Skip to main content

Advertisement

Log in

New design equations for assessment of load carrying capacity of castellated steel beams: a machine learning approach

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper presents an innovative machine learning approach for the formulation of load carrying capacity of castellated steel beams (CSB). New design equations were developed to predict the load carrying capacity of CSB using linear genetic programming (LGP), and an integrated search algorithm of genetic programming and simulated annealing, called GSA. The load capacity was formulated in terms of the geometrical and mechanical properties of the castellated beams. An extensive trial study was carried out to select the most relevant input variables for the LGP and GSA models. A comprehensive database was gathered from the literature to develop the models. The generalization capabilities of the models were verified via several criteria. The sensitivity of the failure load of CSB to the influencing variables was examined and discussed. The employed machine learning systems were found to be effective methods for evaluating the failure load of CSB. The prediction performance of the optimal LGP model was found to be better than that of the GSA model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zirakian T, Showkati H (2006) Distortional buckling of castellated beams. J Const Steel Res 65:863–871

    Article  Google Scholar 

  2. Amayreh L, Saka MP (2005) Failure load prediction of castellated beams using artificial neural networks. Asian J Civ Eng 6(1–2):35–54

    MATH  Google Scholar 

  3. Gandomi AH, Tabatabaie SM, Moradian MH, Radfar A, Alavi AH (2011) A new prediction model for load capacity of castellated steel beams. J Constr Steel Res 67(7):1096–1105

    Article  Google Scholar 

  4. Kerdal D, Nethercot DA (1984) Failure modes for castellated beams. J Constr Steel Res 4:295–315

    Article  Google Scholar 

  5. Knowles PR (1991) Castellated beams. Proc Inst Civ Eng Part 1 90:521–536

    Article  Google Scholar 

  6. Mitchell T (1997) Does machine learning really work? AI Mag 18(3):11–20

    Google Scholar 

  7. Alavi AH, Gandomi AH (2011) Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing. Comput Struct 89(23–24):2176–2194

    Article  Google Scholar 

  8. El-Shafie A, Abdelazim T, Noureldin A (2010) Neural network modeling of time-dependent creep deformations in masonry structures. Neural Comput Appl 19:583–594

    Article  Google Scholar 

  9. Chakraverty S, Gupta P, Sharma S (2010) Neural network-based simulation for response identification of two-storey shear building subject to earthquake motion. Neural Comput Appl 19:367–375

    Article  Google Scholar 

  10. Kraslawski A, Pedrycz W, Nyström L (1999) Fuzzy neural network as instance generator for case-based reasoning system: an example of selection of heat exchange equipment in mixing. Neural Comput Appl 8(2):106–113

    Article  Google Scholar 

  11. Cao M, Qiao P (2008) Neural network committee-based sensitivity analysis strategy for geotechnical engineering problems. Neural Comput Appl 17:509–519

    Article  Google Scholar 

  12. Alavi AH, Gandomi AH, Mollahasani A, Heshmati AAR, Rashed A (2010) Modeling of maximum dry density and optimum moisture content of stabilized soil using artificial neural networks. J Plant Nutr Soil Sci 173(3):368–379

    Article  Google Scholar 

  13. Gholizadeh S, Pirmoz A, Attarnejad R (2011) Assessment of load carrying capacity of castellated steel beams by neural networks. J Constr Steel Res 67:770–779

    Article  Google Scholar 

  14. Simpson AR, Priest SD (1993) The application of genetic algorithms to optimisation problems in geotechnics. Comput Geotech 15(1):1–19

    Article  Google Scholar 

  15. Dehuri S, Cho SB (2010) A hybrid genetic based functional link artificial neural network with a statistical comparison of classifiers over multiple datasets. Neur Comput Appl 19(2):317–328

    Article  Google Scholar 

  16. Paul RJ, Chanev TS (1997) Optimising a complex discrete event simulation model using a genetic algorithm. Neur Comput Appl 6(4):229–237

    Article  Google Scholar 

  17. Zhou ZH, Chen SF (2002) Evolving fault-tolerant neural networks. Neur Comput Appl 11(3–4):156–160

    Google Scholar 

  18. Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge

    MATH  Google Scholar 

  19. Gandomi AH, Alavi AH, Mirzahosseini MR, Moqhadas Nejad F (2011) Nonlinear genetic-based models for prediction of flow number of asphalt mixtures. J Mater Civ Eng ASCE 23(3):248–263

    Article  Google Scholar 

  20. Gandomi AH, Alavi AH (2012) A new multi-gene genetic programming approach to nonlinear system modeling. Part II: geotechnical and earthquake engineering problems. Neur Comput Appl 21:189–201

    Article  Google Scholar 

  21. Gandomi AH, Alavi AH (2011) Multi-stage genetic programming: a new strategy to nonlinear system modeling. Inf Sci 181(23):5227–5239

    Article  Google Scholar 

  22. Gandomi AH, Alavi AH (2012) A new multi-gene genetic programming approach to nonlinear system modeling. Part I: materials and structural engineering problems. Neur Comput Appl 21:171–187

    Article  Google Scholar 

  23. Brameier M, Banzhaf W (2007) Linear genetic programming. Springer, New York

    MATH  Google Scholar 

  24. Brameier M, Banzhaf W (2001) A comparison of linear genetic programming and neural networks in medical data mining. IEEE Trans Evol Comput 5(1):17–26

    Article  Google Scholar 

  25. Alavi AH, Gandomi AH (2011) A robust data mining approach for formulation of geotechnical engineering systems. Eng Comput 28(3):242–274

    Article  Google Scholar 

  26. Alavi AH, Gandomi AH (2012) Energy-based models for assessment of soil liquefaction. Geosci Front 3(4):541–555

    Article  Google Scholar 

  27. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing mechanics. J Chem Phys 21(6):1087–1092

    Article  Google Scholar 

  28. Folino G, Pizzuti C, Spezzano G (2000) Genetic programming and simulated annealing: a hybrid method to evolve decision trees. In: Proceedings of EuroGP’2000, 1802, pp 294–303

  29. Deschaine LM, Zafran FA, Patel JJ, Amick D, Pettit R, Francone FD, Nordin P, Dilkes E, Fausett LV (2000) Solving the unsolved using machine learning, data mining and knowledge discovery to model a complex production process. In: Proceedings of advanced technology simulation conference, Washington

  30. Alavi AH, Ameri M, Gandomi AH, Mirzahosseini MR (2011) Formulation of flow number of asphalt mixes using a hybrid computational method. Constr Build Mater 25(3):1338–1355

    Article  Google Scholar 

  31. Aminian P, Javid MR, Asghari A, Gandomi AH, Arab Esmaeili M (2011) A robust predictive model for base shear of steel frame structures using a hybrid genetic programming and simulated annealing method. Neural Comput Appl (in press) doi: 10.1007/s00521-011-0689-0

  32. Hall M, Smith L (1996) Practical feature subset selection for machine learning. In: Proceedings of the Australian computer science conference (University of Western Australia). University of Waikato, Hamilton

  33. Tesink S (2007) Improving intrusion detection systems through machine learning. ILK Research Group, Technical Report Series no. 07–02

  34. Gandomi AH, Alavi AH, Yun GJ (2011) Nonlinear modeling of shear strength of SFRCB beams using linear genetic programming. Struct Eng Mech 38(1):1–25

    Google Scholar 

  35. Poli R, Langdon WB, McPhe NF, Koza JR (2007) Genetic programming: an introductory tutorial and a survey of techniques and applications. Technical Report [CES-475], University of Essex, Colchester

  36. Francone FD, Deschaine LM (2004) Extending the boundaries of design optimization by integrating fast optimization techniques with machine-code-based, linear genetic programming. Inf Sci 161:99–120

    Article  Google Scholar 

  37. Okubo T, Nethercot DA (1985) Web post strength in castellated beams. Proc Inst Civ Eng Part 2 79:533–557

    Article  Google Scholar 

  38. Das SK, Basudhar PK (2008) Prediction of residual friction angle of clays using artificial neural network. Eng Geol 100(3–4):l142–l145

