
Journal of Software Engineering and Applications, 2011, 4, 476-481
doi:10.4236/jsea.2011.48054 Published Online August 2011 (http://www.SciRP.org/journal/jsea)

Copyright © 2011 SciRes. JSEA

A New Software Reliability Growth Model:
Genetic-Programming-Based Approach

Zainab Al-Rahamneh1, Mohammad Reyalat1, Alaa F. Sheta2, Sulieman Bani-Ahmad1, Saleh Al-Oqeili1

1Department of Information Technology, Al-Balqa Applied University, Main Campus, Salt, Jordan; 2 Department of Computer Sci-
ence, The World Islamic Sciences and Education University (WISE), Amman, Jordan.
Email: {zainab, saleh}@bau.edu.jo, reyalat_bau@yahoo.com, asheta66@gmail.com, sulieman@case.edu

Received June 26th, 2011, revised July 20th, 2011, accepted July 27th, 2011.

ABSTRACT

A variety of Software Reliability Growth Models (SRGM) have been presented in literature. These models suffer many
problems when handling various types of project. The reason is; the nature of each project makes it difficult to build a
model which can generalize. In this paper we propose the use of Genetic Programming (GP) as an evolutionary com-
putation approach to handle the software reliability modeling problem. GP deals with one of the key issues in computer
science which is called automatic programming. The goal of automatic programming is to create, in an automated way,
a computer program that enables a computer to solve problems. GP will be used to build a SRGM which can predict
accumulated faults during the software testing process. We evaluate the GP developed model and compare its per-
formance with other common growth models from the literature. Our experiments results show that the proposed GP
model is superior compared to Yamada S-Shaped, Generalized Poisson, NHPP and Schneidewind reliability models.

Keywords: Software Reliability, Genetic Programming, Modeling, Software Faults

1. Introduction

Optimistically one would think that, once software can
run correctly, it will be stay so forever. A series of trage-
dies and chaos caused by software proves this idea about
software to be wrong. In fact, software can have small
unnoticeable errors or drifts that can cause a disaster. We
give two examples, On February 25, 1991, during the
Gulf War against Iraq, the chopping error that missed
0.000000095 second in precision in every 10th of a sec-
ond made the Patriot missile fail to intercept a scud mis-
sile [1]. Another example, On June 4, 1996, the maiden
flight of the Ariane 5 launcher has ended in a failure. The
failure occurred only about 40 seconds after initiation of
the flight sequence, the launcher veered off its flight path,
broke up and exploded [2].

One of the purposes of software engineering is to pro-
duce reliable software. Software plays a critical role not
only in scientific and business applications, but also in all
our daily life. Although several works have been done
towards the production of fault-free software, developing
reliable software is one of the most difficult problems
facing software industry nowadays. Developing reliable
software can be costly and time consuming process. Yet
more, the fact that software project managers require

accurate information about how software reliability
grows in order to effectively manage their budgets and
projects [3-5].

Because it is a matter of economy to produce software
with reliability above a given specific level, it is neces-
sary to measure and, thus, control its reliability [6]. To do
this, and to provide software vendors with information
about their products before they are shipped to customers,
a number of software reliability models have been de-
veloped in literature [7].

There are basically two types of software reliability
models: the Defect density models [8] and Software re-
liability growth models [9]. The Defect density models
refer to those models that try to predict software reliabil-
ity from design parameters, and use code characteristics
such as nesting of loops, number of lines, input/output to
estimate the number of defects in the software in hand.
The second type, Software reliability growth models,
refers to those models that try to predict software reli-
ability from test data. These models try to show a rela-
tionship between fault detection data (i.e. test data) and
known mathematical functions such as logarithmic or
exponential functions. The goodness of fit of these mod-
els depends on the degree of correlation between the test

A New Software Reliability Growth Model: Genetic-Programming-Based Approach 477

data and the mathematical function.
Many approaches were presented to build SRGM us-

ing soft-computing techniques such as neural networks
and fuzzy logic. Predicting accumulated faults during the
software testing process using parametric and non-pa-
rametric models were explored in many articles [10-12].
In [13], author provided a strategic solution for estimat-
ing software defect fix effort using self-organizing neural
network. Fuzzy logic and neural networks were used in
software engineering project management [14,15].

