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Abstract: 
 

The Huxley muscle model is a biophysical muscle model based on the sliding filament 
and cross-bridge theory. The myosin filaments of muscle fibers slide past the actin filaments 
during muscle contraction. The actin and myosin form a protein complex when the myosin 
head is attached to the actin filament. Each of the attached heads contributes to the total force 
generated within the muscle fiber. Huxley’s muscle equation, used to describe the distribution 
of attached myosin heads to the actin-binding sites, is usually solved by using the method of 
characteristics. Once this equation is solved we can calculate the generated force as well as 
the stiffness in muscle fibers which can be further used in finite element analysis to perform 
simulations on macro-level. In our paper, we present the alternative method for solving this 
partial differential equation and the goal is to accelerate multi-scale simulations. We 
simplified the equation so that only the isometric contraction is modeled in order to prove that 
the presented concept has the potential to replace the numerical methods in the solving the 
partial differential equation. We achieved similar distributions of attached myosin heads with 
the method of characteristics and physics-informed neural networks, and consequently, we 
also got similar stresses with the two methods.    
 
Keywords: Huxley muscle model, physics-informed neural networks, numerical solving of 
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1. Introduction  

 
Physics-informed neural networks (PINNs) are trained to solve supervised learning tasks 

while respecting any given law of physics described by general nonlinear partial differential 
equations [1]. These neural networks form a new class of data-efficient universal function 
approximators that naturally encode any underlying physical laws as prior information [1]. 
The major innovation with PINN is the introduction of a residual network that encodes the 
governing physics equations.It then takes the output of a deep-learning network, which is 
called the surrogate, and calculates a residual value [2]. The residual of the differential 
equation is minimized by training the neural network. PINNs calculate differential operators 
on graphs by using automatic differentiation. 

The basic formulation of the PINN training does not require labeled data, results from other 
simulations or experimental data, and furthermore, it is unsupervised. PINNs only require the 
evaluation of the residual function. Providing simulation data or experimental data which is 
later used to train the network in a supervised manner is also possible and necessary in some 
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cases, especially with inverse problems. The supervised approach is often used for solving ill-
defined problems when, for instance, we lack boundary conditions or an Equation of State to 
close a system of equations. Once a PINN is trained, the inference from the trained PINN can 
be used to replace traditional numerical solvers in scientific computing [2]. PINNs are a 
gridless method because any point in the domain can be taken as input without requiring the 
definition of a mesh. Moreover, the trained PINN network can be used for predicting the 
values on simulation grids of different resolutions without  being retrained [2]. PINNs can 
also be used for time-dependent problems. Since time is represented as any other variable, it’s 
possible to predict the outputat the specified time without solving the previous time steps. For 
these reasons, the computational cost does not scale with the number of grid points like many 
of the traditional computational methods. PINN has been used for predicting the solutions for 
the Burgers’ equation, the Navier–Stokes equations, and the Schrodinger equation [3]. In this 
study, we focused on the basic PINNs and on solving the PDE without relying on other 
simulations that assist the training process. We solved the modified Huxley equationusing 
PINN, so as to acquire the distribution of attached myosin heads to the actin binding sites.  

2. Methods 
 

Huxley took into account the dynamics of the filaments within muscle and the probability 
of establishing connections (cross-bridges) of myosin heads to actin filaments inside 
sarcomeres [4]. The 𝑛𝑛(𝑥𝑥, 𝑡𝑡) function describes the rate of connections between myosin heads 
and actin filaments, as thefunction of position of the nearest available actin binding site 
relative to equilibrium position of myosin head x: 

 𝜕𝜕𝜕𝜕(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡

− 𝑣𝑣 𝜕𝜕𝜕𝜕(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡

= [1 − 𝑛𝑛(𝑥𝑥, 𝑡𝑡)]𝑓𝑓(𝑥𝑥,𝑎𝑎) − 𝑛𝑛(𝑥𝑥, 𝑡𝑡)𝑔𝑔(𝑥𝑥),∀𝑥𝑥 ∈ 𝛺𝛺             (1) 
where f(x,a) and g(x) represent the attachment and detachment rates of cross-bridges 
respectively, v is the velocity of filaments sliding, positive in the direction of contraction, and 
a is muscle activation given as a function of time. The attachment and detachment rate 
functions are shown in Figure1 along with the schematic of the actin and myosin filaments. 
The partial differential equation (1) can be solved by using the method of characteristics with  
the initial condition n(x,0)=0. We only took into account the isometric contraction, so we set 
the velocity to zero to test the possibilities of the physics informed neural network and thusly 
solve the equation (1).  

