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Abstract: 
 

The problems of flow through a porous medium appear in a variety of engineering branches. 
In the context of various numerical methods, such as the finite element method (FEM), a few 
procedures have been developed for determining the potential field in the cases in which a free 
surface exists [1]. Although these procedures provide good results, they are time-consuming. 
Widely used machine learning techniques can bridge this problem. This research aims to show 
the application of the machine learning method for the simulation of a steady free surface flows 
within a porous structure using a novel method called physics-informed neural networks 
(PINNs). Physical laws were incorporated in the neural network in the form of partial 
differential equations (PDE) with corresponding initial and boundary conditions, utilizing 
Darcy’s law and Laplace’s equation of continuity. The steady free surface flow, which is 
approximated using the PINN, was compared with the results obtained by analytical solution. 
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1. Introduction 
Most of the two- and three-dimensional flow problems can be described by a system of 

non-linear partial differential equations for which analytical solutions are not available unless 
a great number of assumptions are made to simplify the problem and make the equations 
applicable only to idealized cases [2]. Also, various numerical methods can be applied in 
complicated flow problems and one of them is the finite element method. In the context of the 
finite element method, several procedures have been developed to handle the important class 
of the steady free surface flow problem [1]. Due to the FEM requirement of modifying the 
mesh, it becomes necessary to evaluate element properties for the whole discretized mesh at 
each cycle of iteration for steady flow. The physics-informed neural networks approach can 
provide good results with less computational effort, time savings and better flexibility in solving 
inverse problems such as parameter identification and data assimilation. Physics-informed 
neural networks are trained to solve supervised learning tasks while respecting any given law 
of physics described by general nonlinear partial differential equations [3]. The major 
innovation with PINNs is the introduction of a residual network that encodes the governing 
physics equations, takes the output of a deep-learning network, called the approximator, and 
calculates a residual value. The residual of the differential equation is minimized by training 
the neural network. The PINN calculates differential operators on graphs using automatic 
differentiation. This work presents the potential of using PINNs for modeling two-dimensional 
steady flow through a porous medium with a free surface by joining the physical laws with the 
initial and boundary conditions in the loss function. 
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2. Materials and Methods 
2.1 2D steady flow through a porous medium with a free surface – basic physical laws 

Two-dimensional steady flow through a porous medium is governed by a difference in 
potential on two surfaces. The flow velocity 𝑞𝑞 of the fluid, also known as Darsy’s velocity, 
represents the volume of the fluid flowing per unit time, per unit area of the porous medium. 
Darcy’s velocity can be described using potential 𝜙𝜙 through the relation called Darcy’s law: 

𝑞𝑞 = −𝐾𝐾∇ϕ,  (1)   
where 𝐾𝐾 represents the material properties of an orthotropic material, and ∇ϕ is the potential 
gradient. Here, 𝐾𝐾 is also known as the permeability matrix with the following form: 

𝐾𝐾 = �
𝑘𝑘𝑥𝑥 0
0 𝑘𝑘𝑦𝑦

�, (2)   

where 𝑘𝑘𝑥𝑥 and 𝑘𝑘𝑦𝑦 are coefficients of permeability in the 𝑥𝑥 and 𝑦𝑦 axes respectively. The operator 
∇ is defined by: 

∇= �
𝜕𝜕
𝜕𝜕𝑥𝑥

   
𝜕𝜕
𝜕𝜕𝑦𝑦
�. (3)   

The component form of equation (1) is: 
𝑞𝑞𝑖𝑖 = −𝑘𝑘𝑖𝑖

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

, 𝑖𝑖 = 𝑥𝑥,𝑦𝑦, (4)   
where 𝑥𝑥 and 𝑦𝑦 are principal axes for orthotropic materials. Water is assumed to be 
incompressible, therefore, the mass conservation equation is reduced to: 

∇𝑞𝑞 = 0. (5)   
Using Darcy’s law, the mass conservation equation can be redefined as: 