In this paper we present a number of software reliabil-
ity growth models which successfully used to solve the
reliability modeling problem, in literature. Further, we
propose a genetic programming model to identify a new
software reliability growth model. We comparatively
evaluate the proposed model against other common
growth models. We also study the efficiency of the pro-
posed model in the reliability prediction process. Our
experiments show that that the proposed genetic-pro-
gramming model superior compared to other models
found in literature.

2. Software Reliability

The demand for software systems has recently increased
very rapidly. The reliability of software systems has be-
come a critical issue in software systems industry. With
the 90’s of the previous century, computer software sys-
tems have become the major source of reported failures
in many systems [16]. Software is considered reliable if
anyone can depend on it and use it in critical systems.
The importance of software reliability will increase in the
years to come, specifically in the fields of aerospace in-
dustry, satellites, and medicine applications. The process
of software reliability starts with software testing and
gathering of test results, after that, the phase of building a
reliability model [17].

In general, the concept of reliability can be defined as
“the probability that a system will perform its intended
function during a period of running time without any
failure” [18]. IEEE defines software reliability as “the
probability of failure-free software operations for a
specified period of time in a specified environment” [16,
19]. In other words, software reliability can be viewed as
the analysis of its failures, their causes and effects. Soft-
ware reliability is a key characteristic of product quality.
Most often, specific criteria and performance measures
are placed into reliability analysis, and if the performance
is below a certain level, failure occurred. Mathematically,
the reliability function R(t) is the probability that a sys-
tem will be successfully operating without failure in the
interval from time 0 to time t,

    , where 0R t P T t t   (1)

T: is a random variable representing the failure time or
time-to-failure (i.e. the expected value of the lifetime
before a failure occurs). R(t) is the probability that the
system's lifetime is larger than (t), the probability that the
system will survive beyond time t, or the probability that
the system will fail after time t. From Equation (1), we
can conclude that failure probability F(t) (unreliability
function of T is:

    1 F t R t P T t    (2)

If the time-to-failure random variable T has a density
function f(t), then the reliability can be measured by the
following equation

   d
t

R t f x x


  (3)

where f(x) represents the density function for the random
variable T. Consequently, the three functions, R(t), F(t)
and f(t) are closely related to one another (i.e., if any of
them is known, all the others can be measured and de-
termined).

3. Evolutionary Computation

Several problems in artificial intelligence field need dis-
covery of a computer program that produces some de-
sired output for particular inputs [20,21]. The solution for
these kinds of problems can be presented as the process
of searching a space of possible computer programs for a
most suitable individual computer program. Evolutionary
Computation (EC) algorithms are a collection of algo-
rithms based on the evolution of a population toward a
solution of a specific problem [21]. These algorithms can
be used in many applications requiring the optimization
of a certain multi-dimensional function. The population
of possible solutions evolves from one generation to the
next, up to arriving at a suitable and satisfactory solution
to the problem. EC algorithms are search algorithms that
incrementally preserve and combine desirable features of
individual potential solutions in a population over an
extended period of time [22]. These algorithms consist of
several techniques that solve computational problems by
simulating evolution with natural selection.

4. Genetic Programming

Genetic programming is a collection of methods for the
automatic generation of computer programs that solve
specified problems [20]. GP is a branch of genetic algo-
rithms. The main difference between genetic program-
ming and genetic algorithms is the representation of the
solution. Genetic algorithms create a string of numbers
that represent the solution. Genetic programming creates
computer programs as the solution. In GP, the objects the
population of solution is not a fixed-length character

Copyright © 2011 SciRes. JSEA

A New Software Reliability Growth Model: Genetic-Programming-Based Approach 478

strings, such as in genetic algorithms, which encode pos-
sible solutions to the problem, but they are programs
which represent the candidate solutions to the problem in
a form of a computer program represented as a tree
structure.

GAs has several disadvantages, for example the length
of the strings is static and limited, and it is often hard to
describe what the characters of the string means. These
problems could be overcome but a better solution intro-
duces again the original question: How can computers
learn to solve problems without being explicitly pro-
grammed?

