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Abstract—

The choice of how to represent the search space for
a genetic algorithm (GA) is critical to the GA’s per-
formance. Representations are usually engineered by
hand and fixed for the duration of the GA run. Here a
new method is described in which the degrees of free-
dom of the representation — i.e. the genes — are in-
creased incrementally. The phenotypic effects of the
new genes are randomly drawn from a space of differ-
ent functional effects. Only those genes that initially
increase fithessare kept. The genotype-phenotype map
that results from this selection during the construction
of the genome allows better adaptation. This effect is
illustrated with the NK landscapemodel. Theresulting
genotype-phenotype maps are much less epistatic than
unselected mapswould be, having extremely low values
of “K” —the number of fitness componentsaffected by
each gene. Moreover, these maps are exquisitely tuned
to the specifics of the epistatic fitness function, creat-
ing adaptive landscapes that are much smoother than
generic NK landscapes with the same genotype-pheno-
type maps, with fitnesspeaks many standar d deviations
higher. Thusa caveat should be madewhen making ar-
gumentsabout the applicability of generic propertiesof
complex systemsto evolved systems. This method may
help to solve the problem of choice of representations
in genetic algorithms.

|. INTRODUCTION

Proper representations of the search space are crucia to
the performance of genetic algorithms (GAs). For a ge-
netic algorithm to perform better than random search, the
representation and genetic operators combined must con-
tain “knowledge” about the fitness function, in the form
of correlations between parental fithesses and offspring fit-
nessdistributions, which allowsthe genetic operator to take
fitter individualsand produce still fitter offspring with non-
vanishing probability [1]. Thisknowledgemay beimplicit,
fortuitous, or by design in the choice of representation. A
representation that facilitates the production of fitter vari-
ants can be said to yield evolvability.

Intraditional fixed-length GAs, the representationiscre-
ated in its entirety at the outset, Athena-like from the head
of thedesigner. Itsevolvability ispredetermined. Onehope
in genetic algorithm research has been that good represen-

tationsthemselves coul d be produced through an evolution-
ary approach [2, 3, 4, 5]. Herel discuss a method modeled
after biological evolutionfor evolving representationswith
high evolvability.

In biological evolution, the genome has been built up in-
crementally by the acquisition of new genes. Many random
gene additions occur through various genetic mechanisms.
However, only those genes that produce an increase in fit-
nessbecomestably incorporatedin thegenome. Thenature
of the gene’s effect on the phenotype determinesthe chance
that it will produce a fitness increase. Genes that disturb
highly adapted organismal functionsare most likely delete-
rious. Genes that preserve highly adapted functions while
exploring novel functions have the best chance of produc-
ing afitnessincrease, and thence being incorporated in the
genome. Thus newly incorporated genes would tend to
be modular in effect, with less del eterious side-effects (i.e.
less pleiotropy). Modularity in the genotype-phenotype
map would increase its evolvability[6].

In this paper, | develop an algorithm modeled after bi-
ological genome evolution as a strategy for evolving rep-
resentations with high evolvability. The method is illus-
trated using Kauffman's NK adaptive landscape model,
in which the structure of the genotype-phenotype map
can be seen explicitly. The resulting adaptive landscapes
are highly non-generic in their statistical properties, being
much smoother than can beaccounted for by their structure,
allowing higher fitnesses to be reached that would be ob-
tained through unsel ective generation of representations.

II. CONSTRUCTIONAL SELECTION

The method of evolving representations is to expand the
genome one gene at atime by randomly altering the geno-
type-phenotype map function to include one additional ar-
gument. If that alteration reduces fitness, it is rejected,
and another attempt made until an alteration that increases
fitness is found. Once thisis done, a conventional GA is
run with this expanded genome to adapt it to a new fitness
peak. Then, another round of genome expansion is run.
Thisisillustrated in Figure 1.

This method is expressed formally as follows. Let there
be n genes in the genome. The aldlic value, z;, for each
gene i is an element of the gene's own domain space, G;
(for binary coding, G; = {0,1}; for real vaued GAs,
G = R; ingenetic programming, G; could bethefunction
or terminal sets or both). A genotype is an array, * =
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Figure 1. The genome growth algorithm using constructional
selection to evolve the representation.

[|z:i||’=1 € Gn, Of the dlelic values, where G,, = G x
Gy x ... x Gy isthe genotype space (in typical GAs, the
domain spaces G; are identical).

A genotype-phenotype map function, ¥,, : G, — S,
maps the genotype = to the search space §. A fitness
function w(s) is defined on each point s € S in the search
space.