 
Fig. 1. Actin and myosin filaments (a), attachment f and detachment g rate functions (b).  

 
Once the 𝑛𝑛(𝑥𝑥, 𝑡𝑡) values are acquired, we can calculate generated force F within the 

muscle fiber and thestiffness K using the equations: 
𝐹𝐹(𝑡𝑡) = 𝑘𝑘 ∑ 𝑛𝑛(𝑥𝑥, 𝑡𝑡)𝑥𝑥 ∞

−∞ 𝑑𝑑𝑥𝑥   and      𝐾𝐾(𝑡𝑡) = 𝑘𝑘 ∑ 𝑛𝑛(𝑥𝑥, 𝑡𝑡) ∞
−∞ 𝑑𝑑𝑥𝑥               (2) 

 
where k is the stiffness of cross-bridges. Stress and stress derivative can be calculated as: 

𝜎𝜎𝑚𝑚 = 𝐹𝐹 𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖
𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖

          and       𝜕𝜕𝜎𝜎𝑚𝑚
𝜕𝜕𝜕𝜕

= 𝜆𝜆𝐿𝐿0𝐾𝐾
𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖
𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖

 ,                              (3) 
where 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 is the maximal force achieved during isometric conditions, 𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖 shows the 
maximal stress achieved during isometric conditions, 𝐿𝐿0 𝑡𝑡ℎ𝑒𝑒 initial length of sarcomere and 𝜆𝜆 
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is called stretch. The Calculated stresses and stress derivatives can be further used on a 
macro-level during finite element analysis. To implement PINN and incorporate the equation 
(1), we used SciANN [6], a high-level artificial neural networks API, written in Python using 
the Keras and TensorFlow backends. SciANN is designed to abstract neural network 
construction and for scientific computations and solutions as well as the discovery of partial 
differential equations (PDE) using the physics-informed neural networks [5]. 
 
3. Results and discussion 

 
By Using the SciANN framework, we constructed a neural network with 8 layers, each 

layer containing 20 neurons with a hyperbolic tangent activation function. Since we are 
interested in the force generated during isometric contraction, our network takes only two 
input values x and t, and predicts the n value. The network is trained by minimizing the 
residual derived from equation (1) and by providing initial conditions to solve the equation. 
We used the Adam optimizer with the learning rate of 10-4 and batch size of 512, with a total 
number of 15000 epochs. We also used the neural tangent kernel (NTK) method to get the 
adaptive weights, while balancing between the number of collocation points, used to 
minimize the residual of PDE, and the number of points used to minimize the residual of the 
initial condition. We generated a data grid consisting of 17 values for x in the range of 
−20.8 𝑛𝑛𝑛𝑛 ≤  𝑥𝑥 ≤   62.4 𝑛𝑛𝑛𝑛 and 200 values for t in the range 0𝑠𝑠 ≤  𝑡𝑡 ≤   2.0𝑠𝑠. The generated 
points were used to train the network. Once the network training was done, we compared the 
distributions which we acquired from the PINN and from the method of characteristics 
(Figure2)  Here, we used the same division along the x, which was used during the training 
process. 

 
Fig. 2. Distributions of attached cross-bridges at t=0.001s (a) and t=0.4s(b).  

 
The distributions provided by PINN and the method of characteristics are very similar. 

We also built the trained PINN into a finite element solver in order to test the accuracy of 
acquired stresses and stress derivatives. Acquired stresses and stress derivatives are shown in 
Fig. 3. Once again, we see that the results provided by PINN and the numerical method are 
very similar. It’s important to note that this time, the range and the division along the xis 
different from the one we used during training, which indicates that the trained PINN 
generalizes properly. 
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Fig. 3. Stress a) and stress derivative b) calculated during isometric contraction by the method of 

characteristics and by PINN 
4. Conclusions 

 
Based on the similarities between the results achieved with PINN and the method of 

characteristics, we can conclude that PINNs can be used to solve the Huxley equation for the 
distribution of attached myosin heads to actin binding sites in an isometric case. Our future 
research will include isotonic contractions with non-zero velocities of sliding filaments, and 
also, the correction of probabilities of attachment will be modified according to Gordon’s 
stress-stretch function. In the future, we all also be integrating PINN into the finite element 
analysis where finite elements are used at a macro-level, while at a micro-level, PINN will be 
used to solve Huxley’s muscle equation,and thusprovide the distribution of attached myosin 
heads and consequently measurethe stresses and stress derivatives that can be used on a 
macro-level. 
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