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ABSTRACT 

A variety of Software Reliability Growth Models (SRGM) have been presented in literature. These models suffer many 
problems when handling various types of project. The reason is; the nature of each project makes it difficult to build a 
model which can generalize. In this paper we propose the use of Genetic Programming (GP) as an evolutionary com-
putation approach to handle the software reliability modeling problem. GP deals with one of the key issues in computer 
science which is called automatic programming. The goal of automatic programming is to create, in an automated way, 
a computer program that enables a computer to solve problems. GP will be used to build a SRGM which can predict 
accumulated faults during the software testing process. We evaluate the GP developed model and compare its per-
formance with other common growth models from the literature. Our experiments results show that the proposed GP 
model is superior compared to Yamada S-Shaped, Generalized Poisson, NHPP and Schneidewind reliability models. 
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1. Introduction 

Optimistically one would think that, once software can 
run correctly, it will be stay so forever. A series of trage-
dies and chaos caused by software proves this idea about 
software to be wrong. In fact, software can have small 
unnoticeable errors or drifts that can cause a disaster. We 
give two examples, On February 25, 1991, during the 
Gulf War against Iraq, the chopping error that missed 
0.000000095 second in precision in every 10th of a sec-
ond made the Patriot missile fail to intercept a scud mis-
sile [1]. Another example, On June 4, 1996, the maiden 
flight of the Ariane 5 launcher has ended in a failure. The 
failure occurred only about 40 seconds after initiation of 
the flight sequence, the launcher veered off its flight path, 
broke up and exploded [2].  

One of the purposes of software engineering is to pro-
duce reliable software. Software plays a critical role not 
only in scientific and business applications, but also in all 
our daily life. Although several works have been done 
towards the production of fault-free software, developing 
reliable software is one of the most difficult problems 
facing software industry nowadays. Developing reliable 
software can be costly and time consuming process. Yet 
more, the fact that software project managers require 

accurate information about how software reliability 
grows in order to effectively manage their budgets and 
projects [3-5]. 

Because it is a matter of economy to produce software 
with reliability above a given specific level, it is neces-
sary to measure and, thus, control its reliability [6]. To do 
this, and to provide software vendors with information 
about their products before they are shipped to customers, 
a number of software reliability models have been de-
veloped in literature [7]. 

There are basically two types of software reliability 
models: the Defect density models [8] and Software re-
liability growth models [9]. The Defect density models 
refer to those models that try to predict software reliabil-
ity from design parameters, and use code characteristics 
such as nesting of loops, number of lines, input/output to 
estimate the number of defects in the software in hand. 
The second type, Software reliability growth models, 
refers to those models that try to predict software reli-
ability from test data. These models try to show a rela-
tionship between fault detection data (i.e. test data) and 
known mathematical functions such as logarithmic or 
exponential functions. The goodness of fit of these mod-
els depends on the degree of correlation between the test 
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data and the mathematical function. 
Many approaches were presented to build SRGM us-

ing soft-computing techniques such as neural networks 
and fuzzy logic. Predicting accumulated faults during the 
software testing process using parametric and non-pa-
rametric models were explored in many articles [10-12]. 
In [13], author provided a strategic solution for estimat-
ing software defect fix effort using self-organizing neural 
network. Fuzzy logic and neural networks were used in 
software engineering project management [14,15]. 

In this paper we present a number of software reliabil-
ity growth models which successfully used to solve the 
reliability modeling problem, in literature. Further, we 
propose a genetic programming model to identify a new 
software reliability growth model. We comparatively 
evaluate the proposed model against other common 
growth models. We also study the efficiency of the pro-
posed model in the reliability prediction process. Our 
experiments show that that the proposed genetic-pro- 
gramming model superior compared to other models 
found in literature. 

2. Software Reliability 

The demand for software systems has recently increased 
very rapidly. The reliability of software systems has be-
come a critical issue in software systems industry. With 
the 90’s of the previous century, computer software sys-
tems have become the major source of reported failures 
in many systems [16]. Software is considered reliable if 
anyone can depend on it and use it in critical systems. 
The importance of software reliability will increase in the 
years to come, specifically in the fields of aerospace in-
dustry, satellites, and medicine applications. The process 
of software reliability starts with software testing and 
gathering of test results, after that, the phase of building a 
reliability model [17]. 

