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Abstract—Software has played an essential role in engineer-
ing, economic development, stock market growth and military
applications. Mature software industry count on highly predictive
software effort estimation models. Correct estimation of software
effort lead to correct estimation of budget and development time.
It also allows companies to develop appropriate time plan for
marketing campaign. Now a day it became a great challenge to get
these estimates due to the increasing number of attributes which
affect the software development life cycle. Software cost estima-
tion models should be able to provide sufficient confidence on its
prediction capabilities. Recently, Computational Intelligence (CI)
paradigms were explored to handle the software effort estimation
problem with promising results. In this paper we evolve two new
models for software effort estimation using Multigene Symbolic
Regression Genetic Programming (GP). One model utilizes the
Source Line Of Code (SLOC) as input variable to estimate the
Effort (E); while the second model utilize the Inputs, Outputs,
Files, and User Inquiries to estimate the Function Point (FP).
The proposed GP models show better estimation capabilities com-
pared to other reported models in the literature. The validation
results are accepted based Albrecht data set.

I. I NTRODUCTION

Estimating software effort on the early stage of develop-
ment might produce uncertainty of up to 400% as mentioned
in [1]. In 2001, it was also reported by the Standish group
that, 53% of U.S. software projects ran over 189% of the
original estimate [2]. In the 21st century software technology
was capable on providing variety of software tools, techniques
and software estimation models with many features which can
help software project developer, manager, analyst and tester
to do their job in a better way. The question that arises
according to this opportunity, which tool and which model
can really help in providing an accurate estimate? In most
cases, the models adopted were based on expert judgment
including Delphi technique [3] and work breakdown structure
based methods. Models inspired by mathematical equations
later came in line and named as Algorithmic Method. For
example, Constructive Cost Model (COCOMO) [1], [4], Soft-
ware Life Cycle Management (SLIM) [5], [6], and Software
Evaluation and Estimation of Resources-Software Estimating
Model (SEER-SEM) [7], Function Point models [8] and many
others.

Practitioners figured out that the inability to correctly

estimate software development costs is a challenging problem.
Solving this problem becomes a pressure on IT companies
since costs associated with their development became higher
than before due to software complexity. As a result, more
research focused on gaining a better understanding of the
software development life cycle as well as the intelligent
techniques which can help in developing accurate and efficient
software cost estimation models.

In this paper, we continue exploring the idea of developing
evolutionary software effort estimation models based on CO-
COMO and FP models [9]. Multigene Symbolic Regression
GP shall be used to derive a mathematical model in both cases.
The models should take in consideration the most important
attributes which affect the effort modeling process for both the
COCOMO and FP models.

II. L ITERATURE REVIEW

Early investigations on using Machine Learning techniques
as a tool for software development effort estimation were
presented in [10]–[12]. Recently, Machine Learning techniques
were also explored to solve the effort and cost estimation
problem for software systems. In [10], author explored the
use of Neural Networks (NNs), Genetic Algorithms (GAs)
and Genetic Programming (GP) to provide a methodology for
software cost estimation. A novel soft computing model to
increase the accuracy of software development cost estimation
was presented in [13]. Authors claims that their proposed NNs
model can be interpreted and validated by experts, and has
good generalization capability.

CI techniques were presented and analyzed for software
cost estimation along with the emerging trends was presented
in [14]. A new approach to find architectural design models
based on multi-criteria genetic algorithm with optimal per-
formance, reliability, and cost properties was presented in
[15]. In [16], author provided a state of the art article on
the use of search based approaches for software development
effort estimation. The capabilities of these approaches were
fully explored and the empirical analysis was carried out. A
comparison between Neuro-fuzzy model and the most common
software models such as Halstead, WalstonFelix, Bailey-Basili
and Doty models was presented in [17].
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In [18], author provided an innovative set of models
modified from the famous COCOMO model with interesting
results. Later on, many authors explored the same idea with
some modification [19]–[22] and provided a comparison to the
work presented in [18]. Exploration of the advantages of Fuzzy
Logic using the Takagi-Sugeno (TS) technique on building a
set of linear models over the domain of possible software Kilo
Line Of Code (KLOC) were investigated in [23]. Authors in
[24], [25] presented an extended work on the use of Particle
Swarm Optimization (PSO) and Differential Evolution (DE) to
build a suitable model structure to utilize improved estimations
of software effort for NASA software projects. The developed
PSO model provided promising results. Many model structures
were explored including COCOMO-PSO, Fuzzy Logic (FL),
Halstead, Walston-Felix, Bailey-Basili and Doty models. The
potential of the developed COCOMO-PSO and FL models
were high compared to other models from the literature.

