

Abstract— Software testing requires the use of a model to
guide such efforts as test selection and test verification. In this
case, testers are performing model-based testing. This paper
introduces model-based testing and discusses its tasks in
general terms with proposed finite state models. These FSMs
depend on software's semantic rather than its structure, , it
use input-output specification and trajectory information to
evolve and test general software. Finally, we close with a
discussion of how our model-based testing can be used with
genetic programming test generator.

Index Terms— Model-Based testing; Genetic Programming

Test Generator; Finite State Machine.

I. INTRODUCTION

Software behavior can be described in terms of the input
sequences accepted by the system, the actions,
conditions, and output logic, or the flow of data through

the application’s modules and routines. In order for a model
to be useful for groups of testers and for multiple testing
tasks, it needs to be taken out of the mind of those who
understand what the software is supposed to accomplish and
written down in an easily understandable form. It is also
generally preferable that a model be as formal as it is
practical. With these properties, the model becomes a
shareable, reusable, precise description of the system under
test. There are numerous such models, and each describes
different aspects of software behavior. For example, control
flow, data flow, and program dependency graphs express
how the implementation behaves by representing its source
code structure. Decision tables and state machines, on the
other hand, are used to describe external so-called black box
behavior.
Finite state machines are applicable to any model that can be
accurately described with a finite number (usually quite
small) of specific states. Finite state machines (also known
as finite automata) have been around even before the
inception of software engineering. There is a stable and
mature theory of computing at the center of which are finite
state machines and other variations. Using finite state
models in the design and testing of computer hardware
components has been long established and is considered a
standard practice today. Chow [1] was one of the earliest,
generally available articles addressing the use of finite state
models to design and test software components. Finite state
models are an obvious fit with software testing where testers
deal with the chore of constructing input sequences to
supply as test data; state machines (directed graphs) are
ideal models for describing sequences of inputs. This paper
introduces model-based testing and discusses its tasks in
general terms with finite state models. These FSMs depend

Nada Al Sallami (1971) is with the Department of Management

Information Systems, Faculty of economic and business, Al Zaytoonah
university of Jordan (e-mail: nada.alsalami@yahoo.com).

on the semantic of a software rather than its structure, it
differ from the classical FSM [2], software's input-output
specification with trajectory information to describe
software behavior. Test generator can easily developed
with the proposed model when multi-objective genetic
programming techniques are used[2]. This paper is
organized as follows. In section 2 an overview is presented
of model based testing. Section 3 present an overview for
genetic programming and its main problem. In Section 4,
the proposed genetic programming is presented. Result and
conclusions are given in section 5.

II. MODEL BASED TESTING (MBT)

Software testing is usually guided by the use of models that
represent the system under testing. These models provide
information that supports such activities as test case design,
test verification and test coverage analysis.
MBT is an efficient and adaptable functional testing
technique, supported by the creation and use of a model that
describes the behavior of the system under testing. From
this behavioral model, test cases can be generated and
executed, and the execution results can be evaluated. These
models are constructed using software functional
requirements and determine the possible actions during a
software execution and the expected outputs [3] [4]. MBT is
usually divided into the following four activities:

 Elaborate the model that represents the behavior of
the software to be tested;

 Select test cases using criteria based on the
elaborated model;

 Execute the selected test cases;
 Evaluate the results obtained during the test case

execution regarding the expected results.
Depending on the nature of the model used, software
testing is called functional testing (also called
specification-based testing) or structural testing (also
called implementation-based testing). Models used in
functional testing are based on software functional
requirements while in structural testing are based on the
software’s internal structure. Nowadays, the most part of
software testing is done using functional testing techniques,
since they are less costly. However, as research works have
been focused on structural testing, software industries do
not have many formal ways to perform and assess the test of
their products and end up using just heuristics to carry out
their software testing [4]. A functional testing technique that
has been commonly used in the software industry is Model
Based Testing (MBT)[5]. The modeling technique most
used to create such models is the Finite State Machines
(FSMs). Besides software modeling, the FSMs are used as a
basis to define functional testing criteria to be applied in test
case selection and adequacy analysis. The FSMs are
considered an excellent tool for software modeling,
user/developer communication and testing, since their
application is simple and intuitive. Although traditional

