinkage limit, 
and plasticity index), specific gravity, and grain size distribution that are easily 
attainable from relatively straightforward laboratory tests. However, the specific index 
properties used in various correlation equations differ considerably. Rowan and Graham 
(1948) used gradation, specific gravity and shrinkage limit in their correlation 
equations. Davidson and Gardiner (1949) eliminated the specific gravity from the 
equations of Rowan and Graham (1948), but included plasticity index. Turnbull (1948) 
related the optimum moisture content with gradation, while Jumikis (1946) correlated 
the optimum moisture content with liquid limit and plasticity index. 
Ring et al (1962) developed two sets of correlation equations, one for optimum moisture 
content and the other for maximum dry density. The physical properties used were 
liquid limit, plastic limit, plasticity index, D50, content of particles finer than 0.001 mm, 
and fineness average (FA). The fineness average was determined as one-sixth of the 
summation of the percentages of soil mass finer than No.10, No.40 and No.200 sieves. 
Liquid limit alone was correlated with both maximum dry density and optimum 
moisture content by Ramiah et al. (1970) and Blotz et al. (1998). Linveh and Ishai 
(1978) also developed some relationships using specific gravity and liquid limit as 
input. Gupta and Larson (1979) presented a model for predicting packing density of 
soils from grain size distribution. 
The permeability of a soil varies with many factors, such as soil density, water content, 
degree of saturation, void ratio and soil structure. Available correlations between these 
factors and permeability include those of Carman (1937), Burmister (1954), Lambe 
(1951), Michaels and Lin (1954), Olson (1963), Mitchell et al. (1965), and Garcia-
Bengochea et al. (1979). Various relationships between permeability and grain size 
distribution of soils have been reported. Hazen (1911) suggested that, for filter sands 
having relatively uniform particles, the permeability is directly proportional to the 
square of the effective grain size, D10. Zunker (1930) developed a theoretical linear 
relationship, in full logarithmic scales, between the grain size and permeability for 
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spherical particles of uniform size. Taylor (1948) formulated a theoretical equation, 
based on the capillary tube model, for flow through porous media, relating the 
permeability with a representative grain size. Considering of the effect of grain size on 
permeability, Burmister (1954) recommended that the type of grading (namely, the 
shape of gradation curve), range of grain size, and the effective grain size (namely, D10) 
must be taken into account. For a given type of gradation and grain size range, he found 
that the permeability can be better related with D50 than with D10. Horn (1971) related 
the permeability with the mean grain size on the basis of Zunker’s work in 1930. Chen 
et al. (1977) found that the permeability is strongly related with D50, and Hauser (1978) 
related the permeability with the aggregate size. Based on the previous research works it 
can be concluded that the permeability is strongly dependent on grain size distribution. 
However, a general correlation equation between permeability and gradation applicable 
to a wide range of soils is not yet available. To develop such a relationship, the entire 
spectrum of grain size distribution must be considered. More importantly, the density or 
void ratio of the soil mass should also be considered. 
Taking into account a much broader range of influencing factors, Wang and Huang 
(1984) developed regression equations for predicting maximum dry density, optimum 
water content, and permeability for two levels of compaction degree (90 and 95%). 
Najjar et al (1996) used neural networks to determine the optimum moisture content and 
maximum dry density of soils. Sinha and Wang (2008) proposed models based on 
artificial neural networks (ANNs) to predict the permeability, maximum dry density, 
and the optimum moisture content. 
EPR models are proposed in this section as alternatives to ANN models suggested by 
Sinha and Wang in 2008. EPR models were developed to relate permeability (K), 
maximum dry density (MDD) and optimum moisture content (OMC) to physical 
properties of soils. The results of EPR model predictions were compared with those of a 
neural network model, a correlation equation from literature and the experimental data. 
A parametric study was also conducted to assess the level of contribution of each 
parameter to the developed models.  

5.2.2 Database 

Some experimental data from literature (Sinha and Wang, 2008) were used to develop 
the EPR models. Table 5.1 includes the gradation properties of soils, Table 5.2 contains 
the compaction test data as well as some physical properties, and Table 5.3 summarizes 
the permeability test data. The data are from a soil made of four different major 
components (gravel, sand, limestone dust and bentonite) with different proportions. The 
bentonite contained Na-Montmorillonite as the primary clay mineral. The limestone 
dust was a by-product of limestone quarry, which had a grain size ranging from 0.002 
mm to 0.047 mm. 
The sand component was a well-graded fine aggregate used for making Portland cement 
concrete. Its grain size ranged from 0.074 mm to 4.76 mm. The gravel component was a 
coarse aggregate having a particle size range of 4.76–10.05 mm. All the tests were 
conducted following the standard testing procedures stipulated in the ASTM Standard, 
e.g., ASTM D-422 for mechanical analysis, ASTM D-423 for liquid limit, and ASTM 
D-424 for plastic limit tests. The laboratory compaction tests were conducted by using 
the standard Proctor compaction effort in accordance with the standard test procedures 
of ASTM D-558. The details of testing procedure and results of analysis have been 
presented by Sinha and Wang in their 2008 paper. 
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Table  5.1: Graduation and physical properties of the test soils (Sinha and Wang, 2008) 
 

Soil 
No. 

Nominal gradation (%) Actual gradation (%) 
Specific 
gravity 

Atterberg limits Grain Size 

Clay Silt Sand Gravel Clay Silt Sand Gravel 
LL(%) PL(%) <No. 

4 
<No. 40 <No. 

200 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

1 100 0 0 0 84 16 0 0 2.76 495 46 100 100 100 
2 80 20 0 0 71 28 1 0 2.76 444 36 100 100 99 