In general, the concept of reliability can be defined as 
“the probability that a system will perform its intended 
function during a period of running time without any 
failure” [18]. IEEE defines software reliability as “the 
probability of failure-free software operations for a 
specified period of time in a specified environment” [16, 
19]. In other words, software reliability can be viewed as 
the analysis of its failures, their causes and effects. Soft-
ware reliability is a key characteristic of product quality. 
Most often, specific criteria and performance measures 
are placed into reliability analysis, and if the performance 
is below a certain level, failure occurred. Mathematically, 
the reliability function R(t) is the probability that a sys-
tem will be successfully operating without failure in the 
interval from time 0 to time t, 

    , where 0R t P T t t            (1) 

T: is a random variable representing the failure time or 
time-to-failure (i.e. the expected value of the lifetime 
before a failure occurs). R(t) is the probability that the 
system's lifetime is larger than (t), the probability that the 
system will survive beyond time t, or the probability that 
the system will fail after time t. From Equation (1), we 
can conclude that failure probability F(t) (unreliability 
function of T is: 

    1 F t R t P T t              (2) 

If the time-to-failure random variable T has a density 
function f(t), then the reliability can be measured by the 
following equation 

   d
t

R t f x x


               (3) 

where f(x) represents the density function for the random 
variable T. Consequently, the three functions, R(t), F(t) 
and f(t) are closely related to one another (i.e., if any of 
them is known, all the others can be measured and de-
termined). 

3. Evolutionary Computation 

Several problems in artificial intelligence field need dis-
covery of a computer program that produces some de-
sired output for particular inputs [20,21]. The solution for 
these kinds of problems can be presented as the process 
of searching a space of possible computer programs for a 
most suitable individual computer program. Evolutionary 
Computation (EC) algorithms are a collection of algo-
rithms based on the evolution of a population toward a 
solution of a specific problem [21]. These algorithms can 
be used in many applications requiring the optimization 
of a certain multi-dimensional function. The population 
of possible solutions evolves from one generation to the 
next, up to arriving at a suitable and satisfactory solution 
to the problem. EC algorithms are search algorithms that 
incrementally preserve and combine desirable features of 
individual potential solutions in a population over an 
extended period of time [22]. These algorithms consist of 
several techniques that solve computational problems by 
simulating evolution with natural selection. 

4. Genetic Programming 

Genetic programming is a collection of methods for the 
automatic generation of computer programs that solve 
specified problems [20]. GP is a branch of genetic algo-
rithms. The main difference between genetic program-
ming and genetic algorithms is the representation of the 
solution. Genetic algorithms create a string of numbers 
that represent the solution. Genetic programming creates 
computer programs as the solution. In GP, the objects the 
population of solution is not a fixed-length character 
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strings, such as in genetic algorithms, which encode pos-
sible solutions to the problem, but they are programs 
which represent the candidate solutions to the problem in 
a form of a computer program represented as a tree 
structure. 

GAs has several disadvantages, for example the length 
of the strings is static and limited, and it is often hard to 
describe what the characters of the string means. These 
problems could be overcome but a better solution intro-
duces again the original question: How can computers 
learn to solve problems without being explicitly pro-
grammed? 

Different problems in machine learning and artificial 
intelligence can be viewed as requiring the discovery of a 
computer program that produces some desired output for 
particular inputs. The process of solving these problems 
becomes equivalent to searching a space of possible 
computer programs for a highly fit individual computer 
program. In GP, populations of computer programs are 
genetically bred using the Darwinian principle of sur-
vival of the fittest and using a genetic crossover (sexual 
recombination) operator appropriate for genetically mat-
ing computer programs [23]. Genetic programming tech-
niques deal with one of the key issues in computer sci-
ence which is called automatic programming. The goal of 
automatic programming is to create, in an automated way, 
a computer program that enables a computer to solve a 
problem, or in other words as in [24], the goal of auto-
matic programming can be understood after answering 
the question: How can computers be made to do what 
needs to be done, without being told exactly how to do 
it.  

5. Software Reliability Growth Models 

Software reliability models are statistical models, which 
can be used to make predictions about software system's 
failure rate, given the failure history of the system. The 
models make assumptions about the fault discovery and 
removal process. These assumptions describe the form of 
the model and the meaning of the model’s parameters 
[17]. 

