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Abstract: 
  

In order to detect unusual network activity, anomaly-based intrusion detection systems monitor 

computer network behaviour. The main challenge in detecting anomalies is determining the notion of 

normality. Binary classifiers can be trained to categorize unknown data as normal or abnormal. Supervised 
machine learning has increased the efficiency and precision in detecting anomalies. The main advantage of 

anomaly-based classification is that unknown attacks can be detected. The disadvantage is that developing 

a network behaviour model takes time since a large amount of training data is required to ensure reliable 
results. In binary classification, it is critical to reduce the size of the dataset. Feature scaling is widely used 

for reducing model complexity. This paper describes a new scaling technique based on tangent hyperbolic 

min-max normalization and the principle of the Levenberg-Marquardt (LM) algorithm. The experiments 
are carried out on the feedforward neural network (FNN), k-nearest neighbour (k-NN), weighted k-NN 

(wk-NN) and support vector machine (SVM) models trained on daily records from the Kyoto 2006+ dataset. 

All models are shown to be highly accurate. The tangent-hyperbolic min-max feature scaling outperforms 

the Z-score standardization and Min-Max normalization in terms of the processing time.  
 

Key words: intrusion detection, machine learning, feature scaling, binary classification, feedforward neural 

networks, Kyoto 2006+ dataset  

 

 

1. Introduction 

 
Anomaly-based intrusion detection systems (IDSs) monitor behaviour of the computer network and 

generate alerts when unusual activity is detected [1]. The main challenge in detecting anomalies is 

developing a statistical model that determines the notion of normality and triggers an alarm when abnormal 

behaviour is detected. The main difficulties in detecting anomalies are determining ‘normality’ and learning 
distinctions between normal and abnormal network behaviour [2]. The main advantage of anomaly-based 

IDS is that it can detect unknown attacks. The disadvantage, on the other hand, is that building a network 

behaviour model takes time. The basic idea behind anomaly detection is to build a high-precision classifier 
that is trained on a small number of instances, runs in real time, and detects deviations from normal network 

behaviour [3]. Binary classifiers based on supervised machine learning (ML) can be trained to classify 

unknown network traffic into normal or abnormal data categories [4]. The k-NN models are the simplest 
classifiers with the performance dependent on the number of neighbours, distance metrics and the decision 

rule. The k-NN algorithm’s disadvantages include a costly test phase and high reliance on the dataset size 
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[5]. The wk-NN algorithm extends the k-NN algorithm so that the instances within the learning set that are 
especially close to the new instance should be weighted more heavily in the decision [1]. If the 

interpretability of the model is not a primary concern, FNNs are widely used in classification due to their 

universal approximation property. One of the fastest FNNs updates the weights using the LM optimization 

algorithm, which combines the gradient descent (GD) and Gauss-Newton (GN) algorithms to perform a 
complex training process [6]. To classify the instances, the SVM algorithm uses a hyperplane in n-

dimensional space [7]. The instances on opposite sides of the hyperplane are assigned to different classes. 

However, a large amount of training data is required to that all classifiers produce reliable results. In binary 
classification, reducing the size of the data set is an important task. As a result, feature scaling is frequently 

used to reduce model complexity [8]. This paper examines the impact of feature scaling on classification 

using the k-NN, wk-NN, FNN and SVM models. Daily records from the Kyoto 2006+ dataset are used to 
train classifiers [9]. The idea was to go into the dimensionality reduction to redefine the feature vector 

before it was used for training [10]. The Z-score standardization and Min-Max normalization have a 

negative impact on training in terms of processing time and number of false positives. Tangent hyperbolic 

min-max feature scaling speeds up training and leads to faster convergence of the classification algorithms, 
according to results. 

 

2. Related work 

 

Many research challenges in data analysis, visualisation, and understanding relate to the availability 

and usability of the multidimensional data, as the nature of trait influence anomaly detection [11]. Prior to 
classification, the pre-processing steps reduce and scale features, which helps improving the properties of 

the ML models. Dimensionality reduction, feature scaling, binary classification and the data collection are 

presented in the text that follows. 