III. C OST ESTIMATION MODELS

A. COCOMO Model

COCOMO is one of the most famous software effort esti-
mation model used in the literature. This model was originally
developed by Barry Boehm [1], [4] and was extensively revised
in [26]. The model is given by Equation 1. Recently, tuning the
parameters of the COCOMO model using differential evolution
to provide a better effort estimate was presented [25].

E = A× SizeB × EAF (1)

Given that:

• E is the effort in person-months

• A is a calibrated constant

• B is a size scale factor

• Size is measured by the Kilo Source Line of Code

• EAF is an Effort Adjustment Factor from cost factor
multipliers

Software size may not be the most significant attribute in
effort estimation but it does have major influence on the effort
and time computation. If we could not accurately estimate the
project size it is always hard to plan for project budget and
duration. The values of the parametersA andB can be found
in Table I. Three types of COCOMO models are presented.
They are: Organic, Semidetached and Embedded models [27].

TABLE I. BASIC COCOMOMODELS

Model Name Effort (E) Time (T )
Organic Model E = 2.4(KLOC)1.05 T = 2.5(E)0.38

Semi-Detached Model E = 3.0(KLOC)1.12 T = 2.5(E)0.35

Embedded Model E = 3.6(KLOC)1.20 T = 2.5(E)0.32

B. Function Point Model

Function points are a well-known concept although only
recently they gained wider acceptance as a software size
measure [28], [29]. Function points measure software size
based on the functionality requested by and provided to the end
user. Albrecht’s function point gained acceptance during the

1980’s and 1990’s because of the tempting benefits compared
to the models based on the SLOC [30], [31]. Albrecht pro-
posed his model of computing the software size based on the
system functionality [32], [33]. Albrecht originally proposed
four function types [32]: files, inputs, outputs and inquiries
with one set of associated weights and ten General System
Characteristics (GSC). In 1983, the work developed in [33],
proposed the expansion of the function type, a set of three
weighting values (i.e. simple, average, complex) and fourteen
General System Characteristics (GSCs) were proposed as given
in Table II.

TABLE II. 1983 FUNCTION TYPES AND WEIGHTS

Function Type Simple Average Complex
External Input 3 4 6
External Output 4 5 7
Internal Files 7 10 15
External Files 5 7 10
External Inquiry 3 4 6

Because FP is self-governing and independent of language
type, platform, it can be used to identify many productivity
benefits. FP is designed to estimate the time required for a
software project development, and thereby the cost of the
project and maintaining existing software systems. Because FP
is self-governing and independent of language type, platform,
it can be used to identify many productivity benefits. FP
is designed to estimate the time required for a software
project development, and thereby the cost of the project and
maintaining existing software systems.

The Albrecht FP model consists of two parts 1)Unadjusted
Function Point(UFP) and 2)Adjusted Function Point(AFP).
The UFP consists of five components. They are given in Table
II. There are also 14 GSCs factors that affect the size of the
project effort, and each is ranked from ”0”- no influence to ”5”-
essential. GSCs consists of 14 factors known asf1, f2, . . . , f14.
These factors are listed in listed in Table III. The sum of all
factors is then multiplied given in Equation 2 which constitute
the Adjustment Factor (AF) defined in the range [0.65,-1.35].
Then, the Unadjusted FP is then multiplied by the UFP to
create the Adjusted Function Point (AFP) count as given in
Equation 3. The Adjusted FP value-will is within 35% of the
original UFP figure.