The models can be classified according to the nature of 
the failure process as Times between Failures models. 
The time between (j-1)st and jth failures follows a dis-
tribution with parameters depending on the number of 
failures remaining in the program during this interval and 
it is expected that these intervals will increase as faults 
are removed. But, this may not be true for each pair of 
successive failure times, because failure times are ran-
dom variables and observed values are subject to statis-
tical changes. Next we describe a number of software 
reliability models that can be found in literature. 

5.1. The Exponential Model 

The most widely used software reliability growth model 
is the exponential model. It is originally proposed by 
Jelinski and Moranda [25], and then many variations 
have appeared. The original Jelinski and Moranda expo-
nential model made use of the elapsed wall clock time 
when a failure was encountered. An important modifica-
tion was made by Musa, who refined the model in terms 
of CPU execution time allowing for more accurate pre-
dictions. Latter, Goel and Okumoto worked to generalize 
the model, allowing the initial number of errors in a pro-
gram to be random rather than fixed, and permitting er-
rors to be independent. This model remains popular and 
widely used although it has been shown [26] that the 
exponential model is not generally the most accurate 
software reliability growth model. 

5.2. The Logarithmic Model 

The logarithmic model was originally proposed by Musa 
and Okumoto [27]. The important difference between 
this model and the exponential model is that the loga-
rithmic model assumes that failure intensity will decrease 
exponentially with the expected number of failures ob-
served, while the exponential model assumes an equal 
reduction in failure intensity with each fault observed 
and corrected. 

5.3. Other Models 

Jelinski-Moranda (J-M) model [25] has a simple struc-
ture and assumptions. This Musa’s basic model was de-
veloped in 1975 [27]. It was the first one to explicitly 
require that the time measurements are in actual CPU 
time (not calendar time). This model has similar assump-
tions to those of J-M model [3]. 

6. Proposed GP Model 

Measuring the quality of software products has become 
one of the basic challenges in software projects. A soft-
ware product can be released only after some specific 
reliability criterion has been satisfied. It is necessary to 
use some heuristics to estimate the needed testing time so 
that available resources can be efficiently allocated. 
Software reliability growth models are used to describe 
and predict the fault population contained within the 
software product.  

A number of software reliability growth models are 
now available. It is widely known that none of these 
models performs well in all situations [26,28-30]. For 
this reason recent work has focused on developing mod-
els which can be more accurate, rather than trying to find 
a model which works in all cases. 

Different software reliability growth models have been 
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suggested, and some appear to be better than others. But, 
models that are good overall are not always the best 
choice for a particular data set [3] and it is not possible to 
know which model to use a priori [6]. Even when an 
appropriate model is used, the predictions made by a 
model may still be less accurate than desired. So, recent 
researches are trying to develop models that are appro-
priate and efficient for a particular data set. In order to 
develop a software reliability growth model for particular 
data sets, the following steps have been performed. 

GP Tuning Parameters 
In order to develop new software reliability growth mod-
el using genetic programming techniques, it is very nec-
essary to adopt, recalibrate and adjust the genetic opera-
tors and parameters. We have used “lilgp” Programming 
package [5,31] to accomplish the implementation. In this 
part, several adjustments have been made for the genetic 
operators and parameters. The adjusted operations and 
parameters are: 

The set of used functions 
“Plus”, “minus” and “multiply” are the functions used 

as a basis to develop a new model. 
The “depth nodes” parameter  
“depth nodes” parameter takes one of two values. If is 

set to 1, this means that values of other parameters (i.e. 
initial maximum level, initial dynamic level, real maxi-
mum level) will point to the maximum depth of the tree. 
If “depth nodes” is set to 2, values of parameters will 
point to the size of the tree (i.e. number of nodes). Con-
trol over maximum depth of the tree and size of the tree 
at the same time is allowed.  

Initial maximum level, initial dynamic level and 
real maximum level of the tree 

In order to avoid “bloat”, a phenomenon consisting of 
an excessive code growth without the corresponding im-
provement in fitness, Trees in genetic programming may 
be subject to a set of restrictions on size, by setting ap-
propriate parameters. The standard way of avoiding bloat 
is by setting a maximum depth on trees being evolved. 
Consequently, whenever a genetic operator produces a 
tree that breaks this limit, one of its parents enters the 
new population instead [21]. 