𝑘𝑘𝑥𝑥
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥2

+ 𝑘𝑘𝑦𝑦
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

= 0. (6)   

2.2 Test case 

The domain 𝐷𝐷 ⊂ ℝ2 occupied by the porous medium is assumed to be either wet or dry. 
The problem we examined is the flow with the free surface, defined as the boundary line 
between the wet and dry soils, shown in Figure 1. The assumptions are that the flow is a two-
dimensional steady flow that obeys Darcy’s law, and that the soil has homogeneous and 
isotropic characteristics with coefficients of permeability 𝑘𝑘𝑥𝑥 = 𝑘𝑘𝑦𝑦 = 1. Because of these 
assumptions, the flow can be determined by the potential 𝜙𝜙, which can be obtained from (6) 
with conditions shown in Figure 1.  

 
Figure 1 – Initial and boundary conditions for steady flow through a porous medium with a free 

surface 
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The flow region Ω ⊂ 𝐷𝐷 is indicated in Figure 1 as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 region. The flow occurs between 
reservoirs of height 𝑦𝑦1 and 𝑦𝑦2, 𝑦𝑦1 > 𝑦𝑦2. The problem for the case was solved when the heights 
of these reservoirs are 𝑦𝑦1 = 2 𝑚𝑚 and 𝑦𝑦2 = 1𝑚𝑚. Furthermore, initial conditions apply at the 
beginning and the end of the dam of length 𝑥𝑥𝑙𝑙 = 2𝑚𝑚, where 𝜙𝜙(0𝑚𝑚,𝑦𝑦) = 2𝑚𝑚 and 𝜙𝜙(2𝑚𝑚,𝑦𝑦) =
1𝑚𝑚. Additionally, at the crest and the bottom of the dam we apply condition 𝜕𝜕𝜕𝜕

𝜕𝜕𝑦𝑦
= 0. The 

location of the curve 𝑦𝑦 = Φ(𝑥𝑥) that represents the free surface is unknown, as well as the 
potential field 𝜙𝜙. The only fact that allows us to find the free surface is that every point (𝑥𝑥,𝑦𝑦) 
on the free surface has the potential 𝜙𝜙 = 𝑦𝑦 with a condition 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 0, with 𝑛𝑛 being a unit vector 

normal to the free surface. 
 
2.3 Embedding physical laws into neural network  

We propose a solution using PINNs to solve the PDE (6) with indispensable boundary 
conditions presented in Figure 1. For the flow modeling, we made a neural network consisting 
of two subnets: an approximator network and a residual network. The approximator network 
takes 𝑥𝑥 and 𝑦𝑦 as input, and provides a solution 𝜙𝜙�(𝑥𝑥,𝑦𝑦) of the PDE (6) at a given input point 
(𝑥𝑥,𝑦𝑦). The approximator network is trained on a set of so-called collocation points. Each 
collocation point (𝑥𝑥,𝑦𝑦) belongs to the domain occupied by the porous medium. The residual 
network takes the output of the approximator network as its input. This network is not trained 
at all but its role is crucial for embedding physical laws through PDE and boundary conditions 
into the neural network. The final outputs of the PINN model are outputs of the residual network 
obtained as: 

𝑟𝑟 = 𝜙𝜙�(𝑥𝑥, 𝑦𝑦) − 𝜙𝜙(𝑥𝑥,𝑦𝑦), (7)  
𝑖𝑖0 = 𝜙𝜙�(0, 𝑦𝑦) − 𝜙𝜙(0,𝑦𝑦), (8)  
𝑖𝑖1 = 𝜙𝜙�(2,𝑦𝑦) − 𝜙𝜙(2, 𝑦𝑦), (9)  

𝑏𝑏0 = 𝜕𝜕𝜕𝜕� (𝑥𝑥,0)
𝜕𝜕𝑦𝑦

− 𝜕𝜕𝜕𝜕(𝑥𝑥,0)
𝜕𝜕𝑦𝑦

,  (10)  

