
 

 
Abstract— Software testing requires the use of a model to 
guide such efforts as test selection and test verification.  In this 
case, testers are performing model-based testing. This paper 
introduces model-based testing and discusses its tasks in 
general terms with proposed finite state models. These  FSMs 
depend on software's  semantic rather than its structure, , it 
use input-output specification and trajectory information to 
evolve and test general software.  Finally, we close with a 
discussion of how our  model-based testing can be used with 
genetic programming test generator. 

 
Index Terms— Model-Based testing; Genetic Programming 

Test Generator; Finite State Machine. 

I. INTRODUCTION 

Software behavior can be described in terms of the input 
sequences accepted by the system, the actions, 
conditions, and output logic, or the flow of data through 

the application’s modules and routines. In order for a model 
to be useful for groups of testers and for multiple testing 
tasks, it needs to be taken out of the mind of those who 
understand what the software is supposed to accomplish and 
written down in an easily understandable form. It is also 
generally preferable that a model be as formal as it is 
practical. With these properties, the model becomes a 
shareable, reusable, precise description of the system under 
test. There are numerous such models, and each describes 
different aspects of software behavior. For example, control 
flow, data flow, and program dependency graphs express 
how the implementation behaves by representing its source 
code structure. Decision tables and state machines, on the 
other hand, are used to describe external so-called black box 
behavior. 
Finite state machines are applicable to any model that can be 
accurately described with a finite number (usually quite 
small) of specific states. Finite state machines (also known 
as finite automata) have been around even before the 
inception of software engineering. There is a stable and 
mature theory of computing at the center of which are finite 
state machines and other variations. Using finite state 
models in the design and testing of computer hardware 
components has been long established and is considered a 
standard practice today. Chow [1] was one of the earliest, 
generally available articles addressing the use of finite state 
models to design and test software components. Finite state 
models are an obvious fit with software testing where testers 
deal with the chore of constructing input sequences to 
supply as test data; state machines (directed graphs) are 
ideal models for describing sequences of inputs. This paper 
introduces model-based testing and discusses its tasks in 
general terms with finite state models. These FSMs depend 
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on the semantic of a software rather than its structure, it 
differ from the classical FSM [2], software's  input-output 
specification with trajectory information to describe 
software behavior.  Test  generator can easily developed  
with the  proposed model  when  multi-objective genetic 
programming techniques are used[2].  This paper is 
organized as follows. In section 2 an overview is presented 
of model based testing. Section 3 present an overview for 
genetic programming and its main problem. In Section 4, 
the proposed genetic programming  is  presented. Result and 
conclusions are given in section 5. 

II. MODEL BASED TESTING (MBT) 

Software testing is usually guided by the use of models that 
represent the system under testing. These models provide 
information that supports such activities as test case design, 
test verification and test coverage analysis.  
MBT is an efficient and adaptable functional testing 
technique, supported by the creation and use of a model that 
describes the behavior of the system under testing. From 
this behavioral model, test cases can be generated and 
executed, and the execution results can be evaluated. These 
models are constructed using software functional 
requirements and determine the possible actions during a 
software execution and the expected outputs [3] [4]. MBT is 
usually divided into the following four activities: 

 Elaborate the model that represents the behavior of 
the software to be tested; 

 Select test cases using criteria based on the 
elaborated model; 

 Execute the selected test cases; 
 Evaluate the results obtained during the test case 

execution regarding the expected results. 
Depending on the nature of the model used, software 
testing is called functional testing (also called 
specification-based testing) or structural testing (also 
called implementation-based testing). Models used in 
functional testing are based on software functional 
requirements while in structural testing are based on the 
software’s internal structure. Nowadays, the most part of 
software testing is done using functional testing techniques, 
since they are less costly. However, as research works have 
been focused on structural testing, software industries do 
not have many formal ways to perform and assess the test of 
their products and end up using just heuristics to carry out 
their software testing [4]. A functional testing technique that 
has been commonly used in the software industry is Model 
Based Testing (MBT)[5]. The modeling technique most 
used to create such models is the Finite State Machines 
(FSMs). Besides software modeling, the FSMs are used as a 
basis to define functional testing criteria to be applied in test 
case selection and adequacy analysis. The FSMs are 
considered an excellent tool for software modeling, 
user/developer communication and testing, since their 
application is simple and intuitive. Although traditional 
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FSMs applied in MBT have played an important role in 
software testing improvement, they do not provide 
mechanisms to model important behavioral aspects of the 
software such as its data flow. Due to this limitation, testing 
techniques based just on traditional FSMs can not make use 
of further information. For instance, existing functional 
testing criteria based only on the analysis of FSMs control 
flow, demand just that elements such as states, arcs and 
loops are exercised. As a result, the testing effort can 
achieve poor coverage of software functionality. On the 
other hand, there are structural testing criteria based on both 
control flow , and data flow of the software’s internal 
structure, which is represented by program graphs. 
Therefore, these testing criteria can provide several levels of 
the internal structure coverage of the software being tested. 
Such criteria are widely used in the code coverage analysis, 
during the execution of a test case set [3][5][6].  
 

A. Finite state machines based testing 

Due to the wide application of FSMs as a modeling 
technique in MBT, there is a specific testing technique 
usually called Finite State Machines Based Testing. A 
model represented by a FSM consists on a state set and a 
state transition set. Given a current state and an input, the 
next state and an output can be determined. A sequence of 
state transitions, from the initial state to any final state, is 
called Use Scenario. A Use Scenario can be used to describe 
a general functionality of a modeled system that defines a 
real use of the system [3][4][5]. The following items are 
examples of simple functional criteria based on FSMs, used 
to select test cases in the software industry: 
 

 all-states: it requires that all states inside the FSM 
must be exercised by at least one test case. 
Similarly to the structural testing criteria all-nodes, 
its satisfaction offers a very poor coverage of the 
FSM; 

 all-transitions: it requires that all transitions inside 
the FSM must be exercised by at least one test 
case. Similarly to the structural testing criteria all-
branches, its satisfaction offers a poor coverage of 
the FSM; 

 all-scenarios: it requires that all possible use 
scenarios must be exercised by at least one test 
case. Similarly to the structural testing criteria all-
paths, depending on the FSM size, it can be 
considered impracticable. 

III. GENETIC PROGRAMMING 

Recently, also more advanced heuristic search techniques 
have been applied to software testing. These are based on 
evolutionary algorithms. since their performance in finding 
test cases was found to be at least as good as random 
testing, but usually much better.  The group of these testing 
techniques is referred to as evolutionary testing (ET) 
according to Wegener and Grochtman [7]. ET is an 
automatic test case generation technique based on the 
application of evolution strategies, genetic algorithms, 
genetic programming, or simulated annealing. ET searches 
for optimal test parameter combinations that satisfy a 
predefined test criterion. This test criterion is represented 
through a “cost function” that measures how well each of 

the automatically generated optimization parameters 
satisfies the 
given test criterion. Evolutionary testing has initially only 
been applied to traditional procedural software. ET was 
used to generate input parameter combinations for test cases 
automatically that achieve, i.e., high coverage, if the test 
target relates to some code coverage criterion. However, 
recently, also object oriented software testing based on 
evolutionary testing has been tackled by researchers 
[6][7][9].  
In genetic programming, genetic algorithm operates on a 
population of computer programs of varying size and 
shapes. The space of all possible computer programs is 
searched for the fittest individual computer program. 
Computer program structure is defined as the set of all 
possible composition of functions, which can be composed 
recursively of the set of functions and terminal. The size and 
the contents of these computer programs can dynamically 
change during a run of GP. The function and terminal sets 
should be selected so as to satisfy the requirements of 
closure and sufficiency. The programs evolved by GP may 
be single-part, or multi-part program consisting of a main 
program and one or more reusable, parameterized, and 
hierarchically functions called Automatic Defined Function 
(ADF). ADF can be implemented within the context of GP 
by establishing a constrained syntactic structure for the 
individual programs in the population. Two approaches are 
used to solve complex program : 

First: Top-down  
 The problem is decomposed into sub-

problems 
 Solve each of the sub-problems 
 Solve the original problem by using the now-

available information 
The total effort required by this process often proves to be 
less than the effort required in solving the problem without 
the aid of the hierarchical process. In addition, if a 
beneficial decomposition can be found, the solution to the 
sub-problems will often be reused. Divide and conquer 
technique is an example of such process. 

Second: Bottom-up 
 Discover useful regularities and patterns at 

the lowest level of the problem. 
 Change the representation of the problem 

and restate it in terms of its inherent 
regularities and patterns to create new 
problem. 

 Solve the presumably more tractable recoded 
problem. 

The bottom-up hierarchical process is considered productive 
only if the total effort it requires is less than the effort 
required in solving the problem without the aid of it. 
ADF enables GP to solve a variety of problems in a way 
similar to the three-step hierarchical problem-solving 
process. GP has two main serious limitations. First , 
standard program representation so that it is important to 
choose programming language  that is well suited to 
manipulation by genetic operators. Standard genetic 
operators like crossover and mutation produce few 
syntactically correct programs and even, fewer that are 
semantically correct. It seems that the solution is to devise 
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new language-specific genetic operator, that preserves at 
least the syntactic, and hopefully, the semantic integrity of 
the programs being manipulated. Second,  standard fitness 
measure so that it is capable of evaluating any computer 
program that it encounters in any generation of the 
population. The choice of fitness measurement may be 
confused [8][10]. 