Genetic Programming Testing Model

Nada M. A. Al Sallami

s

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

FSMs applied in MBT have played an important role in
software testing improvement, they do not provide
mechanisms to model important behavioral aspects of the
software such as its data flow. Due to this limitation, testing
techniques based just on traditional FSMs can not make use
of further information. For instance, existing functional
testing criteria based only on the analysis of FSMs control
flow, demand just that elements such as states, arcs and
loops are exercised. As a result, the testing effort can
achieve poor coverage of software functionality. On the
other hand, there are structural testing criteria based on both
control flow , and data flow of the software’s internal
structure, which is represented by program graphs.
Therefore, these testing criteria can provide several levels of
the internal structure coverage of the software being tested.
Such criteria are widely used in the code coverage analysis,
during the execution of a test case set [3][5][6].

A. Finite state machines based testing

Due to the wide application of FSMs as a modeling
technique in MBT, there is a specific testing technique
usually called Finite State Machines Based Testing. A
model represented by a FSM consists on a state set and a
state transition set. Given a current state and an input, the
next state and an output can be determined. A sequence of
state transitions, from the initial state to any final state, is
called Use Scenario. A Use Scenario can be used to describe
a general functionality of a modeled system that defines a
real use of the system [3][4][5]. The following items are
examples of simple functional criteria based on FSMs, used
to select test cases in the software industry:

 all-states: it requires that all states inside the FSM
must be exercised by at least one test case.
Similarly to the structural testing criteria all-nodes,
its satisfaction offers a very poor coverage of the
FSM;

 all-transitions: it requires that all transitions inside
the FSM must be exercised by at least one test
case. Similarly to the structural testing criteria all-
branches, its satisfaction offers a poor coverage of
the FSM;

 all-scenarios: it requires that all possible use
scenarios must be exercised by at least one test
case. Similarly to the structural testing criteria all-
paths, depending on the FSM size, it can be
considered impracticable.

III. GENETIC PROGRAMMING

Recently, also more advanced heuristic search techniques
have been applied to software testing. These are based on
evolutionary algorithms. since their performance in finding
test cases was found to be at least as good as random
testing, but usually much better. The group of these testing
techniques is referred to as evolutionary testing (ET)
according to Wegener and Grochtman [7]. ET is an
automatic test case generation technique based on the
application of evolution strategies, genetic algorithms,
genetic programming, or simulated annealing. ET searches
for optimal test parameter combinations that satisfy a
predefined test criterion. This test criterion is represented
through a “cost function” that measures how well each of

the automatically generated optimization parameters
satisfies the
given test criterion. Evolutionary testing has initially only
been applied to traditional procedural software. ET was
used to generate input parameter combinations for test cases
automatically that achieve, i.e., high coverage, if the test
target relates to some code coverage criterion. However,
recently, also object oriented software testing based on
evolutionary testing has been tackled by researchers
[6][7][9].
In genetic programming, genetic algorithm operates on a
population of computer programs of varying size and
shapes. The space of all possible computer programs is
searched for the fittest individual computer program.
Computer program structure is defined as the set of all
possible composition of functions, which can be composed
recursively of the set of functions and terminal. The size and
the contents of these computer programs can dynamically
change during a run of GP. The function and terminal sets
should be selected so as to satisfy the requirements of
closure and sufficiency. The programs evolved by GP may
be single-part, or multi-part program consisting of a main
program and one or more reusable, parameterized, and
hierarchically functions called Automatic Defined Function
(ADF). ADF can be implemented within the context of GP
by establishing a constrained syntactic structure for the
individual programs in the population. Two approaches are
used to solve complex program :

First: Top-down
 The problem is decomposed into sub-

problems
 Solve each of the sub-problems
 Solve the original problem by using the now-

available information
The total effort required by this process often proves to be
less than the effort required in solving the problem without
the aid of the hierarchical process. In addition, if a
beneficial decomposition can be found, the solution to the
sub-problems will often be reused. Divide and conquer
technique is an example of such process.

Second: Bottom-up
 Discover useful regularities and patterns at

the lowest level of the problem.
 Change the representation of the problem

and restate it in terms of its inherent
regularities and patterns to create new
problem.

 Solve the presumably more tractable recoded
problem.