    Article  Google Scholar 

  39. Zaarour W, Redwood R (1996) Web buckling in thin castellated beams. J Struct Eng ASCE 122:860–866

    Article  Google Scholar 

  40. Redwood R, Demirdjian S (1998) Castellated beam web buckling in shear. J Struct Eng ASCE 124:1202–1207

    Article  Google Scholar 

  41. Banzhaf W, Nordin P, Keller R, Francone F (1998) Genetic programming—an introduction. On the automatic evolution of computer programs and its application. Dpunkt/Morgan Kaufmann, Heidelberg

    Google Scholar 

  42. Deschaine LM (2000) Using genetic programming to develop a C/C++ simulation model of a waste incinerator. Science Applications International Corp, Draft Technical Report

  43. Francone FD (2004) Discipulus lite™ software owner’s manual. Machine Learning Technologies Inc, Littleton

    Google Scholar 

  44. Smith GN (1986) Probability and statistics in civil engineering. Collins, London

    Google Scholar 

  45. Frank IE, Todeschini R (1994) The data analysis handbook. Elsevier, Amsterdam

    Google Scholar 

  46. Golbraikh A, Tropsha A (2002) Beware of q2. J Mole Graph Model 20:269–276

    Article  Google Scholar 

  47. Roy PP, Roy K (2008) On some aspects of variable selection for partial least squares regression models. QSAR Comb Sci 27:302–313

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pejman Aminian.

Appendices

Appendix 1: The BEST LGP solution for the prediction of the load carrying capacity of CSB

The optimum LGP program can be compiled in any C++ environment. (Note: v[0], …, v[3], respectively, represent d g, h, t w × F yw, and e. f[0] is the output parameter.)

 

{

double f[8];

double tmp = 0;

f[1] = f[2] = f[3] = f[4] = f[5] = f[6] = f[7] = 0;

f[0] = v[0];

l0: f[0]/ = v[3];

l1: tmp = f[1]; f[1] = f[0]; f[0] = tmp;

l2: f[0]+ =f[1];

l3: f[0] = sqrt(f[0]);

l4: tmp = f[1]; f[1] = f[0]; f[0] = tmp;

l5: f[0]− = 8;

l6: f[0]− = 4;

l7: f[0]* = 3;

l8: f[0]* = f[1];

f[1]/ = f[0];

l9: f[0]− = 9;

l10: f[0]+ = v[0];

l11: f[0]− = v[1];

l12: f[0]/ = 5;

l13: f[0]+ = v[2];

l14: f[0]/ = 9;

l15: f[0]* = f[0];

f[0]− = f[1];

l16: f[0]− = v[1];

l17: f[0]− = v[1];

l18: f[0]− = 5;

l19: f[0]+ = v[0];

l20: f[0]− = v[1];

l21: f[0]/ = 5;

l22:

l23:

return f[0];

}

Appendix 2: The best GSA solution for the prediction of the load carrying capacity of CSB

The optimum GSA program can be compiled in any C++ environment.

 

{

double f[8];

double tmp = 0;

f[1] = f[2] = f[3] = f[4] = f[5] = f[6] = f[7] = 0;

f[0] = v[0];

l0: f[0]− = v[1];

l1: f[0]+ = 4;

l2: f[0]+ = v[2];

l3: f[0]− = v[1];

l4: f[0]+ = v[2];

l5: f[0]* = f[0];

tmp = f[1]; f[1] = f[0]; f[0] = tmp;

l6: f[0]− = 8;

l7: f[0]− = 5;

l8: f[0]+ = 1;

l9: f[0]* = 7;

l10: f[1]/ = f[0];

f[0]− = f[1];

l11: f[0]− = v[3];

l12: f[0]+ = v[2];

l13: f[0]/ = 5;

l14: f[0]/ = 5;

l15:

l16:

return f[0];

}

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aminian, P., Niroomand, H., Gandomi, A.H. et al. New design equations for assessment of load carrying capacity of castellated steel beams: a machine learning approach. Neural Comput & Applic 23, 119–131 (2013). https://doi.org/10.1007/s00521-012-1138-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-1138-4

Keywords

Navigation