Different problems in machine learning and artificial
intelligence can be viewed as requiring the discovery of a
computer program that produces some desired output for
particular inputs. The process of solving these problems
becomes equivalent to searching a space of possible
computer programs for a highly fit individual computer
program. In GP, populations of computer programs are
genetically bred using the Darwinian principle of sur-
vival of the fittest and using a genetic crossover (sexual
recombination) operator appropriate for genetically mat-
ing computer programs [23]. Genetic programming tech-
niques deal with one of the key issues in computer sci-
ence which is called automatic programming. The goal of
automatic programming is to create, in an automated way,
a computer program that enables a computer to solve a
problem, or in other words as in [24], the goal of auto-
matic programming can be understood after answering
the question: How can computers be made to do what
needs to be done, without being told exactly how to do
it.

5. Software Reliability Growth Models

Software reliability models are statistical models, which
can be used to make predictions about software system's
failure rate, given the failure history of the system. The
models make assumptions about the fault discovery and
removal process. These assumptions describe the form of
the model and the meaning of the model’s parameters
[17].

The models can be classified according to the nature of
the failure process as Times between Failures models.
The time between (j-1)st and jth failures follows a dis-
tribution with parameters depending on the number of
failures remaining in the program during this interval and
it is expected that these intervals will increase as faults
are removed. But, this may not be true for each pair of
successive failure times, because failure times are ran-
dom variables and observed values are subject to statis-
tical changes. Next we describe a number of software
reliability models that can be found in literature.

5.1. The Exponential Model

The most widely used software reliability growth model
is the exponential model. It is originally proposed by
Jelinski and Moranda [25], and then many variations
have appeared. The original Jelinski and Moranda expo-
nential model made use of the elapsed wall clock time
when a failure was encountered. An important modifica-
tion was made by Musa, who refined the model in terms
of CPU execution time allowing for more accurate pre-
dictions. Latter, Goel and Okumoto worked to generalize
the model, allowing the initial number of errors in a pro-
gram to be random rather than fixed, and permitting er-
rors to be independent. This model remains popular and
widely used although it has been shown [26] that the
exponential model is not generally the most accurate
software reliability growth model.

5.2. The Logarithmic Model

The logarithmic model was originally proposed by Musa
and Okumoto [27]. The important difference between
this model and the exponential model is that the loga-
rithmic model assumes that failure intensity will decrease
exponentially with the expected number of failures ob-
served, while the exponential model assumes an equal
reduction in failure intensity with each fault observed
and corrected.

5.3. Other Models

Jelinski-Moranda (J-M) model [25] has a simple struc-
ture and assumptions. This Musa’s basic model was de-
veloped in 1975 [27]. It was the first one to explicitly
require that the time measurements are in actual CPU
time (not calendar time). This model has similar assump-
tions to those of J-M model [3].

6. Proposed GP Model

Measuring the quality of software products has become
one of the basic challenges in software projects. A soft-
ware product can be released only after some specific
reliability criterion has been satisfied. It is necessary to
use some heuristics to estimate the needed testing time so
that available resources can be efficiently allocated.
Software reliability growth models are used to describe
and predict the fault population contained within the
software product.

A number of software reliability growth models are
now available. It is widely known that none of these
models performs well in all situations [26,28-30]. For
this reason recent work has focused on developing mod-
els which can be more accurate, rather than trying to find
a model which works in all cases.

Different software reliability growth models have been

Copyright © 2011 SciRes. JSEA

A New Software Reliability Growth Model: Genetic-Programming-Based Approach 479

suggested, and some appear to be better than others. But,
models that are good overall are not always the best
choice for a particular data set [3] and it is not possible to
know which model to use a priori [6]. Even when an
appropriate model is used, the predictions made by a
model may still be less accurate than desired. So, recent
researches are trying to develop models that are appro-
priate and efficient for a particular data set. In order to
develop a software reliability growth model for particular
data sets, the following steps have been performed.

GP Tuning Parameters
In order to develop new software reliability growth mod-
el using genetic programming techniques, it is very nec-
essary to adopt, recalibrate and adjust the genetic opera-
tors and parameters. We have used “lilgp” Programming
package [5,31] to accomplish the implementation. In this
part, several adjustments have been made for the genetic
operators and parameters. The adjusted operations and
parameters are:

The set of used functions
“Plus”, “minus” and “multiply” are the functions used

as a basis to develop a new model.
The “depth nodes” parameter
“depth nodes” parameter takes one of two values. If is

set to 1, this means that values of other parameters (i.e.
initial maximum level, initial dynamic level, real maxi-
mum level) will point to the maximum depth of the tree.
If “depth nodes” is set to 2, values of parameters will
point to the size of the tree (i.e. number of nodes). Con-
trol over maximum depth of the tree and size of the tree
at the same time is allowed.