The bottom-up hierarchical process is considered productive
only if the total effort it requires is less than the effort
required in solving the problem without the aid of it.
ADF enables GP to solve a variety of problems in a way
similar to the three-step hierarchical problem-solving
process. GP has two main serious limitations. First ,
standard program representation so that it is important to
choose programming language that is well suited to
manipulation by genetic operators. Standard genetic
operators like crossover and mutation produce few
syntactically correct programs and even, fewer that are
semantically correct. It seems that the solution is to devise

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

new language-specific genetic operator, that preserves at
least the syntactic, and hopefully, the semantic integrity of
the programs being manipulated. Second, standard fitness
measure so that it is capable of evaluating any computer
program that it encounters in any generation of the
population. The choice of fitness measurement may be
confused [8][10].

IV. THE PROPOSED GP MODEL

The proposed method use FSM model [2][11][12]
that describe program's behavior and then use GP to
evolve and test such FSM. Our work overcome the
above problems by building FSM model that deals
with program semantic(to solve presentation problem)
and use four new architecture –altering genetic
operation(to solve standard fitness measure). The
meaning of a program P can be specified by set of
function transformation from states to states, as given
in[11][12]; hence P effects a transformation on a state
vector X, which consists of an association of the variable
manipulated by the program and their values. A
Program P can be defined as 9- tuples, called
Semantic Finite State Automata (SFSA): P=(x, X, T, F,
Z, I, O, γ, X initial), where: x is the set of system variables, X
is the set of system states, X= { X initial, ----, X final }, T is
the time scale: T =[0, ∞), F is the set of primitive functions,
Z is the state transition function, Z = {(f, X, t): (f, X, t) Є F
× X × T , z(f, X, t) = (•X, •t)}, I is the set of inputs, O is the
set of outputs, γ is the readout function, and Xinitial is the
initial state of the system: Xinitial Є X.
Our evolutionary algorithm was defined as 7-tuples: (IOS,
S, F, a1, Tmax, β, υ), as given in 12, 16. IOS is establishing the
input-output boundaries of the system. It describes the
inputs that the system is designed to handle and the outputs
that the system is designed to produce. Syntax Term (S)
refers to the written form of a program as far as possible
independently of its meaning. In particular it concerns the
legality or well formedness of a program relative to a set of
grammatical rules, and parsing algorithms for the discovery
of the grammatical structure of such well-formed programs.
S is a set of rules governing the construction of allowed or
legal system forms. Primitive Function (F), each function
must be coupled with its effect on both the state vector X,
and the time scale T of the system. Some primitive functions
may serve as primitive building blocks for more complex
functions or even sub-systems. Learning Parameter (α1), is a
positive real number specifying the minimum accepted
degree of matching between an IOS, and the real observed
behavior of the system over the time scale, of IOS.
Complexity Parameters (Tmax, β), Tmax and β parameters are
merits of system complexity: size and time, respectively. It
is important to note that there is a fundamental difference
between a time scale T and an execution time of a system. T
represents system size, it defines points within the overall
system, whereas, β, is the time required by the machine to
complete system execution, hence it is high sensitive to the
machine type. Proof Plan (υ), Prove process should be a
part of the statement of system induction problem especially
when the IOS is imprecise or inadequate to generate an
accurate system.
We say P is correct iff it computes a certain function, i.e. P
does not loop . Broadly speaking, there have been two main

approaches to the problem of developing methods for
making programs more reliable: Systematized testing, and
Mathematical proof.