3 60 40 0 0 57 41 2 0 2.76 351 36 100 100 98 

4 40 60 0 0 44 53 3 0 2.75 203 38 100 99 97 

5 20 80 0 0 30 70 0 0 2.87 84 31 100 100 98 

6 0 100 0 0 17 83 0 0 2.75 24 22 100 100 97 

7 0 60 20 0 13 63 24 0 2.73 0 0 100 88 76 

8 0 60 40 0 10 47 43 0 2.72 0 0 100 77 57 

9 0 40 60 0 6 31 63 0 2.7 0 0 100 66 37 

10 0 20 80 0 3 16 81 0 2.68 0 0 100 55 19 

11 0 0 100 0 0 0 100 0 2.67 0 0 100 44 0 

12 20 0 80 0 16 3 81 0 2.69 136 25 100 55 19 

13 20 20 60 0 20 18 62 0 2.7 132 23 100 66 38 

14 20 40 40 0 24 34 42 0 2.73 94 26 100 70 58 

15 20 60 20 0 28 50 22 0 2.74 81 27 100 88 78 

16 40 40 20 0 40 38 22 0 2.74 222 38 100 88 78 

17 40 20 40 0 37 22 41 0 2.72 240 35 100 78 59 

18 40 0 60 0 33 6 61 0 2.71 277 29 100 66 39 

19 60 0 40 0 50 10 40 0 2.73 389 32 100 78 60 

20 60 20 20 0 54 25 21 0 2.74 362 42 100 89 79 

21 80 0 20 0 67 18 20 0 2.76 467 39 100 89 80 

22 0 0 90 10 0 0 90 10 2.67 0 0 90 40 0 

23 0 20 70 10 3 16 71 10 2.72 0 0 90 51 10 

24 0 40 50 10 7 32 51 10 2.76 0 0 90 62 39 

25 0 60 30 10 10 48 32 10 2.81 0 0 90 74 58 

26 0 80 10 10 14 64 12 10 2.86 0 0 90 85 78 

27 0 90 0 10 16 72 2 10 2.88 0 0 90 90 88 

28 10 10 70 10 10 9 71 10 2.69 75 15 90 51 19 

29 10 30 50 10 23 26 41 10 2.75 60 10 90 72 49 

30 10 50 30 10 17 42 31 10 2.72 50 10 90 74 59 

31 10 70 10 10 21 57 12 10 2.84 45 20 90 85 78 

32 10 80 0 10 22 62 2 10 2.86 50 25 90 90 88 

33 30 10 50 10 27 12 51 10 2.71 210 30 90 62 39 

34 30 30 30 10 30 28 32 10 2.73 175 35 90 73 59 

35 30 50 10 10 34 44 12 10 2.74 165 40 90 84 78 

36 30 60 0 10 35.6 53 1.8 9.6 2.84 162 47 90 90 89 

37 50 10 30 10 44 16 30 10 2.74 342 32 90 74 60 

38 50 30 10 10 47 32 11 10 2.74 330 40 90 85 79 

39 50 40 0 10 49.2 40 1.2 9.6 2.75 322 37 90 90 89 

40 70 10 10 10 61 19 10 10 2.74 445 40 90 85 80 

 
 
 
 
 
 
 



Chapter (5)                    Other Geotechnical and Civil Engineering Applications of EPR 

141 

 

 
 
 
 
 
 
 
 
 

Table 5.1: Continued 

Soil 
No. 

Nominal gradation (%) Actual gradation (%) 
Specific 
gravity 

Atterberg 
limits 

Grain Size 

Clay Silt Sand Gravel Clay Silt Sand Gravel 
LL 
(%) 

PL 
(%) 

<No. 
4 

<No. 
40 

<No
. 200 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

41 70 20 0 10 63 26 1 10 2.75 435 40 90 90 89 
42 90 0 0 10 76 14 0 10 2.75 495 46 81 90 90 

43 0 0 80 20 0 0 81 19 2.67 0 0 81 36 0 

44 0 20 60 20 4 15 62 19 2.69 0 0 81 47 19 

45 0 40 40 20 7.2 31.2 42.4 19 2.71 0 0 81 58 38 

46 0 60 20 20 11 47 23 19 2.72 0 0 81 69 58 

47 0 80 0 20 14 64 2 20 2.86 24 22 81 81 78 

48 20 0 60 20 17 3 61 19 2.7 170 30 81 47 20 

49 20 20 40 20 21 19 41 19 2.71 140 25 81 58 39 

50 20 40 20 20 24 34 22 19 2.73 110 25 81 69 58 

51 20 60 0 20 28 50 3 19 2.74 110 40 81 80 78 

52 40 0 40 20 36 6 39 19 2.72 340 32 81 60 42 

53 40 20 20 20 38 22 21 19 2.72 300 40 81 69 60 

54 40 40 0 20 41 38 2 19 2.75 285 40 81 80 79 

55 60 0 20 20 51 10 20 19 2.74 455 40 81 70 61 

56 60 20 0 20 55 25 1 19 2.75 425 40 81 81 80 

57 80 0 0 20 68 13 0 19 2.75 495 46 81 81 81 
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Table  5.2: Compaction test data and gradations of test soils (Sinha and Wang, 2008) 

Soil No. W opt (%) maxdγ ( 3mkg ) 
D50  

(10-4 mm) 
D10  

(10-5 mm) 
Fineness 

Modulus(Fm) 
Uniformity 

Coefficient (U) 
F0.001 
(%) 

(1) (2) (3) (4) (5) (6) (7) (8) 

1 28 1297 3.5 5.6 0.37 10.36 71 
2 31 1289 6 5 0.621 22 58 

3 29 1362 14 10 0.472 25 45 

4 28 1450 29 13 1.123 37.69 33 

5 28 1458 42 40 1.282 14 19 

6 26 1490 54 140 1.52 4.79 5 

7 21 1602 100 300 2.024 0.47 6 

8 16 1714 1500 200 2.48 80 4 

9 11 1762 3500 160 2.857 225 2 

10 10.5 1898 3600 630 3.276 71.43 0 

11 14 1826 4500 19000 3.68 2.95 0 

12 13 1874 3700 46 3.043 1043.48 13 

13 10 1666 2300 40 2.861 850 15 

14 20 1618 140 30 2.175 416.67 17 

15 24 1546 70 25 1.741 44 19 

16 28 1474 42 15 1.527 53.33 31 

17 17 1602 85 12 1.924 708.33 31 

18 13 1794 2200 11 2.37 290.91 28 

19 15 1554 20 5.6 1.865 1517.86 42 

20 27 1450 16 7 1.286 54.29 44 

21 30 1386 7 5 1.035 24 57 

22 13 1890 5500 18000 3.949 4.17 0 

23 12.5 2058 4100 600 3.521 96.67 0 

24 12 1922 2300 270 3.097 140.74 2 

25 16 1788 120 190 2.667 63.16 3 

26 22 1706 70 160 2.218 5.94 4 

27 24 1618 60 150 1.996 5.13 5 

28 10 1914 4200 220 3.417 263.64 8 

29 13.5 1962 2500 140 2.972 150 18 

30 17.5 1794 120 100 2.538 128 10 

31 23.5 1629 65 70 2.114 12.68 11 

32 27.5 1578 57 60 1.887 12 12 

33 16 1770 2300 18 2.745 2000 22 

34 20 1722 120 23 2.323 565.22 24 

35 25 1602 60 26 1.916 38.46 25 

36 29 1525 41 30 1.666 20 25 

37 20 1594 50 6 2.083 1666.67 36 

38 28 1498 25 8 1.661 75 38 

39 32.5 1450 21 11 1.44 38.18 39 

40 27 1474 9.5 5.5 1.406 36.36 50 
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Table 5.2: Continued 

Soil No. W opt (%) maxdγ ( 3mkg ) 
D50  

(10-4 mm) 
D10  

(10-5 mm) 
Fineness 

Modulus(Fm) 
Uniformity 

Coefficient (U) 
F0.001 
(%) 

(1) (2) (3) (4) (5) (6) (7) (8) 

41 30 1426 9 5 1.2 34 52 
42 24 1394 4.4 3.8 0.955 21.05 64 

43 8.5 2026 6200 18500 4.218 5.14 0 

44 9.5 2122 4600 700 3.796 102.86 2 

45 12 2018 3000 280 3.374 160.71 3 

46 15 1794 190 190 2.952 78.95 5 

47 22.5 1682 70 150 2.482 6.33 6 

48 8 1922 4800 40 3.551 1825 14 

49 12 1970 2800 35 3.129 1760 16 

50 19.5 1738 140 44 2.707 295.45 18 

51 26 1618 70 60 2.243 1.83 24 

52 11.5 1802 2500 6.8 2.816 6176.47 31 

53 20 1714 90 11 2.462 1181.82 31 

54 24 1570 40 16 2.03 50 32 

55 18 1618 20 6.5 2.212 523.08 43 

56 18 1538 15 7.5 1.79 45.33 45 

57 30 1474 6 4.4 1.556 28.41 57 
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Table  0.1: Permeability test data (Sinha and Wang, 2008) 

Soil No. 
Permeability 

(10-7 scm )[k90] 

Permeability 

(10-7 scm )[k95] 
Void Ratio 

(e90) 
Void Ratio 

(e95) 

(1) (2) (3) (4) (5) 