Asthe genome grows, one obtains a sequence of maps:

W, : G1 — S
l-|J2: G1XG2 — S
Y,: Gi1xGy...xG, —>8.

When a new gene is added to the genome, the genotype-
phenotype map ismodified from W,, to W, +1. The modifi-
cationis madeby aprobabilistic operator with probabilities
T(¥, = W,41). Itisherethat heuristic knowledge of the
search space must be incorporated by the designer, since
random search through the space of al possible genotype-
phenotype maps is no better than random search through
S. Onemust have an a priori expectation that some of the
modifications will produce new maps that are only incre-
mentally changed from old maps (as in [3]). This alows
one to relocate the problem of knowledge incorporation to
alevel whereit may be more naturally accommodated.

For exampl e, thiswould be the case with series represen-
tations = W, (&) = >, [a; cos(w;) + b; sin(w;)], where
z; = (a;,b;,w;) € G;. Another example is a genetic pro-
gramming approach, where new functions and terminals
can be appended to the parse tree [7].

Let us return to the idea that an evolved point in the
search space has some aspects that are highly adapted, and
others that are not yet adapted. If this partition into sub-
goas is possible (and for some search spaces it may not
be), then one would like to augment the genotype-pheno-
type map in a way that leaves the highly adapted traits
unaffected while exploring the unadapted traits. Yet these
“traits’ (e.g. subgoals) are usually not directly observable,

but are abstract, emergent properties of the fitness func-
tion. If one hasa priori reason to believe that at least some
of the modifications W,, — W,, ;1 will be able to correctly
partition the adapted traits from the unadapted ones, then
constructional selection is a means by which to incorpo-
rate those modifi cations into the genotype-phenotype map.
This can beillustrated in amodel of genome growth using
Kauffman's “NK” adaptive landscape model.

I1l. THE “NK” ADAPTIVE LANDSCAPE MODEL

Kauffman's “NK” adaptive landscape model [8] will be
used to illustrate the effects of constructional selection
because it explicitly shows the epistatic structure of the
genotype-phenotype map. The following is a generalized
version of the NK model, amap between a set of genes and
a set of fitness components. Thisisillustrated in Figure 2.

1. The genome consists of n binary-valued genes, that
exert control over f phenotypic functions, each of
which contributes a component to the total fithess.

2. Each gene controls a subset of the f fithess compo-
nents, andinturn, eachfithesscomponent iscontrolled
by a subset of the n genes. This genotype-phenotype
map can be represented by a matrix,

M = ||mij||,i:1...n,j: 1...1,

of indicesm;; € {0, 1}, wherem;; = lindicatesthat
gene affects fitness component j;

3. Thecolumnsof M, called the polygeny vectors, g; =
[[mij]|, ¢ = 1...n, give the genes controlling each
fitness component j;

4. The rows of M, called the pleiotropy vectors, p; =
lmi;ll, 7 = 1... f, givethe fitness components con-
trolled by each gene i;

5. If any of the genes controlling a given fithess compo-
nent mutates, the new value of the fithess component
will be uncorrelated with the old. Each fitness com-
ponent ¢; is a uniform pseudo-random function® of
the genotype, € {0, 1}™:

¢i(x) = P(xog;;i,g;) ~ uniformon|0, 1],

whered: {0,1}"” x {1,...,n} x {0,1}" — [0,1],0
isthe Schur product (x o g; = |lzimy;[l,i = 1...n).
Any changein i, g;, or @ o g, gives a new value for
®(x o g,;1i,g,;) that isuncorrelated with the old;

6. If afitness component is affected by no genes, it is
assumed to be zero:

®P(xog,;t,g;) =0foralx,ifg, =|0...0];

7. Thetota fitness is the normalized sum of the fitness
components:

Park-Miller is unsuitable. The encryption-likealgorithm ran4 [9] was used.
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Figure 2: Kauffman’s NK model recast as a map between the
genotype and a set of fitness components. Arrows indicate that
the gene affectsthefitness component. A new genewith effectson
two fitness componentsis shown being introduced to the genome.

A. Constructional Selection on Pleiotropy

Suppose agene newly added to the genome has pleiotropy
vector p,,,;, and affects k41 = Zle Mpt1; fitness
components, which become resampled from the interval
[0,1]. Let y be the sum, before the new gene is added, of
the fitness components the new gene is going to alter. The
probability that the new sum will belessthan y is:

Frly) = PriSk <y (D

= axew () (=)

where S is the sum of £ independent uniform random
variableson [0,1], from [10].

