
1

1st Serbian International Conference on Applied Artificial Intelligence (SICAAI)
Kragujevac, Serbia, May 19-20, 2022

APPLICATIONS OF MACHINE LEARNING IN QUERY EXECUTION OF
DATABASE SYSTEMS

Zoran Babović1,2, Filip Hadžić3

1 Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000 Kragujevac, Serbia
e-mail: zbabovic@uni.kg.ac.rs
2 Innovation Center of the School of Electrical Engineering, Bulevar Kralja Aleksandra 73,
11000 Belgrade, Serbia
3 School of Electrical Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73,
11000 Belgrade, Serbia
e-mail: hadzic.filip@etf.rs

Abstract:

In recent years there has been a huge increase in data volume which database
management systems (DBMS) have to efficiently manage by providing analytical functions as
well as providing online transactional processing (OLTP) for various applications. The most
challenging task in the DBMS is the efficient query execution which is the responsibility of a
component called the query optimizer. Several benchmarks have shown that there is a lot of
room for the improvement of existing query optimizers. The most recent research efforts in
this field are substantially impacted by the advances in the field of machine learning (ML),
which resulted in the application of various ML algorithms for improving the performance of
query optimizers. This paper gives a brief overview of the approaches that apply ML
algorithms at different levels within the query execution engine, including index structures,
cardinality estimation, query enumeration plan, controlling existing query optimizer, and
database parameters tuning. In addition, the main challenges for applying ML algorithms in
DBMS are also discussed.

Keywords: query optimizer, cardinality estimation, deep learning, learned index structures

1. Introduction

Researchers have been working on the problem of query optimization for several decades
[1]. In order to test the efficiency of query optimization, benchmarks such as the Join
Ordering Benchmark (JOB) [2] have been created which show that sometimes DBMS query
optimizers make dramatic mistakes when creating a query execution plan, thus unnecessarily
increasing query execution time by several orders of magnitude.

The first step during query execution is cardinality estimation which is to determine the
size of the intermediate results of a query. Based on the cardinality estimation, a cost model is
generated for various types of operators that can be applied during the execution of
subqueries, i.e. table join operations, such as nested loop join, hash-join, and sort-merge join.
The efficiency of these operators depends significantly on the characteristics of the selected
data over which they are executed. In the end, based on the cost model the optimizer selects,
the most efficient query enumeration plan which is the order in which the operators are
executed. The most enormous error in the total query execution time could cause an incorrect
cardinality estimation. So, it is clear how important it is that cardinality estimation should be
made as accurately as possible.
In addition, the query execution time could be significantly improved by reducing the data
access time of auxiliary index structures, which are used by given join operators, e.g. hash-

Z. Babovic, F. Hadzic, Application of machine learning in query execution of database systems

2

join. Standard index structures used in DBMS are based on B-Trees, and there may be special
structures for spatial data or multi-dimensional data based on variation of R-Tree or
QuadTree.

Research efforts that investigate the application of ML algorithms to improve query
execution are turned toward improving some of the aforementioned components of DBMS. In
the next section, we will give a short overview of such approaches.

2. Classification of ML Algorithms Applied on Query Execution

Existing research efforts with applications of ML algorithms target the query execution at
the different levels ranging from low-level index structures to high-level DBMS tuning
through adjusting selected working parameters. We identified approaches that could be
classified into several categories: approaches targeting low-level index structures, approaches
that focus on the cardinality estimation task, approaches dealing with query enumeration plan,
approaches that control the existing DBMS’s query optimizer by sitting on top of it, and
approaches that perform automatic database parameters tuning.

2.1 Index structures

Substantial advancements are achieved by the implementation of deep learning-based
indexes to enable efficient low-level data access and searches in read-only databases [3][4] in
order to replace B+ Trees indexes. This approach uses a hierarchy of models in which each
model represents the node within a B+ Tree. The model is created by learning the cumulative
distribution function (CDF) from the indexed data. The leaf node provides the position of the
key within the sorted array. The solution outperforms the B+ Tree by a factor of 3 in respect
of search time, and also has an order of magnitude lower memory consumption. A further
application of the basic idea is used for multi-dimensional indexes which are exploited in
analytical databases [5]. Both approaches could only be used in read-only databases, i.e. for
OLAP types of workloads, whereas the further improvement of updatable learned indexes
with the support of insert, update, and delete operations on data is given in [6] and it also is
suitable for use with OLTP workloads.
2.2 Cardinality estimation

The most recognizable approach to the problem of cardinality estimation was done by
Kipf et al. [7] and it is based on supervised deep-neural networksby utilizing multi-set
convolutional neural networks. In this approach, a query is represented as a feature vector
consisting of a table, join, and predicate data sets which are subsets of all available tables,
joins, and predicates respectively. For example, table set data is a bit-vector where non-zero
entry on a certain position within the vector denotes that a specific table is referred in the
query. In the predicate features, data values are normalized to the range [0, 1] from minimum
and maximum values. Evaluation is performed with the IMDB dataset and it shows that this
approach makes a significantly lower estimation error, in some cases up to two orders of
magnitude, compared to the PostgreSQL estimator and two other popular traditional
approaches.

Other approaches use several deep autoregressive models [8]. On the other hand, Wang et
al. [9] conducted a study in which seven learning methods for cardinality estimation were
evaluated. The authors conclude that although these learning methods have better accuracy
than the traditional methods, they are not ready for real production systems because of the
training time and inference delay, as well as poor behavior with the frequent data updates.

2.3 Query enumeration plan

Krishnan et al. [10] addressed the query enumeration plan by exploiting deep
reinforcement learning, whereas some authors [11] put efforts to predict query performance.
Unlike applications of deep learning models, some approaches employ traditional machine

Z. Babovic, F. Hadzic, Application of machine learning in query execution of database systems

3

learning algorithms [12] such as linear regression, decision trees etc. for cardinality learning
and query optimizer.

2.4 Controlling existing query optimizers

The approach implemented in Bao [13] utilizes the existing query optimizer in DBMS
and it only activates a particular feature or operator (e.g. join algorithm) for a certain class of
queries. Bao is based on the reinforcement learning algorithm with a tree convolution neural
network together with Thomson sampling. This allows Bao to learn from the incorrect query
plans and to adjust to changes in the workload and data. A typical situation is when the
learned optimizer provides hints for applying a different join algorithm, i.e. nested loop join,
hash join, or sort-merge join, from the algorithm the original query optimizer has selected.
The variation of this approach is to activate the learned optimizer only for those types of
queries for which the original optimizer does not give good performance. However, this
approach depends on the ability to provide hints to the existing query optimizer of a particular
DBMS which varies significantly among available DBMS.

2.5 Database parameters tuning

A pioneering approach with ML based DBMS tuning is the project OtterTune [14], which
consists of components that execute the workload on the DBMS, collects performance metrics
and configuration knobs from the DBMS, and stores them in the repository. In addition,
performance metrics from previous sessions can also be utilized. Several ML models are then
used for creating configuration recommendations by tuning particular knobs. In the
experiment with issue-tracking production-level application running on Oracle DBMS, three
ML algorithms are compared: Gaussian Process Regression (GPR), Deep Neural Network
(DNN), and Deep Deterministic Policy Gradient (DDPG) where the best performance
improvement was 45%, achieved by DNN. However, this result depends on the number of
tuning knobs and the DBA assistance in selecting knobs. Other examples are CDBTune [15]
and QTune [16] which are based on the deep reinforcement learning algorithm and utilize
reward function for providing performance data feedback and also use DDPG method for
setting knobs.

3. Challenges for Applying ML algorithms for Query Execution

Here we will list some of potential issues that could limit the applicability of machine
learning algorithms for query execution in DBMS:

Initial training samples – Supervised learning techniques require initial training data
which are sometimes difficult to acquire as in the case of collecting true cardinality
estimation. Also, reinforcement learning requires a lot of query examples in order to improve
performance of the query optimizer. The approach in [7] improves training quality by
generating additional training examples which cover some workloads with higher error
distributions.