1 0.00052 0.00036 1.362 1.238 
2 0.0005 0.00025 1.377 1.252 

3 0.017 0.014 1.225 1.133 

4 0.258 0.75 1.107 0.996 

5 1 0.64 1.095 1.072 

6 90 45 1.174 0.942 

7 11 1.15 0.983 0.793 

8 270 44 0.762 0.654 

9 120 27 0.717 0.627 

10 5000 8400 0.568 0.497 

11 5211 48 0.653 0.566 

12 0.013 0.003 0.594 0.512 

13 0.35 0.18 0.817 0.722 

14 1.7 1.3 0.912 0.811 

15 0.51 0.5 0.969 0.065 

16 0.041 0.029 1.064 13.956 

17 0.0031 0.00215 0.904 0.804 

18 0.001 0.00081 0.678 0.589 

19 0.0038 0.0004 0.951 0.849 

20 0.0014 0.00091 1.099 0.989 

21 0.0007 0.0006 1.204 1.088 

22 15000 3200 0.49 0.412 

23 800 100 0.468 0.39 

24 200 60 0.594 0.511 

25 75 20 0.747 0.655 

26 350 42 0.862 0.764 

27 24 7.5 0.977 0.873 

28 10 2.5 0.561 0.479 

29 550 25 0.566 0.575 

30 40 9 0.733 0.595 

31 50 36 0.936 0.834 

32 19 12 1.013 0.907 

33 0.5 0.04 0.7 0.611 

34 0.52 0.42 0.761 0.688 

35 5.2 1.2 0.9 0.8 

36 6.3 1.7 1.068 0.959 

37 0.016 0.0048 0.902 0.802 

38 0.043 0.034 1.032 0.925 

39 0.19 0.056 1.107 0.966 

40 0.0034 0.0028 1.065 0.956 

 

5.2.3 Data preparation 

The similar procedure detailed in section4-2-3 was used to choose the most statistically 
consistent training and testing data sets to be used in training and validation stages in 
EPR model development process.  
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5.2.4 EPR model for maximum dry density (MDD) 

Five input parameters were used for the EPR model for MDD including dry density of 
solid phase ( )sγ  expressed in ( 3mkg ), fineness modulus (Fm), effective grain size (D10) 
expressed in (mm), plastic limit (PL) expressed in (%), and liquid limit (LL) expressed 
in percentage (%). The only output was the maximum dry density. The (unit dependent) 
EPR model developed for maximum dry density is: 
 

07.138535.52)(1061.6)(92.1
)(1038.1 22

10
6

102
10

7

++⋅⋅×−+×−= − FmLLPLDD
D

MDD
sγ        0-1 

Figure 5.1 shows a comparison between the results of the EPR model training and 
testing and the actual experimental data. Table 5.4 presents the values of the coefficient 
of determination (CoD) for the models. The table shows that the EPR model performs 
well and represents a very accurate prediction for unseen cases of data.  

 
Table  0.2: Coefficient of determination for predicted MDD values 

Model COD values (%) 

Evolutionary Polynomial Regression 
(EPR) 

96 
 (for unseen testing data ) 

Artificial Neural Network 
(ANN)- Sinha and Wang (2008) 

98 

Wang and Huang (1984) 95 

 
The results of the parametric study are shown in Figure 5.2. The procedure followed is 
explained in detail in section 4.4.6. It is shown that, according to this model, density of 
the solid phase, effective grain size, plastic limit and liquid limit have no significant 
effect on MDD. The main contributing factor appears to be the fineness modulus. To 
consider this, another model was developed by removing the parameters with negligible 
effects as: 

 

39.11848.214 +⋅= FmMDD                                                                                   0-2 

 
Figure 5.3 shows a comparison between the results of the EPR model training and 
testing and the actual experimental data. The values of the coefficient of determination 
(CoD) for the training and testing stages of the model were 90.78% and 90.29% 
respectively. Sensitivity analysis results (Figure 5.4) show that increasing fineness 
modulus (i.e., soil getting coarser) causes the maximum dry density to increase. 
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Figure  0.1: Comparison between the predicted maximum dry density and the actual values 
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      (a) 

     
       (b) 

     
        (c) 

Figure  0.2: Parametric study results of the maximum dry density against; (a): density of the 
solid phase of the soil, (b): effective grain size, (c): fineness modulus, (d): plastic limit, (e): 

liquid limit (to be continued) 
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        Figure 5.2; Continued. 
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Figure  0.3: Comparison between the predicted maximum dry density and the actual values 

(Second model-Equation 5-2) 
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Figure  0.4: Relationship between maximum dry density and fineness modulus 

(Second model-Equation 5-2) 

5.2.5 EPR model for optimum moisture content (OMC) 

Three input variables were used to develop the EPR model for OMC including the 
fineness modulus (Fm), coefficient of uniformity (U), and plastic limit (PL). The EPR 
model developed to predict the optimum moisture content is: 
 

09.3436.61072.1
1055.41057.347.9 23

3

2

35

3
+−×+×−×−

⋅
= −

−−

FmPL
Fm

U

Fm

PL

UFm
OMC

      0-3 

 
The optimum moisture content of soils predicted using the EPR model was compared 
with the experimental data (Figure 5.5). The values of coefficient of determination for 
the models are also shown in Table 5.5. The results indicated excellent performance of 
the proposed EPR model. Figure 5.6a (sensitivity analysis results - see section 4.4.6) 
shows that as the fineness modulus increases (the grains get coarser), the optimum 
moisture content decreases. This is consistent with the expected behaviour 
(Venkatarama and Gupta, 2008).  The effect of coefficient of uniformity on OMC is 
shown in Figure 5.6b. The higher the coefficient of uniformity, the larger the range of 
particle sizes in the soil and hence the lower the optimum moisture content (Craig, 
1998).  



Chapter (5)                    Other Geotechnical and Civil Engineering Applications of EPR 

151 

 

         
 

       
    

Figure  0.5: Comparison between the predicted and actual optimum moisture content values 
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       (a) 

                   
         (b) 

              
         (c) 

Figure  0.6: Parametric study results of the optimum moisture content against; (a): fineness 
modulus of the soil, (b): uniformity coefficient, and (c): plastic limit 

 
 
 
 
 

0

5

10

15

20

25

30

0 1 2 3 4 5

O
M

C
 (

%
)

Fineness modulus

0

5

10

15

20

25

30

0 2000 4000 6000

O
M

C
 (

%
)

Uniformity coefficient

0

5

10

15

20

25

30

0 10 20 30 40 50

O
M

C
 (

%
)

Plastic limit (%)



Chapter (5)                    Other Geotechnical and Civil Engineering Applications of EPR 

153 

 

Table  0.3: Coefficient of determination for predicted OMC values 

Model COD values (%) 

Evolutionary Polynomial Regression (EPR) 94 
(for unseen testing data ) 

Artificial Neural Network 
(ANN) - (Sinha and Wang, 2008) 

92 

Wang and Huang (1984) 89 

 
Again, this trend is correctly predicted by the model. Figure 5.6c shows that increasing 
plastic limit results in the increase in the optimum moisture content due to the increase 
in the specific surface of the soil grains. A similar trend of variation of optimum 
moisture content with plastic limit is reported by Sridharan and Nagaraj  (2005). The 
results also show that optimum moisture content is greatly affected by the fineness 
modulus and the coefficient of uniformity and plastic limit appear to have less effect on 
the optimum moisture content of soil. 

