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Abstract Any molecular dynamical calculation requires a precise knowledge of interaction potential as
an input. In an appropriate form, such that the potential, with respect to the coordinates, can be evaluated
easily and accurately at arbitrary geometries (in our study parameters for geometry are R and θ ), a good
potential energy expression can offer the exact intermolecular behavior of systems. There are many
methods to create mathematical expressions for the potential energy. In this study for the first time, we
utilized the Multi-gene Genetic Programming (MGGP) method to generate a potential energy model for
the He–F2 system. The MGGPmethod is one of the most powerful methods used for non-linear regression
problems. A dataset of size 714 created by the SAPT 2008 program is used to generate models of MGGP.
The results obtained show the power of MGGP for producing an efficient nonlinear regression model, in
terms of accuracy and complexity.

© 2013 Sharif University of Technology. Production and hosting by Elsevier B.V.
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1. Introduction

Potential Energy (PE) is the energy stored in a molecule.
This energy also is the portion of the energy of a system which
is associated with its position in a force field [1]. Usually, in
chemistry,whenwe talk about PE, it is related to the energy that
was created because of the configuration of themolecule.When
we have two parts, like our system (He–F2), PE will change
the change of geometry parameters (R, θ), or, in other words,
with a change in configuration. The most stable configuration
has the smallest potential energy. Our knowledge about the
most stable configuration is very essential. For example, to
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propose a good mechanism for chemistry reactions we must
have correct information about changes of potential energy in
order to change configuration.

An accurate model of PE is necessary in scattering calcula-
tion, and calculation of the second virial coefficients, etc. For ex-
ample, to calculate second virial coefficients (B12(T )), we must
evaluate the following integral:

B12(T ) = πNA


∞

0

 π

0
{1 − exp[−V (R, θ)/kT ]}

× R2 sin θdRdθ, (1)

where NA is Avogadro’s number and k is Boltzmann’s constant.
V (R, θ) is potential energy expression.

In the present study, we obtained several models for the
potential energy of the He–F2 system by the MGGP method.
MGGP is a promising variant of genetic programming (GP).
Multi-gene Genetic Programming (MGGP) effectively combines
themodel structure selection ability of the standardGPwith the
parameter estimation power of classical regression to capture
nonlinear interactions [2]. In order to achieve this purpose, 714
data, collected by the SAPT 2008 program, are used. SAPT2008
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Figure 1: The potential energy for Ar–Ar system.

is a computer program implementing the many-body version
of the symmetry-adapted perturbation theory (SAPT). SAPT is
designed to calculate the interaction energy of a dimer, or a
system consisting of two arbitrary monomers. Each monomer
can be an atom or a molecule [3]. Obtained equations are
suitable models in terms of both accuracy and simplicity.

2. Potential energy and computational details

2.1. Potential energy with one variable

Figure 1 shows the typical behavior of PE as a function of
r (the intermolecular distance for a diatom like Ar–Ar) nearby
r = re (re or requilibrium is the intermolecular distance, whose
potential energy, at this distance, has the smallest energy). The
curve is similar to a parabola, and, therefore, it is represented
by the following equation:

V = 1/2kx2, (2)

where x = r − re and k = (d2V/dr2)r=re . Eq. (2) is the
familiar harmonic oscillator potential. The harmonic oscillator
potential cannot be used formodeling the interactions between
internal atoms of a molecule and an external atom, because, as
indicated in Figure 1, with an increase in r , the behavior of the
potential energy does not show the behavior of the harmonic
oscillator. For this reason, we have to add cubic, quarter and
other higher order terms to the Eq. (2). The resulted equation
is an anharmonic oscillator potential.

The general function is as follows [4]:

V (x) = d0x2

1 +

∞
i=1

dixi


, (3)

where x = r − re.

2.1.1. Lennard-Jones potential
A simple but practical function for estimating the interaction

energy between two neutral atoms ormolecules is the Lennard-
Jones potential, as [1]:

V (R) = 4ε[(σ/R)m − (σ/R)n], (4)

where constants ε and σ are the depth of potential energy
curve and the distance at which the potential energy vanishes,
respectively, as shown in Figure 1. There is a small flexibility
Figure 2: The coordinate system for He–F2 .

in the functional form, except when the powers m and n are
12 and 6, respectively. This model has a minimum number of
parameters to show the PE curve. Because there are not enough
parameters to adequately reproduce an exact potential, the
Lennard-Jones potential is not a precise model [4]. One action
undertaken in this study is to adjust the Lennard-Jones potential
for creating new and exact models for our collected data.