The processing for the initial maximum level, initial 
dynamic level and real maximum level can be performed 
in the following schema. For each new tree produced by 
a genetic operator, there are three possibilities: 
 The new tree does not exceed the “dynamic maxi-

mum level”. In this case, the new tree will be ac-
cepted because no constraints have been violated. 

 The new tree is larger than the “dynamic maximum 
level”, but does not exceed the strict “real maximum 
level”. In this case, the fitness of the tree is measured. 

If the tree is better than the best tree found so far, “the 
dynamic maximum level” is increased and the new 
tree is accepted into the population; otherwise, the 
new tree is rejected and one of its parents enters the 
population instead. 

 The new tree is larger than the strict “real maximum 
level”. In this case, the tree is rejected and one of its 
parents enters the population instead. 

 The “dynamic maximum level” technique is a recent 
technique that has shown to effectively control bloat 
[31]. 

Determining the population size 
The population size is set to 2000. We have designed 

too many experiments to explore the efficient value of 
the population size. When we explore values larger than 
2000, this caused some overhead on the system without 
increasing the fitness of the produced model. Taking 
values less than 2000 may not produce the optimal solu-
tion. Choosing the value 2000 in our work is experimen-
tal result. 

Determining the maximum number of generations 
The maximum number of generations is set to 100. The 
experimental results show that choosing the value 100 
decreased the overhead on the system and led to the 
most-likely optimal solution. 

Determining the crossover and mutation rates 
The crossover rate is set to 0.8, and the mutation rate is 

set to 0.01. 
Determining the fitness measure 
Normalized RMSE (Root Mean Square Error) is se-

lected as a fitness measure. The RMSE statistic is also 
known as the fit standard error and the standard error of 
the regression. An RMSE value closer to zero indicates a 
better fit. The equation that responsible for calculating 
the normalized RMSE is 

 2

1

1 1 n

i
ii

NRMSE
n n

y z


          (4) 

where 
n: is the number of data points. 
yi: is the ith point of the observed data (original data). 
zi: is the ith point of the fitted data (model prediction). 

7. Experimental Results 

After we have developed the new model (the GP model), 
a comparison is performed, in this part, between the GP 
model and the other four best CASRE models (i.e. Ya-
mada S-Shaped, Generalized Poisson, NHPP and 
Schneidewind: all) in order to evaluate the ability of the 
proposed model to predict the behavior of the software 
after releasing it to the market. CASRE (Computer Aided 
Software Reliability Estimation) is software reliability 
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measurement tool that can perform different functions as 
making reliability estimates, determining the applicabil-
ity of a particular model to a set of failure data, display-
ing the results given by the software reliability models 
graphically, and allowing users to define several types of 
combination models. CASER was used to develop the 
results for four reliability growth model for the sake of 
comparison with the GP model. The experimental data 
sets were collected from [32]. 

Our objective is to study the relation between test in-
terval number and accumulated number of failures. In 
order to evaluate the ability of the proposed models to 
predict the behavior of the software after releasing it to 
the market, a data set represents 60% of the studied data 
were used in the training phase whereas the rest of the 
data were used in the testing phase. The experimental 
results (Table 1) showed that the proposed model 
achieved a good level of estimation for the reliability of 
the software product after releasing it in the future. 

The results in the Table 1 show that the proposed GP 
model has achieved the best performance over all of the 
studied models. 
 
Table 1. RMSE values for the studied software reliability 
models. 

Model RMSE Normalized RMSE 

Yamada 22.7066 0.5677 

Poisson 23.1365 0.5784 

NHPP 23.7988 0.5950 

Schneidewind: all 23.7988 0.5950 

GP Model 16.6478 0.4162 

 

 

Figure 1. Accumulated failures for CASRE models and GP 
model. 

 

Figure 2. The convergence process for the proposed model. 
 
Figure 1 shows the proposed GP-based approach was the 
closest to actual curve of the experimental data. Figure 2 
displays the convergence curve for the proposed model. 
This figure shows the relation between number of gen-
erations and the fitness value that represents the normal-
ized RMSE. Figure 2 shows that the GP model is capa-
ble to significantly converge within around 80 genera-
tions. 

8. Conclusions 

In this paper, we development a new software reliability 
growth model based genetic programming. In our pro-
posed model, we adopted recalibrated and adjusted GP 
operators and parameters to speed up the convergence 
process. The GP model was compared with well known 
model in the. The results show that the proposed GP 
model gained the best performance with the adopted data 
sets provided in [32]. 
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