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Abstract: 
 

In recent years there has been a huge increase in data volume which database 
management systems (DBMS) have to efficiently manage by providing analytical functions as 
well as providing online transactional processing (OLTP) for various applications. The most 
challenging task in the DBMS is the efficient query execution which is the responsibility of a 
component called the query optimizer. Several benchmarks have shown that there is a lot of 
room for the improvement of existing query optimizers. The most recent research efforts in 
this field are substantially impacted by the advances in the field of machine learning (ML), 
which resulted in the application of various ML algorithms for improving the performance of 
query optimizers. This paper gives a brief overview of the approaches that apply ML 
algorithms at different levels within the query execution engine, including index structures, 
cardinality estimation, query enumeration plan, controlling existing query optimizer, and 
database parameters tuning. In addition, the main challenges for applying ML algorithms in 
DBMS are also discussed.  
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1. Introduction 
 

Researchers have been working on the problem of query optimization for several decades 
[1]. In order to test the efficiency of query optimization, benchmarks such as the Join 
Ordering Benchmark (JOB) [2] have been created which show that sometimes DBMS query 
optimizers make dramatic mistakes when creating a query execution plan, thus unnecessarily 
increasing query execution time by several orders of magnitude.  

The first step during query execution is cardinality estimation which is to determine the 
size of the intermediate results of a query. Based on the cardinality estimation, a cost model is 
generated for various types of operators that can be applied during the execution of 
subqueries, i.e. table join operations, such as nested loop join, hash-join, and sort-merge join. 
The efficiency of these operators depends significantly on the characteristics of the selected 
data over which they are executed. In the end, based on the cost model the optimizer selects, 
the most efficient query enumeration plan which is the order in which the operators are 
executed. The most enormous error in the total query execution time could cause an incorrect 
cardinality estimation. So, it is clear how important it is that cardinality estimation should be 
made as accurately as possible.   
In addition, the query execution time could be significantly improved by reducing the data 
access time of auxiliary index structures, which are used by given join operators, e.g. hash-
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join. Standard index structures used in DBMS are based on B-Trees, and there may be special 
structures for spatial data or multi-dimensional data based on variation of R-Tree or 
QuadTree.  

Research efforts that investigate the application of ML algorithms to improve query 
execution are turned toward improving some of the aforementioned components of DBMS. In 
the next section, we will give a short overview of such approaches. 

 
2. Classification of ML Algorithms Applied on Query Execution 
 

Existing research efforts with applications of ML algorithms target the query execution at 
the different levels ranging from low-level index structures to high-level DBMS tuning 
through adjusting selected working parameters. We identified approaches that could be 
classified into several categories: approaches targeting low-level index structures, approaches 
that focus on the cardinality estimation task, approaches dealing with query enumeration plan, 
approaches that control the existing DBMS’s query optimizer by sitting on top of it, and 
approaches that perform automatic database parameters tuning. 
 
2.1 Index structures 
 

Substantial advancements are achieved by the implementation of deep learning-based 
indexes to enable efficient low-level data access and searches in read-only databases [3][4] in 
order to replace B+ Trees indexes. This approach uses a hierarchy of models in which each 
model represents the node within a B+ Tree. The model is created by learning the cumulative 
distribution function (CDF) from the indexed data. The leaf node provides the position of the 
key within the sorted array. The solution outperforms the B+ Tree by a factor of 3 in respect 
of search time, and also has an order of magnitude lower memory consumption. A further 
application of the basic idea is used for multi-dimensional indexes which are exploited in 
analytical databases [5]. Both approaches could only be used in read-only databases, i.e. for 
OLAP types of workloads, whereas the further improvement of updatable learned indexes 
with the support of insert, update, and delete operations on data is given in [6] and it also is 
suitable for use with OLTP workloads.  
2.2 Cardinality estimation 

The most recognizable approach to the problem of cardinality estimation was done by 
Kipf et al. [7] and it is based on supervised deep-neural networksby utilizing multi-set 
convolutional neural networks. In this approach, a query is represented as a feature vector 
consisting of a table, join, and predicate data sets which are subsets of all available tables, 
joins, and predicates respectively. For example, table set data is a bit-vector where non-zero 
entry on a certain position within the vector denotes that a specific table is referred in the 
query. In the predicate features, data values are normalized to the range [0, 1] from minimum 
and maximum values. Evaluation is performed with the IMDB dataset and it shows that this 
approach makes a significantly lower estimation error, in some cases up to two orders of 
magnitude, compared to the PostgreSQL estimator and two other popular traditional 
approaches. 