Initial maximum level, initial dynamic level and
real maximum level of the tree

In order to avoid “bloat”, a phenomenon consisting of
an excessive code growth without the corresponding im-
provement in fitness, Trees in genetic programming may
be subject to a set of restrictions on size, by setting ap-
propriate parameters. The standard way of avoiding bloat
is by setting a maximum depth on trees being evolved.
Consequently, whenever a genetic operator produces a
tree that breaks this limit, one of its parents enters the
new population instead [21].

The processing for the initial maximum level, initial
dynamic level and real maximum level can be performed
in the following schema. For each new tree produced by
a genetic operator, there are three possibilities:
 The new tree does not exceed the “dynamic maxi-

mum level”. In this case, the new tree will be ac-
cepted because no constraints have been violated.

 The new tree is larger than the “dynamic maximum
level”, but does not exceed the strict “real maximum
level”. In this case, the fitness of the tree is measured.

If the tree is better than the best tree found so far, “the
dynamic maximum level” is increased and the new
tree is accepted into the population; otherwise, the
new tree is rejected and one of its parents enters the
population instead.

 The new tree is larger than the strict “real maximum
level”. In this case, the tree is rejected and one of its
parents enters the population instead.

 The “dynamic maximum level” technique is a recent
technique that has shown to effectively control bloat
[31].

Determining the population size
The population size is set to 2000. We have designed

too many experiments to explore the efficient value of
the population size. When we explore values larger than
2000, this caused some overhead on the system without
increasing the fitness of the produced model. Taking
values less than 2000 may not produce the optimal solu-
tion. Choosing the value 2000 in our work is experimen-
tal result.

Determining the maximum number of generations
The maximum number of generations is set to 100. The
experimental results show that choosing the value 100
decreased the overhead on the system and led to the
most-likely optimal solution.

Determining the crossover and mutation rates
The crossover rate is set to 0.8, and the mutation rate is

set to 0.01.
Determining the fitness measure
Normalized RMSE (Root Mean Square Error) is se-

lected as a fitness measure. The RMSE statistic is also
known as the fit standard error and the standard error of
the regression. An RMSE value closer to zero indicates a
better fit. The equation that responsible for calculating
the normalized RMSE is

 2

1

1 1 n

i
ii

NRMSE
n n

y z


  (4)

where
n: is the number of data points.
yi: is the ith point of the observed data (original data).
zi: is the ith point of the fitted data (model prediction).

7. Experimental Results

After we have developed the new model (the GP model),
a comparison is performed, in this part, between the GP
model and the other four best CASRE models (i.e. Ya-
mada S-Shaped, Generalized Poisson, NHPP and
Schneidewind: all) in order to evaluate the ability of the
proposed model to predict the behavior of the software
after releasing it to the market. CASRE (Computer Aided
Software Reliability Estimation) is software reliability

Copyright © 2011 SciRes. JSEA

A New Software Reliability Growth Model: Genetic-Programming-Based Approach 480

measurement tool that can perform different functions as
making reliability estimates, determining the applicabil-
ity of a particular model to a set of failure data, display-
ing the results given by the software reliability models
graphically, and allowing users to define several types of
combination models. CASER was used to develop the
results for four reliability growth model for the sake of
comparison with the GP model. The experimental data
sets were collected from [32].

Our objective is to study the relation between test in-
terval number and accumulated number of failures. In
order to evaluate the ability of the proposed models to
predict the behavior of the software after releasing it to
the market, a data set represents 60% of the studied data
were used in the training phase whereas the rest of the
data were used in the testing phase. The experimental
results (Table 1) showed that the proposed model
achieved a good level of estimation for the reliability of
the software product after releasing it in the future.

The results in the Table 1 show that the proposed GP
model has achieved the best performance over all of the
studied models.

Table 1. RMSE values for the studied software reliability
models.

Model RMSE Normalized RMSE

Yamada 22.7066 0.5677

Poisson 23.1365 0.5784

NHPP 23.7988 0.5950

Schneidewind: all 23.7988 0.5950

GP Model 16.6478 0.4162

Figure 1. Accumulated failures for CASRE models and GP
model.

Figure 2. The convergence process for the proposed model.

