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Abstract—There have been rapid recent developments in au-
tomated software test design, repair and program improvement.
Advances in artificial intelligence also have great potential impact
to tackle software testing research problems. In this paper
we highlight open research problems and challenges from an
industrial perspective. This perspective draws on our experience
at Meta Platforms, which has been actively involved in software
testing research and development for approximately a decade.
As we set out here, there are many exciting opportunities for
software testing research to achieve the widest and deepest
impact on software practice. With this overview of the research
landscape from an industrial perspective, we aim to stimulate
further interest in the deployment of software testing research.
We hope to be able to collaborate with the scientific community
on some of these research challenges.

Index Terms—Automated Software Engineering, Software
Testing, Automated Program Repair, Artificial Intelligence, Ge-
netic Improvement, Automated Remediation.

I. INTRODUCTION

We give an industrial perspective on research challenges,
concerned with three broadly related areas of software testing
and optimisation (improvement) research:

1) Software Test Generation (Section II)
2) Automated Repair and Improvement (Section III)
3) Automated Transplantation and Refactoring (Section IV)
In Section V we consider opportunities for the incorporation

of artificial intelligence techniques in tackling these problems,
both in their own right, and in combination with existing
software engineering research. Finally, in Section VI, we
collect together some of the lessons learned from previous
work on the industrial deployment of software testing and
improvement research.

II. TEST GENERATION: REMAINING CHALLENGES

Automated software testing has been widely studied by
the research community, leading to considerable industrial
uptake, for example at Meta [1], [2], Microsoft [3] and Google
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[4]. Nevertheless, there remain many open challenges that
represent opportunities for the research community.

A. Regression Testing

Traditionally, regression testing has focused on functional
correctness and reliability (exceptions, crashes, etc). While
functional correctness and reliability concerns are undoubtedly
important, we need more work to tackle performance regres-
sions such as those that affect execution time, memory usage,
and disk space.

There is an important research challenge here at the intersec-
tion of statistics and software testing research. For functional
correctness, a test observation such as a crash, tends to be
unequivocal. Even a highly flaky test which leads to only
an occasional crash provides existential proof that crashing
is possible [1]. Sadly, this luxury does not extend to many
forms of performance regressions. Test observations are made
in a highly nondeterministic noisy space, in which execution
times naturally vary.

There are multiple ways to tackle this problem. One intuitive
approach, although not necessarily the best, is to set thresholds
that determine whether the regression is deemed to have oc-
curred. Setting thresholds makes performance more ‘Boolean’
(as it is for the reliability scenario): either a regression occurs,
or it does not; there is no ambiguity.

Although the threshold-based approach is readily deployable
it tends to suffer from the problem of test flakiness [5], [6].
Non-determinism means that observations may fluctuate either
side of the threshold. We need more research on nuanced
approaches that can identify relatively small performance re-
gressions in noisy observation spaces. Also, we need research
on techniques for giving confidence intervals on performance
regressions. This is a particularly challenging research problem
when also constrained by cost considerations. Taking account
of cost is essential, because it is impractical to simply generate
a large number of test observations in order to increase
confidence intervals.

B. Unit Testing

Unit tests are typically considered to reside at the bottom
of a testing ‘pyramid’ [7]. Above unit tests reside integration
tests and, above them, end to end tests. The higher up the
pyramid, the higher the level of test abstraction and the greater



the scope tested, but also the greater the effort required to
design and compute test outcomes; at least, this is the theory.
Specifically, in principle, unit tests should be simple to write,
fast to execute, and easy to understand [8]. That is, simple,
easy, and fast, by contrast to tests at higher levels of the
testing pyramid. However, in practice, unit tests can prove to
be far from simple to write because complex systems require
mocking, which can become extremely involved [9].

Although generally fast to execute and easy to understand,
unit tests can also be brittle; small changes in implementation
details can cause unit tests to break (becoming inapplicable)
or to fail (due to unimportant internal behavioural changes for
which they should pass). Unit tests that break lead to additional
maintenance costs. Unit tests that inappropriately fail impede
developer velocity.

Automated unit test generation also faces the familiar oracle
problem [10]; if we could automatically determine the correct
output for a given input, then we would not need the system
under test in the first place. Fortunately, for the important
subproblem of regression testing, there is a readily available
oracle: the previous version of the system under test.