 
2.1 Dimensionality reduction and feature scaling 

 

Dimensionality reduction is a common pre-processing step before classification that reduces the 
number of features to the most important ones. In [12], the authors propose the feature selection method to 

save storage space and speed up the classification algorithms. They compared neural network, k-NN and 

SVM models and showed that many of them had over 50% faster processing time with ~90% accuracy 

when only half of all features were used. In [13], the authors summarize the research on DT, SVM, FNN, 

and nearest neighbour models and describe the effect of instance normalization in the range ±1. The authors 

emphasize that using feature selection correctly can significantly improve processing time and classification 

performance.  
Prior to classification, feature scaling is frequently used in addition to dimensionality reduction. If no 

feature scaling is done, ML algorithms tend to weight higher values and treat smaller values as lower values 

regardless of their units. Normalization and standardization are the two most common methods for feature 
scaling. The goal of normalization is to ensure that each data point has the same scale. Features with 

different scales may cause model to diverge, overestimate, underestimate or ignore some parameters, and 

reduce the efficiency of the estimation. Normalization is useful when there are no outliers in the dataset and 
when the distribution of the data set is known to be non-Gaussian, which can be useful in nearest neighbour 

algorithms. In [14] and [15], the authors describe Min-Max normalization to detect network intrusion using 

ML models on the selected Kyoto 2006+ dataset. Normalization is used before splitting the dataset and 

after balancing to avoid bias caused by outliers in the imbalanced dataset because minimum and maximum 
values of the features are unknown. In contrast to normalization, the Z-score standardization focuses on 

values that are centred around the zero mean and have unit standard deviation. It is useful when the model 

follows a Gaussian distribution but does not scale features in the same range. In [8], the authors present a 
Z-score scaling method that can be used as a pre-processing step in anomaly-based intrusion detection. 
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2.2 Classification models 
 

Supervised ML algorithms are widely used for anomaly-based classification of computer network 

traffic. The SVM model uses the hyperplane in n-dimensional space to classify instances [16-18]. The 

instances falling on the different sides of the hyperplane are assigned to different classes. The k-NN 
algorithm identifies a sample based on its k neighbours and compute the distances between them [19], [20]. 

The parameter k affects the performance of the classifier. The model is prone to overfitting when k is small. 

A large value of k may cause the instance to be misclassified [21]. In [22], the authors describe the k-NN 
algorithm, which assigns objects to the class that contains the majority of their nearest neighbours in the 

feature space. Weighted k-NN model extends k-NN so that the instance from the training set that is close 

to the new instance has a higher weight in the decision than those that are further away [1]. The neural 
network’s output is determined by the prediction probability and the classification threshold [20], [23]. 

Calculation is carried out by forwarding the input data to calculate the outputs, and propagating the error 

of cost function backward to adjust the weights [24]. In [25], the authors present statistical data for 

publication citations from 2005 to 2020 using various ML approaches to intrusion detection. With ∼27,000 
citations in research, SVM-based articles (1716 in total) have the most cited topics. More than 2,000 

publications on neural network-based intrusion detection have received over 21,000 citations (252 

publications and 5,496 citations). The authors also demonstrate that ML-based intrusion detection has 
significantly more references than statistical, knowledge-based and biotechnology-based approaches. 

Because of the results stated above, this article refers to the SVM, k-NN, wk-NN and FNN classifiers. 

 

2.3 Data collection 
 

The researchers have conducted experiments on various data sets, over the years, including AFDA-

LF/WD, AWID, CAIDA, CIC-IDS-2017, CSE-CIC-2018, ISCX2012, KDD CUP ’99, NSL-KDD and 
UNSW-NB15 [8], [14], [25-28]. However, those datasets are simulations of real network traffic and neither 

is solely used for experiments involving anomaly-based intrusion detection. On the other hand, the Kyoto 

2006+ dataset contains the actual data that is collected from ∼350 honeypots, including two darknet sensors 

with ∼300 unused IP addresses and other IDSs installed on five different computer networks [14], [26], 

[29]. The first part of the Kyoto 2006+ dataset, consisting ∼90 million instances with 24 features, was 

collected between 2006 and 2009. Fourteen statistical features were derived from the KDD-Cup ’99 dataset. 