IV. THE PROPOSED GP MODEL 

The proposed method use  FSM model [2][11][12] 
that describe program's  behavior and then use GP to 
evolve and test such FSM. Our work overcome the 
above problems by building FSM model that  deals  
with program semantic(to solve presentation problem) 
and use four new architecture –altering genetic 
operation(to solve standard fitness measure). The 
meaning of a program P can be specified by set of 
function transformation from states to states, as given 
in[11][12]; hence P effects a transformation on a state 
vector X, which consists of an association of the variable 
manipulated by the program and their values. A 
Program P can be defined as 9- tuples, called 
Semantic Finite State Automata (SFSA): P=( x, X, T, F,  
Z, I, O, γ, X initial), where: x is the set of system variables, X 
is the set of system states, X= { X initial, ----, X final  }, T is 
the time scale: T =[0, ∞ ), F is the set of primitive functions, 
Z is the state transition function, Z = {(f, X, t): (f, X, t) Є F 
× X × T , z(f, X, t) = (•X, •t)}, I is the set of inputs, O is the 
set of outputs, γ is the readout function, and Xinitial   is the 
initial state of the system: Xinitial  Є X.  
Our  evolutionary algorithm  was defined as 7-tuples: (IOS, 
S, F, a1, Tmax, β, υ), as given in 12, 16. IOS is establishing the 
input-output boundaries of the system. It describes the 
inputs that the system is designed to handle and the outputs 
that the system is designed to produce. Syntax Term (S) 
refers to the written form of a program as far as possible 
independently of its meaning. In particular it concerns the 
legality or well formedness of a program relative to a set of 
grammatical rules, and parsing algorithms for the discovery 
of the grammatical structure of such well-formed programs. 
S is a set of rules governing the construction of allowed or 
legal system forms. Primitive Function (F), each function 
must be coupled with its effect on both the state vector X, 
and the time scale T of the system. Some primitive functions 
may serve as primitive building blocks for more complex 
functions or even sub-systems. Learning Parameter (α1), is a 
positive real number specifying the minimum accepted 
degree of matching between an IOS, and the real observed 
behavior of the system over the time scale, of IOS. 
Complexity Parameters (Tmax, β), Tmax and β parameters are 
merits of system complexity: size and time, respectively. It 
is important to note that there is a fundamental difference 
between a time scale T and an execution time of a system. T 
represents system size, it defines points within the overall 
system, whereas, β, is the time required by the machine to 
complete system execution, hence it is high sensitive to the 
machine type.  Proof Plan (υ), Prove process should be a 
part of the statement of system induction problem especially 
when the IOS is imprecise or inadequate to generate an 
accurate system.  
We say P is correct iff  it computes a certain function, i.e. P 
does not loop . Broadly speaking, there have been two main 

approaches to the problem of developing methods for 
making programs more reliable: Systematized testing, and 
Mathematical proof. 

A. Systematic testing 

Our works use systematized testing approach as a proof 
plane. The usual method for verifying that a program is 
correct by testing is by choosing a finite sample of states X1, 
X2,..., Xn and running program P on each of them to verify 
that: P(X1) =f (X1), P(X2) =f(X2),……. P(Xn) =f (Xn).  are 
set of tools that support the testing process. First is 
“Environments”, it deals with providing a controlled 
environment in which testing can take place. Second is 
“Data Control”, the primary issue here is data selection to 
decide which combination of input values will most 
thoroughly exercise the system and will most likely uncover 
defects. Third is “Test Execution”, most test tools here work 
on the final executable code monitoring its operation for 
conformance to specifications. The specification themselves 
are analyzed and  evaluated for consistency and 
completeness. 
Let I={I1, I2, ……., Ij} be an input sequence. The length of I 
is j. The first element of I is I1 and the rest of I is the 
sequence I2, I3,   , Ij.  So that: 
First (I) = I1 
Rest(I)=I2, I3, …, Ij 
Length (I) = j 
If I is any sequence of length j, and X is any sequence 
element, we can make a sequence K of length(j+1) out of X 
and I, sequence K is denoted by X::I, so that: 
First (K) = X 
Rest (K)= I 
Length (K) = j+1 
A sequence K of inputs and an initial state Xinital (Xinitial ::I) 
give rise to sequence of output as the system  run. More 
precisely, we can define system output as a sequence of 
outputs generated by I from Xinitial.    
Formally, if testing approach is used for system verification, 
a system proof is denoted υ= (α2, d), where α2 is a positive 
real parameter defining the maximum accepted error from 
testing process. α2 focus on the degree of generality, so that 
α1, and α2, parameters suggest a fundamental tradeoff 
between training and generality. On the other hand, d 
represents a set of test cases pairs . Clearly, testing approach 
is inadequate when the test sample does not exactly coincide 
with the set of inputs. Although one can never prove that a 
program is correct by testing, one may perhaps prove that it 
is incorrect, if P(Xi)  ≠  F(Xi) 

B. Mathematical  Proof 

From a theoretical point of view, one shows that system P is 
correct by proving a theorem of the form: 
Ʉ Ki ϵ N, P(Xi) = f(Xi) 
The proof falls into two parts: 

 Proof of partial correctness: A theorem is derived 
from certain number of axioms by using  pre-
specified deduction rules. This proof shows that if 
P terminates, then it gives a correct result. 