For the regression testing scenario, the oracle problem is
transformed into two (generally more tractable) problems of:

1) Determining when a behavioural change results from the
code change under test.

2) Deciding whether the changed behaviour is sufficiently
different to warrant a signal to the engineer.

In large complex nondeterministic systems, small be-
havioural changes may be insignificant. Reporting these in-
significant behavioural changes (as warnings or bugs) to devel-
opers will quickly ensure that the test tool becomes regarded
as a source of false positive nuisance. Technologies that signif-
icantly impede developer velocity are typically discarded [6].
This has important implications for the research community. In
general, evaluations of software testing research prototypes do
not consider the impact of test signals on developer velocity.

In the specific case of regression testing, more research is
required on equivalence classes. Techniques for constructing
such equivalence classes would help determine suitable oracles
for regression testing. Equivalence-based oracles can be used
to balance the need to identify the true positives (high recall),
while tensioning this requirement against the need to avoid
unnecessarily impeding developer velocity with false negatives
(high precision).

The outlook for automated unit test generation is optimistic,
especially for regression testing. The research challenges are
well understood, and widely studied, and the solution tech-
nologies have been demonstrated to be deployable. We can
expect rapid uptake of automated test generation as a result.
This uptake will transform the software testing landscape.
Suppose instead of requiring developers to write unit tests,
we had an entirely automated and scalable unit test generation
platform, including the generation of suitable test oracles, and
the generation of appropriate mocks. In this world, the re-
maining problem of brittleness would become much reduced:

automated tests are cheap to generate and can be discarded
and replaced with newly generated tests, as needed.

Recently, a number of commercial unit test generation
frameworks have appeared, offering various solutions to tackle
the automatic unit test generation problem. A brief search
revealed more than ten such tools currently offered to market.
More scientific research is needed to empirically evaluate the
strengths and weaknesses of these different approaches and
tools. This is an opportunity for the testing research commu-
nity. Clearly it would be unrealistic to expect tool providers to
conduct and report on unbiased scientific evaluations. On the
other hand, test tool consumers typically lack the resources and
training for a full empirical scientific evaluation. The scientific
community is ideally placed to fill this knowledge gap.

There is also a need for more research on the most chal-
lenging aspects of test generation, including automatically
determining whether to mock an object [11], how best to
construct suitable mocks [12], [13], and how to determine
the test oracles [14]–[16]. More work is required to develop,
evaluate, and deploy these techniques on large scale production
systems.

Unit tests also need to be realistic. In particular, actual
parameters passed to the method under test need to be re-
flective of those that are witnessed in production. End to
end tests can be used as a source of such realistic method
parameters (See section II-D). We also need techniques for
constructing realistic values for complex data types, without
drawing in large quantities of boiler plate code (in the form
of test builders) nor relying on arbitrary mocking (which may
become fragile when the code changes).

C. Integration Testing

In theory, a unit test checks the specific functionality of the
unit under test, independent of the rest of the system. This
typically requires a high degree of mocking. As soon as we
fail to mock a single external call from the unit under test, we
have made the transition from unit testing towards integration
testing.

The boundary between unit and integration testing is
blurred. It is usually unrealistic to mock every call. As a result,
many tests are regarded by engineers as unit tests when they
are, strictly speaking, truly integration tests. Typically, a test
of two or more components is regarded as a unit test when:

1) The components tested are sufficiently small.
2) The test oracle focuses on the behaviour of a single

component, rather than interactions between two or
more.

Determining the component granularity at which an
integration-based approach to testing is required is, itself, an
interesting and currently less-well-studied research problem.

D. Balancing e2e testing with more local testing

End to end (e2e) testing typically resides at the top of the
test pyramid; salient to overall system behaviour, but expensive
to execute. Despite their cost, e2e tests remain an essential part
of the practical industrial test landscape. They are the ultimate



arbiter of the behaviour of the system under test. More research
is needed on the engineering trade off between test efficiency
and effectiveness.

In particular, research techniques that offer the test effec-
tiveness of e2e testing with the cost of unit testing would be
immediately actionable and highly impactful. Test carving [17]
is one important idea that may help bridge this gap between
e2e and unit level testing. More work is needed on the use
of system level testing techniques, such as Sapienz [18], as
a source of realistic, localised observations, from which unit
and integration tests can be carved.

