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Abstract 
 

The Stefan problem which describes phase changes along with heat conduction is used for 
formulating a wide range of problems in science and engineering. Such direct and inverse 
formulations of non-linear problems are successfully solved using numerical techniques. 
Solving inverse problems demands calculations that are extremely time-consuming, because 
dealing with unknown model parameters involves an iterative procedure. Therefore, accuracy 
is often substituted for efficiency. Physics-informed neural networks offer a different 
approach for solving and discovering problems described by partial differential equations, 
which have the potential to enable fast calculations while preserving accuracy. In this paper, 
we propose a data-driven solution of the direct Stefan problem with the aim to determine its 
accuracy and potential of replacing well-established numerical methods. A physics-informed 
neural network method is applied in solving a direct 1D Stefan problem with time dependent 
Dirichlet boundary conditions that describe a melting process. Computational results of the 
proposed approach are compared to analytical and finite difference solutions, for various 
PINN architectures. The applied methodology exhibited sufficient stability and good average 
accuracy.  
 
Keywords: Stefan problem, physics-informed neural network, predictive modeling, non-
linear partial differential equations 
 
1. Introduction 
 

The process of heat conduction with a change of phase occurs in a wide range of real-
world phenomena in which the phase changes between states, such as liquid, solid, and vapor. 
The material is assumed to undergo a phase change with a moving boundary. Moving 
boundary problems that are inherently nonlinear require solving the heat equation in an 
unknown region, which must also be determined as a part of the solution.There is a 
substantial number of well-established numerical methods used for solving diverse types of 
Stefan problems reported in [1]. In this paper, we address this problem by employing physics-
informed neural networks. 

Physics-informed neural networks (PINN) are artificial neural networks capable of 
solving supervised learning tasks respecting a certain physical phenomenon which is 
formulated using nonlinear partial differential equations [2,3]. Besides solving nonlinear 
differential equations, PINN can be very efficient in their discovery, namely, in determining 
unknown parameters when experimental data is provided. In such a case, the PINN model is 
trained to follow experimental data and respect given physical laws. A trained model predicts 
behavior of modeled systems directly, unlike standard numerical procedures whose 
calculations are iterative and time-consuming. The first step of introducing PINNs in 
production is determining their effectiveness (accuracy) in solving a concrete problem.  

In this paper we present a methodology for using a PINN approach in solving direct the 1-
D Stefan problem describing a melting process, with the aim of determining a temperature 
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distribution in liquid phase along with moving boundary location. We tested various network 
architectures of PINN to assess its capability of providing sufficient stability and accuracy 
compared to the analytical solution, but also to the numerical solution presented in [1]. 
Additionally, we implemented an early stopping approach for halting a training process if it 
does not improve model performance after an arbitrary number of epochs, defined by the 
patience parameter [4]. To determine the optimal value of patience, we conducted 
experiments for different patience values on each network architecture. 
 
2. PINN solution of 1-D direct Stefan problem  
 

Physics informed neural network (PINN) is a machine learning method for solving partial 
differential equation problems which acts as a collocation solver. The training data is obtained 
by random selection of collocation points distributed over the domain and then collocated to 
the solution through a loss function. The original approach of the method is given in [2,3].  

In this paper, we present a PINN solution of the Stefan problem formulated in [1], where 
one dimensional phase change is demonstrated by a semi-infinite solid, like a thin block of ice 
occupying 0 𝑥𝑥 < ∞, on solidification temperature. We assume the temperature at 𝑥𝑥 = 0, 
which is the fixed boundary of the thin block of ice, increases exponentially with time. The 
temperature of the entire solid phase is assumed to be at melting point. At time 𝑡𝑡0, 
temperature distribution in the liquid phase must be determined along with the location of the 
free boundary 𝑠𝑠(𝑡𝑡0), where 𝑥𝑥 < 𝑠𝑠(𝑡𝑡0). Over a time interval (𝑡𝑡0, 𝑡𝑡1), where 𝑡𝑡1 > 𝑡𝑡0, the part of 
the thin block of ice has been melted, from position 𝑠𝑠(𝑡𝑡0) to position 𝑠𝑠(𝑡𝑡1).  

 

 
Figure 1. Schematic view of the 1-D Stefan problem. 

 
The temperature distribution 𝑢𝑢(𝑥𝑥, 𝑡𝑡) in the liquid phase region 0𝑥𝑥𝑠𝑠(𝑡𝑡) is given by the 

heat equation  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝛼𝛼
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

 , (1) 

under the following boundary conditions:  
𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑒𝑒𝛼𝛼𝛼𝛼 , 𝑥𝑥 = 0, 𝑡𝑡 > 0
𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 1, 𝑥𝑥 = 𝑠𝑠(𝑡𝑡), 𝑡𝑡 > 0, (2) 

where 𝛼𝛼 is a physical parameter combining density, specific heat, and thermal conductivity. 
The location of the moving boundary complies to Stefan condition: 1

𝛼𝛼
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 , 𝑥𝑥 =
𝑠𝑠(𝑡𝑡), 𝑡𝑡 > 0. In the general case, the initial condition is given by 𝑠𝑠(0) = 0. The exact solution 
for this specific problem is known: 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑒𝑒𝛼𝛼𝛼𝛼−𝑥𝑥 , 𝑠𝑠(𝑡𝑡) = 𝛼𝛼𝛼𝛼. 