Then, from equation (1), the probability that the new
genewill produceafitnessincreaseis1— Iy, ., (y). When
the average of the fitness components to be atered by the
new gene is above 1/2, the greater k&, 1 is, the less the
chance that the new gene will produce a fitness increase,
precipitously less sofor highly adapted fitnesscomponents.
Since the new gene is kept only if it produces a fithess
increase, constructional selection will filter out genes with
high .

Suppose that there is an underlying probability density
s(k) of pleiotropy valuesk for genesnewly addedto the ge-
nome. Then the density s* (k) of pleiotropy values among
genes that are kept by the genome (i.e. which improve
fitness) will be

s*(k)=s(k) Y Priplk][1-Fe(p"9)] /N (2)
pe{o1}s
where ¢ isthe vector of fitness componentsbefore the gene
wasadded, Pr[p|k] isthe probability of sampling pleiotropy
vector p given that the new gene's pleiotropy value is k,
and N isthenormalizer sothat >, s* (k) = 1.

B. Numerical Results

A numerical simulation of constructional selection in the
NK model was performed using the genome growth algo-
rithm illustrated in Figure 1:

1. Add a new gene to the genome:
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Figure 3: Two genotype-phenotype maps evolved through ge-
nome growth, with (left) and without (right) constructional se-
lection. Dark squares indicate that fithess component 5 depends
on gene :. The columns in the right map reflect the sampling
distribution of the pleiotropy vectors, in which the number of
fithess components affected is uniform on [1, f]. The left map
shows how under constructional selection, later genes have lower
pleiotropy as the genome grows and becomes more adapted.

(a) create a new pleiotropy vector p,, ., choosing
uniformly (from {1, . . ., 31}) the number, k., 11,
of fithess componentsto be affected by the new
gene, and then sel ecting randomly which fitness
components these are, from a set of f = 31
possible;

(b) picktheallelicvalue, z, 41, of thenew genewith
probability 1/2 being either O or 1.

2. If the new gene decreases fitness, reject it and repeat
step 1. Otherwise, keep it.

3. Adapt « to the new (local) optimum & by allelic sub-
gtitution through a“ greedy” 1-mutant adaptive walk.

4. Repeat step 1 until the genome has 31 genes.

The pleiotropy vectors, p,, ., are chosen from the same
uniform distribution throughout the run. As a basis for
comparison, the genome growth algorithmisalso run with-
out step 2, giving the result of choosing representations a
priori.

B.1. Evolved Genotype-Phenotype Maps

Figure 3 showstypical genotype-phenotype mapsproduced
during runs with and without constructional selection. The
run without constructional selection reflectsthe underlying
distribution of pleiotropy vectors sampled for each new
gene. In the run with constructional selection, during the
evolution of thefirst few genes, thediscovery of new fithess
components selectsfor high pleiotropy, but as these fithess
components evolvetoward their optima, selection becomes
strong against new genes affecting them.

This increasing selection for low pleiotropy can be seen
in Figure 4, which shows the distribution of pleiotropies
k, asthe genome grows, over repeated runs of genome
growth. The mode for k,, is always 1 after the first few
genes, but as shown in Figure 5, the mean k,, tends toward
1frominitial valuesof around 16, or half of the maximum
possible, f = 31

The progress in adaptation can be compared between
runs with and without constructional selection. Figure 6
shows plots for a number of runs. Without constructional
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Figure 4: The distribution, from repeated runs of the genome
growth algorithm, of pleiotropy values k,,, from each gene’splei-
otropy vector p,,, as the genome grows; with (left) and without
(right) constructional selection.
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Figure 5: The average pleiotropy values k,, for each gene asthe
genome grows, from the runs in Figure 4, with constructional
selection.

selection, disruptive new genes are not filtered out, and
adaptation shows little progress once the fitness compo-
nents are saturated with genesthat affect them. With con-
structional selection, however, fitness continuesto increase
with each new gene throughout the genome growth.

As the genome grows, the tragjectories of individual fit-
ness components can be seen in Figure 7. With construc-
tional selection, once a fitness component has reached a
high value (low pointsin graph), only new genesthat leave
it alone are likely to be incorporated in the genome. Oc-
casionally, however, one component is sacrificed for the
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Figure 6: Fitness as afunction of genome size for several runs of
the genome growth algorithm. Dark linesarewith, and light lines
without constructional selection.
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Figure 7: Fitness components during genome growth, for one
genome evolved with (left) and one without (right) constructional
selection. Fitness components are sorted according to their value
at the end of the run.

improvement in another, which show up as spikes in the
graph. By the time the genome has reached a size of 31
genes, most of the components have reached values well
above their expected value of 1/2. Without constructional
selection, the jumble of spikes represents the continuing
randomi zation of thefitness componentsas geneswith ran-
dom pleiotropy are incorporated into the genome.

Here, most of the adaptation under constructional selec-
tion occurs during the incorporation of new genes, rather
than during the adaptive walks (through allelic substitu-
tion) between gene additions. This is because there is a
much larger pool of new pleiotropy vectors to sample from
than the pool of genotypesin the 1-mutant neighborhood of
an existing genotype (27 vs. n). The evolutionary process
under constructional selectionisfiguratively the*building”
of afithess peak, gene by gene, rather than the climbing of
afitness peak.

B.2. Non-Generic Properties of Evolved Landscapes

Existing theory for adaptive walks on NK landscapes
[11, 8, 12, 13] isderived for generic landscapes, i.e. land-
scapesthat onewould typically obtain from arandom sam-
pling of landscapes with given values of n and k. The ap-
plicability of these results to biological examples assumes
that evolutionary processes produce such generic adaptive
landscapes. However, the distribution of fitness peaks in
the NK landscapes grown here under constructional se-
lection are nowhere near the distributions for generic NK
landscapes with identical genotype-phenotype maps.

Constructional selection produces genotype-phenotype
mapsthat are much morefinely tuned to thefitnessfunction
under which they evolved. To illustrate this, the distribu-
tion of fitness peaks for several landscapes evolved under
constructional selection are plotted in figure 8. For com-
parison, distributions are plotted for landscapes using the
same genotype-phenotype map, but with fitness functions,
@, chosen a priori. Each point represents the fitness peak
obtained by starting an adaptive walk from a randomly
sampled genotype. The distributionsare plotted by sorting
the fitness peaks by size (the transpose of the figure there-
fore represents the cumulative probability distribution for
fitness peaks). The width of horizontal plateaus represents
the size of the domain of attraction for a particular fithess
peak.
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Figure 8: Distributions of fithess peaks of NK landscapes: upper
10 plots are for adaptive landscapes evolved under constructional
selection; lower 10 plots are with the same genotype-phenotype
maps but randomi zed fitness functions. In each plot, the peaks at-
tained from 1000 random starting genotypes are sorted by fitness.
Plateaus indicate large domains of attraction for the peak.

Theplateaus, and discontinuitiesbetween them, indicate
fewer and larger domainsof attraction for the evolved land-
scapes, i.e. they are smoother than the generic landscapes.
Thedistributionsfor the generic landscapesfollow roughly
the Gaussian approximation derived by Weinberger [13].
While the least fit peaks are approximately the same for
both evolved and generic landscapes, at various points in
the ranking, the fitness of the evolved landscapes grows
much higher. Interestingly, the jumps in the distribution
are highly variable.

An additional beneficial outcome of constructional se-
lection is that the genotypes resulting at the end of the
run are usually the apparent global fitness peak. In 77%
of adaptive landscapes evolved under constructional selec-
tion (304 sampled), the genotypes attained at the end of
genome growth were fitter than any other adaptive peak
found (from 250 other starting genotypes). Of the remain-
ing landscapes, only 19% of the peaks arrived at from ran-
dominitial genotypeswerefitter than the genotype attained
at the end of genome growth.

C. Computational Complexity

The usefulness of constructional selection for genetic al-
gorithms should be measured by the number of pointsin
the search space that need to be evaluated to reach a certain
fitness. There are several strategies for spending compu-
tational resources: One can take an a priori representa
tion, run numerous adaptive walks from different initial
genotypes, and take the fittest peak attained after expendi-
ture of the set amount of computations. Alternately, one
can partition one’'s computations sampling among differ-
ent genotype-phenotype maps to find that with the fittest
peak. Lastly, the approach examined here is to progres-
sively modify simple genotype-phenotype maps to more
complex oneswith the genomegrowth al gorithm described.
The payoff in the level of optimization obtained through
constructional selection shows it to be a much more effi-

cient.

As a simple example, consider the class of NK land-
scapes with the highest expected fithess peaks, the k = 1
landscapes (whichis K = 0in Kauffman’s original defini-
tion), in which there isaone-to-one map from each geneto
each fitness component, and f = n. Each gene can be op-
timized individually, so it takes the evaluation of 2n geno-
typesto find the global peak for the landscape. Each fithess
component isi.i.d., where the optimal & is distributed as
the maximum of two independent uniform random vari-
ableson [0,1]. The probab|I|ty density of each maximum
i is f(¢) = 26. E(¢) = 2/3 and Var(¢ ) = 1/18.
With n = f = 31 genes and fithess components, one
obtains:

1

187~ 0.00179.
The average fitness attained under constructional selection
in the numerical simulations (where the average k is much
larger than 1) is about 0.89, which istherefore some 5 stan-
dard deviations (5 x 0.0423) above the expected value of
peaks obtained from generic £ = 1 landscapes. The prob-
ability of ak = 1 landscape having a peak with fitness at
least 0.89, under anormal approximation (an overestimate),
is3 x 10~7. So a strategy of sampling different random
k = 1 landscapes would require over 2 x 10° samplesto
be likely to obtain fitness peaks as high as those obtained
through constructional selection, which in the runs here
took some 3000 evaluations of the fitness function.

The ahility to select on the genotype-phenotype map as
it is constructed is the key to finding higher fitness values.
To carry out constructional selection inthe k& = 1 case,
one could add one gene at atime and for each choice of
the fitness component it maps to, examine the fitnesses for
both alleles, and keep the allele and map that give thefittest
value. Thefirst gene would be evaluated for the f possible
genotype-phenotype maps, for a total of 2f evaluations.
Thesecond genewould besampledwiththeremaining f—1
unmapped fithess components, and so forth, giving a total
of f(f + 1) evaluations. Each resulting fitness component
would be the maximum of 2(f — ¢ + 1) uniform i.i.d.
values, for the ith gene/gene map pair. So the ith fitness
component would be distributed as Fj(¢) = ¢2/—i+D),
The fitness components would have expectation

Ty _2Af+1-d)
TS D)

The expected value for the fitness peaks obtained through
this constructional selection process would be

fZZZ

For n = f = 31, the expected fitness peak would be
E[w(&)] ~ 0.945, and would take 31 x 32 = 992 evalua-
tionsto find. Thisisamuch more efficient use of compu-
tational resources than randomly searching generic k = 1
landscapes for those with the highest peaks.

E[w(#)] = 2/3, and Var[w(#)] =

E[w ()]




D. Constructional Selection is a Novel Evolutionary
Mechanism

Mechanisms that have classically been proposed for the
evolution of evolvability all invoke allele substitution at
pre-existing loci (including Kauffman's suggestions as to
how K could evolve [14]). Theseinclude:

1. smooth landscapes as a side-effect of allelesthat pro-
duce advantageous phenotypic stability (e.g. stable
proteins, stable developmental pathways);

2. neutral allelesthat modify the landscape and hitchhike
with later advantageous mutations they facilitate.

The evolution of smooth landscapes through the filtering
of loci asthey comeinto being is distinct from allelic sub-
gtitution and does not require the particular effects men-
tioned above. Although models of gene duplication and
evolution have been analyzed in evolutionary population
genetics [15], the systematic effect of producing a more
evolvable genotype-phenotype map has been mentioned in
few sources[6, 16, 17].

Experiments of evolving computationa genotype-
phenotype maps using constructional selection should be
explored for what insightsthey may provide about thestruc-
ture of natural genotype-phenotype maps. Theresultshere
show that it may be wrong to assume that evolved adap-
tive landscapes follow patterns of mathematically generic
landscapes.

IV. CONCLUSIONS

| have described a method for evolving representations for
GAs with the goal of improving their performance. The
method is modeled after the process of biological genome
evolution, in which newly created genes become stably in-
corporated in the genome only when they produce afithess
increase. This selection in the construction of the genome
is expected to filter out genes that disrupt highly adapted
traits, biasing the evol ution of the genotype-phenotypemap
toward a modular structure. Such a modular structure in
the representation used for a GA would reduce epistatic
interactions between genes and confer greater evolvabil-
ity. Thispredicted outcomeistested using Kauffman’sNK
landscape model.

In the NK model, by simply adding new geneswith ran-
dom effects to the genome and rejecting those that reduce
fitness, genotype-phenotype maps evolve very little epista-
sis between genes. But the resulting adaptive landscapes
are smoother, with higher peaks, than even low epistasis
can account for.

These results suggest that much more efficient algo-
rithms may be obtained if there is an opportunity to build
up representations incrementally, gene by gene, and keep
only those additions to the representation that produce a
fitnessincrease.