E. Practical mutation testing

Mutation testing [19], [20] has been studied for over five
decades [21]. Recent results have demonstrated its superiority
as a coverage criterion compared to traditional structural
coverage goals, such as branch and statement coverage [22].
There have also been recent initial deployments of mutation
testing in industry [23], [24]. These industrial deployments
have demonstrated that the computational cost of mutation
testing can be tamed [23]. Furthermore, developer surveys
have indicated that engineers would be willing to adopt
mutation testing if it could be made more practical [24]. In
this section, we outline three research challenges which, when
fully tackled, will make mutation testing highly practical, and
potentially impactful in industry.
Change relevance: Traditionally, the research literature has
considered the mutation generation problem as one in which
mutants have been constructed en masse, for a single code
base [19], [20]. This one-time deployment of mutation testing
is poorly suited to modern continuous integration. Few authors
have considered the generation of mutants incrementally, at
the time of maximal relevance to engineers, and guided by
the changes the engineers propose to land into the code base.

We need more work on ‘Delta’ forms of mutation [25].
Delta mutation is highly change aware. Delta mutants are
constructed for a specific software change in order to drive,
both the assessment of test effectiveness for covering the
change, and for guiding test generation to better reveal faults
introduced by the change.
Consistent test efficiency assessment: The most widely
studied application of mutation testing concerns its ability to
assess the fault-revealing power of existing test suites [19],
[20]. Traditionally, the deployment model has been regarded
as, once again, mutant construction and assessment en masse.

This ‘en masse’ approach can assess the current effective-
ness of a test suite, but is poorly suited to measuring relative
improvements in test effectiveness over time. As the code
base changes, the originally constructed en masse mutant suite
becomes increasingly inapplicable. Therefore, improvements
in test effectiveness cannot be consistently compared against
previous iterations using the en masse mutant assessment
approach.

One approach to tackle this mutant consistency problem
is to focus on long-standing mutants [26]. A long-standing
mutant is one that is relatively unaffected by code changes.

There may be other approaches which can reduce, or remove,
the detrimental effects of the mutant consistency problem.
More work is required to develop mutation approaches that
consistently assess relative improvements in test effectiveness
in the presence of high degrees of test suite and code churn.
Mutation based test generation: Although test suite as-
sessment has been the most widely-studied application of
mutation testing, the most impactful is likely to be mutation-
guided test generation. Since we know that strong mutation is
one of the most powerful coverage criteria in terms of fault
revelation [22], it makes sense to use mutants to guide the
automated generation of tests. Mutation-guided test generation
is a relatively less explored topic [27]–[29] that needs more
work. In particular, generating test cases from particularly
pernicious, otherwise hard-to-detect faults, such as the subtle
faults generated from higher order mutants [30] would be
particularly impactful.

F. Test Flakiness

Test flakiness is one of the most pressing problems for
industrial software testing. It reduces test effectiveness and
increases the cost of testing [6]. As systems become more
complex, and their interactions and underlying technologies
less deterministic, the flakiness problem is set to increase.
More research is needed on techniques to identify and reduce
flakiness [18], [31], and also to reformulate testing techniques
to tolerate flakiness, while still giving useful signal [6].

More work is also required to understand the impact of test
flakiness on the many downstream applications of software
testing. These may be differentially affected and/or particular
forms of flakiness may be more or less pernicious for different
use cases. Laboratory controlled environments for flakiness
research will help the research community to investigate this
differential test flakiness impact [31].

G. Test effectiveness

Software testing consumes considerable effort in both hu-
man and machine time. Indeed, testing is often regarded as
consuming as much as half of the overall development cost.
Therefore, it is important to be able to assess the return on
investment. When testing catches a fault before it reaches
production, there is no ground truth evaluation of the exact
impact of the fault, were it not to have been trapped by testing.
However, in order to measure test effectiveness and account
for the return on investment of test effort, techniques need to
be found to approximate this ground truth.