AF = 0.65 + 0.01
14
∑

i=1

fi (2)

TABLE III. G ENERAL SYSTEM CHARACTERISTICS(GSCS)

1 Data Communications
2 Distributed Functions
3 Performance
4 Heavily Used Configuration
5 Transaction Rate
6 Online Data Entry
7 End User Efficiency
8 Online Update
9 Complex Processing
10 Reusability
11 Installation Ease
12 Operational Ease
13 Multiple Sites
14 Facilitate Change

Adjusted FP = Unadjusted FP ×AF (3)
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IV. GENETIC PROGRAMMING

GP is an evolutionary computation technique which allows
computer programs to evolve and produce a solution to a
problem. GP a biologically inspired machine learning method
which randomly generate a population of computer programs
(i.e. solutions) represented by a trees structure of LISP expres-
sion [34], [35]. Using mutation and crossover, GP produce a
new population of solution which is more likely to have better
solution than their parents. This process in repeated till the end
of certain number of generations or the best solution is reached.
GP often use symbolic regression to build a mathematical
model or expression based on given data set [36], [37]. The
foremost advantages of GP is that; it evolves both the model
structure (i.e. function) and the tune the model parameters.
This makes GP more suitable to modeling and identification
of nonlinear dynamic systems [38]–[42].

A. Multigene Symbolic Regression

Assume we are using GP to develop a model for a
system with x inputs and y output. GP can produce a
tree structure which introduce the mathematical relationship
y = f(x1, x2, . . . , xn). Given thatn is the number of input
variables. In multigene symbolic regression, each prediction
of the output variablêy is formed by a weighted output of
number of trees/genes in the multigene individual plus a bias
term. Each tree is represents a model of zero or more of the
given inputsn.

Mathematically, a multigene regression model can be writ-
ten as:

ŷ = a0 + a1 × tree1 + · · ·+ aM × treeM (4)

where a0 represents the bias or offset term while
a1, . . . , aM are the gene weights andM is the number of
genes (i.e. trees) which constitute the available individual. The
weights (i.e. regression coefficients) usually computed using
least square estimation for each tree. A multigene symbolic
model usually consists of one of more gene (i.e. GP tree)
weighted by linear combination parameter. An example of
multigene model is shown in Figure 1. The presented model
can be introduced mathematically as given in Equation 5.

ŷ = a0 + a1[x1x2 + 9x2] + a2[22x1 + x3] (5)

Fig. 1. A pseudo linear multigene model of outputŷ along with x1, x2 and
x3 as inputs

B. Performance Criterion

The Route Mean Square (RMS) was used as the fitness
function for genetic programming. RMS can be described by
Equation 6.

RMS =

√

1

n

∑

i

(yi − ŷi)2 (6)

Otherperformance criterion was used to evaluate the good-
ness of the developed GP model. They are given in following
equations:

1) Variance-Accounted-For (VAF):

V AF = [1−
var(y − ŷ)

var(y)
]× 100% (7)

2) Euclidian distance (ED):

ED =

√

√

√

√

n
∑

i=1

(yi − ŷi)2 (8)

3) Manhattan distance (MD):

MD = (

n
∑

i=1

|yi − ŷi|) (9)

4) Mean Magnitude of Relative Error (MMRE):

MMRE =
1

n

n
∑

i=1

|yi − ŷi|

yi
(10)

wherey andŷ arethe actual and the estimated effort based
on the developed GP model.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

To develop the proposed GP effort estimation model we
used the GPTIPS [43] toolbox with the setting parameters
given in Table IV. The default GPTIPS multigene symbolic
regression function was used in order to minimize the root
mean squared (RMS) prediction error on the training data. The
default recombination operator probabilities were used as 0.85
for crossover, 0.1 for mutation and direct reproduction of 0.05.

TABLE IV. T UNING PARAMETERS OF THEGPTIPS TOOLBOX

Parameter Value
Population size 25
Number of generations 300
Tournament size 10
Elitism 0.05
Maximum depth of trees 10
Maximum No. of genes 7;
function node set +, -, ×
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B. GP effort model as a function of SLOC

The famous COCOMO model always used the SLOC as
main input to develop the effort equation as given in Equation
1. In our case, we adopted the COCOMO model as a basis for
our development. Thus, we used the SLOC as an input and the
effort as an output. The developed model is given in Equation
11 wherex1 stands for the SLOC.

y = −
(

8.33 · 10−9
)

x1
5 +

(

4.036 · 10−6
)

x1
4

− 0.0005124 x1
3 + 0.02337 x1

2

− 0.08683 x1 + 1.401 (11)

In Figure 2, we show the GP convergence process where
the best RMS was measured as 6.3475 which were received at
generation 292. Figure 3 shows the actual and estimated effort
using GP over the sorted list of projects. The characteristics
between the two curves look very similar with high VAF
criteria. In Table V, we show the values of each evaluation
criteria adopted in this study.