5.2.6 EPR model for coefficient of permeability (K) 

Five input parameters were used for the EPR model for the coefficient of permeability 
including degree of compaction (P) expressed in (%), mean grain size (D50) expressed in 
(mm), effective grain size (D10) expressed in (mm), plastic limit (PL) expressed in (%), 
and the liquid limit (LL) expressed in (%). The (unit dependent) EPR model developed 
to predict the permeability coefficient is:  
 

( )
( ) ( ) ( )

( ) ( ) 8.13)(1066.2)(1074.711009.5
2.47)(1053.1

12.198342.302.096.12146.0
1

25.600
)(

50
6

50
524

10

3
50

9

3
1050

2

2
50

2
50

10

+⋅×−×+×++×

+−+−+






 +−=

−−−
−

DPLLLDLLPL
D

D

D

LL

D

PL

DP

D

P
KLog

  0-4 

 
The results of the developed EPR model are compared with the actual experimental data 
(Figure 5.7) as well as two other prediction models (Table 5.6). The EPR model gives 
excellent prediction of the coefficient of permeability of soils. Figure 5.8 shows the 
results of the parametric study for the EPR permeability model (see section 4.4.6). It is 
shown that increasing the degree of compaction decreases the volume of voids and 
hence decreases the permeability of the soil. As the soil becomes coarser (increasing 
D10) the permeability coefficient increases up to a point after which it increases at a very 
slow rate. Increasing the plasticity index is an indicator of the greater fines content in 
the soil and hence results in decrease in permeability (Blotz, Benson and Boutwell, 
1998). The results show that the plasticity index has the greatest effect on the 
permeability while the effects of degree of compaction and effective grain size are 
relatively moderate.  
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Table  0.4: Coefficient of determination for predicted K values 
Model COD values (%)  

Evolutionary Polynomial Regression (EPR) 92 
(for unseen testing data ) 

Artificial Neural Network 
(ANN) 

90 

Wang and Huang (1984) 89 

5.2.7 Discussion and conclusion 

The process of compaction is extensively employed in the construction of embankments 
and strengthening sub-grades of roads and runways. In recent years the use of pattern 
recognition methods such as artificial neural network has been introduced as an 
alternative method for predicting compaction characteristics and permeability of soils. 
These methods have the advantages that they do not require any simplifying 
assumptions in developing the model. However, neural network based models also have 
some shortcomings as highlighted in chapter 2. In this research a new approach was 
presented to describe the relationships between permeability and compaction 
characteristics, and some physical properties of soils. 
Three separate EPR models were developed and validated using a database of 
experiments involving test data on compaction and permeability characteristics of a 
number of soils. The results of the model predictions were compared with the 
experimental data as well as results from other perdition models including a neural 
network. A parametric study was conducted to evaluate the effects of different 
parameters on permeability and compaction characteristics of soils. Comparison of the 
results shows that the developed EPR models provide very accurate predictions. They 
can capture and represent various aspects of compaction and permeability behaviour of 
soils directly from experimental data. 
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Figure  0.7:  Comparison between the predicted permeability coefficient and the actual values 
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               (a) 

 
               (b) 

 
               (c) 

Figure  0.8: Parametric study results of the permeability coefficient model against; (a): soil 
compaction, (b): effective grain size, and (c): plasticity index 
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5.3 A new approach for prediction of the stability of soil and 
rock slopes  

5.3.1 Introduction 

Estimation of the stability of a rock or soil slope is a complex problem due to the 
heterogeneous nature of soil and rock masses, the large number of parameters involved, 
and the difficulty in determining the geotechnical parameters. In practice, only an 
approximate general description of the physical and geometric characteristics of the 
slope can usually be obtained. Therefore, it is difficult to determine the values of the 
essential input parameters accurately. 
Traditional limit equilibrium techniques are the most commonly used methods for 
analysis of stability of slopes. In this approach, the shape and location of the critical 
failure surface are assumed rather than determined. It is also assumed that the soil (or 
rock) moves as a rigid block with movements only occurring on the failure surface. The 
factor of safety (FS) is defined as the ratio of reaction over action, expressed in terms of 
moments or forces, depending on the mode of failure and the geometry of the slip 
surface considered. In rotational mechanisms of failure for example, factor of safety is 
defined, in terms of moments about the centre of the failure arc, as the ratio of the 
moment of the resisting shear forces along the failure surface over the moment of 
weight of the failure mass. These computational methods vary in terms of degrees of 
accuracy, depending on the degree of appropriateness of the simplifying assumptions 
for the situation under investigation.  
In rock masses, the potential mechanism of failure can be wedge or planar, depending 
on the orientation of joint sets. In highly fractured rocks this mechanism can be 
rotational. In evaluating the stability of slope using limit equilibrium methods, it is 
necessary to determine the shape and location of the critical slip surface and the 
minimum value of factor of safety corresponding to that surface. This usually involves 
analyzing a large number of possible trial slip surfaces. 
In the methods introduced by Taylor (1937) and Bishop (1961) the slip surface is 
approximated with an arc of a circle. Other methods e.g. Janbu (1954), Spencer (1967), 
Sarma (1975), and Hoek and Bray (1981) assume different shapes for the slip surface. 
The accuracy of these methods depends on the assumptions made in developing the 
method and the accuracy with which shear strength parameters can be determined. In all 
cases, it is assumed that the soils are isotropic and homogeneous. These assumptions 
often lead to reasonable predictions when applied sensibly. 
Stability analysis using charts is another method that is less complicated and provides a 
rapid and potentially useful means of preliminary slope stability estimation (Duncan, 
1996). 
Although the conventional methods of stability analysis have been widely used for 
analysis of stability of soil and rock slopes, these methods have a number of 
shortcomings. For example, the existing methods of stability analysis for slopes on 
cohesive soils are based on (a) assuming a slip surface and a centre about which it 
rotates, (b) studying the equilibrium of the forces acting on this surface, and (c) 
repeating the analysis on several different trial failure surfaces from different centres, 
until the most critical slip surface is found. The most critical slip surface is the one that 
yields the lowest factor of safety. In these methods, a number of assumptions and 
simplifications have been made in order to reduce the computational time and cost and 
the complexity of the analysis. For example, the failure slip surface is assumed to be of 
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a specific predetermined shape, and the inter-slice forces may be ignored, etc. However, 
repeating the procedure for a large number of surfaces can still be computationally 
intensive and costly. 
In recent years, the use of artificial neural networks has been introduced as an 
alternative approach for analysis of stability of slopes. Sakellariou and Ferentinou 
(2005) used neural networks to acquire the relationship between the parameters 
involved in analysis of stability of slopes. They used the models introduced by Hoek 
and Bray (1981) in order to produce test data to validate the quality of training of their 
proposed artificial neural network model. 
In this research, new models are presented using evolutionary polynomial regression 
(EPR) for stability analysis of soil and rock slopes. The proposed technique is capable 
of capturing the behaviour of slopes from the actual (field or experimental) data and 
making accurate predictions for other unseen cases. EPR models are developed and 
validated using results from sets of field data. The results show that the proposed 
approach is very effective and robust in modelling the behaviour of slopes and provides 
a unified approach to analysis of slope stability problems. Results from a sensitivity 
analysis show that the models can predict various aspects of behaviour of slopes 
correctly. 