In order to approximate, we need ways of evaluating
the counterfactual scenario: what would have happened in
production were this test not to have been caught sooner?
Furthermore, when shifting left to catch bugs earlier in the
development life-cycle, we need ways to measure the coun-
terfactual scenario: what would have been the cost of fixing
this bug had it been found later in the development life-cycle?
This requires research on simulation of the impact of faults,
fault severity, and the correlation of these surrogate metrics
with production observations.



III. AUTOMATED REPAIR AND IMPROVEMENT

Since the inception of programming itself, software im-
provement has been a topic of interest. Ada Lovelace was
the first to highlight the importance of software optimisation,
writing the following paragraph, which still resonates today:

“One essential object is to choose that arrangement
which shall tend to reduce to a minimum the time
necessary for completing the calculation.” Extract
from Ada Lovelace’s ‘Note D’ to her translation
of Menabrae’s manuscript in the Analytical Engine
[32].

The past decade has witnessed a considerable body of
research developing the idea that, not just programs, but also
large-scale software systems, can be automatically repaired
and improved. Search Based Software Engineering [33] tech-
niques have been particularly widely studied to tackle both
problems. A great deal of work on automated repair has
focused on functional correctness and reliability, typically
caused by logic bugs [34]–[44]. The results are promising.

However, functional correctness and reliability are only
two of many concerns, important though they are. In in-
dustrial settings, other non-functional criteria are also highly
important, including memory consumption, power consump-
tion, code footprint size, scroll performance1, image render-
ing speed/quality, server to client latency, and CPU cycle
consumption. Initial results from synthesis [45] and genetic
improvement [46] are highly encouraging, but more work is
required to extend, evaluate and deploy automated techniques
for repair with respect to these non-functional system proper-
ties.

A. Tackling the Build Time Problem

Many approaches to automating software improvement,
such as automated repair [47] and genetic improvement [48]
require repeated experimental executions of candidate versions
of the system under improvement. For example, search based
approaches to repair and improvement may involve many tens
or hundreds of thousands of system executions in order to
compute the fitness values that guide the optimisation process.

This need for repeated execution raises the issue of the Build
Time Problem [49]: software build times for large systems,
consisting of tens to hundreds of millions of lines of code
can run into minutes or even hours [2], [50], [51]. In order
for search based optimisation techniques to be applied, the
research community needs to find better ways to compute
fitness without requiring overall system rebuild. Approaches
using machine learning and simulation are possible candidate
solutions. More research is required on these and other ap-
proaches if automated repair and improvement is to become
more scalable and impactful.

1Scroll performance refers to the ‘smoothness’ with which the user interface
responds to scroll requests. If the scroll behaviour is choppy (for example,
due to dropped frames or slow user interface response times), this creates a
poor user experience.

B. Effective Surrogates for Production Observations

The most realistic signal from testing comes from A/B
testing [52], [53], because this executes candidate system
improvements in production. However, it is clearly unrealistic
to test every change using A/B testing because it would
overburden production systems. In an ideal world, it would be
possible to experiment, at system level, with large numbers
of candidate changes using an efficient and safe surrogate
for likely production performance. Such a highly scalable
A/B testing surrogate would facilitate greater automation and
exploration.

Research is needed on surrogate approaches that have high
correlation to production observations. These highly correlated
surrogates can be used to scale light touch testing that shares
the advantages of A/B testing while reducing its cost. Sim-
ulation based testing approaches [54] are a natural avenue
to follow here, but more research is required to understand
the engineering trade-offs between simulation fidelity and
computational cost.

C. Constructing Actionable Software Measurement Hierar-
chies

When tackling the improvement of complex deployed soft-
ware systems, whether by human ingenuity or using automated
techniques, there is the problem of how to combine the various
software measurements involved. There is a large body of
literature on software measurement (often called software
‘metrics’). This body of literature includes many surveys
covering different approaches to measurement and different
use cases for measurement [55]–[57]. Despite this large body
of literature, there are relatively few results on how best
to combine multiple different software measurements. In the
remainder of this section we outline four pressing challenges
for software measurement research: composition, evolution,
verification and validation.
Measurement Composition: There are many different soft-
ware engineering stakeholders, each of whom represents di-
verse competing (and sometimes conflicting) engineering re-
quirements. For example, release engineers working to release
an app may wish to optimise the app’s memory footprint,
while production engineers may naturally be more concerned
with the response times experienced by the user. These two
objectives are not necessarily always in direct conflict, but they
each reside in a software engineering trade off space. Ideally,
the composition of metrics will accurately capture and thereby
assess the choices within this trade of space.