The authors ignored all features with redundant and duplicate records and added ten new features that were 

used to detect the anomalies [30]. Furthermore, ∼20 GB of data, collected from November 2009 to 

December 2015, was added to the original dataset. The IDS Bro was used to convert packet-based traffic 

data to a session-based format [4]. The dataset contains DoS, exploits, malware, port scans and shell code 
attacks against honeypots, but does not contain any information about specific attacks. Instead, the feature 

Label is used to indicate whether or not the attack is present [31]. The original data set is labelled with three 

types of labels: 1 for normal sessions, -1 for known attacks, and -2 for unknown attacks. However, because 

unknown attacks are extremely rare in the dataset (∼0.7%), for the purpose of the experiments we assigned 
the same label (-1) to both known and unknown attacks. 

 

3. Tangent-hyperbolic min-max feature scaling 

 

Various feature scales can lead to biased and incorrect results for classifiers that make decisions based 

on the Euclidean distance between two points (such as nearest neighbour models). Also, when the GD is 

an optimization algorithm (classifiers such as neural networks), it can update a specific weight faster than 
others, so the feature scaling can assist the GD to converge faster. Standardization and normalization are 

two types of scaling that help to optimize classifiers’ optimization.  
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The Z-score standardization strategy rescales the features to have a zero mean and a standard deviation 
of one [32]. Consider the feature vector X containing n instances x(i), where i=1, …, n. The Z-score 

standardization rescales features using Eq. 1 

 𝑥(𝑖)𝑍−𝑠𝑐𝑜𝑟𝑒 =
𝑥(𝑖)−𝑚𝑒𝑎𝑛(𝐗)

𝑠𝑡𝑑(𝐗)
,                                           (1) 

where 𝑥(𝑖)𝑍−𝑠𝑐𝑜𝑟𝑒  denotes the standardized instance and mean(X) and std(X) represent the mean value 
and standard deviation of X, respectively. 

Min-max normalization is a type of features scaling in the range [0,1] (Eq. 2) or [-1,1] (Eq. 3) that helps 

to reduce the effects of the outliers by providing lower standard deviations in the output [12], [33]. 

 𝑥(𝑖)[0,1] =
𝑥(𝑖)−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 ,                                         (2) 

 𝑥(𝑖)[−1,1] =
𝑥(𝑖)−

𝑥𝑚𝑎𝑥+𝑥𝑚𝑖𝑛
2

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
2

,                                         (3) 

where  𝑥(𝑖)[0,1] represents an instance normalized into the range [0,1], 𝑥(𝑖)[−1,1] denotes an instance 

normalized into the range [-1,1], while 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛 represent maximum and minimum of the feature X, 
respectively. Min-max normalization is often performed on features as a pre-processing step to the 

classification when the distances should be calculated, or in regression algorithms when the coefficients 

should be prepared. When the neural networks are used for labelled data classification, it is one of the most 
commonly applied feature scaling methodology. 

In this paper we propose a novel tangent hyperbolic min-max normalization (THN) approach based on 

the principle of the LM algorithm used to update FNN weights, which ensures scaling the features into a 

fixed range, avoids zigzagging by changing the direction of the updates based on gradients, and speeds up 
the training [2], [34], [35]. In [31], the authors discuss faster convergence of the zero-centred, S-shaped 

function when parameter movements over a surface area are in a specific direction and average of the input 

variable over the training set is close to 0.  

Since the tangent hyperbolic function 𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥  is the S-shaped function that is centred around 

zero and bounded in the range [-1,1], it is applied here. It should be noted that the first derivative of the 

𝑡𝑎𝑛ℎ(𝑥) is 𝑡𝑎𝑛ℎ(𝑥)′ =
𝑑

𝑑𝑥
(𝑡𝑎𝑛ℎ(𝑥)) = 1 − 𝑡𝑎𝑛ℎ(𝑥)2. Fig. 1 depicts both 𝑡𝑎𝑛ℎ(𝑥) and 𝑡𝑎𝑛ℎ(𝑥)′. 

