Skip to main content

Genetic Programming Model Regularization

  • Conference paper
  • First Online:
Computational Intelligence (IJCCI 2013)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 613))

Included in the following conference series:

Abstract

We propose a tool for controlling the complexity of Genetic Programming models. The tool is supported by the theory of Vapnik-Chervonekis dimension (VCD) and is combined with a novel representation of models named straight line program. Experimental results, implemented on conventional algebraic structures (such as polynomials), show that the empirical risk, penalized by suitable upper bounds for the Vapnik-Chervonenkis dimension, gives a generalization error smaller than the use of statistical conventional techniques such as Bayesian or Akaike information criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akaike, H.: Statistical prediction information. Ann. Inst. Stat. Math. 22, 203–217 (1970)

    Article  Google Scholar 

  2. Alonso, C.L., Montaña, J.L.. Puente, J.: Straight line programs: a new linear genetic programming approach. In:Proceedings of the 20th IEEE International Conference on Tools with Artificial Intelligence (ICTAI), pp. 571–524 (2008)

    Google Scholar 

  3. Angluin, D., Smith, C.H.: Inductive inference: theory and methods. ACM Comput. Surv. 15(3), 237–569 (1983)

    Article  MathSciNet  Google Scholar 

  4. Berkowitz, S.J.: On computing the determinant in small parallel time using a small number of processors. Inf. Process. Lett. 18, 147–150 (1984)

    Article  MathSciNet  Google Scholar 

  5. Bernadro, J., Smith, A.: Bayesian Theory. Willey, New York (1994)

    Google Scholar 

  6. Burguisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory. Springer, New York (1997)

    Google Scholar 

  7. Cherkassky, V., Yunkian, M.: Comparison of model selection fo regression. Neural Comput. 15(7), 1691–1714 (2003)

    Article  Google Scholar 

  8. Gabrielov, A.N., Vorobjov, N.: Complexity of Computations with Pfaffian and Noetherian Functions, Normal Forms, Bifurcations and Finiteness Problems in Differential Equations. Kluwer, Dordrecht (2004)

    Google Scholar 

  9. Giusti, M., Heinz, J.: La Détermination des Points Isolés et la Dimension dúne Varieté Agebrique Peut se Faire en Temps Polynomial, Computational Algebraic Geometry and Commutative Algebra, Symposia Matematica XXXIV, Eisenbud, D, Robbiano, L. (eds.), pp. 216–256. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  10. Giusti, M., Heintz, J., Morais, J., Morgentern, J.E., Pardo, L.M.: Straight line programs in geometric elimination theory. J. Pure Appl. algebra 124, 121–146 (1997)

    MathSciNet  Google Scholar 

  11. Goldberg, P., Jerrum, M.: Bounding the vapnik-chervonenkis dimension of concept classes parametrizes by real numbers. Mach. Learn. 18, 131–148 (1995)

    Article  Google Scholar 

  12. Gori, M., Maggini, M., Martinelli, E., Soda, G.: Inductive inference from noisy examples using the hybrid finite state filter. IEEE Trans. Neural Networks 9–3, 571–575 (1998)

    Article  Google Scholar 

  13. Heintz, J., Roy, M.F., Solerno, P.: Sur la Complexité du Principe de Tarski-Seidenberg. Bulletin de la Societé Mathematique de France 118, 101–126 (1990)

    Article  MathSciNet  Google Scholar 

  14. Koza, J.: Genetic Programming: on the Programming of Computers by Means of Natural Selection. The MIT Press, Cambridge (1992)

    Google Scholar 

  15. Nikolaev, N.Y., Iba, H.: Regularization approach to inductive genetic programming. IEEE Trans. Evol. Comput. 5(4), 359–375 (2001)

    Article  Google Scholar 

  16. Okley, H.: In: Kinnear, K. (ed.) Advances in Genetic Programming. Two scientific applications of Genetic Programming: Stack filters and nonlinear fitting to chaotic data, pp. 369–389. MIT Press, Cambridge (1994)

    Google Scholar 

  17. Poli, R., Cagnoni, S.: In: Koza, J.R., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M., Iba, H., Riolo, R.L. (eds.) Evolution of Pseudo-coloring Algoritms for Image Enhancement with Interactive Genetic Programming, pp. 269–277. MIT Press, Cambridge (1997)

    Google Scholar 

  18. Shaoning, P., Kasabov, N.: Inductive vs transductive inference. global vs local models: SVM, TSVM and SVMT for gene expression classification problems. In: Proceedings IEEE International Joint Conference on Neural Networks, vol. 2, pp. 1197–1202 (2004)

    Google Scholar 

  19. Tackett, W.A., Carmi, A.: In: Kinnear, K. (ed.) The Donut Problem: Scalability and Generalization in Genetic Programming, Advances in Genetic Programming. MIT Press, Cambridge (1994)

    Google Scholar 

  20. Tenebaum, J.B., Griffiths, T.L., Kemp, C.: Theory Based Bayesian Models of Inductive Learning and Reasoning. Trends in Cognitive Sciences, Kingston, vol. 10(7), pp. 309–318 (2006)

    Google Scholar 

  21. Vapnik, V., Chervonenkis, A.: Ordered risk minimization. Autom. Remote Control 34, 1226–1235 (1974)

    MathSciNet  Google Scholar 

  22. Vapnik, V.: Statistical Learning Theory. Willey, New York (1998)

    Google Scholar 

Download references

Acknowledgments

This work is partially supported by spanish grant TIN2011-27479-C04-04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Montaña .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Alonso, C.L., Montaña, J.L., Borges, C.E. (2016). Genetic Programming Model Regularization. In: Madani, K., Dourado, A., Rosa, A., Filipe, J., Kacprzyk, J. (eds) Computational Intelligence. IJCCI 2013. Studies in Computational Intelligence, vol 613. Springer, Cham. https://doi.org/10.1007/978-3-319-23392-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23392-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23391-8

  • Online ISBN: 978-3-319-23392-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics