The Schema Theorem and Price’s Theorem
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Although it is generally stated that the Schema Theorem (Holland, 1975) explains the power of ge-
netic algorithms (GAs), dissent to this view has been expressed a number of times (Grefenstette and
Baker 1989, Miihlenbein 1991, Radcliffe 1992). Miihlenbein points out that “the Schema Theorem
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Abstract

Holland’s Schema Theorem is widely taken to be the foundation for explanations of the
power of genetic algorithms (GAs). Yet some dissent has been expressed as to its implica-
tions. Here, dissenting arguments are reviewed and elaborated upon, explaining why the
Schema Theorem has no implications for how well a GA is performing. Interpretations of
the Schema Theorem have implicitly assumed that a correlation exists between parent and
offspring fitnesses, and this assumption is made explicit in results based on Price’s Covari-
ance and Selection Theorem. Schemata do not play a part in the performance theorems
derived for representations and operators in general. However, schemata re-emerge when
recombination operators are used. Using Geiringer’s recombination distribution represen-
tation of recombination operators, a “missing” schema theorem is derived which makes
explicit the intuition for when a GA should perform well. Finally, the method of “adap-
tive landscape” analysis is examined and counterexamples offered to the commonly used
correlation statistic. Instead, an alternative statistic — the transmission function in the
fitness domain — is proposed as the optimal statistic for estimating GA performance from
limited samples.

INTRODUCTION

calculationsin the proof of Theorem 5 have been added to the Appendix, August 15, 2001.
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is almost a tautology, only describing proportional selection,” and that “the question of why the ge-
netic algorithm builds better and better substrings by crossing-over is ignored.” Radcliffe points out
that

1. The Schema Theorem holds even with random representations, which cannot be expected to
perform better than random search, whereas it has been used to claim that GAs perform better
than random search;

2. The Schema Theorem holds even when the schemata defined by a representation may not cap-
ture the properties that determine fitness; and

3. The Schema Theorem extends to arbitrary subsets of the search space regardless of the kind
of genetic operators, not merely the subsets defined by Holland schemata (Grefenstette 1989,
Radcliffe 1991, Vose 1991).

The Schema Theorem, in short, does not address the search component of genetic algorithms on
which performance depends, and cannot distinguish genetic algorithms that are performing well
from those that are not. How, then, has the Schema Theorem been interpreted as providing a foun-
dation for understanding GA performance?

What the Schema Theorem says is that schemata with above-average fitness (especially short, low
order schemata), increase their frequency in the population each generation at an exponential rate
when rare. The mistake is to conclude that this growth of schemata has any implications for the
quality of the search carried out by the GA. The Schema Theorem’s implication, as many have put
it, is that the genetic algorithm is focusing its search on promising regions of the search space, and
thus increasing the likelihood that new samples of the search space will have higher fitness. But the
phrase “promising regions of the search space” is a construct through which hidden assumptions are
introduced which are not implied by the Schema Theorem. What is a “region”, and what makes it
“promising”?

The regions are schemata, and “promising regions” are schemata with above-average fitness. Off-
spring produced by recombination will tend to be drawn from the same “regions” as their parents,
depending on the disruption rate from recombination. The common interpretation of the Schema
Theorem implicitly assumes that any member of an above-average schema is likely to produce off-
spring of above-average fitness, i.e. that there is a correlation between membership in an above-
average schema and production of fitter offspring. But the existence of such correlations is logically
independent of the validity of the Schema Theorem.

For example, consider a population with a needle-in-a-haystack fitness function, where exactly one
genotype (the “needle”) has a high fitness, and all the other genotypes in the search space (the “hay”)
have the same low fitness. Consider a population in which the “needle” has already been found. The
needle will tend to increase in frequency by selection, while recombination will most likely generate
more “hay”. The Schema Theorem will still be seen to operate, in that short schemata with above-
average fitness (those schemata containing the needle) will increase in frequency, even though the
fitness of new instances of the schemata (more hay) will not be any more likely to have the high
fitness of the needle.

It is the quality of the search that must be used to characterize the performance of a genetic algorithm.
One basis for evaluation is to compare the ability of a GA to generate new, highly fit individuals
with the rate at which they are generated by random search. A direct approach to measuring GA
performance is to analyze the change in the fitness distribution as the population evolves. For a
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GA to perform better than random search, the upper tail of the fitness distribution has to grow in
time to be larger than the tail produced by random search. Some initial efforts at characterizing the
growth of the upper tail of the fitness distribution were provided in Altenberg (1994), where a notion
of “evolvability” — the ability to produce individuals fitter than any existing — was introduced
as a measure of GA performance. A basic result is that for a GA to perform better than random
search, there has to be a correlation between the fitness of parents and the upper tail of the fitness
distribution of their offspring. This was obtained by using Price’s Covariance and Selection Theorem
(Price 1970, 1972) with a particular measurement function that extracts the fitness distribution from
the population.

In this paper, | first review the application of Price’s Theorem to GA performance analysis. Then |
show how Price’s Theorem can be used to obtain the Schema Theorem by employing a measurement
function that extracts the frequency of a schema from the population. The difference between the
theorem that measures GA performance, and the Schema Theorem, which does not, is shown to be
simply a choice of measurement functions.

In the process of deriving results that relate the parent-offspring correlations to the performance of
the GA under a generalized transmission function, schemata disappear as pertinent entities. There-
fore, “schema processing” is not a requirement for performance in evolutionary algorithms in gen-
eral. However, under recombination operators, schemata reappear in the formula for the change in
the fitness distribution. This “missing” schema theorem shows explicitly that there must be correla-
tions between schema fitnesses and offspring fitness distributions for good GA performance. It gives
a quantitative expression to the Building Blocks Hypothesis (Goldberg 1989) and suggests ways to
modify recombination operators to improve genetic algorithm performance.

2 GENETIC ALGORITHM ANALYSISUSING PRICE’'STHEOREM

The strategy | take here (see Altenberg (1994) for details) is to start with a general formulation of the
“canonical” genetic algorithm dynamics, for arbitrary representations, operators, and fitness func-
tions. Measurement functions are then introduced to extract macroscopic features of the population.
The evolution of these features can be shown, using Price’s Covariance and Selection Theorem, to
depend on the covariance between the measurement function and fitness. The choice of one mea-
surement function gives us the Schema Theorem, while the choice of another measurement function
gives us the evolution of the fitness distribution in the population, which | refer to as the Local Per-
formance Theorem. Thus, the inability of the Schema Theorem to distinguish GA performance can
be seen simply as the consequence of the measurement function that was chosen.

2.1 A GENERAL MODEL OF THE CANONICAL GENETIC ALGORITHM

A “canonical” model of genetic algorithms has been generally used since its formulation by Holland
(1975), which incorporates assumptions common to many evolutionary models in population genet-
ics: discrete, non-overlapping generations, frequency-independent selection, and infinite population
size. The algorithm iterates three steps: selection, random mating, and production of offspring to
constitute the population in the next generation.

Definition: Canonical Genetic Algorithm The dynamical system representing the “canonical”
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genetic algorithm is:

(y) (2)

plx)y = > T(z+y.z) ———p(y)p(2), (1)

y.zes

where

p(x) is the frequency of chromosome z in the population, and p(x)’ is the frequency in the next
generation;

S is the search space of n chromosomal types;

T(xz +y, z), the transmission function, is the probability that offspring genotype « is produced by
parental genotypes y and z as a result of the action of genetic operators on the representation,
With T(z +y,z) =T(zz,y),and >, T(x+y,z)=1forally,z € S;

w(z) is the fitness of chromosome «; and

w =y, w(x)p(x) is the mean fitness of the population;

This general form of the transmission-selection recursion was used by Slatkin (1970), and has been
used subsequently for a variety of quantitative genetic and complex transmission systems (Cavalli-
Sforza and Feldman 1976, Karlin 1979, Altenberg and Feldman 1987), and has been derived inde-
pendently in genetic algorithm analysis (Mose 1990, Vose and Liepins 1991).

No assumptions are made about the structure of the chromosomes — e.g. the number of loci, the
number of alleles at each locus, or even the linearity of the chromosome. The specific structure of
the transmission function T'(x < y, z) will carry the information about the chromosomal structure
and genetic operators that is relevant to the dynamics of the GA.

As a cross-reference, the “mixing matrix” defined by Vose (1990) is the n by n matrix

n
[T(O(—yi,zj)] )
7,j=1
where 0 is the chromosome with all 0 alleles in the case of binary chromosomes, and chromosomes
y and z are indexed from 1 to n. This is sufficient to characterize the transmission function in the
case where mutation and recombination are symmetric with respect to either allele at each locus, by
using n permutations of the arguments.

2.1.1 A Note on Fitness

The term “fitness” has undergone a semantic shift in its migration from population biology to evo-
lutionary computation. In population biology, fitness generally refers to the actual rate that an indi-
vidual type ends up being sampled in contributing to the next generation. So the fitness coefficient
w(z) lumps together all the disparate influences from different traits, intraspecific competition, and
environmental interaction that produce it. In the evolutionary computation literature, fitness has
come to be used synonymously with one or more objective functions (e.g. Koza (1992)). Under
this usage is there is no longer a word that refers specifically to the reproductive contribution of a
genotype. Here I will keep the distinction between objective function and fitness, and use “fitness”
in its sense in population biology.
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The term “fitness proportionate selection” refers to fitnesses that are independent of chromosome
frequencies. Many selection schemes, such as tournament and rank-based selection, truncation se-
lection, fitness sharing, and other population-based rescaling, are examples of frequency-dependent
selection (Altenberg (1991) contains further references). In frequency-dependent selection, the fit-
ness w(x) is a function not only of = but of the composition of the population as well. All the
theorems and corollaries in this paper apply to frequency-dependent selection. This is because they
are all local, i.e. they apply to changes over a single generation based on the current composition
of the population, so that any frequency-dependence in the fitness function w(z) does not enter into
the result.

The results on GA performance in this paper are defined directly in terms of the fitness distribution
of the population. However, fitness functions are often defined in terms of an underlying objective
function for the elements in the search space. This is the case with tournament selection, in which
an individual’s fitness equals the rank of their objective function in the population (w = 1/N for the
worst and w = 1 for the best individual in a population of size V). In these cases, GA performance
ultimately is concerned with the distributions of objective function values in the population. The map
from objective function to fitness would add an additional layer to the analysis of GA performance,
and is not investigated here. However, numerous empirical studies have been undertaken to ascertain
the effects of different selection schemes, with GA performance defined on underlying objective
functions. So in the future such an analysis would be worthwhile.

2.1.2 Toward a Macroscopic Analysis

In the evolution of a population, individual chromosomes come and go, and their frequencies follow
complex trajectories. These microscopic details are not the usual subject of interest when consider-
ing the performance of the GA (the one exception being the frequency of the fittest member of the
search space). Rather, it is macroscopic properties, such as the population’s mean fitness or fitness
distribution, whose evolutionary trajectory is of interest. This is similar to the case of statistical me-
chanics, where one is interested not in the trajectories of individual molecules, but in the distribution
of energies in the material.

It would be very useful if the evolutionary dynamics of the population could be defined solely at the
macroscopic level — i.e. if the macroscopic description were dynamically sufficient. In GAs this
will generally not be the case. However, let us consider one special condition when it is possible
to describe the evolution of the fitness distribution solely in terms of the fitness distribution: when
the fitness function w () is invertible, i.e. no two genotypes have the same fitness. Then (1) can be
transformed into a recursion in fitness domain:

flw) = /000 T(w+u, v);—l;f(u) f(v) dudv, 2

where f(w) is the probability density of fitness w in the population (integration may be over discrete
measure), and T'(w «u,v) = T(z +y, z) when w = w(z), v = w(y), and v = w(z).

For the purposes of statistical estimation of the performance of a GA, which will be an imprecise
task to begin with, it may be sufficient to proceed as though the GA dynamics could be represented
as in (2). That will be the strategy | suggest for statistically predicting the performance of a GA
based on a limited sample from a GA run: an empirically derived estimate of T'(w  u, v) may be
used in (2) to approximate the dynamics of (1), in order to make predictions about GA performance.
This is taken up in Section 4 on “adaptive landscape” analysis.
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Table 1: Measurement functions, F'(z) (some taking arguments), and the population properties
measured by their mean in the population, F'.

Population Property Measured by F': Measurement Function:

. S . N1 w(z)>w
(1) Fitness distribution upper tail: F(z,w) = { 0 wz)<w

. , v_J 1 zeH

(2) Frequency of schema H: F(x,H) = { 0 w¢H
(3) Mean fitness: F(z) = w(z)
(4) Fitness distribution’s n-th non-central moment:  F(x) = w(z)"
(5) Mean phenotype (vector valued): F(z) e R"
(6) Mean objective function: F(z)e R

2.2 MEASUREMENT FUNCTIONS

A means of extracting macroscopic dynamics of a population from its microscopic dynamics (1) is
the use of the appropriate measurement functions.

The fitness w(z) is an example of a measurement function. Measurement functions need not be re-
stricted to fitnesses, nor even scalar values. In general, let the measurement function F'(x) represent
some property of genotype «, with F' : S + V, where V is a vector space over the real numbers (e.g.
R* or [0, 1] for some positive integer k). The change in the population average of a measurement
function is a measure of how the population is evolving:

F=Y F(z)p(z), F'=) F(z)p(=) (3)

A measurement function can be defined to indicate when a genotype instantiates a particular schema
H, by adding H as a parameter: F(z,H) = 1 if & € H and 0 otherwise. In general we can let
F : S x P+ V be aparameterized family of measurement functions, for some parameter space P.

Examples of different measurement functions and the population properties measured by F are
shown in Table 1. Measurement functions (1) and (2) are the focus her: (1) extracts the fitness
distribution of the population, and (2) extracts the frequency of a schema in the population.

2.3 PRICE’S THEOREM

Price (1970) introduced a theorem that partitions the effect of selection on a population in terms of
covariances between fitness and the property of interest (allele frequencies were the property con-
sidered by Price) and effects due to transmission. Price’s theorem has been applied in a number
of different contexts in evolutionary genetics, including kin selection (Grafen 1985, Taylor 1988),
group selection (Wade 1985), the evolution of mating systems (Uyenoyama 1988), and quantitative
genetics (Frank and Slatkin 1990). Price’s theorem gives the one-generation change in the popula-
tion mean value of F":

Theorem 1 (Covariance and Selection, Price, 1970)
For any parental pair {y, z}, let ¢(y, z) represent the expected value of F' among their offspring.
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Thus:

= ZF(:B) T(x+y,z). 4)

X
Then the population average of the measurement function in the next generation is
F'=¢+ Covié(y, z), u(y)u(z)/wz] (5)
where _
¢ =Y o(y,2)p(y)p(2)

Y,z

is the average offspring value in a population reproducing without selection, and

(y) (2)

Covlo(y, 2), w(y)w(z)/T] = 6y, 2) —=r— p(y)p(2) — & (6)

Y.z
is the population covariance (i.e. the covariance over the distribution of genotypes in the population)
between the parental fitness values and the measured values of their offspring.

Proof. One must assume that for each y and z, the expectation ¢(y, z) exists (for measurement
functions (1) and (2), the expectation always exists). Substitution of (1), (4), and (6) into (3) directly
produces (5). B

Price’s theorem shows that the covariance between parental fitness and offspring traits is the means
by which selection directs the evolution of the population. Several corollaries follow:

Corollary 1 Let C(y, z) = ¢(y, z) — [F(y) + F(z)]/2 represent the difference between the mean
of F' among parents y and z, and the mean of F' in their offspring. Then

F —F = Cov[F(z), w(z)/w] + C + Cov[C(w, y), w(z) w(y) /@],
where C' =3, , C(y,2) p(y) p(2).

Proof. The term Cov[F(z), w(x)/w] uses the evaluation:

> LF () + F(e) L)

Yz~
while the other terms follow from straightforward algebra. B

p(y)p(z) = ZF(y) Y (),

Corollary 2 (Fisher’s Fundamental Theorem, 1930)
Consider a population evolving in the absence of a genetic operator, so

T(z+y,z) = [0(z,y) + i(, 2)]/2,
where .
1 fz=y
J(m,y)_{o if ¢ £y.
Then C(y, z) = 0. For F(x) = w(x), Corollary 1 gives:

—

w —w =w Varjw(z) /w].
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24 A LOCAL PERFORMANCE MEASURE FOR GENETIC ALGORITHMS

Price’s theorem can be used to extract the change in the distribution of fitness values in the popula-
tion by using the measurement function (1) from Table 1. Then

Flw)=) Flew)ple)= Y  p)
T T w(T)>w
is the proportion of the population that has fitness greater than w. Price’s Theorem gives:

Corollary 3 (Evolution of the fitness distribution)
The fitness distribution in the next generation is:

F(w)' = ¢(w) + Cov[p(y, z,w), w(y)w(z)/w?], )

where ¢(y, z,w) is the proportion of offspring from parents y and z that with fitness greater than
w.

Note that ¢(y, 2, w) always exists, even when the distribution of fitnesses among the offspring of y
and z has no expectation, i.e. when >, w(x) T'(x + y, z) is infinite.

The expression (7) can be made more informative by rewriting ¢(y, z, w) as the sum of a random
search term plus a search bias term that gives how parents y and z compare with random search
in their offspring fitnesses. Let R (w) be the probability that random search produces an individual
fitter than than w, and let the search bias, 3(y, z, w), be:

By, z,w) = ¢(y, z,w) = R(w) = Y F(z,w) T(z+y,z)— R(w).
xT

The average search bias for a population before selection is 3(w) =
Eyz B(y, z,w) p(y) p(z). The coefficient of regression of 3(y, z,w) on w(y) w(z)/w? is

Reg[3(y, 2, w) = w(y) w(z)/T*] = Cov[B(y, z,w), w(y) w(z) /@] / Varlw(y) w(z) /7]
It measures the magnitude of how 3(y, z, w) varies with w(y)w(z)/w? in the population.

Theorem 2 (Local Performance Measure)
The probability distribution of fitnesses in the next generation is

F(w)' = R(w) + B(w) + Reg[(y, z,w) = w(y) w(z)/w?] Varlw(y) w(z)/@*]. (8)

Theorem 2 shows that in order for the GA to perform better than random search in producing indi-
viduals fitter than than w, the average search bias, plus the parent-offspring regression scaled by the
fitness variance,

B(w) + Reg[B(y, 2, w) = w(y) w(z) /@] Varlw(y) w(z) /@], 9)

must be positive. As in the Schema Theorem, this is a local result because the terms in (8) other than
‘R(w) depend on the composition of the population and thus change as it evolves.

Both the regression and the search bias terms require the transmission function to have “knowledge
about the fitness function. Under random search, the expected value of both these terms would be
zero. Some knowledge of the fitness function must be incorporated in the transmission function
for the expected value of these terms to be positive. It is this knowledge — whether incorporated
explicitly or implicitly — that is the source of power in genetic algorithms.
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2.5 THE SCHEMA THEOREM

Holland’s Schema Theorem (Holland 1975) is classically given as follows. Let

‘H represent a particular schema as defined by Holland (1975),

L be the length of the chromosome, and L(H) < L — 1 be the defining length of the schema;
P(H) = >z cy () be the frequency of schema # in the population, and

W(H) = Y zep w()p(z)/p(H) be the marginal fitness of schema H.

Theorem 3 (The Schema Theorem, Holland 1975)
In a genetic algorithm using a proportional selection algorithm and single point crossover occurring
with probability r, the following holds for each schema # :

w02 p0 = (1 - 20 (10

Now, Price’s Theorem can be used to obtain the Schema Theorem by using:

(1 ifeeH
F(»‘”’H)—{o if i ¢ H

and ¢(y, z,H) = > 4 F(z, H)T(x + y, z), which represents the fraction of offspring of parents
y and z that are in schema . Then p(H) = F(H), and

Corollary 4 (Schema Frequency Change)
p(H)l = E(H) + COV[(b(y’ z, H)v 'u:(y)w(z)/ﬁ2], (11)

Two sources can be seen to contribute to a change in schema frequency:

1. linkage disequilibrium, i.e. the schema frequency minus the product of the frequencies of the
alleles comprising the schema. Negative linkage disequilibrium would produce ¢(H) > p(H);
and

2. covariance between parental fithesses and the proportion of their offspring in the schema.

Equation (11) can be made more informative by rewriting ¢(y, z,H) in terms of a “disruption”
coefficient. A value ay; € [0, 1] can be defined that places a lower bound on the faithfulness of
transmission of any schema H:

Oy 2.H) > (1= ap)[F(y, H) + F(z, )] (12)

and

Ozy—]_—

¢(y,z,H)F(y’H);F(Z’%) .

min
YeH OF zeH
Actually, a4 can be defined for any subset of the search space (“predicate” in Vose (1991)
or “forma” in Radcliffe (1991)). For Holland schemata under single-point crossover, az =
r L(H)/(L — 1) (the rate that crossover disrupts schema #). Using (12) we obtain:
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Theorem 4 (Schema, Covariance Form)
The change in the frequency of any subset H of the search space (i.e. a schema) over one generation
is bounded below by:

p(H)" > {p(H) + Cov[F (y. H), w(z)/@]} (1 — an). (13)

Therefore, if

Cov [F(y,’i—[), w(g)] > 7 fzy

then schema H will increase in frequency.

Proof.
Ff = 3 Flaiweys ) y)p(z)

= yz;qb(y,z,%)%p(y,)p(z)

> - 3 Fw + F (2,20 ") ) 2)

= (1—o) %:’F(yﬂ)w(y)p(y)/u_’ = (1= ay) [F(H) + Cov[F(y, H), w(=) /@] .
|

Thus, if there is a great enough covariance between fitness and being a member of a schema, the
schema will increase in frequency.

Although both applications of Price’s Theorem — to schema frequency change and change in
the fitness distribution — involve covariances with parental fitness values, the crucial point is
that the covariance term (from (13)), Cov[F(y, H),w(x)/w], and the covariance term (from (7)),
Cov(g(y, z,w), w(y)w(z)/w?], are independently defined. So conditions that produce growth in
the frequencies of different schemata are independent of conditions that produce growth in the upper
tails of the fitness distribution.

For example, consider a fitness function with a random distribution being the one-sided stable distri-
bution of index 1/2 (Feller, 1971): R(w) = 2N (a/\/w) — 1, where A/(y) is the Normal distribution
and a is a scale parameter. This distribution is a way of generating “needles in the haystack” on all
length scales. A GA with this fitness function will generically have schemata that obey (10), even
though it is still random search.

3 RECOMBINATION AND THE RE-EMERGENCE OF SCHEMATA

In the local performance measure for the genetic algorithm, schemata disappear as relevant enti-
ties. No summations over hyperplanes or other subsets of the search space appear in Theorem 2.
Schemata are therefore not informative structures for operators and representations in general. How-
ever, it is the recombination operator for which schemata have been hypothesized to play a special
role. What | show in this section is that when one examines (7) using recombination operators
specifically, schemata re-emerge in the local performance theorem, and they appear in a way that
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offers possible new insight into how schemata enter into GA performance. This “missing” schema
theorem makes explicit the intuition, missing from the Schema Theorem, about what makes a good
building block.

Recombination operators in a multiple-locus genetic algorithm can be generally characterized using
the recombination distribution analysis introduced by Geiringer (1944), and developed indepen-
dently by Syswerda (1989) (see also Karlin and Liberman 1978, Booker 1993, and Vose and Wright
1994). Consider a system of L loci. Any particular recombination event can be described by indi-
cating which parent the allele for each locus came from. This can be done with a mask, a vector
r € {0,1}£, of binary variables r; € {0,1}, which indicate the loci that are transmitted together
from either parent. So all loci with r; = 0 are transmitted from one parent, while the remainder
of the loci, with r; = 1, are transmitted from the other parent. The vectors » = 0 = (0...0) and
r=1=(1...1) correspond to an absence of recombination in transmission. With = representing
the recombination event that occurred in transmission, the offspring = of parental chromosomes y
and z can be expressed as:
z=roy+(1—7r)oz,

where o is the Schur product: wov = (ujv; ... ugvy) (allele multiplication and addition is just for
the convenience of notation; it is defined only with 0 as the other operand).

The action of any particular recombination operator can be represented as a probability distribu-
tion, R(r), over the set r € {0,1}*. Thus > refoye B(r) = 1. Using R(r) the transmission
probabilities can be written:

T(x+y,z)= Z R(r)é6(x, roy+ (1—7)o z). (14)
re{0,1}"

Because the order of the parents is taken to be irrelevant, » and 1 — r represent the same recombi-
nation event, hence R(r) = R(1 — r), which gives T'(z +y,2) = T(z + 2, y).

Often with genetic algorithms, the genetic operator is applied to only a proportion, «, of the popu-
lation. In this case one would have:

T(x+y,z)=(1—a)d(z,y)+ d(x,2)]/2 + Z R(r)d(z, roy + (1—7) o0 2).
Te{0,1}0

Examples.  Uniform crossover (Ackley 1987, Syswerda 1989), i.e. free recombination
(Charlesworth et al. 1992, Goodnight 1988), is described by R(r) = 2~ L. Single-point crossover is
described (Karlin and Liberman 1978) by:

2L —1)] if S riv =il =1,
R(r) =
0 otherwise.

Single-point shuffle crossover (Eshelman et al. 1989) is described by:

1 _ _
n Gon(Gy =L L-1
R(’l") =
0 if n(r)=0o0rL,

where n(r) = YL r; is the number of 1sin r.
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Note that each » partitions the loci into two sets. Let us collect from z the loci with »; = 0 to make
a vector xq, and similarly collect the loci with »; = 1 to make a vector ;. Thus, the genotypes
can be represented as ¢ = (x, ), where the subscript = indicates that this representation is with
respect to the recombination event r.

Let H(r) denote the set of all Holland schemata with defining positions {¢ : r; = 1}. Thus
x, € H(r) defines a particular schema as the set of genotypes

{z = (zo,®1)r : T € H(r)}.

For notational brevity | henceforth drop the subscript » and write simply x, and «, with the depen-
dence on r being understood.

The marginal fitnesses of the schemata are:

Wo(xo) = Z w(xo, 1) p(To, 1) /po(T0), (15)
T, EH(T)
and
W (z1) = Z w(zo, 1) p(o, z1)/p1(z1), (16)
ToEH(1-T)
where
po(mo) = Z p(xo, 1) and py(z,) = Z p(To,x1). (17)
T1eH(T) ToEH(1-T)

At this point we can express (7) in Corollary 3 using the marginal fitnesses of schemata defined by
each r.

Theorem 5 (Evolution of the fitness distribution under recombination)
The change in the fitness distribution over one generation under the action of selection and recom-
bination is:

wo(xo) W (:371:)]

w?

Fw)-F(w)= Y R(r)Cov[F(z,w),
ref{o1}t

(18)

SRS [p(x) — po(xo) pi ()] [F(z, w) — F(w)] W
TEL @y e H(1—7)
T € H('I‘)

where the partition of z into vectors xo and x; is understood to be determined by each transmission
vector = in the sum.

The proof is given in the Appendix.

Theorem 5 is what | have referred to as the “missing” schema theorem. Equation (18) shows a
number of features:

The covariance term. The change in the fitness distribution F(w) depends on the covariance
between the schema fitnesses wo(xo) w;(x1) and F(z,w). Thus a positive covariance between
the fittest schemata and the fittest offspring will contribute toward an increase in the upper tail of the
fitness distribution.
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Not all schemata are “processed”. Not all possible Holland schemata appear in (5), but only the
ones for which the recombination event » occurs with some probability (i.e. R(r) > 0). In the case
of classical single-point crossover, only L — 1 recombination events may occur out of the 2°—! — 1
possible recombination events (subtracting transmission of intact chromosomes and symmetry in the
parents). Thus, the schemata from only L—1 different configurations of defining positions contribute
to (18). So, with two alleles at each locus, only 2(2% + 22 + ... +2L71) = 2L+! _ 4 schemata
are involved in (18) under single-point crossover. This is compared to a possible 3% — 2. schemata
(subtracting the highest order schemata, i.e. chromosomes) that could result from a recombination
event in the case of uniform crossover.

Schemata enter as complementary pairs. Schema fitnesses always occur in complementary pairs
whose defining positions encompass all the loci.

Disruption is quantified by the linkage disequilibrium. The linkage disequilibrium between
schemata o and x; is the term p(xz) — po(@o)p1(x1). It is a measure of the co-occurrence of
schemata x¢ and @, in the population. If p(x) > po(xo) p1(21), then recombination event » dis-
rupts more instances of genotype « than it creates. If in addition, F(z,w) > F(w), then this term
contributes negatively toward the change in F(w). Conversely, if a combination of schemata has a
deficit in the population (i.e. p(x) < po(zo) p1 (1)), and the measurement function for this combi-
nation is greater than the population average (i.e. F(z,w) — F(w)), then the recombination event »
will contribute toward in increase in F(w).

If all loci were in linkage equilibrium, exhibiting Robbins proportions p(z) = T[,_, ; pi(xi)
(Robbins 1918, Christiansen 1987, Booker 1993), then (18) reduces to:

ﬂ%(mzégﬁ(ml)L

F(w) —=F(w)= > R(r)Cov[F(a,w),
re{o0,1}L

(19)

Robbins proportions are assumed in much of quantitative genetic analysis, both classically (Cock-
erham 1954), and more recently (Biirger 1993), because linkage disequilibrium presents analytical
difficulties. Asoh and Miihlenbein (1994) and Miihlenbein and Schlierkamp-Voosen (1993) assume
Robbins proportions in their quantitative-genetic approach to GA analysis. Using F'(z) = w(z) as
the measurement function, they show that under free recombination, a term similar to (19) evaluates
to a sum of variances of epistatic fithess components derived from a linear regression.

Except under special assumptions, however, selection will generate linkage disequilibrium that
produces departures from the results that assume Robbins proportions (Turelli and Barton 1990).
The only recombination operator that will enforce Robbins proportions in the face of selection is
Syswerda’s “simulated crossover” (Syswerda 1993). Simulated crossover produces offspring by in-
dependently drawing the allele for each locus from the entire population after selection. One may
even speculate that the performance advantage seen in simulated crossover in some way relates
to it producing a population that exhibits “balanced design” from the point of view of analysis of
variance, allowing estimation of the epistasis components (Reeves and Wright, this volume).

The epistasis variance components from Asoh and Mihlenbein (1994) figure into the parent-
offspring covariance in fitness. In their covariance sum, higher order schemata appear with expo-
nentially decreasing weights. Thus, the lowest order components are most important in determining
the parent-offspring correlation. These epistasis variance components, it should be noted, appear
implicitly in the paper by Radcliffe and Surry (this volume). They figure into the increments be-
tween successive forma variances shown in their Figure 2. Radcliffe and Surry find that the rate of
decline in the forma variances as forma order increases is a good predictor of the GA performance
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of different representations. This is related to there being smaller epistasis components for higher
order schemata, which produces the highest parent-offspring correlation in fitness in the result of
Asoh and Mihlenbein (1994).

Guidance for improving the genetic operator. The terms

Wy (230%?1 (x1) ]

= S lp(@) — po(@o)pr (@0)] [F(a, w) - Fw)] 2 T(@),
i

w

Cov[F(z,w), (20)

for each recombination event, », provide a rationale for modifying the recombination distribution
to increase the performance of the GA. Probabilities R(r) for which terms (20) are negative should
be set to zero, and the distribution R(r) allocated among the most positive terms (20). The best
strategy of modifying R(r) presents an interesting problem: | propose that a good strategy would
be to start with uniform recombination and progressively concentrate it on the highest terms in (20).

4 ADAPTIVE LANDSCAPE ANALYSIS

The “adaptive landscape” concept was introduced by Wright (1932) to help describe evolution when
the actions of selection, recombination, mutation, and drift produce are multiple attractors in the
space of genotypes or genotype frequencies. Under the rubric of “landscape” analysis, a number of
studies have employed covariance statistics as predictors of the performance of evolutionary algo-
rithms (Weinberger 1990, Manderick et al. 1991, Weinberger 1991a,b, Mathias and Whitley 1992,
Stadler and Schnabl 1992, Stadler and Happel 1992, Stadler 1992, Menczer and Parisi 1992, Fontana
et al. 1993, Weinberger and Stadler 1993, Kinnear 1994, Stadler 1994, Grefenstette, this volume). |
consider first some general aspects of the landscape concept, and then examine the use of covariance
statistics to predict the performance of the GA.

4.1 THE LANDSCAPE CONCEPT

The “adaptive landscape” is a visually intuitive way of describing how evolution moves through the
search space. A search space is made into a landscape by defining closeness relations between its
points, so that for each point in the search space, neighborhoods of “nearby” points are defined. The
purpose of doing this is to represent the attractors of the evolutionary process as “fitness peaks”,
with the premise that selection concentrates a population within a domain of attraction around the
fittest genotype in the domain. The concepts of local search, multimodal fitness functions, and hill
climbing are all landscape concepts.

Definitions of closeness relations are often derived from metrics that are seemingly natural for the
search space, for example, Hamming distances for binary chromosomes, and Euclidean distance
in the case of search spaces in ®”. However, in order for closeness relations to be relevant to the
evolutionary dynamics, they must be based on the transmission function, since it is the transmission
function that connects one point in the search space to another by defining the transition probabil-
ities between parents and offspring. In the adaptive landscape literature, this distinction between
extrinsically defined landscapes and landscapes defined by the transmission function is frequently
omitted.

Application of the landscape metaphor is difficult, if not infeasible, for sexual transmission func-
tions. For this reason, some authors have implicitly used mutation to define their adaptive landscape
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even when recombination is the genetic operator acting. The definition of closeness becomes prob-
lematic because the distribution of offspring of a given parent depends on the frequency of other
parents in the population. For example, consider a mating between two complementary binary chro-
mosomes when uniform recombination is used. The neighborhood of the chromosomes will be
the entire search space, because recombinant offspring include every possible chromosome. Since
the neighborhood of a chromosome depends on chromosomes that it is mated with, the adaptive
landscape depends on the composition of the population, and could thus be described as frequency-
dependent. The sexual adaptive landscape will change as the population evolves on it.

The concept of multimodality illustrates the problem of using metrics extrinsic to the transmission
function to define the adaptive landscape. Consider a search space in ™ with a multimodal fitness
function. The function is multimodal in terms of the Euclidean metric on ™. But the Euclidean
neighborhoods may be obliterated when the real-valued phenotype is encoded into a binary chro-
mosome and neighborhoods are defined by the action of mutation or recombination. For example,
let a,b € R™ be encoded into binary chromosomes z,y € {0,1}£. The Hamming neighbor-
hoods H(z,y) < k may have no correspondence to Euclidean neighborhoods |a — b| < c. Thus
multimodality under the Euclidean metric is irrelevant to the GA unless the transmission function
preserves the Euclidean metric. Multimodality should not be considered a property of the fitness
function alone, but only of the relationship between the fitness function and the transmission func-
tion.

4.1.1 An lllustration of Multimodality’s Relation to Transmission

Consider the fitness function from p. 34 in Michalewicz (1994):
w(zy, xe) = 21.5 + w1 sin(4rzq) + w9 sin(2072,),

defined on the variables z,z,. In terms of the normal Euclidean neighborhoods about (z1, z),
w(zy,x2) is highly multimodal, as can be seen in Figure 1. There are over 500 modes on the area
defined by the constraints

—3<uz <12land4.1<z, <5.8.

A transmission function that could be said to produce the Euclidean neighborhoods is a Gaussian
mutation operator that perturbs (z, z2) to (z1 + €1, z2 + €2) with probability density

C’exp[—(e% + e%)/?az], (21)

with o small and C the normalizing constant. The adaptive landscape could be said to be multimodal
with respect to this genetic operator.

Suppose we change the representation into four new variables, integers ny,n, and fractions
¢17¢2 S [07 1)
ny = Int(2z,), and ¢y = 2z, — ny,

ng = Int(10z,), and ¢2 = 10zs — na,
where Int(v) is the largest integer not greater than v. Thusz1 = (n1+¢1)/2,and 22 = (na+¢2)/10.

This transformation of variables uses our a priori knowledge about the fitness function to produce
a smoother adaptive landscape. Neighborhoods for the new representation are produced by using
a mutation operator that increases or decreases n; or n, by 1, or perturbs ¢, or ¢, in a Gaussian
manner. In this new topography, the fitness function has very few modes, as shown in Figure 2.
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Figure 1: The fitness function w(z1,z2) = 21.5 + 24 sin(4nzy) + 22 sin(20mz,) is highly multi-
modal in terms of the Euclidean neighborhoods on (z, z3).

Figure 2: The “adaptive landscape” produced from mutation operators acting on the transformed

representation (ny, ¢1,na, ¢2), Where zy = (ny + ¢1)/2,and xy = (n2 + ¢2)/10. Over the same

region as in Figure 1, w has few modes, as seen in this slice through the 4 dimensional space, setting
ny = 50, ¢2 =0.
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Instead of changing the representation to produce a smooth landscape, one can keep the native
variables z, and z», but change the mutation operator. The new mutation operator perturbs (z+, z)
to (21 + €1 +v1, @2 + €5 + 1) With probability densities f(v,) =1/2forv, =1/20r —1/2, and
f(v,) =1/2forv, =1/10 0r —1/10, and

f(€],€2) = C’exp[—(:e'% + 63)/202]’

with o small and C the normalizing constant. This change in the genetic operator produces evolu-
tionary dynamics identical to that produced by the change in the representation. This exemplifies
the duality between representations and operators (Altenberg 1994).

Rather than trying to push the landscape metaphor further, it may be more fruitful to return to
the roots of the concept, which is the existence of multiple attractors in evolutionary dynamics (or
metastable states, in the case of stochastic evolutionary systems). The task of producing a smooth
adaptive landscape is, in effect, to design operators and representations that yield a single domain
of attraction, where all populations converge to the fittest member of the search space. In order to
evaluate an adaptive landscape that contains multiple attractors, one needs a way of characterizing
the attractors. This is the goal of adaptive landscapes statistics that have been developed.

4.2 LANDSCAPE STATISTICS

It would be useful to be able to predict the performance of a GA, or of particular representations or
operators used by a GA, based on a limited number of sample points. | will review previous work
toward this goal, pose some counterexamples to the statistics that have been developed, and offer a
new statistic that solves some of the difficulties.

A number of studies have employed the statistical technique introduced by Weinberger (1990) to-
ward predicting the performance of a GA. They rely on the autocorrelation statistic:
Covjw(z ), w(zo)]
pOP(T) = » } 1/2°
(Var[uw ()] Var[uw (o))
where z is derived from x, by 7 iterations of the genetic operator, Cov and Var are taken over some
measure, m(x -, o), on the search space S:

(22)

Covfu( ) w(eo)] = [ (@) w(eo) dm(@r,z)~ [ w(@:) dm(ar.z0) [ w(an) dn(e.,mo).

The measure m(z-, o) derives from the way samples of the search space are taken. Weinberger
uses random walks over the search space generated by iteration of asexual genetic operators. Man-
derick et al. (1991) point out that only asexual genetic operators allow one to generate the random
walks that produce the sequence x -, precluding this technique from sexual genetic operators.

In order to use pop(7) as a predictor of evolution on the landscape, Weinberger notes that one must
assume that the landscape is statistically isotropic, and that the fitness distribution of the sequence
of points in the search space is stationary. He points out, however, that stationarity is violated in the
presence of selection, and that landscapes will depart to varying degrees from isotropy.

Others have avoided this problem by using a single-generation correlation statistic, where 7 = 1.
One can then incorporate sexual genetic operators by defining a function g(u, v) that combines the
fitnesses (u, v) of the two parents. Typically, g(u,v) = (u + v)/2, giving:

Cov{w, (u +v)/2]

(Var[w] Var[u]/2)'/*’

Pop =
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where w is the fitness of offspring from parents with fitness » and v, and Cov and Var are with
respect to some measure over the search space.

No one has claimed that the autocorrelation statistic would be an exact estimator of the performance
of complex GAs, which is why empirical studies of its applicability have been undertaken. However,
as shown in Theorem 2, the properly defined covariance statistics are exact estimators of evolution-
ary change in the population. The autocorrelation function uses the fitness, w(z), as a measurement
function. When w(z) is used as the measurement function in Price’s Theorem, one obtains the
change in the population mean fitness (see Table 1). However, what is more important to the per-
formance of the GA is the change in the upper tail of the fitness distribution, which is obtained by
using F'(x,w) as in Theorem 2. This suggests circumstances in which p,, may be fooled.

4.2.1 Counterexamplesfor p,,

I give two constructed examples of landscapes in which p,,, fails to predict GA performance. In
them 1 will define the transmission functions T'(w « u, v) directly in the fitness domain, as in (2).
Thus T'(w +u, v) contains all the information about the fitness landscape.

It should be noted that the value of p,, is derived not from the total transmission function T'(w
u,v), but from just the portion of T'(w < u, v) that results from application of the genetic operator.
In typical GAs, the genetic operator acts with probability o < 1. The canonical recursion in the
fitness domain (2) is then written:

p(w) = (1 —a)p(w)w/w+« /000 P(wu,v) %p(u)p(v} du dv, (23)

where the transmission function P(w « u,v) represents the action of the genetic operator and is
referred to as the search kernel (Altenberg 1994). Therefore, the values of o and P(w + u,v)
contain all the information about the landscape that affects performance. The statistic p,,, is always
taken with respect to the search kernel P(w + u, v).

The following are two cases in which p,,, errs in describing the evolutionary performance of the GA:

1. One case with a maximal parent-offspring correlation, but which gives poor GA performance,
because parents never produce offspring fitter than what already exists, and

2. A second case with no correlation between the fitnesses of parents and their offspring, but
which nevertheless gives excellent GA performance, because the proportion of offspring that
are fitter than their parents is a constant, even as the parental fitnesses increase.

High parent-offspring correlation but no evolvability. Suppose the fitness of an offspring
produced by the genetic operator is always the average of the parental fitnesses. If one uses
q(u,v) = (u+ v)/2, so that p,, is the correlation between mean parental fitness and offspring
fitness, then p,, = 1.

However, this is classical blending inheritance, in which the fitness variance of the population rapidly
decays. Furthermore, the fittest member of the population will never be greater than the fittest in the
first generation. Thus, although the mean fitness of the population will increase initially, it has no
evolvability.

Zero parent-offspring correlation but high evolvability. In this example there is no correlation
between parent and offspring fitness, yet there is high evolvability because each pair of parents has
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the same chance of producing still fitter offspring, no matter how fit the parents are, within a certain
limit. This is achieved with a lognormal distribution:

P(wu,v) = I {_ [In[w] — ,u(u,v)]2 } |

ex -
wo(u,v)V2m P 20(u,v)?

where p(u, v) and o(u, v) are scalar functions of « and v, derived as follows.
To obtain the desired value p,, = 0, the mean offspring fitness ¢(u,v) is set to a constant for all
parents:

o(u,v) = / w P(w+u,v)dw = exp [p(u,v) + o(u,v)?] = forall u,v. (24)

0

This requires:

p(u,v) =Infw] — o(u, 1))2/2. (25)

The desired high evolvability is obtained by ensuring that a constant proportion 1 — C' of offspring
are fitter than some function g(u, v) of the parents’ fitnesses. This requires:

N ll’l[g(:lb, U)] _ H(u’v U) — Cv7 (26)

o(u,v)

where N ] is the normal distribution. The function g(u, v) should be close to u or v. To fit the
constraint below one could use g(u,v) = max][u, v, w + €] where € is small. Equation (26) gives the
condition:

p(u,v) = In[g(u,v)] — so(u,v) 27)

where s is the value giving A'[s] = C'. Together conditions (25) and (27) are solved by:

0 < o(u,v) =s—+/52 = 2In[g(u,v) /). (28)
This requires g(u, v) be constrained to & < g(u,v) < W e /2,

Let p,,, be computed as Cov|w, g(u, v)]/(Var[w] Var[g(u, v)])'/? for some arbitrary function g(u, v)
of the parents’ fitnesses ., v, where w is the offspring fitness. Condition (24) gives p,, = 0, since

Covlw, q(u,v)]

/ w q(u, v) P(w+u,v) p(u) p(v) du dvdw
0

- / w P(wéu,v) p(u) p(v) dudvdw / q(u,v) p(u) p(v) du dv
0 0

/000 q(u,v) p(u) p(v) [/OOO U’P(uf%’tt,v)dw] du duv
— /OO;J(U)P(U) [/OOZJ P(w(—u,v)dw] du dv /OO;(UaU)p(u')p(v)du dv

= 11)/0 q(u,v) p(u) p(v) dudv — 1 % i x /0' q(u,v) p(u) p(v) du dv
= 0.

Yet with a reasonably small value of « in (23), the fitness distribution will keep increasing in the
upper tail, up to fitnesses of at least w e%*/2 because of the constant rate of producing offspring
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fitter than g(u,v) even as u,v grow. Even though p., = 0, this landscape could be described as
very smooth, because below the limit g(u,v) < w es*/2, the neighborhood of any genotype (i.e.
its offspring) includes a portion that are fitter than it. Therefore, none of the lower fitnesses can be
“local” optima, and the population evolves toward the global limit. So p,, in this example is not
providing an estimate of landscape smoothness either.

4.2.2 A New Statistic

In order to predict the performance of a GA based solely on sampled fitness values, one must assume
that the fitnesses are dynamically sufficient, as described in Section 2.1.2. However, in general this
assumption will be rendered only an approximation by the occurrence of noninvertibility in the
fitness function. In many actual cases, though, it may be a good enough approximation to yield
good predictions.

The most complete description of the transmission function in the fitness domain — one which loses
no information (assuming the invertibility of w(z)) — is simply T'(w + u,v). Other statistics such
as pop involve averages that already lose information. Therefore | propose the following:

Conjecture: When attempting to predict the performance of a genetic algorithm using the fitnesses
of a limited sample of points, the best statistic to use should be an estimate of the search kernel

P(w —u,v) & P(w++u,v),
produced using the values of w(y), w(z) of parents and w(z) of offspring sampled during the GA.

A simple way to proceed in predicting the future course of a GA is to take the estimate of the search
kernel P(w +u,v) and insert it in recursion (23) to simulate the progress of the GA, and predict the
evolution of the fitness distribution (an approach also taken by Grefenstette, this volume). It may be
possible to analyze the search kernel more directly to predict the performance of the GA. | would
propose in addition:

Conjecture: The critical determinant of GA performance is how rapidly the evolvability — i.e., the
likelihood of parents being able to produce offspring fitter than themselves — decays with increasing
parental fitness.

One could classify different representations and operators by the decay rates of the search kernels
they produce (e.g. exponential, hyperbolic, etc.). Search kernels with the least decay ought to exhibit
the best GA performance.

If there are multiple domains of attraction in the dynamics of the GA, different initial populations
may yield divergent estimates of P(w « u, v), even when P(w + u, v) is dynamically sufficient. A
general caveat, therefore, is that the feasibility of predicting the performance of the GA depends on
some level of regularity in the adaptive landscape.

The estimation of P(w <+ u,v) based on the fitnesses of a limited sample of points in a run of a
genetic algorithm is a problem of generalization. Inference must be made on the sample search
kernel. A Bayesian approach toward producing the search kernel estimator would be to begin with
a prior distribution over a family of functions P(;w + u,v), and use the sampled data to form a
posterior distribution. The function with the maximum posterior likelihood could be taken as the
best estimator of P(w <« u,v). The ability to generalize from the sampled data depends on ones
prior distribution (Solla 1990). Generalization requires some knowledge that allows one to narrow



The Schema Theorem and Price’s Theorem 21

the prior distribution to a smaller universe of distribution functions P(w « w, v), within which one
believes the actual function P(w + u,w) is likely to be found.

5 CONCLUSIONS

This paper begins with a critique of the Schema Theorem describing why it does not come to bear
on the performance of genetic algorithms. The Schema Theorem does not capture the intuitive idea
about what makes a GA work — that offspring with above-average fitness can be produced by re-
combining schemata with above-average fitness. There is a “missing” theorem needed to capture
this intuition, and this is Price’s Covariance and Selection Theorem. Price’s theorem is used to show
how changes in different macroscopic properties of populations in a genetic algorithm can be de-
rived by using the microscopic dynamics of the GA combined with the appropriate measurement
function. When the measurement function is a fitness indicator function, one obtains the evolution
of the fitness distribution over one generation. When the measurement function is a schema indi-
cator function, one obtains the evolution of the schema frequency. Thus, the Schema Theorem can
be expressed using Price’s theorem. However, the fact that schemata with above-average fitness in-
crease in frequency says nothing about the performance of the GA. The ability for a GA to increase
the upper tail of the fitness distribution is necessary for good performance.

This is expressed in a local performance theorem for genetic algorithms. Schemata do not appear in
this performance theorem for general representations and operators. When one examines recombi-
nation operators specifically, however, schemata reappear in the performance theorem in a way that
shows some qualitatively novel aspects of schema processing.

This “missing” schema theorem is obtained by using the recombination distribution representation
of transmission introduced by Geiringer (1944). It makes explicit the intuition about how schema
processing can provide a GA with good performance, namely: (1) that the recombination opera-
tor determines which schemata are being recombined; and (2) that there needs to be a correlation
between complementary schemata of high fitness and the fitness distributions of their recombinant
offspring in order for the GA to increase the chance of sampling fitter individuals. It also shows the
influence of linkage disequilibrium on the performance of the GA.

Finally, the “adaptive landscape” approach to understanding GA performance is discussed. | exam-
ine some of the problems that ensue when one defines the landscape using metrics extrinsic to the
transmission function. While the properly defined covariance statistics give quantitative estimates
for the change in the fitness distribution, as shown in the local performance theorem, the autocorrela-
tion statistics commonly used in landscape analysis do not, and this is illustrated with two examples
of landscapes that give GA performance exactly contrary to that predicted by these statistics. | pro-
pose that the best estimator for predicting the behavior of a GA is simply the approximation of the
transmission function in the fitness domain, and that it is the rate of decay of evolvability as par-
ents increase in fitness that is the critical feature of the transmission function for GA performance.
With these statistics calculated for the transmission functions produced by different operators and
representations, one may be able to better design genetic algorithms.
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APPENDIX
PROOF OF THEOREM 5
If we substitute the recombination operator (14),

T(x+y,2z)= » Rr)é(@ roy+(1-7)oz),
re{0,1}L

into the general recursion (1),

pay = Y Taey.z) DS ),

Y,ZeS
we obtain:
p@) = > R(r)q=r), (29)
re{o,1}~
where
dalr) = Y dl@ roy+(1-r)02) L E iy () (30)
y,zes

It should be noted that recursion (29) has been obtained previously in a similar form by Karlin and
Liberman (1979) for the general, multi-locus, selection-recombination system. \ose (1990) and
Vose and Liepins (1991) independently developed a different representation for (29) assuming two
alleles at each locus, which has been called the “exact schema theorem” (Juliany and Vose 1994).

We now employ the general recursion (29) to calculate F(w)':

F(w)' = Z F(z,w)p(z) = z R(r) z F(z,w) gq(z|r). (31)

Tres ref{o,1}r- Tres

Note that in the notation adopted here, the summation expression

>

ToEH(1-T)
T EH(T)

is simply a way of separating the sum over all loci into the two groups of loci that are transmitted
together under the recombination event ». Therefore

Z p(zo, 1) w(me, 1) = Z p(z) w(z) =w.
ToEH(1-T) TeS
T1EH(T)

In other words, for any r, the set of all genotypes is simply:

S =A{z} = {(mo,®1): 20 € H(1—r), @ € H(r)}.

The term é(z, r oy + (L —7) o z) = 1 only for genotypes y = (yo,x1)r and z = (xo, 21 ) 7.
In other words, for recombination event r, y can be a parent of z only if y equals x at those loci
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¢ for which r; = 1. And z can be a parent of « only if z equals « at those loci for which r; = 0.
The complementary loci in y and z are unconstrained. So the sums in (30) are taken over the
unconstrained parts of y and z. Thus, the term g(x|r) evaluates to:

dlalr) = Y b royt (1-r)on) W )0

Y,z€S

= ) (ymw%z (#0,21) P(Yo, 1) p(ao, 21)
Y, EH(1-T)
2167{(7’)

= > w(ymfﬂl) > Mp(mmzl)
yena-r Z, eH(T) ’

= w1(¢1)p1(¢1)Eo(wo)po(wo)/ﬁz- (32)

The last step utilizes the definitions (15), (16), and (17).

This expression for g(z|r) is then substituted into the sum on the right in (31):

Z F(z,w) q(z|r) = Z F(_w,‘w)w o(zo)pr(z1)  (33)
Zes xg € H(1—1)
x1 € H(r)

We would like to end up with a version of (33) that has the desired covariance term:

Wo (o) W ($1)]
’11’2

So we simply add and subtract (34) from (33), and rearrange the result. First we need to expand
(34):

Cov[F(z,w), (34)

ﬁo(:mg)ﬁl (ml)]

Cov[F(z,w), — (35)
= Y Flaaw) 0@ gy Yy RETED,,
o € H(1—7) zo € H(1—7)
x € H(r) 1 € H(r)

Adding to (33) the left hand side of (35), while subtracting the right hand side of (35), gives:
Z F(z,w) q(z|r) = Cov[F(z,w), M]

res

+ Z F(z, u{)%[po(%)m(%) — p(z)]

xo € H(1—7)
T € 7‘[(1‘)
+ Fw) > Do) P1(21) (woéfl(ml)p(x)
o €eH(1—17) ’

x1 € H(r)
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The last two sums can almost be factored into a single sum, but it produces a term that must be
cancelled out by an additional sum:

3 F(z,w) qlz|r)=  Cov[F(z,w), M]

Tes

Y R - Pl ) @)~ (2]

xg € H(L— )
T € /H(’f’)
+ Fw) Y %Po@o)}h (z1)
Ty € /H(l - 'I",)
T € H('f')

Fortunately, this last sum simplifies by using definitions (15) and (16):

> Mm(wo)pl(wl)
woeH1—7)
x € H(r)
2
= % > w(@o,y,) p(@o, y,) > wlye, ) plye, @) = % =1
xg € H(1—1) Yo € H1— 1)
Y, € H(r) z, € H(r)

Thus we have:

Zmemm=fw+mm@W@@§mﬁ
TES
w0 (P - ) PSR w0  (@1) - ple)]

u7
xg € H(1—7)
x € H(r)

Substitution into (31) gives the desired result in Theorem 5.
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