 

Fig. 1. Hyperbolic tangent function and its derivative 
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The THN scaling normalizes features according to the following formula: 

𝑥(𝑖)𝑇𝐻𝑁 = 𝑡𝑎𝑛ℎ (
𝑥(𝑖)−

𝑥𝑚𝑎𝑥+𝑥𝑚𝑖𝑛
2

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
2

)                                         (4) 

where 𝑥(𝑖)𝑇𝐻𝑁 represents the instance normalized in the range [𝑡𝑎𝑛ℎ(−1), 𝑡𝑎𝑛ℎ(1)], i.e. 
[−0.7616, 0.7616]. The main idea of the THN is to use the damping strategy properties from the LM 

algorithm, which is explained in the text that follows. Consider the quasi-linear part of the tanh(x) in the 

range [−0.7616, 0.7616] (see Fig. 2) and concentrate on the effects of THN scaling on gradient-based 
training of the classifiers. Consider a FNN with one hidden layer containing neurons with tangent 

hyperbolic activation functions (weights). Note that the product of 𝑥(𝑖)𝑇𝐻𝑁 and the corresponding weight 

can never be ±1. 

 

 
Fig. 2. Quasi-linear part of hyperbolic tangent function 

 

The LM algorithm is a type of non-linear iterative methods that combines the GD algorithm, which 

minimizes the objective function based on the step length and the search direction determined by the 

negative of the gradient, and fast GN algorithm, which determines the function’s inflection point based on 
the second-order derivative, which simplifies calculation of the Hessian matrix by assuming that the error 

function is approximately quadratic close to the optimal solution and using the introduced Jacobian matrix 

(J) [33]. The idea behind the LM algorithm is to perform an affine transformation of function 𝑓: 𝑅 → 𝑅 

near the point p, using the first-order truncated Taylor formula [36] shown below 

 𝑓(𝑥, 𝑝) = 𝑓(𝑝) + 𝐷𝑓(𝑝)(𝑥 − 𝑝) (5) 

where 𝐷𝑓(𝑝)(𝑥 − 𝑝) denotes the Jacobian matrix of the partial derivatives of f. The LM algorithm 

approximates the problem so that 𝑓(𝑥, 𝑝) ≈ 𝑓(𝑥)  and 𝑥 ≈ 𝑝, at the same time. Let 𝑥(1), ⋯ , 𝑥(𝑘) represent 

the iterates. The iterate 𝑥(𝑘+1) should be chosen to minimize the first and second term in the expression 

‖𝑓(𝑥, 𝑥(𝑘))‖
2

+ 𝜆(𝑘)‖(𝑥, 𝑥(𝑘))‖,  𝜆(𝑘) > 0, (6) 

where 𝜆(𝑘)is damping factor that varies with the step size. Consider the solution of the problem 𝑥(𝑘+1). 

The iterate 𝑥(𝑘) determines stationary point when 𝑥(𝑘+1) = 𝑥(𝑘). Then 𝑥(𝑘+1) can be calculated as 

follows: 

𝑥(𝑘+1) = 𝑥(𝑘) − (𝐷𝑓(𝑥(𝑘))T𝐷𝑓(𝑥(𝑘)) + 𝜆(𝑘)𝐈)
−1

,  𝜆(𝑘) > 0.  (7) 
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The parameter I stands for identity matrix. The solution holds true if and only if 𝐷𝑓(𝑥(𝑘))T𝐷𝑓(𝑥(𝑘)) =

0. The damping factor 𝜆(𝑘) can be adjusted as follows:  

 if 𝜆(𝑘) is too large it should be increased because 𝑥(𝑘+1) is too close to 𝑥(𝑘) (usually 𝜆(𝑘+1) = 2𝜆(𝑘)); 

 if 𝜆(𝑘) is too small it should be decreased because 𝑥(𝑘+1) is too far from 𝑥(𝑘) and the approximation is 

poor (usually 𝜆(𝑘+1) = 0.5𝜆(𝑘)). 
The iterate 𝑥(𝑘+1) can be determined using the LM algorithm as follows 

𝑥(𝑘+1) = 𝑥(𝑘) − (𝐇 + 𝜆(𝑘)𝐈)
−1

𝐉T𝑓(𝑥(𝑘)) = 𝑥(𝑘) − (𝐉T𝐉 + 𝜆(𝑘)𝐈)
−1

𝐉T𝑓(𝑥(𝑘)),  (8) 

where 𝐇 ≈ 𝐉T𝐉 represents approximation of the Hessian matrix. The LM algorithm switches between 

GD and GN algorithms (damping strategy) depending on 𝜆(𝑘) as follows: 

 if 𝜆(𝑘) → ∞ =>  𝐇 + 𝜆(𝑘)𝐈 → 𝐈 and the LM algorithm behaves as the GD algorithm, 

 if 𝜆(𝑘) → 0 =>  𝑥(𝑘) is close to the optimal solution and the LM algorithm behaves like the GN 
algorithm. 