Solving this problem following the PINN approach assumes constructing two neural 
networks. The first approximating temperature distribution function 𝑢𝑢(𝑥𝑥, 𝑡𝑡) and the second 
approximating the function of free boundary location 𝑠𝑠(𝑡𝑡). Approximate solutions are 
differentiated with respect to their variables for values defined in set of collocation points 
selected from the domain [0,𝑇𝑇] × 𝒟𝒟,  where 𝒟𝒟 ⊂ ℝ𝑑𝑑 is a bounded domain, and 𝑇𝑇 denotes the 
final time. Loss function consists of terms used for measuring satisfaction of (1) and (2) by 
neural network approximations of 𝑢𝑢 and 𝑠𝑠  at collocation points, where terms include a given 
partial differential equation and both the initial and boundary conditions along the domain 
boundary. 
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Specifying the model for training included determining the following components of the 
composite loss function: 
− Differential operator 𝐿𝐿1 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
− 𝛼𝛼 𝜕𝜕2𝑢𝑢

𝜕𝜕𝑥𝑥2
, as an implicit formulation of the conduction 

equation (3). 
− Condition 𝐶𝐶1 = �1

𝛼𝛼
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� (1 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥 − (𝑠𝑠 − 𝛿𝛿))(1 − 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥 − 𝑠𝑠)), where 𝛿𝛿 represents 

the width of the region taken by a loss component. It quatifies the Stefan condition in a 
narrow region of the phase change (free boundary).   

− Initial contition 𝐶𝐶2 = (1 − 𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 − (𝑡𝑡0 + 𝛿𝛿)))(𝑠𝑠 − 𝑠𝑠0), where 𝛿𝛿 represents the width of 
the region taken by this loss component. 

− Derichlet condition 𝐶𝐶3 = (1 − 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥 − (0 + 𝛿𝛿))(𝑢𝑢 − 𝑒𝑒𝛼𝛼𝛼𝛼). 
− Boundary condition 𝐶𝐶4 = (1 − 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥 − (𝑠𝑠 + 𝛿𝛿)))(1 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥 − 𝑠𝑠))(𝑢𝑢 − 1). 

We took the hyperbolic tangent as the activation function for all neurons in both neural 
networks. The training data set is based on a generated 300 × 300 mesh grid of collocation 
points. For the learning process, the Adam algorithm is used, along with MSE as an error 
measure. Various network architectures were considered, which is discussed in the next 
section, along with the number of epochs driven by the early stopping mechanism. The batch 
size is set to 256. Following recommendation given in [1], this relatively large value has been 
chosen to avoid the insufficient number of collocation points needed for boundary condition 
check. All calculations have been conducted using SciANN, a Python library abstracting 
Keras and TensorFlow [4]. The PINN implementation of the 1-D Stefan problem is available 
on GitHub1. 
 
3. Results and Discussion  
 

Neural network architectures converge differently, so there is no mechanism to determine 
ANN architecture of hidden layers that best suits this specific kind of problem. We 
benchmarked the proposed PINN solution of the 1-D Stefan problem with various neural 
network architectures in order to explore how they affect accuracy and training time. We 
carried out variants with 1, 2, 3 and 4 layers in combination with 20, 30 and 40 neurons per 
layer to conclude how the architecture affects the rate of convergence. The learning rate was 
set to 0.02. The physical system is observed in the interval 𝑡𝑡0 = 0 till 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = 1. The 𝛼𝛼  
parameter was set to 1. We conducted all runs on the GeForce RTX 3080 graphics controller.  

For each ANN architecture, we conducted training, with a limit of 10000 epochs, for 
different values of the patience parameter. We calculated the average RMSE across all 
benchmarked network architectures, together with standard deviation and average training 
time.  The results are shown in Figure 2, with Stefan’s boundary position, 𝑠𝑠(𝑡𝑡), acting as the 
single representative accuracy indicator. The very last value of patience (10000) is depicted 
for the sake of ensuring the early stopping mechanism works. 

The application of the numerical methodology presented in [1], for identical setup, results 
in approximately 0.005 RMSE value, which aligns with the average RMSE of PINN solution. 
We can conclude that the PINN accuracy is in line with existing numerical solutions.  It 
should be emphasized that certain PINN architectures exhibit even better accuracy than the 
numerical solution [1]. For example, PINN consists of 2 layers with 30 neurons reached 
RMSE ≈ 0.004. 

 

 
1 https://github.com/srdjan034/PINN-Stefan-problem 

https://github.com/srdjan034/PINN-Stefan-problem


S. T. Nikolić, M. R. Ivanović, A. M. Kaplarević-Mališić, Data-driven Solution of 1-D Stefan Problem 

4 

 
Figure 2. Average RMSE of various ANN architectures and average training time as a functions of 

patience parameter.  
 

It can be noted that the early stopping mechanism significantly improves training time, 
while not affecting the average RMSE for patience higher than 200.  However, the value of 
the standard deviation of RMSE (varying PINN architectures) is not negligible, justifying 
further research towards searching for the best network architecture for a specific problem. 

 
4. Conclusions 

 
We presented the PINN solution of a direct 1D Stefan problem with time dependent 

Dirichlet boundary conditions describing a melting process. The applied methodology 
exhibited stability and accuracy comparable to the accuracy of the existing numerical 
methods, offering more flexibility in various application areas. The results of all experiments 
confirmed that the PINN solution can be used effectively and efficiently for the selected 
problem, which makes further investigation towards the performance of the PINN method in 
solving inverse Stefan problem grounded on solid assumptions.  
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