Even when focusing specifically on the user experience
itself, there are a number of different pertinent metrics such
as scroll performance, video quality, and client-server latency.
We need software measurement frameworks that allow us to
compose multiple different component software measurements
in meaningful ways. Such compositional frameworks need to
support several technical goals, including:

1) Hierarchical composition and decomposition of compo-
nent metrics.



2) Meaningful comparison between sets of component met-
rics.

3) Determination of suitable weightings to be given to
components that manage the potential conflict between
different metric components.

Measurement Evolution: Over time, new operational charac-
teristics emerge, and new product features require additional
user-facing metrics. However, there has been little research on
how to best evolve an overall suite of metrics. New component
metrics need to be incorporated, while maintaining consistency
with previous observations.
Measurement Validation: The study of software metrics was
focused initially on internal product metrics that measured
properties of the code itself [58]. This meant that initial
work on measurement validation tended to focus on the
validation problem of checking that observable internal code-
based metrics were correlated with more elusive properties,
such as software quality [59].

With the widespread adoption of A/B testing [60], a new
area of operational metrics has grown up, in which the
measurements taken concern properties of direct or indirect
concern to users. Some properties that matter to users are
difficult to assess automatically and directly from production
execution, leading to the study of indirect operational metrics.
For indirect operational user-facing metrics, there is also an
important validation question:

How do engineers ensure that the metrics on which
they drive their goals correlate sufficiently strongly
to the system attributes their users care about?

Even for direct measures of user experience, such as scroll
performance, there is a validation question: do these per-
formance metrics correspond to improvements in the user
experience? Clearly, very poor scroll performance would have
a negative impact on user experience, but relatively small
regressions may not be noticed. Therefore, it is unclear what
the exact correlation is without proper statistical investigation,
raising additional measurement validation questions. More
research is needed at the interface between data science
and software engineering to define techniques to validate the
relationship between operational performance metrics and end
user experience.
Measurement Verification: Many of the metrics computed
in previous research work have been relatively simple. That
is, they have been applied at the program level for which
verification has not become a significant challenge. As a result,
previous work on software metrics has also tended to ignore
the metric verification problem. However, many user-facing
metrics cater for large deployed systems involving complex
logging, sampling, and inference, all of which raise important
verification challenges. The metric verification question is:

How do engineers ensure that automated measure-
ments collected from software execution, correctly
capture the properties they seek to measure?

More research is needed on testing and verification specif-
ically targeted at complex measurements, computed from

sampled production systems’ logs.
Verification and validation of dynamically collected auto-

mated software measurement is simply the counterpart of the
two key verification and validation concerns for software test-
ing more generally. The twin problems can be thus summarised
in the language of software testing as follows:

measurement validation: are we measuring the right thing?
measurement verification: are we measuring the thing right?

IV. AUTOMATED TRANSPLANTATION AND
PATTERN-BASED REFACTORING

Approximately one third of software development activity
is spent on changes that should, in theory, affect neither the
functional nor the non-functional characteristics of the system
undergoing the change. These changes are typically performed
to enhance ongoing maintenance, to pay off technical debt,
or to update the underlying technologies used. This specific
class of activities is important from a software testing research
perspective because of the Oracle Problem. In these more
structural change scenarios, the Oracle Problem reduces to
the problem of regression testing, for which there is a readily
available oracle. In the section, we outline open challenges for
automated refactoring and transplantation.

A. Refactoring

There has been a great deal of previous research on software
refactoring [61], which has introduced automated techniques
that apply well-known low-level refactoring operations [62],
[63]. For simple code level refactoring techniques [64], there
is an underlying assumption that there is no test obligation
to be discharged; the refactored code should be correct by
construction.

More work is needed on generic frameworks for refactoring
at higher levels of abstraction. Ideally, we need automated
support for large-scale architectural changes to systems. For
example, migrating from one API to another, or implementing
a new design pattern. At this architectural level of abstraction,
it can no longer be assumed that there is no test obligation to
be discharged.