TABLE V. GP BASED SLOC MODEL: PERFORMANCE CRITERION

VAF ED MD MMRE
94.794% 31.097 100.27 0.48502
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Fig. 2. GP convergence process in the effort estimation case
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Fig. 3. Actual and estimated GP effort using SLOC Model

C. GP Effort model based FP

In this case, we are developing a GP model based the FP.
The FP model utilizes the Inputs (x1), Outputs (x2), Files (x3),

TABLE VI. A CTUAL AND ESTIMATED EFFORT USINGGP

SLOC Effort GP-Effort
3 0.5 1.3373
15 3.6 3.8261
20 11 5.5339
22 2.9 6.2505
24 7.5 6.9704
24 11.8 6.9704
28 10 8.386
29 6.1 8.7295
30 4.9 9.0674
35 8 10.651
40 4.1 12.023
40 18.3 12.023
42 12 12.508
48 12.9 13.748
52 8.9 14.421
54 21.1 14.723
57 10.8 15.148
62 28.8 15.832
93 19 27.72
94 38.1 28.597
96 15.8 30.497
110 61.2 50.263
130 102.4 104.48
318 105.2 105.2

and User Inquiries (x4) to estimate the Function Point (FP).
Thus, we considered these attributes as input to our model
and the number of FP as an output. We run the GPTIPS [43]
toolbox with the setting parameters given in Table IV. The
developed GP model for the FP is given in Equation 12.

y = 3.713 x2 − 10.29 x1 + 4.939 x3 + 3.682 x4
+ 0.1965 x1 x2 + 1.011 x1 x3 + 0.2481 x1 x4
− 0.1838 x2 x3 + 0.006156 x2 x4 − 0.3135 x3 x4
− 0.006156 x1 x3

2 + 0.006687 x2 x3
2

− 0.001063 x3 x4
2 − 0.002834 x3

2 x4
+ 0.003078 x2

2 − 0.2509 x3
2 − 0.001063 x3

3

+ 0.0001771 x1 x2 x3
2 − 0.0001771 x1 x3

2 x4
− 0.01298 x1 x2 x3 − 0.003078 x1 x3 x4
+ 0.003255 x2 x3 x4 + 158.6 (12)

In Figure 4, we show the GP convergence process where
the best RMS found was 30.8868 which were received at
generation 297. Figure 5 shows the actual and estimated effort
using GP based Albrecht data set adopted in this study. The
developed model’s performance were computed using number
of criteria reported in Table VIII.
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Fig. 4. GP convergence process in FP estimation case
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Fig. 5. Actual and estimated GP Function Points results

TABLE VII. A CTUAL AND ESTIMATED GP NUMBER OF FP

Inputs Outputs Files Inquiries FP GP-FP
34 14 5 0 100 100.54
15 15 3 6 199 185.25
7 12 8 13 209 240.35
33 17 5 8 224 206
12 15 15 0 260 259.65
13 19 23 0 283 309.26
17 17 5 15 289 269.24
27 20 6 24 400 378.86
28 41 11 16 417 486.84
70 27 12 0 428 441.28
10 69 9 1 431 429.19
25 28 22 4 500 439.86
41 27 5 29 512 532.66
28 38 9 24 512 518.51
42 57 5 12 606 609.39
45 64 16 14 680 750.1
43 40 35 20 682 687.45
61 68 11 0 694 682.89
40 60 12 20 759 724.64
40 60 15 20 794 727.36
48 66 50 13 1235 1234.9
69 112 39 21 1572 1571.7
25 150 60 75 1750 1750.2
193 98 36 70 1902 1901.9

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, an evolutionary software effort estimation
models based Multigene Symbolic Regression Genetic Pro-
gramming were developed. Two GP based models were de-
veloped; one model considered the Source Line Of Code
(SLOC) as input variable to estimate the Effort (E); while the
second model considered the Inputs, Outputs, Files, and User
Inquiries to estimate the Function Point (FP). The proposed GP
models show better performance compared to other reported
models in the literature. They were tested using the Albrecht
data set reported in [12]. The mathematical equation which
represents both models is adequately simple and can be easily
used to predict further project’s effort. These types of models
significant help project managers to estimate time and cost for
future developments.
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