5.3.2 Database 

The input data consists of six input parameters in the case of circular failure mechanism 
for cohesive soils and eight input parameters in the case of wedge failure mechanism for 
rocks. The output of the EPR models presents a factor of safety that demonstrates the 
status of stability of the slope. 
Two data sets, overall consisting of 67 case studies of slopes with circular critical 
failure mechanism were used in this study (Sakellariou and Ferentinou, 2005). Of these, 
25 cases involve dry soil conditions (13 failed, 12 stable) and 42 cases involve wet 
conditions (20 failed, 22 stable). The third data set consists of 22 case studies of rock 
slopes analyzed for wedge failure mechanism. All cases involve dry soil conditions; 
with 10 cases of failed slope and 12 cases of stable slopes (Sah, Sheorey and 
Upadhyama, 1994). These data cover a wide range of parameter values.  
The main parameters contributing to the stability of a slope can, in general, be 
categorised in two classes of geotechnical properties and geometrical characteristics of 
the slope. More specifically, the parameters used for circular failure mechanism in soils 
(Figure 5.9a) are unit weight (γ ), apparent cohesion (c), angle of internal friction ( )φ  , 
slope angle( )β , height (H), and pore water pressure parameter)( ur .  
The data was divided into two sets (based on the similar statistical procedure introduced 
in previous sections); one set was used for development of the EPR model and the other 
one was used for validation and evaluation of the generalization capabilities of the 
developed EPR model.  



Chapter (5)                    Other Geotechnical and Civil Engineering Applications of EPR 

159 

 

 
Figure  0.9: (a) Circular failure mechanism; (b) Wedge failure mechanism  

(Sakellariou and Ferentinou, 2005) 

5.3.3 EPR model for circular failure mechanism 

From the total of 67 cases in the database, 57 cases were used to develop the EPR 
model and the remaining 10 cases were used as unseen cases to validate the developed 
EPR model. Among the resultant equations developed by EPR process the one with the 
highest value of coefficient of determination (CoD) was selected (Equation 5-5). 

( ) ( )[ ] 817.0c1019.5c014.0tan18.259.2tanr8.1
H49.1

F 252

u2s +×−⋅+β−ϕ+⋅−
γ

−= −

             0-5 

Figure 5.10 shows the comparison of the results in terms of factors of safety predicted 
by the EPR model together with the ones from ANN analysis (Sakellariou and 
Ferentinou, 2005) and the field data for the training cases. The results of the EPR model 
predictions were in close agreement with the field data and with values predicted by the 
ANN model.  
Once training was completed, the performance of the trained EPR model was validated 
using the testing data that were not used during the model development process. The 
purpose of validation was to examine the capabilities of the trained model to generalize 
the training to conditions that had not been seen during the training phase. Equation 5-5 
was used to predict the factor of safety for the unseen data cases and the results are 
shown in Figure 5.11. A very good agreement can be seen between the model results 
and the field data demonstrating the excellent capability of the EPR-based model in 
generalizing the relationship to unseen cases. The CoD values for the developed EPR 
models as well as the ANN are shown in Table 5.7.  

     
Figure  0.10: Comparison of EPR training results with those from ANN and field measurements 

for circular failure mechanism. 
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Figure  0.11: Comparison of EPR testing results with ones from ANN and field measurements 

for circular failure mechanism. 
 

 
Table  0.5: COD values for ANN and EPR models for soil slopes 
Model COD values for training 

(%) 
COD values for testing 

(%) 
Artificial Neural 

Network 
(ANN) 

Sakellariou and 
Ferentinou (2005) 

97.6 93.7 

Evolutionary 
Polynomial 

Regression (EPR) 
98.3 97.1 

 
It was shown that the EPR model outperforms the ANN model both in terms of the CoD 
values for the training and testing and also providing a transparent and easy-to-use 
expression (as opposed to the black box model of ANN). 
 
A parametric study was also carried out following the procedure described in section 
4.4.6. The results (shown in Figure 5.12) indicate that: 
  

(i) The factor of safety increases with increasing unit weight, apparent cohesion and 
angle of friction of the soil and decreases with increasing angle of the slope, 
height of the slope and pore water pressure in the slope. The trends of variations 
of all these parameters are consistent with the expected behaviour of slopes.  

(ii) The parameters: internal friction angle, apparent cohesion, slope angle and 
height are the most effective parameters on stability of slopes.  

(iii)The effect of unit weight on stability appears to be less than the other 
contributing parameters, for the cases used in development of this model.  

 
The results of the parametric study show that the developed EPR model has been able to 
capture, with a very good accuracy, the important physical characteristics of behaviour 
of slopes and the relationship between the slope stability and its contributing factors. 
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Figure  0.12: Sensitivity analysis results for EPR model developed for circular failure 

mechanism (to be continued) 
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Figure 5.12: Sensitivity analysis results for EPR model developed for circular failure 

mechanism (continued) 
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5.3.4 EPR model for wedge failure mechanism 

The data set used for development of EPR model for analysis of wedge failure 
mechanism in rocks consists of 22 case studies. All these cases involve dry soil 
conditions; with 10 cases of failed slope and 12 cases of stable slopes (Sah, Sheorey and 
Upadhyama, 1994). The main parameters contributing to the stability of a rock slope are 
unit weight (γ ), apparent cohesions ( )Ac  and( )Bc , angles of internal friction ( )Aφ  and
( )Bφ , angle of the line of intersection of the two joint sets( )pψ , slope angle ( )fψ  and 

height (H), where A and B refer to the two joint sets (see figure 5.9b).  
20 cases of data were used to develop the EPR model and the remaining 2 cases were 
used as unseen cases to validate the developed EPR model. From the models developed 
by the EPR process the one with the highest value of coefficient of determination was 
selected. 
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Figure 5.13 shows the comparison of the results in terms of factors of safety predicted 
by the EPR model with the ones from ANN analysis (Sakellariou and Ferentinou, 2005) 
and field measurements for the training cases. The results of the EPR model are in very 
close agreement with the field measurements and also with the values predicted by the 
ANN model. 
After training, the performance of the trained EPR model was validated using the 
testing data that were not used during the model development process. Equation 5-6 was 
used to predict the factor of safety for the unseen data cases and the results are presented 
in Figure 5.14. A close agreement can also be seen between the model results and the 
field data demonstrating the excellent capabilities of the EPR-based model in 
generalizing the relationship to unseen cases. The CoD values for the developed EPR 
model and the ANN model are shown in Table 5.8.  

 
Figure  0.13: Comparison of EPR training results with those from ANN and field data for 

wedge failure mechanism. 
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Figure  0.14: Comparison of EPR testing results with those from ANN and field data for wedge 

failure mechanism 
 

Table  0.6: CoD values for ANN and EPR models for rock slopes 

Model COD values for 
training (%) 

COD values for 
testing (%) 

Artificial Neural 
Network 

(ANN) - Sakellariou and 
Ferentinou (2005) 

99.9 - 

Evolutionary Polynomial 
Regression (EPR) 99.7 96.2 

 
It is shown that the results of the EPR model closely match those of the ANN model in 
terms of the CoD value for the training. It is worth noting that Sakellariou and 
Ferentinou (2005) did not report the CoD value for the testing data. 
 
Also, the results of the parametric study (see section 4.4.6) indicate that (Figure 5.15):  
 

(i) The factor of safety increases with increasing unit weight, apparent cohesion and 
internal friction angle on both failure planes and decreases with increasing angle 
of the slope. The trends of variations of these parameters are consistent with the 
expected behaviour of slopes.  

(ii) The parameters; internal friction angle, apparent cohesion, slope angle and unit 
weight are the most effective parameters on stability of rock slopes.  

(iii)The effect of the joint sets’ intersection angle and the slope height on the 
stability factor of safety appears to be negligible. 