Model Generality - Some models are applicable only when certain conditions are
fulfilled, for instance, the constraints which were present during the training of the model.
Some cardinality estimation models are applicable to general queries as well as to queries
with complex predicates if they are trained with a limited set of queries.

Model adaptability – Training the model always requires some time and computational
resources. If it is necessary to re-train the model, will that hurt the performance and induce
some additional delay in query execution? As a result, training the model might be allowed
only overnight.

Balanced performance – In most cases, i.e. in average, approaches with ML algorithms
achieve better results than the traditional algorithms However, there are outlier cases when
learned models have huge response times and delays unacceptable for real systems. This can
prevent the use of such approaches in production systems.

Z. Babovic, F. Hadzic, Application of machine learning in query execution of database systems

4

4. Conclusions

This paper provides a brief overview of ML used for improving query execution in

DBMS. Although the existing approaches are still not ready for production level use, most of
the described approaches are very promising.

References

[1] G. Lohman, „Is Query Optimization a ‘"Solved" Problem?“, In ACM SIGMOD
Blog, ACM Blog ’14, 2014.

[2] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann, „How
Good Are Query Optimizers, Really?,“ PVLDB, 9(3):204–215, 2015.

[3] T. Kraska, A. Beutel, E. H. Chi, J. Dean, N. Polyzotis, "The Case for Learned Index
Structures," In Proceedings of the 2018 International Conference on Management of
Data, ACM SIGMOD '18, pp. 489-504, 2018.

[4] T. Kraska, et al,"SageDB: A Learned Database System," Conference on Innovative
Data Systems Research (CIDR), 2019.

[5] V. Nathan, J. Ding, M. Alizadeh, and T. Kraska, "Learning Multi-dimensional
Indexes," In Proceedings of the 2020 International Conference on Management of
Data, ACM SIGMOD '20, 2020.

[6] J. Ding et al., "Alex: An updatable adaptive learned index," In Proceedings of the
2020 International Conference on Management of Data, ACM SIGMOD ’20, pp.
969–984, 2020.

[7] A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, A. Kemper, "Learned
Cardinalities: Estimating Correlated Joins with Deep Learning," In CIDR 2019.

[8] Z. Yang et al.,”Deep unsupervised cardinality estimation,” In PVLDB, 13(3), 2019.
[9] X. Wang et al., "Are We Ready For Learned Cardinality Estimation?," PVLDB,

14(9):1640-1654, 2021.
[10] S. Krishnan, Z. Yang, K. Goldberg, J. M. Hellerstein, and I. Stoica, "Learning to

optimize join queries with deep reinforcement learning," CoRR, abs/1808.03196,
2018.

[11] R. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh, T. Kraska, O. Papaemmanouil,
N. Tatbul (2019). Neo: a learned query optimizer," In Proceedings of the VLDB
Endowment, 12(11), July 2019.

[12] C. Wu, A. Jindal, S. Amizadeh, H. Patel, W. Le, S. Qiao, S. Rao. Towards a
Learning Optimizer for Shared Clouds. PVLDB, 12(3): 210-222, 2018.

[13] R. Marcus et al., "Bao: Making Learned Query Optimization Practical," In
Proceedings of the 2021 International Conference on Management of Data
(SIGMOD ’21), 2021.

[14] D. V. Aken, D. Yang, S. Brillard, A. Fiorino, B. Zhang, C. Billian, and A. Pavlo,
"An Inquiry into Machine Learning-based Automatic Configuration Tuning Services
on Real-World Database Management Systems," Proc. VLDB Endow. 14(7):1241-
1253, 2021.

[15] G. Li, X. Zhou, S. Li, and B. Gao, „QTune: A Query-Aware Database Tuning
System with Deep Reinforcement Learning, Proc. VLDB Endow. 12(12):2118–
2130, 2019.

[16] J. Zhang et al. “An end-to-end automatic cloud database tuning system using deep
reinforcement learning,” In SIGMOD, 415–432, 2019.