More research is required on testing techniques that are
specifically tailored to the change in hand. Prototype test
generation research tools typically require a great deal of
engineering effort to deploy in practice. This is often a barrier
to impact. By focusing on the specifics of such classes of
architectural refactoring task, the research community has the
potential for significant impact on industrial problems.

There is a balance to be struck between research and
practice. If the research problems tackled are too general
then there is a high barrier to uptake. At the other end of
the spectrum, researchers would clearly prefer not to tackle
problems so specific that they apply only to a narrow industrial
subsector. Current research on automated test generation has
tended to favour the more general end of this spectrum:



prototype research tools typically make no assumptions about
the nature of the change under test.

By focusing on specific classes of architectural change,
researchers would not be over constrained. The examples
mentioned here (such as API migration implementation of
new design patterns) are problems faced by all software prac-
titioners. They also offer exciting opportunities for research.
For example, knowing that the change affects a specific API
gives a natural characterisation of the software testing search
space: the function signatures of the API. Focusing on specific
change scenarios such as API migration also simplifies the
improvement opportunity space [65].

B. Transplantation

Automated software transplantation [66]–[68] is an impor-
tant special case of refactoring: a feature is transplanted from
one system (the donor) to another (the host). As with refactor-
ing more generally, there is a test obligation: to check that no
regression has occurred. In the case of transplantation, there
is an additional test obligation: to check that the new feature
operates as expected in the host. This additional test obligation
can also be supported by automated test data generation [66].

Automated transplantation offers great promise for software
productivity. Building small features involves engineers in very
low level code concerns. It is a highly time-consuming activity.
It involves many tedious details that are irrelevant to the overall
architectural goals that the engineer has in mind.

Operating at the feature level, engineers could achieve an
order of magnitude increase in their productivity. Automated
feature transplantation would also free engineers up from these
tedious low-level details to consider higher level architectural
concerns. Transplantation reflects a natural balance between
human and machine: the machine should be concerned with
tedious specific details, while the engineer has the domain
knowledge and linkage to business and customer requirements
required to facilitate overall system design choices.

Although transplant testing is more challenging than pure
regression testing, as with other refactoring problems, there is
a wealth of additional information available. Transplantation
is not a general problem of test generation for new features.
Rather, it constitutes a specific case, where the feature has been
transplanted from an existing donor system. Feature execution,
in situ, in the donor system can thus be used as a test oracle.
Since oracle automation is the last remaining barrier to fully
automated test generation, software transplantation is fully
automatable.

V. INCORPORATING ARTIFICIAL INTELLIGENCE

Programmers have long been interested in the potential
of artificial intelligence, discussing AI’s potential (or oth-
erwise) since the 19th century [32]. The past five decades
have witnessed and increasing intensity of work on AI-based
optimisation techniques for improving software testing [69]–
[71] and, since at least 2001 [33], software engineering more
generally. Over the past three decades, software engineers
have also become increasingly excited by the potential of

machine learning to tackle automation challenges in software
engineering [72]–[74].

Recent advances in generative AI have the potential to
perfectly complement existing research directions in Software
Engineering automation. In particular, automated test data
generation is a natural complement to generative AI. While
the generative AI approach may have powerful capabilities to
generate highly human-readable, domain and context aware
solutions, its tendency to hallucinate renders it relatively
unreliable on its own. However, automated test data generation
has the ability to add the necessary assurances, and to weed
out such hallucinatory aspects of AI-based solutions.

Generative AI models have been recently shown to exhibit
powerful emergent behaviours [75], which has far-reaching
implications. This makes their behaviour not only powerful,
but also inherently poorly understood. In applications where
there is no ground truth, such as general queries concerning
arbitrary facts about reality, the models’ emergent behaviour
may be problematic since it cannot be cross checked against a
ground truth. However, for software engineering tasks, such as
testing and code improvement, we have a very reliable ground
truth: the execution of the proposed test or improved version
of the code.

Finding a suitable query for a generative AI model is also a
non trivial undertaking due to the model’s emergent behaviour.
The query engineering problem is to find the optimal query
that will tend to obtain the most effective response. Such query
engineering is a topic that is likely to witness rapidly growing
interest. For software engineering applications, Search Based
Software Engineering (SBSE) [33] is well placed to tackle the
search for optimal (or near optimal) queries. SBSE is well-
suited to query engineering for software engineering because
it can use fitness, based on concrete ground truth, to search the
space of queries. SBSE is also known to be good at situations
characterised by noisy, partial and contradictory fitness signal
[76], all of which are prevalent for the query engineering
optimisation problem.