The damping strategy involves switching between the GN and GD algorithms [37]. The main idea 

behind THN scaling is to use a damping approach to adapt the features to the classifier inputs in order to 

accelerate the weight adjustment and eliminate impacts on very small and very large gradients. Note that 
the NTH normalization affects training of most gradient-based classification algorithms. 

 

4. Results and discussion 

 

The effects of THN scaling on decision about anomalies of four binary classifiers are demonstrated 

using MATLAB Classification Learner. The models’ characteristics are as follows: (1) k-NN (k=10), (2) 
wk-NN (k=10; weights – squared inverse distance), (3) SVM (medium) and (4) FNN with one hidden layer 

(9 neurons in both input and hidden layers and one output neuron, weights – tangent hyperbolic). The 

experiments are carried out on ~57,000 instances of nine features from the Kyoto 2006+ dataset. The 

features are initially released from not-a-number (NaN) values. Then, all irrelevant features were removed 
(categorical features, connection duration features, statistical features and features for further analyses). 

Finally, nine numerical features left for training: Count, Same_srv_rate, Serror_rate, Srv_error_rate, 

Dst_host_count, Dst_host_srv_count, Dst_host_same_src_port_rate, Dst_host_serror_rate, and 
Dst_host_srv_serror_rate. Feature Label determined whether the network traffic was (1) normal or 

abnormal (-1). Finally, the relevant features were scaled using Z-score standardization, Min-Max 

normalization in [0,1] and [−1,1] ranges, and THN. 70% of instances are used to train models, while 30% 

are used to test them. The classification results are compared to the corresponding labels and the 
performance of the model is measured in terms of true positive (TP), true negative (TN), false positive (FP) 

and false negative (FN) results, as well as processing time (tp). The TP denotes correctly classified normal 

network behaviour. TN determines the correctly identified negative results. FP denotes normal network 
behaviour misclassified as anomaly, whereas FN denotes abnormal network behaviour incorrectly assigned 

to the class ‘normal’. The processing time represents time spent to training and testing the classifiers. The 

model accuracy (ACC) is determined as the ratio of correctly classified results to the total number of the 
results, as shown below 

Acc =
TP+TN

TP+TN+FP+FN
. (9) 

When FP and FN are both of equal importance, as in the unbalanced Kyoto 2006+ dataset, the weighted 

harmonic mean Fβ of two variables, Precision and Recall, is used as a classification quality measure. 

Precision is concerned with FP and determines how many of the total predicted positives are actually 
positives (Eq. 10). 

Precison =
TP

TP+FP
,  (10) 
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while Recall focuses on FN results and determines how many results out of total predicted positives are 
correctly predicted (Eq. 11). 

Recall =
TP

TP+FN
.  (11) 

The Fβ is given with the following formula 

Fβ =
1

β
1

Precision
+(1−𝛽)

1

Recall

.  (12) 

When β = 1, Fβ is referred to as the F1-score (F1). In this case Precision and Recall are both of equal 

importance in the F1-score.  
The Z-score standardization is used for the experiments to scale the features so that the instances are 

centred around zero-mean with unit standard deviation. To solve problems caused by different scales, the 

Min-Max normalization into the range [0,1] is used. Furthermore, the Min-Max normalization into the range 

±1 is used to resolve problems caused by very large or very small derivatives. The THN is used because 
of three important properties: (1) the features are scaled in the same range, (2) the tanh function speeds up 

training and (3) zigzagging is avoided. Accuracy, processing time and F1-score are given in Table 1. 

 

 Z-standardization Min-Max [0,1] Min-Max [-1,1] THN 

 ACC tp [s] F1 ACC tp [s] F1 ACC tp [s] F1 ACC tp [s] F1 

k-NN 0.9943 102.35 0.99110 0.9945 107.35 0.99212 0.9941 103.2 0.99198 0.9930 56.1 0.99011 

wk-NN 0.9948 103.25 0.99259 0.9948 102.73 0.99263 0.9958 105.3 0.99287 0.9940 56.34 0.99164 

SVM 0.9922 36.28 0.98885 0.9915 36.99 0.98933 0.9917 43.39 0.98889 0.9910 26.89 0.98694 

FNN 0.9943 12 0.99176 0.9953 11 0.99328 0.9931 12.12 0.99042 0.9936 5 0.98886 

 
Table 1. Accuracy, processing time and F1-score  

 

The models presented in the Table 1 are proven to be highly accurate, with ACC ≥ 99.1%, resulting 
from both feature selection and feature scaling. It should be noted that the selection of numerical features 

is critical in the classification. The results show that the THN scaling has a clear positive effect on 

processing time (see Fig. 3) for all the models, at the cost of slight degradation of the classifier accuracy 
for ~0.1% and F1-score (< 0.5%). 

 
 

Fig. 3. Processing time 
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The results also support the hypothesis that it is reasonable to use the THN scaling to accelerate training 
because it reflects not only to the FNN but also other classifiers. In the case of nearest neighbour classifiers, 

which are lazy learners, THN scaling can be used to reduce the processing time for more than twice. 

 

 

5. Conclusion 

 

The impact of feature selection and scaling on binary classification using k-NN, wk-NN, SVM and 
FNN models is discussed in this paper. Classifiers are trained using daily records from the Kyoto 2006+ 

dataset. Categorical features, connection duration features, statistical features and features for further 

analyses are removed from the dataset. Finally, nine numerical features left to train the models. The feature 
Label classifies network traffic as normal or abnormal. To scale the relevant features, Z-score 

standardization, Min-Max normalization in [0,1] and [−1,1] ranges, and THN were used. The models are 

highly accurate as a result of both feature selection and feature scaling. The results show that THN scaling 

has a clear positive effect on processing time for all models, at the expense of slight decrease in classifier 
accuracy. 

 

References  

 

[1] Protic D, Stankovic M, Detection of Anomalies in the Computer Network Behaviour. European 

Journal of Engineering and Formal Sciences, 4(1):7-13, 2020. 
[2] Omar S, Ngadi A, Jebur HH, Machine Learning Techniques for Anomaly Detection: An Overview. 

International Journal of Computer Applications 79(2):33-41, 2013. 

[3] Alhakami W, Alerts Clustering for Intrusion Detection Systems: Overview and Machine Learning 

Perspectives. International Journal of Advanced Computer Science and Applications, 10(5):573-582, 
2019. 

[4] Zhou SK, Medical Image Recognition, Segmentation and Parsing, 2016. 

[5] Mighan SN, Kahani MA, A novel scalable intrusion detection system based on deep learning. Int. J. 
Inf. Secur. 20:387–403, 2021. https://doi.org/10.1007/s10207-020-00508-5.  

[6] Protic D, Feedforward neural networks: The Levenberg-Marquardt optimization and the optimal 

brain surgeon pruning. Military Technical Courier 63(3):11-28, 2015. 

[7] Serkani E, Gharaee H, Mohammadzadeh N, Anomaly detection using SVM as classifier and DT for 
optimizing feature vectors. ISeCure 11(2):159-171, 2019. 

[8] Ali PJM, Faraj RH, Data Normalization and Standardization: A Technical Report. Machine Learning 

Technical Reports 1(1):1-6, 2014. https://doi.org/10.13140/RG.2.2.28948.04489. 
[9] Song J, Takakura H, Okabe Y, Eto M, Inoue D, Nakao K, Statistical Analysis of Honeypot Data and 

Building of Kyoto 2006+ Dataset for NIDS Evaluation. Proc. 1st Work-shop on Building Anal. 

Datasets and Gathering Experience Returns for Security, Salzburg, pp.29-36, 2011. 
https://doi.org/10.1145/1978672.1978676. 