A caveat should be made to the application of adap-
tive landscape theory to rea organisms. The evolution-
ary processes that constructed their genomes may result in
genotype-phenotype maps that are not well described by

generic models. Constructional selection provides a novel
mechanism to produce the low values of K hypothesized
by Kauffman [14].

ACKNOWLEDGEMENTS

This research was supported in part by the Santa Fe Institute, The Cen-
ter for Nonlinear and Complex Systems at Duke University, Provost's
Common Fund, and NSF Grant EAR-89-15983. It grew from Stuart
Kauffman's discussion of the NK landscape model at the Santa Fe In-
stitute’s 1991 Complex Systems Summer School. | thank: Peter Haff,
Marcy Uyenoyama and Richard Palmer for computational support; Joe
Felsenstein, Frank Eeckman, Gunter Wagner and Eric Mjolsness for the
invitationsto speak which facilitated this work.

REFERENCES

[1] L. Altenberg, “The evolution of evolvability in genetic program-
ming,” in Advances in Genetic Programming (K. E. Kinnear, ed.),
(Cambridge, MA), MIT Press, 1994.

[2] C. G. Shaefer, “The ARGOT strategy: adaptive representation ge-
netic optimizer technique,” in Genetic Algorithms and their Appli-
cations: Proceedings of the Second International Conference on
Genetic Algorithms (J. J. Grefenstette, ed.), (Hillsdale, NJ), pp. 50—
58, Lawrence Erlbaum Associates, 1987.

[3] I. Harvey, “The basis for a continuing SAGA,” in Toward a Prac-
tice of Autonomous Systems. Proceedings of the First European
Conference on Artificial Life (F. J. Varela and P. Bourgine, eds.),
(Cambridge, MA), pp. 346-354, M.1.T. Press, 1992.

[4] N. Schraudolph and R. Belew, “Dynamic parameter encoding for
genetic algorithms,” Machine Learning, vol. 9, no. 1, pp. 9-21,
1992.

[5] D. Szarkowicz, “A multi-stage adaptive-coding genetic algorithm
for design applications,” in Proceedings of the 1991 Summer Com-
puter Smulation Conference (D. Pace, ed.), (San Diego, CA),
pp. 138-144, 1991.

[6] L.Altenberg, “ Knowledge representationinthegenome: new genes,
exons, and pleiotropy,” Genetics, vol. 110, supplement, p. s41, 1985.
Abstract of paper presented at the 1985 Meeting of the Genetics
Society of America.

[7] J. R. Koza, Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection. Cambridge, MA: MIT Press,
1992.

[8] S. A.Kauffman, “Adaptation on rugged fitness |landscapes,” in Lec-
tures in the Sciences of Complexity (D. Stein, ed.), pp. 527-618,
Redwood City: Addison-Wesley, 1989. SFI Studiesin the Sciences
of Complexity, Lecture Volume l.

[9] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,

Numerical Recipesin C: The Art of Scientific Computing. Second

Edition. Cambridge University Press, 1992.

W. Feller, An Introduction to Probability Theory and Its Applica-

tions. New York: John Wiley and Sons, 1971.

S. A. Kauffman and S. Levin, “Towards a general theory of adap-

tive walks on rugged landscapes,” Journal of Theoretical Biology,

vol. 128, pp. 1145, 1987.

C. A. Macken and A. S. Perelson, “Protein evolution on rugged

landscapes,” Proceedings of the National Academy of Sciences of

the United States of America, vol. 86, pp. 6191-6195, 1989.

E. D. Weinberger, “Local properties of kauffman’s N-k model, a

tuneably rugged energy landscape,” Physical Review A, vol. 44,

no. 10, pp. 6399-6413, 1991.

S. A. Kauffman, “Principles of adaptation in complex systems,” in

Lecturesin the Sciences of Complexity (D. Stein, ed.), pp. 619-712,

Redwood City: Addison-Wesley, 1989. SFI Studiesin the Sciences

of Complexity, Lecture Volume l.

T. Ohta, “Further simulation studies on evolution by gene duplica-

tion,” Evolution, vol. 42, pp. 375-386, 1988.

R. J. Riedl, “A systems-analytical approach to macroevolutionary

phenomena,” Quarterly Review of Biology, vol. 52, pp. 351-370,

1977.

W. F. Doolittle, “The origin and function of intervening sequences

in DNA: A review,” American Naturalist, vol. 130, pp. 915-928,

1987.

[10]

[11]

[12]

[13]

[14]

[19]

[16]

[17]