5.3.5 Discussion and conclusion 

Analysis of stability of soil and rock slopes is a complex geotechnical engineering 
problem due to the heterogeneous nature of soils and rocks and the participation of a 
large number of factors involved. Traditional methods are based on simplifying 
assumptions and usually require trial and error procedures that are time demanding and 
computationally expensive. In recent years the use of pattern recognition methods such 
as artificial neural network has been introduced as an alternative method for analysis of 
stability of slopes based on field data. These methods have the advantage that they do 
not require any simplifying assumptions in developing the model. However, the neural 
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network based models also suffer from a number of shortcomings that are highlighted in 
previous sections. 
A new EPR approach was presented in this work for the analysis of stability of soil and 
rock slopes. Two separate EPR models were developed and validated using a database 
of case histories involving field data on characteristics of soil and rock and the stability 
status of slopes. The results of model predictions were compared with field data as well 
as results from a neural network model. Parametric studies were also conducted to 
evaluate the effects of different parameters on stability of slopes, and the extent to 
which the developed models can represent the physical relationships between 
contributing parameters.  
Comparison of the results showed that the developed EPR models provide very accurate 
predictions for stability of slopes. The developed models present structured and 
transparent representation of the systems, allowing a physical interpretation of the 
problem that gives the user an insight into the relationship between the stability status of 
a slope and various contributing parameters. From practical point of view, the EPR 
models are easy to use and provide results that are more accurate than the existing 
methods. 
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Figure  0.15: Sensitivity analysis results for EPR model developed for factor of safety for wedge 

failure mechanism (to be continued). 
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Figure 5.15: Sensitivity analysis results for EPR model developed for factor of safety for wedge 

failure mechanism (continued). 
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Figure 5.15: Sensitivity analysis results for EPR model developed for factor of safety for wedge 

failure mechanism (continued). 
 

5.4 Modelling mechanical behaviour of rubber concrete using 
evolutionary polynomial regression 

5.4.1 Introduction 

Disposal of waste tyres is one of the most crucial environmental problems all around the 
world. The conventional solution has been to store them on empty land, which 
indirectly creates other problems because they become fire hazard or insect and animal 
habitation ( (Siddique and Naik, 2004); (Sukontasukkul and Chaikaew, 2006)). 
Accumulation of discarded waste tyres has also been a major concern because waste 
rubber is not easily biodegradable, even after a long period of landfill treatment. A 
number of innovative solutions have been proposed to meet the challenges of tyre 
disposal. The use as a fuel or as a component of useful composite materials has been 
considered as alternative to disposal of the waste rubber ( (Williams, Besler and Taylor, 
1990), (Eldin and Senouci, 1992) (Eldin and Senouci, 1993), (Sinn, Kaminsky and 
Janning, 1976), (Farcasiu, 1993), (Atal and Levendis, 1995)). Because of high capital 
investment involved, using tyres as a fuel for cement kiln is technically feasible but 
economically may not be very attractive (Siddique and Naik, 2004). Therefore, 
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recycling of waste tyres in innovative applications seems to be a more effective 
approach. There has been some interest in using the recycled waste tyre products in a 
number of applications. In recent years, much research has been carried out to 
investigate the possibilities for reuse of abandoned tyres by grinding them into small 
particles (crumb rubber or tyre chips) and using in asphalts, sealants, and rubber sheets.  
Of particular interest has been the use of waste tyres as aggregate in Portland cement 
concrete (Sukontasukkul and Chaikaew, 2006). Various researchers have investigated 
the use of tyre rubber in the production of concrete. Eldin and Senouci (1993) studied 
the strength and toughness properties of the concretes containing two types of tyre 
rubber. Khatip and Bayomy (1999) used recycled tyre rubber as aggregate in the 
concrete mixtures with different rubber contents. Topcu (1995) studied the physical and 
mechanical properties of the rubber concrete. Benazzouk et al (2003) examined the 
physico-mechanical properties of cement-rubber composites with two types of rubber 
aggregates with the aim of developing a highly deformable material. All of these studies 
have revealed that the addition of rubber aggregates leads to reduction in the basic 
engineering properties of concrete. The reduction in the strength appears to be more 
remarkable with increasing the rubber content in the composite. Guneyisi et al (2004) 
incorporated silica fume into rubber concrete to diminish the strength loss caused by the 
use of rubber aggregates. The experimental study involved using of both crumb rubber 
and tyre chips at 2.5%, 5%, 10%, 15%, 25% and 50% by total aggregate volume and a 
silica fume content of 0%, 5%, 10%, 15%, and 20% by weight of cement. They reported 
that compressive strength of the produced concretes decreased with the increase in the 
rubber content. However, the silica fume had a positive effect on increasing the 
mechanical properties of the rubber concrete. There is ample evidence that the strength 
of the concrete decreases with the use of tyre rubber in concrete. However, there exists 
no explicit formulation in literature to predict this strength loss. An appropriate model is 
required to describe the behaviour of rubber concrete in engineering applications. In this 
research work EPR is proposed to model the mechanical behaviour of rubber concrete. 

5.4.2 Database 

Data from an experimental study (Guneyisi et al, 2004) was used to develop an EPR 
model to describe the compressive strength of rubber concrete. Guneyisi et al (2004) 
carried out a program of experiments to study the compressive strength of the rubber 
concrete with and without silica fume. Two types of tyre rubber (crumb rubber and tyre 
chips) were used as fine and coarse aggregates in the production of rubber concrete 
mixtures. Six different rubber contents varying from 2.5% to 50% by total volume of 
aggregate were used. The samples of concrete with silica fume were produced by partial 
replacement of cement with silica fume at varying amounts of 5–20%. In total, 70 
concrete mixtures were tested. Out of the 70 concrete mixtures, 56 cases were used to 
train the model while the remaining data were used in testing the developed model. The 
same training and testing datasets as those used by Guneyisi et al (2004) for developing 
ANN and GP models were used in this study to allow direct comparison between the 
results of the EPR model with those of ANN and GP models. The training and testing 
data are shown in Tables 5.9 and 5.10 respectively. 
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Table  0.7: EPR Training data  (Guneyisi, Gesoglu and Ozturan, 2004) 

Data 
No. 

C 
(kg/m3

) 

SF 
(kg/m3) 

W 
(kg/m3) 

SP 
(kg/m3) 

CA 
(kg/m3) 

FA 
(kg/m3) 

CR 
(kg/m3) 

TC 
(kg/m3) 

Fc 
(Mpa) 