Figure 1 shows the proposed GP-based approach was the
closest to actual curve of the experimental data. Figure 2
displays the convergence curve for the proposed model.
This figure shows the relation between number of gen-
erations and the fitness value that represents the normal-
ized RMSE. Figure 2 shows that the GP model is capa-
ble to significantly converge within around 80 genera-
tions.

8. Conclusions

In this paper, we development a new software reliability
growth model based genetic programming. In our pro-
posed model, we adopted recalibrated and adjusted GP
operators and parameters to speed up the convergence
process. The GP model was compared with well known
model in the. The results show that the proposed GP
model gained the best performance with the adopted data
sets provided in [32].

REFERENCES
[1] D. N. Arnold, “Two Disasters Caused by Computer

Arithmetic Errors,” 2010.
http://www.ima.umn.edu/~arnold/455.f96/disasters.html.
Viewed in December 2010.

[2] J. L. Lions, “ARIANE 5 Flight 501 Failure—Report by
the Inquiry Board,” December 2010.
http://www.di.unito.it/~damiani/ariane5rep.html.

[3] G. Junhong, Y. Xiaozong and L. Hongwei, “Software
Reliability Nonlinear Modeling and Its Fuzzy Evalua-
tion,” 4th WSEAS International Conference, 2005.

[4] A. Yadav and R. A. Khan, “Software Reliability,” Pro-
ceedings of INDIACom-2009, 2009.

[5] M. Reyalat, “Development of a Software Reliability
Growth Model using Genetic Programming,” M.Sc. The-
sis, Computer Science Department, Al-Balqa Applied
University, Salt, Jordan, 2005.

Copyright © 2011 SciRes. JSEA

A New Software Reliability Growth Model: Genetic-Programming-Based Approach

Copyright © 2011 SciRes. JSEA

481

[6] V. Almering, M. Genuchten, G. Cloudt and P. J. M. Son-
nemans, “Using Software Reliability Growth Models in
Practice,” IEEE Software, Vol. 24, No. 6, November
2007, pp. 82-88.

[7] H. Okamura and T. Dohi, “Building Phase-Type Software
Reliability Models,” 17th International Symposium on
Software Reliability Engineering, 2006 (ISSRE’06), 7-10
November 2006, pp. 289-298.

[8] J. D. Pfefferman and B. Cernuschi-Frias, “A Nonpara-
metric Nonstationary Procedure for Failure Prediction,”
IEEE Transactions on Reliability, Vol. 51, No. 4, De-
cember 2002, pp. 434-442. doi:10.1109/TR.2002.804733

[9] P. B. Lakey and A. M. Neufelder, “System Software Re-
liability Assurance Notebook,” P. Lakey Boeing Corpora-
tion, 1997.
http://www.cs.colostate.edu/~cs530/rh/master01.pdf.

[10] S. Aljahdali, D. Rine and A. Sheta, “Prediction of Soft-
ware Reliability: A Comparison between Regression and
Neural Network Nonparametric Models,” ACS/IEEE In-
ternational Conference on Computer Systems and Appli-
cations (AICCSA 2001), Beirut, 2001, pp. 470-473.
doi:10.1109/AICCSA.2001.934046

[11] S. Aljahdali, A. Sheta and D. Rine, “Predicting Accumu-
lated Faults in Software Testing Process Using Radial
Basis Function Network Models,” 17th International
Conference on Computers and Their Applications
(CATA), Special Session on Intelligent Software Reliabil-
ity, San Francisco, 2002.

[12] A. Sheta, “Reliability Growth Modeling for Software
Fault Detection Using Particle Swarm Optimization,”
2006 IEEE Congress on Evolutionary Computation,
Sheraton, Vancouver Wall Centre, Vancouver, 16-21 July
2006, pp. 10428-10435.

[13] H. Zeng and D. Rine, “A Neural Network Approach for
Software Defects Fix Effort Estimation,” Proceedings of
the Eighth IASTED International Conference Software
Engineering and Applications, 2004, pp. 513-517.

[14] A. C. Hodgkinson and P. W. Garratt, “A Neurofuzzy Cost
Estimator,” Proceedings of the Third Conference on
Software Engineering and Applications, 1999, pp. 401-
406.