2.2. Potential energy with two variables

Introducing the PE expression for a system with two
variables is much more complicated than a system with one
variable. Our system, He–F2, has two variables. An atom (He)
+ diatomic (F–F) is like a linear rigid rotor. Figure 2 shows the
coordinate system for the He–F2.

The PE model, V (R, θ), is expanded in terms of Legendre
polynomials (Pλ):

V (R, θ) =


λ

Vλ(R)Pλ(cos θ). (5)

Coefficient Vλ is dependent only on R [4].

3. Computational details

The coordinate system for the He–F2 compound is shown in
Figure 2, where R is the intermolecular distance between the
center mass of F2 and He, r is the F–F bond length and θ is the
angle between R and r .

We used 714 data points in the following order to make
models for the potential energy surface:

R = 1.6(0.25)2, 2(0.1)3, 3.05, 3.1, 3.15, 3.2, 3.38, 3.4, 3.6,
3.8, 4, 4.5, 5, 6 Å,

θ = 0°(5)90°, 57.5°, 87.5.

For the first time, we calculated potential energy (V (R, θ)) by
the SAPT2008 program [3] and cc-pVQZ-F12 is used as a basis
set [5]. In a previous study, potential energy was calculated by
the super molecular approach [6], which has less accuracy in
comparison with the symmetry-adapted perturbation theory
(SAPT) approach.

The resulted energies in this research (calculated by
SAPT2008) and in two previous research works, which used a
super molecular approach, are compared in Table 1.
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Figure 3: Dependence of the potential energy surface of the He–F2 on the inter
monomer distance R at r = 1.412 Å, θ = 0° and θ = 90°.

Figure 4: Tree structure of the expression (a − b) + (c × d).

Table 1: Potential energies He–F2 in comparison with two previous works
at r = 1.412 Å. All energies are in micro hartrees.

θ = 0° θ = 90°
R (Å) Our work Chan

et al. [6]
Our work Chan

et al. [6]

1.60 301688.28 – 31008.62 –
2.00 72115.92 – 5693.13 –
2.40 12443.73 – 737.20 –
2.80 1505.57 – −37.03 –
3.00 347.90 314.80 −91.15 −145.70
3.25 −75.47 −108.00 −89.83 −124.50
3.50 −137.38 −162.30 −67.65 −91.70
3.75 −114.23 −131.40 −47.75 −64.20
4.00 −82.04 −92.80 −33.20 −44.50
4.50 −38.53 −42.80 −17.09 −21.90
5.00 −18.79 −20.60 −9.03 −11.50
6.00 −5.48 −6.00 −2.98 −3.70

Figure 3 shows the potential energy curve in linear
(θ = 0) and T-shaped configurations. It can be seen that linear
configuration has less energy, therefore, is more stable than T-
shaped configuration.

4. Genetic programming

Genetic Programming (GP), which was first offered by
Koza [7], is a biologically inspired machine learning method.
GP and Genetic Algorithm (GA) are very similar to each other.
In GP, at first, a population of computer programs which is
represented by a tree structure (Figure 4) is generated, then
mutation and crossover are done on the best selected trees
to create a new population, this process is repeated until a
maximum number of generations is obtained. The GP method
is usually called symbolic regression [8]. Figure 5 shows this
process as a flowchart.
Figure 4 shows the structure of a tree which exhibits the
mathematical expression (a − b) + (c × d). Trees are flexible
structures through which logical expressions or mathematical
relations could be appropriately shown. Leaves of the tree
usually specify variables or constants and are chosen from a
pre-defined terminal set, while other nodes specify operators
or functions and are chosen from a pre-defined function set. In
the tree of Figure 4, a, b, c, d and +, −, × are used as variables
and operators, respectively. The division operator and variable
e are not used in the tree. Pre-defined sets are as follows:
function set = {+,−, ×, /}, (6)
terminal set = {a, b, c, d, e}. (7)

4.1. Multi-gene GP

In this work, Multi-Gene GP (MGGP), one newly developed
version of GP, is utilized for performing efficient modeling
via symbolic regression. In Multi-gene GP, each chromosome
consists of some ‘‘genes’’ and, thereby, eachmodel is aweighted
linear combination of these genes. Each of the genes is a
standard GP tree.

In Figure 6 there are twogenes orGP trees, x1 and x2 are input
variables. y is a linear combination of two genes, and d0, d1 and
d2 are the weights that are obtained by least squares. In the
present study, we used GPTIPS (a toolbox written for Matlab)
for obtaining one efficient regression model.

5. Simulation results

5.1. Parameters setup

In the present study, we used GPTIPS to create a mathe-
matical expression for the PE of the He–F2 system. Parame-
ters of algorithms are as follows. The number of generations,
G = 300, size of population, Popsize = 200, x-over prob-
ability, Pc = 0.7, and mutation probability, Pm = 0.01.
Also, function set = {+,−, /, ∧, sin, sinh, tan, tanh, cos}, and
terminal set = {R, θ}.

5.2. Results and discussion

The produced expression by Multi-gene GP is given in the
following:
V (R, θ) = −((24.13 tan(tanh(R2))) + (24.13(R + θ1/4))

× ((0.4739θ) − cos(R) + 12.57))/ sinh(R2)

− (1091|θ − 0.2231|1/2) tan(sinh(sin(θ1/2)))

× (sin(θ1/2) + 0.5119)/(5 sinh(R2)) + 0.6577
+ ((188000 tanh((0.2813θ) + 1.6062)
× (tanh((0.0325θ) + sinh(R))

− 0.6309)))/ sinh(R2). (8)
The correlation coefficient (R2) for the obtained model is
0.99992. Figure 7 depicts the real data (resulted from SAPT
program) versus the predicted data.

5.3. Adjusting Lennard-Jones parameters

In this study, also, we adjusted and optimized Lennard-Jones
potential’s parameters for our system.

At first, we tried to obtain relations for m and n in Lennard-
Jones potential equation. Parameters of algorithms were set as
follows. The number of generations, G = 320, size of popula-
tion, Popsize = 220, x-over probability, Pc = 0.7, and muta-
tion probability, Pm = 0.01. Also, function set = {+,×, sin,
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Figure 5: Flowchart of GA and GP algorithms.
Figure 6: A typical multiple gene model.
sinh, tan, tanh, cos}, and terminal set = {R, θ}. In the follow-
ing, the derived relations form and n are given, respectively:
m = 6.48, (9)
n = 3.2R + 5.164, (10)
and the modified Lennard-Jones equation is represented as :

V (R, θ) = 4ε(θ)[(σ (θ)/R)6.48 − (σ (θ)/R)3.2R+5.164
]. (11)

Values of ε(θ) and σ(θ) for some angle are listed in Table 2.
Figure 8 shows the accuracy of predictions of Eq. (11), with

regard to real values (ESAPT).
As the third idea, we tried to achieve an accurate equation

by adjusting four parameters of the Lennard-Jones potential
equation, namely; m, n, ε and σ . The results are given in the
following:
m = cos(4.997θ) + 5.452, (12)
n = 2.0θ + cos(9.994R), (13)
ε and σ are constant values, 4.997 and 6.431, respectively.
Accordingly, the final equation is represented as:
V (R, θ) = 4(4.997)[(6.431/R)cos(4.997θ)+5.452

− (6.431/R)2.0θ+cos(9.994R)
]. (14)
Table 2: Values of two parameters, ε(θ) and σ(θ).

θ (°) ε (meV) σ (Å)

0 −3.59 3.17
35 −2.01 3.28
45 −1.75 3.26
50 −1.71 3.25
70 −1.88 2.98
85 −2.50 2.77
90 −2.58 2.72

Parameters of the algorithm are as follows. The number of
generations, G = 320, size of population, Popsize = 220, x-over
probability, Pc = 0.7, and mutation probability, Pm = 0.01.
Also, function set = {+,×, cos}, and terminal set = {R, θ}.

The accuracy of Eq. (14), with regard to real values (ESAPT), is
shown in Figure 9.

6. Second virial coefficients

The second virial coefficients were calculated from the
calculated potential energy Eq. (8), and Gauss and Ramberg
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Figure 7: Predicted potential energies using Eq. (8) versus values computed by
SAPT program.

Figure 8: Predicted potential energies using Eq. (11) versus values computed
by SAPT program.

Figure 9: Predicted potential energies using Eq. (14) versus values computed
by SAPT program.

methods [9] are used for evaluating the integral (Eq. (1)). The
results are shown in Figure 10. The figure for Eq. (13) is similar
Figure 10: Second virial coefficients resulted of Eq. (8).

to Eq. (8). Unfortunately, there are no second virial coefficients
in previous work to compare with our results.

7. Conclusion

This study can be divided into two parts, generally. First,
chemistry computation, inwhichwe applied the SAPT approach
using the SAPT2008 program to achieve potential energies,
He–F2, for the first time. The SAPT method has good accuracy
in comparison with the super molecular method used by
previous researchers [6]. In the second step, to create models
for achieved energies in the previous part, the MGGP method
was utilized. In order to create simple and precise models, the
MGGP was employed, both for modeling PE Eq. (8) and for
adjusting the Lennard-Jones potential (Eqs. (11) and (14)). It
is reasonable that a simple equation is more desirable than a
complex one because of its application; for example, calculation
of the second virial coefficients.
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