A. Augmenting existing test suites

Generative AI is likely to find impactful applications in
augmenting and extending existing test suites. For example,
given an existing set of test cases, it could be used to generate
additional test cases that cover corner cases or other likely
fault models, guided by a suitable fault history. Generative
AI may be able to additionally maintain the coding style of
the existing given test suite. Readability and maintainability
have long been concerns for automated test generation and
improvement [77]. AI techniques that mimic existing coding
styles will help facilitate this onward human maintenance and
may outperform existing purely rule-based approaches.

AI may also be useful in augmenting existing test cases with
additional oracle information. For example, adding assert
statements to unit tests that capture pertinent cases that the
developer may have overlooked. In both of these testing appli-
cations, Large Language Models (LLMs), trained on suitable
code corpuses, are likely to be effective. More research is



needed to explore these possibilities and, in particular, to better
understand how they should inter-operate with existing rule-
based approaches to test generation, oracle improvement, and
coverage maximisation.

Coverage reported from the first studies of unit test gen-
eration are highly encouraging. For example JavaScript unit
testing based on the Codex LLM was able to achieve median
statement coverage of 68.2% on non trivial systems [78].
Early results from hybrid approaches to test generation, in-
corporating traditional techniques with Machine learning have
also shown the promise of this agenda. For example, the
ATLAS approach [79] is able to add meaningful assertions
to existing test cases thereby tackling the oracle problem
which has, hitherto, proved a barrier to fully automated test
data generation. CODAMOSA [80] has been used to unblock
Search Based Software Test data generation, thereby elevating
coverage, also using a Large Language Model.

B. Replacing execution with prediction

Testing can always be more efficient, if we can find ways
to squeeze the attainment of more valuable test signal into the
same amount of available system resources. Much research
has focused on test case selection and prioritization to tackle
these challenges [81]. Predictive modelling (of likely test
outcomes, including those related to performance) provides
further opportunities to increase the amount of signal that can
be attained from given resources available for testing.

C. Suggesting code repairs and remediations

Recent research [82] indicated the effectiveness of Gener-
ative AI techniques, such as ChatGPT, based on LLMs, for
suggesting code repairs. These techniques are likely to prove
important for tackling existing software engineering automa-
tion problems such as automated program repair. However,
they also open up new potential deployment routes for repair-
based technologies.

In particular, the interactive discursive nature of LLMs lends
itself to supporting engineers in the full software engineering
process, from the detection of a bug through to its ultimate
repair. Such models might initially recommend a remediation
step that will tackle the immediate consequences of a bug. This
remediation immediacy is increasingly important in DevOps
scenarios where downtime is expensive [83].

After helping engineers to find an initial remediation, the
next step is to attempt to root cause the problem. LLMs also
have a role to play here. They will likely perform better when
provided with data from more traditional root cause identifi-
cation techniques, such as Spectrum-Based Fault Localisation
[84]. This root causing activity currently consumes a great
deal of engineers’ time. It can also be a deeply frustrating
experience for engineers [85].

One concern for this research agenda will be the potential
for engineers to end up relying on unsound AI-suggested
solutions. LLMs are prone to hallucination [86] just like
other sources of intelligence, such as human intelligence
[87]. Fortunately, the interactive and discursive nature of the

investigation also facilitates iterative verification. That is, the
engineer can check AI suggestions using, for example, targeted
automated test generation at each stage of the process. We
need more research to define techniques that combine the
exploratory power of AI, with the comprehensive assurance
of traditional test generation.

D. Suggesting performance improvements

While researchers have started to consider Generative AI’s
potential for automated repair [82], more work is needed
to understand its potential application to identify candidate
performance improvements. Here, the potential of a combi-
nation with traditional techniques is exciting. With repair, the
engineer is left with the oracle problem. They cannot be sure
that the candidate repair has fixed the problem, and may need
to generate additional test cases to gain such assurance.