1 450 0.00001 180 13.5 1062.2 687.82 0.00001 0.00001 75.8 
2 427.5 22.5 180 13.5 1057.96 685.06 0.00001 0.00001 81 
3 405 45 180 13.5 1053.68 682.29 0.00001 0.00001 82.7 
4 382.5 67.5 180 13.5 1049.4 679.52 0.00001 0.00001 84 
5 350 0.00001 210 5.25 1076.4 697 0.00001 0.00001 53.8 
6 332.5 17.5 210 5.25 1073.1 694.8 0.00001 0.00001 56.8 
7 315 35 210 5.25 1069.7 692.7 0.00001 0.00001 57.7 
8 297.5 52.5 210 5.25 1066.4 690.5 0.00001 0.00001 60.3 
9 450 0.00001 180 13.5 1035.7 670.6 5.4 10.1 70.4 
10 427.5 22.5 180 13.5 1031.5 667.9 5.4 10 72.5 
11 405 45 180 13.5 1027.3 665.2 5.4 10 75.4 
12 382.5 67.5 180 13.5 1023.2 662.5 5.4 9.9 78.3 
13 350 0.00001 210 5.25 1049.5 679.6 5.5 10.2 47 
14 332.5 17.5 210 5.25 1046.2 677.5 5.5 10.1 50.2 
15 315 35 210 5.25 1043 675.4 5.5 10.1 52.5 
16 297.5 52.5 210 5.25 1039.8 673.3 5.5 10.1 55.4 
17 450 0.00001 180 13.5 1009.1 653.4 10.9 20.1 62.8 
18 427.5 22.5 180 13.5 1005.1 650.8 10.9 20 67.8 
19 405 45 180 13.5 1001 648.2 10.8 19.9 68.2 
20 382.5 67.5 180 13.5 996.9 645.5 10.8 19.9 68 
21 350 0.00001 210 5.25 1022.6 662.1 11 20.4 51.5 
22 332.5 17.5 210 5.25 1019.4 660.1 11 20.3 43.1 
23 315 35 210 5.25 1016.3 658.1 11 20.2 46.1 
24 297.5 52.5 210 5.25 1013.1 656 10.9 20.2 49.3 
25 450 0.00001 180 13.5 956 619 21.8 40.2 50.7 
26 427.5 22.5 180 13.5 952.2 616.6 21.7 40 55.3 
27 405 45 180 13.5 948.3 614.1 21.6 39.9 56.3 
28 382.5 67.5 180 13.5 944.5 611.6 21.5 39.7 55.6 
29 350 0.00001 210 5.25 968.8 627.3 22.1 40.7 31.8 
30 332.5 17.5 210 5.25 965.8 625.4 22 40.6 35.8 
31 315 35 210 5.25 962.8 623.4 21.9 40.5 37.6 
32 297.5 52.5 210 5.25 959.8 621.5 21.9 40.4 41.3 
33 450 0.00001 180 13.5 902.9 584.7 32.7 60.3 40.3 
34 427.5 22.5 180 13.5 899.3 582.3 32.6 60.1 44.5 
35 405 45 180 13.5 895.6 579.9 32.4 59.8 45.1 
36 382.5 67.5 180 13.5 892 577.6 32.3 59.6 46.4 
37 350 0.00001 210 5.25 914.9 592.4 33.1 61.1 24.3 
38 332.5 17.5 210 5.25 912.1 590.6 33 60.9 28.8 
39 315 35 210 5.25 909.3 588.8 32.9 60.7 31.4 
40 297.5 52.5 210 5.25 906.5 587 32.8 60.5 32.8 
41 450 0.00001 180 13.5 796.7 515.9 54.5 100.5 26.4 
42 427.5 22.5 180 13.5 793.5 513.8 54.3 100.1 29.6 
43 405 45 180 13.5 790.3 511.7 54.1 99.7 30.5 
44 382.5 67.5 180 13.5 787.1 509.6 53.8 99.3 31.8 
45 350 0.00001 210 5.25 807.3 522.7 55.2 101.9 16.2 
46 332.5 17.5 210 5.25 804.8 521.1 55 101.5 18.2 
47 315 35 210 5.25 802.3 519.5 54.9 101.2 20.1 
48 297.5 52.5 210 5.25 799.8 517.9 54.7 100.9 21.2 
49 450 0.00001 180 13.5 531.1 343.9 109 201 10.5 
50 427.5 22.5 180 13.5 529 342.5 108.5 200.2 11.2 
51 405 45 180 13.5 526.8 341.1 108.1 199.4 11.6 
52 382.5 67.5 180 13.5 524.7 339.8 107.7 198.6 11.7 
53 350 0.00001 210 5.25 538.2 348.5 110.4 203.7 7.1 
54 332.5 17.5 210 5.25 536.5 347.4 110.1 203.1 7.2 
55 315 35 210 5.25 534.9 346.3 109.7 202.5 8.1 
56 297.5 52.5 210 5.25 533.2 345.3 109.4 201.8 8.4 
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Table  0.8: EPR testing data (Guneyisi, Gesoglu and Ozturan, 2004) 
Data 
No. 

C 
(kg/m3) 

SF 
(kg/m3) 

W 
(kg/m3) 

SP 
(kg/m3) 

CA 
(kg/m3) 

FA 
(kg/m3) 

CR 
(kg/m3) 

TC 
(kg/m3) 

Fc 
(Mpa) 

1 360 90 180 13.5 1045.13 676.75 0.00001 0.00001 85.77 
2 280 70 210 5.2 1063.1 688.4 0.00001 0.00001 59.7 
3 360 90 180 13.5 1019 659.8 5.4 9.9 79.1 
4 280 70 210 5.2 1036.5 671.2 5.5 10.1 56.4 
5 360 90 180 13.5 992.9 642.9 10.7 19.8 69.4 
6 280 70 210 5.2 1009.9 654 10.9 20.1 51.3 
7 360 90 180 13.5 940.6 609.1 21.4 39.6 61.7 
8 280 70 210 5.2 956.8 619.5 21.8 40.2 41.2 
9 360 90 180 13.5 888.4 575.2 32.2 59.3 47 

10 280 70 210 5.2 903.6 585.1 32.7 60.4 34.2 
11 360 90 180 13.5 783.8 507.6 53.6 98.9 31.8 
12 280 70 210 5.2 797.3 516.3 54.5 100.6 23.1 
13 360 90 180 13.5 522.6 338.4 107.2 197.8 11.7 
14 280 70 210 5.2 531.5 344.2 109.1 201.2 8.6 

 
 
 

Table  0.9: COD values (%) for LR, GP, ANN and, EPR models based on testing data 

Model COD values ( )cf  

Linear Regression 86.89 

Genetic Programming 98.18 

Artificial Neural Network (ANN) 99.94 

Evolutionary Polynomial Regression (EPR) 99.5 

5.4.3 EPR models 

From the total of 70 cases in the database, 56 cases were used to develop the EPR 
model and the remaining cases were used as unseen cases to validate the developed 
model. Among the resultant equations developed using EPR, the one with the highest 
value of coefficient of determination (CoD) was selected for the compressive strength 
parameter (cf ): 
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where C, SF, W, SP, CA, FA, CR, and TC are cement, silica fume, water, 
superplasticizer, coarse aggregate, fine aggregate, crumb rubber, and tyre chips contents 
respectively. The proposed model is also unit dependent. Figures 5.16 and 5.17 show 
the comparisons between the EPR model predictions with the experimental data for the 
training and unseen testing cases respectively. 
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Figure  0.16: Performance of the EPR model on training cases 

 

  
Figure  0.17: Performance of the EPR model on testing cases 

 
A very close agreement between the EPR model predictions and the experimental data 
can be seen in the graphs. The coefficient of determination value for the EPR model is 
also compared to the ones for linear regression, artificial neural network and genetic 
programming techniques. The results are shown in Table 5.11 and indicate that EPR has 
been able to capture and reproduce the compressive strength behaviour of the rubber 
concrete with a high accuracy. It is shown that the EPR model outperforms the Linear 
Regression model and provides results comparable to those of the neural networks and 
GP models. 
The results of the parametric study (see section 4.4.6) for the compressive strength 
model of the rubber concrete are shown in Figure 5.18. The results show that increasing 
the amount of fine grained aggregate and tyre chips decreases the compressive strength 
of the mixture, but any increase in the coarse grained aggregate content improves the 
compressive strength of the rubber concrete. This is consistent with the expected 
behaviour of rubber concrete. It is shown that the EPR model developed directly from 
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experimental data has been able to capture the compressive strength behaviour of rubber 
concrete correctly. 