[10] Bhandari A, Feature Scaling for Machine Learning: Understanding the Difference Between 

Normalization vs. Standardization, 2020. https://www.analyticsvidhya.com/blog/2020/04/feature-

scaling-machine-learning-normalization-standardization/. 
[11] Musheer RA, Verma CK, Srivastava N, Dimension reduction methods for microarray data: a review. 

AIMS Bioengineering 4(2):179-107, 2017. http://dx.doi.org/10.3934/bioeng.2017.1.179. 

[12] Al-Imran M, Ripon SH,  Network Intrusion Detection: An Analytical Assessment Using Deep 
Learning and State-of-the-Art Machine Learning Models. Int. J. Comput. Intell. Syst. 14:200, 2021. 

https://doi.org/10.1007/s44196-021-00047-4. 

[13] Protic D, Stankovic M, Anomaly-Based Intrusion Detection: Feature Selection and Normalization 
Instance to the Machine Learning Model Accuracy. European Journal of Engineering and Formal 

Sciences 1(3):43-48, 2018. 

https://doi.org/10.1007/s10207-020-00508-5
https://doi.org/10.13140/RG.2.2.28948.04489
https://doi.org/10.1145/1978672.1978676
https://www.analyticsvidhya.com/blog/2020/04/feature-scaling-machine-learning-normalization-standardization/
https://www.analyticsvidhya.com/blog/2020/04/feature-scaling-machine-learning-normalization-standardization/
http://dx.doi.org/10.3934/bioeng.2017.1.179
https://doi.org/10.1007/s44196-021-00047-4


Protic D. Danijela, Miomir S. Stankovic, Detection of anomalies in the computer networks: Feature scaling methodology 

[14] Osanaiye O, Ogundile O, Aina F, Periola A, Feature selection for intrusion detection system in a 
cluster-based heterogeneous wireless sensor network, Facta Universitatis, Series: Electronics and 

Energetics 32(2):315-330, 2019. https://doi.org/10.2298/FUEE19023150. 

[15] Zhao Z, Liu H, Semi-supervised feature selection via spectral analysis. Proceedings of SIAM 

International Conference on Data Mining, 2007. 
[16] Jie C, Jiawei L, Shulin W, Sheng Y, Feature selection in machine learning: A new perspective. 

Neurocomputing, 300, 26:70-79, 2018. https://doi.org/10.1016/j.neucom.2017.11.077. 

[17] Ahmed I, Shin H, Hong M, Fast Content-Based File Type Identification. Project Digital Forensics, 
2011. http://doi,org/10.1007/978-3-642-24212-0_5. 

[18] Khraisat A, Gondal I, Vamplew P, Kamruzzaman J, Survey of intrusion detection systems: 

techniques, datasets and challenges. Cybersecurity 2-20, 2019. 
[19] Parmigiani G, International Encyclopedia of the Social & Behavioral Sciences, 2001. 

[20] Bohara B, Bhuyan J, Wu F, Ding J, A Survey on the Use of Data Clustering for Intrusion Detection 

System in Cybersecurity. Int. J. Netw. Secur. Appl., 12(1):1-18, 2020. 

[21] Ring M, Wunderlich S, Scheuring D, Landes D, Hotho A, A Survey of Network-based Intrusion 
Detection Data Sets, arXiv:1903.02460v2 [cs.CR]:1-17, 2019. 

[22] Biswas SK, Bordoloi M, Purkayastha B, Review of Feature Selection and Classification using Neuro-

Fuzzy Approaches. International Journal of Applied Evolutionary Computation 7(4):28-44, 2016. 
http://dx.doi.org/10.4018/IJAEC.2016100102.  

[23] Bhati BS, Rai CS, Analysis of Support Vector Machine-based Intrusion Detection Techniques, Arab. 

J. Sci. Eng. 45:2371–2383, 2020. https://doi.org/10.1007/s13369-019-03970-z.  
[24] Nguyen T, Armitage G, A Survey of Techniques for Internet Traffic Classification using Machine 

Learning. IEEE Commun. Surveys Tutorials 10(4):56-76, 2008. 