However, when seeking performance optimisations, the en-
gineer can rely on regression testing in order to protect against
functional regressions. Given the wealth of available data
from previous executions, the regression testing problem may
prove more amenable than checking functional correctness.
Furthermore, the engineer seeking to use AI for performance
optimisation also has a natural way to measure the improve-
ment: the set of metrics against which they seek to measure
improvement, whether by human hand or by machine.

VI. OVERVIEW OF LESSONS FROM DEPLOYMENT

Achieving impact from software testing research is not sim-
ply a case of transplanting prototype tools into production en-
vironments. The point in the life-cycle at which the technology
interposes, and the manner in which it communicates its signal,
are highly important. We have witnessed situations where a
technology deployed too late in the software development
process had close to zero uptake from software engineers, yet
the exact same technology, deployed earlier (at the time when
its signals were maximally actionable) had profound impact
[6].

In this section we draw out lessons learnt, sometimes
through bitter experience, from the deployment of software
testing and improvement technology into scaled-out industrial
development environments. While our experience is naturally
limited to a single company, we focus on those lessons which
our colleagues from other companies tell us apply equally well
in their software engineering experience.

Space constraints permit only an overview in this section,
so we provide references from which the reader can obtain
more details in each case.
Deploy at the point of maximum relevance: Software
testing research tends to evaluate number of bugs found for a
given corpus of software. While this is perfect for scientific
evaluation, it represents a poor deployment strategy. The best
deployment of software testing research ensures that the signal
provided by the test tool is available at exactly the time at
which the developer is working on the change. Therefore,
in order to achieve impact, it is essential to deploy into the



continuous integration system at a time of maximum relevance
[6].
Determine the role of the human in the automation loop: It
is important to consider where the developer should interpose
in the automated improvement loop. For example, developers
typically want to take and own the code change to be applied,
even when an automated recommendation is 100% correct
[43]. Ultimately, human engineers will be responsible for the
changes that land into production. Maximum automation is
achieved when human decision time is minimised. Maximum
automation therefore requires careful thought about how and
when signals and recommendations from automation are pre-
sented to the engineer.
Automated fix detection: It is important to be able to measure
the impact of signals provided by automated testing improve-
ment technologies. This impact assessment also needs to be
automated, to support continuous evaluation and improvement
of the deployment. Typically, a bug can only truly be said
to be fixed when there is certainty that there remains no
production manifestation. Automatically determining this at
scale is a surprisingly challenging problem. For example,
automated fix detection from production observations of crash
hashes remains an open research problem [1].
Piggybacking increases testing research deployment veloc-
ity: Fully automated software testing is most readily achieved
in regression testing scenarios where the oracle problem is
relatively automatable. Fortunately, regression testing deploy-
ment also offers many opportunities for other software testing
research to become deployed. For example, regression testing
and metamorphic testing [88], [89] are so closely related
that a single system can be deployed to achieve both [2].
Similarly, fuzzing technology [90] has achieved widespread
deployment, and is technically almost indistinguishable from
Search Based Software Testing techniques [91], suggesting
hybridisation opportunities [92]. In this way, those hitherto
less-well-deployed software testing research techniques can
piggyback on existing high impact deployments.
The build-time problem must be tackled for improvement
deployment: The build-time problem [49] for automated re-
pair and genetic improvement can be a barrier to deployment
of automated improvement techniques that require repeated
execution of the system to be improved. We were able to
ameliorate using simulation based techniques [54], but other
approaches may also remove this barrier, such as predictive
modelling and deep parameter optimisation [93].
Testability transformation increases applicability: Re-
designing an entire software testing platform to cater for the
specific features of a system under test can be prohibitively
expensive. Sometimes the root cause for non-deployment of
software testing techniques lies simply in irritating detailed
incompatibilities. There are often implicit assumptions made
by an otherwise highly deployable tool. In these situations,
it can be easier to apply Testability Transformation [94]–[99]
to the system under test to render it amenable to previously
inapplicable technologies. Transforming a system, specifically
with testability in mind, may also have additional benefits by

supporting human design of test cases.
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Bologna, 1996.

[56] J. K. Chhabra and V. Gupta, “A survey of dynamic software metrics,”
Journal of computer science and technology, vol. 25, pp. 1016–1029,
2010.
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