[15] S. Kumar, B. A. Krishna and P. S. Satsangi, “Fuzzy Sys-
tems and Neural Networks in Software Engineering Pro-
ject Management,” Journal of Applied Intelligence, Vol. 4,
1994, pp. 31-52. doi:10.1007/BF00872054

[16] S. R. Dalal, M. R. Lyu and C. L. Mallows, “Software
Reliability,” Bellcore, Lucent Technologies, AT&T Re-
search, 1998.

[17] C. A. Asad, M. I. Ullah and M. Jaffar-Ur Rehman, “An
Approach for Software Reliability Model Selection,” 28th
Annual International Computer Software and Applica-
tions Conference (COMPSAC’04), 2004, pp. 534-539.

[18] J. D. Musa, “Software Reliability Engineering: More
Reliable Software, Faster Development and Testing,”
McGraw-Hill, New York, 1998.

[19] IEEE, “Standard Glossary of Software Engineering Ter-
minology,” STD-729-1991, ANSI/IEEE, 1991.

[20] A. Robinson, J. Davila and M. Feinstein, “Genetic Pro-
gramming: Theory, Implementation, and the Evolution of
Unconstrained Solutions,” Hampshire College, 2001.

[21] J. R. Koza, “Genetic Programming: On the Programming
of Computers by Means of Natural Selection,” 6th Edi-
tion, Massachusetts Institute of Technology, The MIT
Press, Cambridge, 1998.

[22] J. A. Foster, “Evolutionary Computation,” Technical
Report, Department of Computer Science. Digital Genet-
ics Workgroup, Lab for Applied Logic, The University of
Idaho, February 1998.
http://citeseerx.ist.psu.edu/viewdoc/download;jsessioid=B
B08A0A2336B38D5A82F8F8121729500?doi=10.1.1.49.
9833&rep=rep1&type=pdf.

[23] J. R. Koza, “Genetic Programming: A Paradigm for Ge-
netically Breeding Populations of Computer Programs to
Solve Problems,” Technical Report, Stanford University,
Stanford, 1990.
http://portal.acm.org/citation.cfm?id=892491.

[24] A. L. Samuel, “Some Studies in Machine Learning Using
the Game of Checkers,” MIT Press, Cambridge, 1995, pp.
71-105.

[25] Z. Jelinski and P. B. Moranda, “Software Reliability Re-
search,” In: W. Freiberger, Ed., Statistical Computer Per-
formance Evaluation, Academic Press, New York, 1972,
pp. 465-484.

[26] Y. K. Malaiya, N. Karunanithi and P. Verma, “Predict-
ability of Software-Reliability Models,” IEEE Transac-
tions on Reliability, Vol. 41, No. 4, December 1992, pp.
539-546. doi:10.1109/24.249581

[27] J. D. Musa, “A Theory of Software Reliability and Its
Application,” IEEE Transactions on Software Engineer-
ing, Vol. 1, No. 3, 1975, pp. 312-327.

[28] P. A. Killer and D. R. Miller, “On the Use and Perform-
ance of Software Reliability Growth Models,” Reliability
Engineering and System Safety, Vol. 32, No. 1-2, 1991,
pp. 95-117. doi:10.1016/0951-8320(91)90049-D

[29] T. M. Khoshgoftaar and T. G. Woodcock, “Software
Reliability Model Selection: A Cast Study,” Proceedings
of International Symposium on Software Reliability En-
gineering, Austin, 17-18 May 1991, pp. 183-191.

[30] G. J. Knaf and J. Sacks, “Software Reliability Model
Selection,” Proceedings of Computer Software and Ap-
plication Conference, September 1991, pp. 597-601.

[31] D. Zongker and B. Punch, “lil-gp 1.01 User’s Manual,”
Bill Rand Michigan State University, March 1996.

[32] Y. Tohma, K. Tokunaga, S. Nagase and Y. Murata,
“Structural Approach to the Estimation of the Number of
Residual Software Faults Based on the Hyper-Geometric
Distribution,” IEEE Transactions on Software Engineer-
ing, Vol. 15, No. 3, March 1989, pp. 345-355.

http://dx.doi.org/10.1109/TR.2002.804733
http://dx.doi.org/10.1109/AICCSA.2001.934046
http://dx.doi.org/10.1007/BF00872054
http://dx.doi.org/10.1109/24.249581
http://dx.doi.org/10.1016/0951-8320(91)90049-D