Other approaches use several deep autoregressive models [8]. On the other hand, Wang et 
al. [9] conducted a study in which seven learning methods for cardinality estimation were 
evaluated. The authors conclude that although these learning methods have better accuracy 
than the traditional methods, they are not ready for real production systems because of the 
training time and inference delay, as well as poor behavior with the frequent data updates.  

 
2.3 Query enumeration plan 
 

Krishnan et al. [10] addressed the query enumeration plan by exploiting deep 
reinforcement learning, whereas some authors [11] put efforts to predict query performance. 
Unlike applications of deep learning models, some approaches employ traditional machine 
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learning algorithms [12] such as linear regression, decision trees etc. for cardinality learning 
and query optimizer. 
 
2.4 Controlling existing query optimizers 
 

The approach implemented in Bao [13] utilizes the existing query optimizer in DBMS 
and it only activates a particular feature or operator (e.g. join algorithm) for a certain class of 
queries. Bao is based on the reinforcement learning algorithm with a tree convolution neural 
network together with Thomson sampling. This allows Bao to learn from the incorrect query 
plans and to adjust to changes in the workload and data. A typical situation is when the 
learned optimizer provides hints for applying a different join algorithm, i.e. nested loop join, 
hash join, or sort-merge join, from the algorithm the original query optimizer has selected. 
The variation of this approach is to activate the learned optimizer only for those types of 
queries for which the original optimizer does not give good performance. However, this 
approach depends on the ability to provide hints to the existing query optimizer of a particular 
DBMS which varies significantly among available DBMS. 
 
2.5 Database parameters tuning 
 

A pioneering approach with ML based DBMS tuning is the project OtterTune [14], which 
consists of components that execute the workload on the DBMS, collects performance metrics 
and configuration knobs from the DBMS, and stores them in the repository. In addition, 
performance metrics from previous sessions can also be utilized. Several ML models are then 
used for creating configuration recommendations by tuning particular knobs. In the 
experiment with issue-tracking production-level application running on Oracle DBMS, three 
ML algorithms are compared: Gaussian Process Regression (GPR), Deep Neural Network 
(DNN), and Deep Deterministic Policy Gradient (DDPG) where the best performance 
improvement was 45%, achieved by DNN. However, this result depends on the number of 
tuning knobs and the DBA assistance in selecting knobs. Other examples are CDBTune [15] 
and QTune [16] which are based on the deep reinforcement learning algorithm and utilize 
reward function for providing performance data feedback and also use DDPG method for 
setting knobs. 
 
3. Challenges for Applying ML algorithms for Query Execution 
 

Here we will list some of potential issues that could limit the applicability of machine 
learning algorithms for query execution in DBMS:  

Initial training samples – Supervised learning techniques require initial training data 
which are sometimes difficult to acquire as in the case of collecting true cardinality 
estimation.  Also, reinforcement learning requires a lot of query examples in order to improve 
performance of the query optimizer. The approach in [7] improves training quality by 
generating additional training examples which cover some workloads with higher error 
distributions.  

Model Generality - Some models are applicable only when certain conditions are 
fulfilled, for instance, the constraints which were present during the training of the model. 
Some cardinality estimation models are applicable to general queries as well as to queries 
with complex predicates if they are trained with a limited set of queries.  

Model adaptability – Training the model always requires some time and computational 
resources. If it is necessary to re-train the model, will that hurt the performance and induce 
some additional delay in query execution? As a result, training the model might be allowed 
only overnight. 

Balanced performance – In most cases, i.e. in average, approaches with ML algorithms 
achieve better results than the traditional algorithms However, there are outlier cases when 
learned models have huge response times and delays unacceptable for real systems. This can 
prevent the use of such approaches in production systems. 
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4. Conclusions 
 
This paper provides a brief overview of ML used for improving query execution in 

DBMS. Although the existing approaches are still not ready for production level use, most of 
the described approaches are very promising. 
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