    

 

 
Figure  0.18: Results of the parametric study conducted on the EPR compressive strength model 

for rubber concrete 
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5.4.4 Outline and conclusions 

Considerable increase in the amount of waste tyres leads to serious environmental 
problems in many parts of the world. Stockpiling of scrap tyres is undesirable due to the 
potential fire hazard resulting in environmental damages. These problems produce an 
urgent need to find new methods of reusing and recycling of waste tyres. As waste tyres 
do not easily decompose, engineers have been trying to find different ways of reusing 
them in building industry. The use of waste tyres as aggregate in concrete has been 
introduced as an effective way of reducing the problems associated with the disposal of 
this waste material. In order to use rubber concrete as a structural material, an 
appropriate model is required to describe the behaviour of this composite material.  
In this research work, EPR approach was proposed for modelling the compressive 
strength of the rubber concrete. An EPR model was developed and validated using a 
database of case histories involving test data on characteristics of rubber concrete. The 
results of the model predictions were compared with the experimental data and results 
from linear regression, genetic programming and neural network models. A parametric 
study was conducted to evaluate the effects of different parameters on compressive 
strength of the rubber concrete and the extent to which the developed model can 
represent the physical relationships between the contributing parameters. Comparison of 
the results showed that the developed EPR model provides accurate predictions for 
compressive strength of the rubber concrete. 

5.5 Conclusions 

In this chapter EPR models were developed to represent compaction characteristics 
(including maximum dry density and optimum moisture content) and permeability of 
soils. Stability status of rock and soil slopes and also compressive strength of rubber 
concrete were modelled using the EPR methodology. In all cases parametric studies 
were conducted and the roles of different contributing parameter in the developed 
models were analysed in detail. Sensitivity analysis outcomes and also comparing EPR 
predictions with the results from previously developed models reported in the literature 
revealed robustness and accuracy of the developed models in predicting the complex 
behaviour of soil systems and engineering materials. 
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SUMMARY, CONCLUSIONS AND 
RECOMMENDATIONS FOR FUTURE 
WORK  
 
 

6.1 Summary of the present work 

EPR-based modelling methodology was presented for modelling of behaviour of 
geomaterials and civil engineering systems. EPR can be described as a hybrid data 
mining technique that searches for symbolic structures using a genetic algorithm and 
estimates the constant values of such structures by the least squares method. This is a 
generic methodology and can be extended to be used for other types of materials and 
systems. By implementing this methodology the behaviour of the material (e.g. stress-
strain behaviour) is captured and represented within evolutionary-based structured 
polynomial expressions. Models are developed based on training of EPR with raw data 
directly extracted from laboratory experiments or field measurements without any type 
of pre-processing. The effectiveness of the proposed approach was validated through 
application to modelling of various aspects of behaviour of saturated and unsaturated 
soils and rubber concrete. The developed models showed that using EPR for modelling 
the behaviour of materials is very promising. No prior assumptions of the material 
behaviour are made and nothing else but data is used to develop the models.  
 
Where relevant, the EPR models were used to predict the material behaviour over the 
entire stress paths that had not been seen by EPR at the training stage of the model. The 
developed models were compared to the existing conventional material models, 
regression models and artificial neural network models (where available) and their 
advantages were highlighted. These results showed that EPR can be successfully 
employed to analyse different geotechnical and other civil engineering problems. 
Applying the proposed methodology to predict the complex and nonlinear behaviour of 
geotechnical problems with high levels of success was a firm evidence of excellent 
capabilities of the EPR methodology. 
 



Chapter (6)                     Summary, Conclusions and Recommendations for Future Work 

176 

 

The following are the achievements of this research in modelling the behaviour of 
geotechnical and civil engineering materials using the proposed EPR framework: 

• Constitutive modelling of unsaturated Soils 
• Modelling of soil-water characteristic curve (SWCC) in unsaturated Soils 
• Modelling of thermo-mechanical behaviour of unsaturated soils 
• Developing models to describe the stress-strain and volume change behaviour of 

granular soils 
• Identification of coupling parameters between shear strength behaviour and 

chemical effects in compacted soils 
A number of other applications are also presented including: 

• Modelling of permeability and compaction characteristics of soils 
• Prediction of the stability of soil and rock slopes  
• Modelling of mechanical behaviour of rubber concrete 

Sensitivity analysis (parametric study) was conducted in all modelling cases, taking the 
advantage of the clear mathematical structure of EPR models, to investigate the effect of 
different contributing parameters on the developed models and to find out the most and 
least effective parameters in the behaviour of the desired engineering material / system. 

6.2 Limitations of the proposed EPR methodology 

EPR models perform very well at interpolation; however, they are not as good at 
extrapolation and in order to be able to use the developed models for practical purposes, 
the available training data for developing EPR models must cover the ranges of stresses 
and strains that will possibly be applied or generated in the real world cases. So, caution 
should be taken in using EPR model predictions in practical cases if the models are not 
trained to cover the input data ranges. 

Also, similar to other data mining techniques, sufficient data is required for EPR to be 
able to develop appropriate models and too small databases may not lead to creation of 
suitable models. 

6.3 Conclusions 

The evolutionary polynomial regression technique works in a similar way as artificial 
neural networks and has all the advantages of ANN. But it provides the user with the 
additional advantage of developing a structured and transparent mathematical 
representation of the model in the form of a polynomial expression. Different types of 
functions can be introduced to the EPR by the user based the physical understanding of 
the problem to help accelerate finding the best possible and the most fit and robust 
model. EPR provides a unified framework for constitutive modelling of all materials 
particularly the ones with complicated behaviour and those for which constitutive 
models are not well developed. All parameters that are known to affect the system can 
be introduced to be included in the EPR model. More importantly, there is no need for 
any arbitrary choice of the constitutive (mathematical) models, no material parameters 
are to be identified and the model is trained directly based on the experimental data 
and/or field measurements. So, EPR-based material models can be considered as the 
shortest route from experimental research (data) to material modelling. Additionally, if 
more experimental data or field measurements become available to the user, the quality 



Chapter (6)                     Summary, Conclusions and Recommendations for Future Work 

177 

 

of the EPR prediction can be improved by learning from the additional data through 
retraining the EPR, and as a result the EPR model becomes more effective, 
comprehensive and robust.  

In spite of some limitations with the proposed methodology (discussed above), the 
developed models in this thesis showed the robustness and great capabilities of EPR in 
modelling different aspects of the very complicated constitutive behaviour of saturated 
and unsaturated soils and other civil engineering problems including stability analysis of 
slopes and also the compressive strength behaviour of rubber concrete. 

6.4 Recommendations for future research work 

• The presented methodology was applied to model the complicated shear and 
volume change behaviour of unsaturated soils considered under anisotropic 
loading (application of deviatoric stresses). Further investigations can be made 
to model the behaviour of this type of soils under isotropic loading, different 
unloading reloading conditions and various stress paths. 

 
• Implementing the developed EPR constitutive models for unsaturated soils into 

the finite element models is very challenging due to the multi-phase nature of 
these soils but developing a numerical representation would be very useful in 
understanding the behaviours of unsaturated soils in more complicated cases. 

 
• Other areas in geotechnical engineering like soil reinforcement, swelling 

behaviour of fine grained soils and also the behaviour of saturated and 
unsaturated soils under earthquake loading can also be considered for future 
applications of the proposed EPR modelling technique to understand the 
complicated behaviour of the soils and the soil-reinforcement interaction.  
 

• Huge structures like high-rise buildings or different types of dams cause huge 
stresses in foundations. Because of existence of considerable number of 
monitoring devices measuring settlements and any other changes in the 
structures and foundations, the recorded data can be used to develop EPR 
models for further investigation of the real foundation-structure interactions to 
provide a better understanding of the problem and reduce the potential risk of 
damages to these structures that can be very costly in serious cases. 
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