[25] Perez D, Alonso S, Moran A, Prada MA, Fuentes JJ, Domingez M, Comparison of Network Intrusion 

Detection Performance Using Feature Representation. In: Macintyre J., Illadis L., Maglogoiannis I. 
and Jayne C. (eds.) Engineering Applications of Neural Networks. EANN 2019. Communications in 

Computer and Information Science, 1000, 2019. https://doi.org/10.1007/978-3-030-20257-6_40. 

[26] Hardesty L, Explained: Neural Networks, MIT News on campus and around the world, 2017. 
https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414. 

[27] Demertzis K (2018) The Bro Intrusion Detection System, Project: Machine Learning to Cyber 

Security, 2018. https://doi.org/10.31140/RG.2.2.35333.40168. 

[28] LeCun Y, Bottou L, Orr GB, Muller KR, Efficient BackProp. Neural Computation 4:141-166, 1992. 
[29] Wang Y, Liu D, Huang TS, Chapter 6: Signal Processing, in: Zhangyang Wang, Yun Fu, Thomas S. 

Huang (eds.) Computer Vision and Pattern Recognition, Deep Learning Through Sparse and Low-

Rank Modeling, Academic Press, 121-142, 2019. https://doi.org/10.1016/B978-0-12-813659-
1.00006-8. 

[30] SIGKDD - KDD Cup, KDD Cup 1999: Computer network intrusion detection, 2018. www.kdd.org. 

[31] Lai KK, Mishra SK, Ram B, On q-Quasi-Newton’s Method for Unconstrained Multiobjective 
Optimization Problems. Mathematics 8(616):1-14, 2020. https://doi.org/10.3390/math8040616. 

[32] Kumar YV, Kamatchi K, Anomaly Based Network Intrusion Detection Using Ensemble Machine 

Learning Technique. International Journal of Research in Engineering, Science and Management 

3(4):290-297, 2020. 
[33] Garcia S, Luengo J, Herera F, Data Preparation Basic Models. In: Data Preprocessing in Data Mining. 

Intelligent System Reference Library 72:39-57, 2015. https://doi.org/10.1007/978-3-319-10247-4_3. 

[34] Obaid HS, Dheyab SA, Sabry SS, The Impact of Data Pre-Processing Techniques and 
Dimensionality Reduction on the Accuracy of Machine Learning, 9th Annual Information 

Technology, Electromechanical Engineering and Microelectronics Conference (IEMECON): 279-

283, 2019. https://doi.org/10.1109/IEMECONX.2019.8877011. 
[35] Thakkar A, Lohiya R, A Review of the Advancement in the Intrusion Detection Datasets. 

International Conference on Computational Intelligence and Data Science (ICCIDS 2019). Procedia 

Computer Science 167:636-645, 2020. 

https://doi.org/10.2298/FUEE19023150
https://doi.org/10.1016/j.neucom.2017.11.077
http://doi,org/10.1007/978-3-642-24212-0_5
http://dx.doi.org/10.4018/IJAEC.2016100102
https://doi.org/10.1007/s13369-019-03970-z
https://doi.org/10.1007/978-3-030-20257-6_40
https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414
https://doi.org/10.31140/RG.2.2.35333.40168
https://doi.org/10.1016/B978-0-12-813659-1.00006-8
https://doi.org/10.1016/B978-0-12-813659-1.00006-8
http://www.kdd.org/
https://doi.org/10.3390/math8040616
https://doi.org/10.1007/978-3-319-10247-4_3
https://doi.org/10.1109/IEMECONX.2019.8877011


Protic D. Danijela, Miomir S. Stankovic, Detection of anomalies in the computer networks: Feature scaling methodology 

[36] Lampton M, Damping-undamping strategies for Levenberg-Marquardt least-squares method, 
Computers in Physics 11(1):110-115, 2019. 

[37] Bidgoli AA, Ebrahimpour-komleh H, Rahnamayan S, A novel binary many-objective feature 

selection algorithm for multi-label data classification. International Journal of Machine Learning and 

Cybernetics 12:2041-2057, 2012. https://doi.org/10.1007/s13042-021-01291-y. 

https://doi.org/10.1007/s13042-021-01291-y

	1 Centre for Applied Mathematics and Electronics, Vojvode Stepe 443, 11000 Belgrade, Serbia
	e-mail: danijelaprotic318@gmail.com