 
 Proof or Termination: Proving P terminates for each 

sequence Ki  ϵ P terminates for each sequence Ki is 
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necessary to show that each loop of P can only be 
executed a finite number of times. 

 
Indeed, problems of correctness and termination are closely 
related. One of the difficulties in program proofs is finding 
an appropriate invariants for each loop.  

C. Architecture Altering Genetic Operations 

1) Sub-SFSA Creation 
1. An individual is selected based on fitness. 
2. Randomly create sub-SFSA defined by a 9-

tuples ( 'x, 'X, 'T, 'F,  'Z, 'I, 'O, 'γ, 'X 

initial), where:' x is the subset of the 
corresponding x in the main SFSA, and 'X 

initial   gets its value from the state of the 
calling transition function. 

3. A uniquely named sub-SFSA function 'f is 
added to the set F of the main SFSA such 
that each occurrence of 'f in the transition 
function set z will be replaced by the 
transition function 'z('f,'Xinitial,1) of the 
newly created sub-SFSA. 

4. Randomly choose a point in the main SFSA 
transition function and mutate it with 'f. 

  
2) Sub-SFSA Deletion 

1. An individual is selected from the population 
based on fitness 

2. Randomly select one sub-SFSA function 'f 
(if any) from F. 

3. Modify invocation of the selected 'f by other 
functions from F. 

4. Delete the corresponding sub-SFSA of 'f. 
 

3) Adding variables to sub-SFSA 
1. An individual is selected from the population 

based on fitness. 
2. Randomly select one of the sub-SFSA(if 

any) from the selected individual. 
3. Update 'x term of the selected sub-SFSA by 

adding new variable to it, such that 'x ϵ x. 
 

4) Deleting variables from sub-SFSA 
1. An individual is selected from the population 

based on fitness 
2. Randomly select one of the sub-SFSA(if 

any) . 
3. Update 'x term of the selected sub-SFSA by 

removing one, randomly selected variable 
from it. 

D. Genetic Program generation Algorithm 

1) Initialize the following variables: terms, learning, 
complexity, generalization, and (δ1, δ2, δ3) parameters. 

2) Generate an initial population of random SFSA. 
3) Iteratively perform the following operations until the 

termination criteria is satisfied. 

4) Run each individual in the current population and assign 
fitness value to it using equation 1. 

5) Create a new population by applying the following 
operations on individuals (individual with best fitness 
value has high probability to be selected): 

 
 

 Darwinian Reproduction: Simply, the best-of-
generation individual is copied into the new 
population. In the absence of such strategy, it is 
possible for the best structure to disappear due to 
sampling error, crossover, or mutation operations.  

 Crossover: Three types of points are defined in each 
individual Z: the state transition function, where : 

 Z = {(f, X, t): (f, X, t) Є F × X × T 
, z(f, X, t) = (•X, •t)} 

F: the set of primitive functions 
Function arguments: for example the argument of 
primitive function SUB are A and B written as 
SUB(A, B) then A or B may be selected as 
crossover point.  
When crossover is performed, any point type may 
be chosen as the crossover point of the first parent. 
The crossover point of the second parent must be 
chosen only from among points of this type. This 
restriction to ensures the syntactic validity of the 
composed offspring 

 Mutation: This asexual operation operate on one 
individual by selecting mutation point type at 
random, remove whatever is currently at this point 
and insert randomly generated part. Tmax is used to 
specify maximum length of each newly created 
offspring[2]. 

 
6) 6Apply test plan (υ), to the best-of-generation individual, 

and compute the error e. 
 

7) 7 The best-of-generation individual with small error e< = 
(α1), is designated as the result from the run. 

 
 

V. CONCLUSION 

 
Because the primary activities of testing, test case 
identification and design, are typical search problems, they 
can be tackled by typical search heuristics like GP.  Multi 
objective fitness measure is adopted to incorporate a 
combination of three objectives: Correctness, Parsimony, 
and Efficiency. Convergences time is highly sensitive to the 
initial input-output specification of the program. Multi 
objective GP can yield a whole set of potential solutions 
which are all optimal in some sense, and give the engineers 
the option to assess the trade-offs between different designs. 
The discussed evolutionary algorithm can be changed to test 
program in a different implementation language without 
significantly affecting existing program specification, 
leading to an increase in the system productivity.  
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