A. Systematic testing

Our works use systematized testing approach as a proof
plane. The usual method for verifying that a program is
correct by testing is by choosing a finite sample of states X1,
X2,..., Xn and running program P on each of them to verify
that: P(X1) =f (X1), P(X2) =f(X2),……. P(Xn) =f (Xn). are
set of tools that support the testing process. First is
“Environments”, it deals with providing a controlled
environment in which testing can take place. Second is
“Data Control”, the primary issue here is data selection to
decide which combination of input values will most
thoroughly exercise the system and will most likely uncover
defects. Third is “Test Execution”, most test tools here work
on the final executable code monitoring its operation for
conformance to specifications. The specification themselves
are analyzed and evaluated for consistency and
completeness.
Let I={I1, I2, ……., Ij} be an input sequence. The length of I
is j. The first element of I is I1 and the rest of I is the
sequence I2, I3, , Ij. So that:
First (I) = I1
Rest(I)=I2, I3, …, Ij
Length (I) = j
If I is any sequence of length j, and X is any sequence
element, we can make a sequence K of length(j+1) out of X
and I, sequence K is denoted by X::I, so that:
First (K) = X
Rest (K)= I
Length (K) = j+1
A sequence K of inputs and an initial state Xinital (Xinitial ::I)
give rise to sequence of output as the system run. More
precisely, we can define system output as a sequence of
outputs generated by I from Xinitial.
Formally, if testing approach is used for system verification,
a system proof is denoted υ= (α2, d), where α2 is a positive
real parameter defining the maximum accepted error from
testing process. α2 focus on the degree of generality, so that
α1, and α2, parameters suggest a fundamental tradeoff
between training and generality. On the other hand, d
represents a set of test cases pairs . Clearly, testing approach
is inadequate when the test sample does not exactly coincide
with the set of inputs. Although one can never prove that a
program is correct by testing, one may perhaps prove that it
is incorrect, if P(Xi) ≠ F(Xi)

B. Mathematical Proof

From a theoretical point of view, one shows that system P is
correct by proving a theorem of the form:
Ʉ Ki ϵ N, P(Xi) = f(Xi)
The proof falls into two parts:

 Proof of partial correctness: A theorem is derived
from certain number of axioms by using pre-
specified deduction rules. This proof shows that if
P terminates, then it gives a correct result.

 Proof or Termination: Proving P terminates for each

sequence Ki ϵ P terminates for each sequence Ki is

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

necessary to show that each loop of P can only be
executed a finite number of times.

Indeed, problems of correctness and termination are closely
related. One of the difficulties in program proofs is finding
an appropriate invariants for each loop.

C. Architecture Altering Genetic Operations

1) Sub-SFSA Creation
1. An individual is selected based on fitness.
2. Randomly create sub-SFSA defined by a 9-

tuples ('x, 'X, 'T, 'F, 'Z, 'I, 'O, 'γ, 'X

initial), where:' x is the subset of the
corresponding x in the main SFSA, and 'X

initial gets its value from the state of the
calling transition function.

3. A uniquely named sub-SFSA function 'f is
added to the set F of the main SFSA such
that each occurrence of 'f in the transition
function set z will be replaced by the
transition function 'z('f,'Xinitial,1) of the
newly created sub-SFSA.

4. Randomly choose a point in the main SFSA
transition function and mutate it with 'f.

2) Sub-SFSA Deletion

1. An individual is selected from the population
based on fitness

2. Randomly select one sub-SFSA function 'f
(if any) from F.

3. Modify invocation of the selected 'f by other
functions from F.

4. Delete the corresponding sub-SFSA of 'f.

3) Adding variables to sub-SFSA
1. An individual is selected from the population

based on fitness.
2. Randomly select one of the sub-SFSA(if

any) from the selected individual.
3. Update 'x term of the selected sub-SFSA by

adding new variable to it, such that 'x ϵ x.

4) Deleting variables from sub-SFSA
1. An individual is selected from the population

based on fitness
2. Randomly select one of the sub-SFSA(if

any) .
3. Update 'x term of the selected sub-SFSA by

removing one, randomly selected variable
from it.

D. Genetic Program generation Algorithm

1) Initialize the following variables: terms, learning,
complexity, generalization, and (δ1, δ2, δ3) parameters.

2) Generate an initial population of random SFSA.
3) Iteratively perform the following operations until the

termination criteria is satisfied.

4) Run each individual in the current population and assign
fitness value to it using equation 1.

5) Create a new population by applying the following
operations on individuals (individual with best fitness
value has high probability to be selected):

 Darwinian Reproduction: Simply, the best-of-
generation individual is copied into the new
population. In the absence of such strategy, it is
possible for the best structure to disappear due to
sampling error, crossover, or mutation operations.

 Crossover: Three types of points are defined in each
individual Z: the state transition function, where :

 Z = {(f, X, t): (f, X, t) Є F × X × T
, z(f, X, t) = (•X, •t)}

F: the set of primitive functions
Function arguments: for example the argument of
primitive function SUB are A and B written as
SUB(A, B) then A or B may be selected as
crossover point.
When crossover is performed, any point type may
be chosen as the crossover point of the first parent.
The crossover point of the second parent must be
chosen only from among points of this type. This
restriction to ensures the syntactic validity of the
composed offspring

 Mutation: This asexual operation operate on one
individual by selecting mutation point type at
random, remove whatever is currently at this point
and insert randomly generated part. Tmax is used to
specify maximum length of each newly created
offspring[2].

6) 6Apply test plan (υ), to the best-of-generation individual,

and compute the error e.

7) 7 The best-of-generation individual with small error e< =
(α1), is designated as the result from the run.

V. CONCLUSION

Because the primary activities of testing, test case
identification and design, are typical search problems, they
can be tackled by typical search heuristics like GP. Multi
objective fitness measure is adopted to incorporate a
combination of three objectives: Correctness, Parsimony,
and Efficiency. Convergences time is highly sensitive to the
initial input-output specification of the program. Multi
objective GP can yield a whole set of potential solutions
which are all optimal in some sense, and give the engineers
the option to assess the trade-offs between different designs.
The discussed evolutionary algorithm can be changed to test
program in a different implementation language without
significantly affecting existing program specification,
leading to an increase in the system productivity.

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

REFERENCES

[1] Chow T.," Testing design modeled by finite-state machines ", IEE
Transaction on Software Engineering, 4(3):178-187, May 1978.

[2] Nada Al Salami, "Analyzing Multi objective Fitness Function with
Finite State Automata", "Machine Learning and system Engineering",
Lecture Notes in Electrical Engineering, Springer, Vol. 68, 595-606,
DOL: 10.1007/978-90-481-9419-3_46, 2010

[3] Marciniak J. J., "Model-Based Software testing", Encyclopedia on
Software engineering, Wiley, 2001.

[4] Apfelbaum L., & Schroeder J., " Reducing the Time to
Thoroughly Test a GUI ", proceeding of International
symposium on software reliability engineering, IEEE Computer
Society Press, PP:174-178, 1998.

[5] L. Bottaci and G. Kapfhammer and N. Walkinshaw eds, "Multi
Objective Higher Order mutation Testing with Genetic
Programming", ", TAIC PART 2009, 4-6 September, p21–29, IEEE
press.

[6] Dalal S., Jain A., "Model-Based Testing of a Highly Programmable
System " , Proced.

[7] J. Wegener and M. Grochtman, "Verifying Timing Constraints by
means of Evolutionary Testing", Real Time System, 3(15), 1998.

[8] Eckart Zitzler, Kalyanmoy, and Lothar Thiele, “Comparison of Multi
objective Evolutionary Algorithm: Empirical Result”, Massachustts
Institute of Technology, Evolutionary Computation 8 (2) : 173-195,
2000.

[9] J. R. Koza, "Genetic Programming: on the Programming of Computer
by means of Natural Selection", Massachusetts Institute of
technology, 2004.

[10] Riccardo Poli, William B. Langdon, Nicholas F. McPhee, John R.
Koza, “Genetic Programming: An Introductory Tutorial and a Survey
of Techniques and applications”, Technical Report CES-475 ISSN:
1744-8050 October 2007.
essex.ac.uk/dces/research/publications/.../2007/ces475.pdf

[11] Nada M. A. Al Salami, "Analyzing Multi objective Fitness Function
with Finite State Automata", "Machine Learning and system
Engineering", Lecture Notes in Electrical Engineering, Springer, Vol.
68, 595-606, DOL: 10.1007/978-90-481-9419-3_46, 2010.

[12] Nada AlSalami, “Improving FSM Evolution Algorithm”, The 2011
International Conference of Computational Intelligence and
Intelligent system, World Congress on Engineering 2011, London,
U.K., pp. 966-969,

[13] Gross H.,Seesing A., "A Genetic Programming Approach to
Automatic Test Generation for Object Oriented Software:, Report
TUD-SERG-2006-017.

[14] A.seesing, H. Gross, "A genetic Programming Approach to
Automated Test Generation for Object-Oriented Software", TUD-
SERG-2006-017, ISSN 1872-5392.

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