𝑏𝑏1 = 𝜕𝜕𝜕𝜕� (𝑥𝑥,2.1)
𝜕𝜕𝑦𝑦

− 𝜕𝜕𝜕𝜕(𝑥𝑥,2.1)
𝜕𝜕𝑦𝑦

,  (11)  

𝑏𝑏2 = �
𝜕𝜕𝜙𝜙�(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑛𝑛 − 𝜕𝜕𝜙𝜙(𝑥𝑥,𝑦𝑦)

𝜕𝜕𝑛𝑛 ,   𝜙𝜙 = 𝑦𝑦
0,   𝜙𝜙 ≠ 𝑦𝑦

, (12)  

where 𝜙𝜙�(𝑥𝑥,𝑦𝑦) is output of the approximator network and 𝜙𝜙(𝑥𝑥,𝑦𝑦) is determined by the PDE (6) 
and boundary and initial conditions from Figure 1. The solution is reached by finding the 
weights and biases of the approximator network that minimize a loss function which is 
composed of the residuals (7)-(12) over a set of collocation points. The goal is to minimize the 
Mean Squared Error (MSE) loss function with the following form: 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁𝑥𝑥𝑟𝑟,𝑦𝑦𝑟𝑟

∑|𝑟𝑟|2 +∑ � 1
𝑁𝑁𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖

∑|𝑖𝑖𝑖𝑖|2� +1
𝑖𝑖=0 ∑ � 1

𝑁𝑁𝑥𝑥𝑗𝑗,𝑦𝑦𝑗𝑗
∑�𝑏𝑏𝑗𝑗�

2�2
𝑗𝑗=0  , (13)   

where 𝑁𝑁𝑥𝑥𝑟𝑟,𝑦𝑦𝑟𝑟  represents the total number of collocation points on 𝜙𝜙(𝑥𝑥,𝑦𝑦), and 𝑁𝑁𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖 and 𝑁𝑁𝑥𝑥𝑗𝑗,𝑦𝑦𝑗𝑗 
represent numbers of collocation points of the corresponding initial and boundary conditions. 
 
2.4 Creating the PINN model 

For creating the PINN model we employed SciANN [4]. SciANN is a Python package for 
scientific computing and physics-informed deep learning using artificial neural networks, 
written in Python using Keras and TensorFlow backends. In order to solve the problem we 
required a model that receives 𝑥𝑥 and 𝑦𝑦 coordinates as input. The resulting model was trained 
on collocation points, i.e., a grid of points (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) with 𝑥𝑥 coordinates in range [0𝑚𝑚, 2𝑚𝑚], and 𝑦𝑦 
coordinates in range [0𝑚𝑚, 2.1𝑚𝑚] in accordance with the test case. In order to obtain a precise 
form of the free surface, the grid of points had to be denser and above the line 𝑦𝑦 = 1, where the 
free surface was expected. The points were arranged with spatial steps Δ𝑥𝑥1 = Δ𝑦𝑦1 = 1 ⋅ 10−2𝑚𝑚 
below the line 𝑦𝑦 = 1, and with spatial steps Δ𝑥𝑥2 = Δ𝑦𝑦2 = 2.5 ⋅ 10−3𝑚𝑚 above the line 𝑦𝑦 = 1. 
We constructed a physics-informed neural network that contains 8 layers with 20 neurons per 
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layer. All neurons located in hidden layers perform a sigmoid activation function. The neural 
network was trained for 600 epochs with learning rate 2 ⋅ 10−3 and batch size of 1024 to 
minimize 𝑀𝑀𝑀𝑀𝑀𝑀 (13). 

3 Results and discussion 
We compared the free surface Φ�(𝑥𝑥) given by the trained model with a known analytic form 

of the free surface Φ(𝑥𝑥) = √4 − 1.5𝑥𝑥. The comparison was made at points different than those 
used for the training process. According to Figure 1, the free surface consists of points (𝑥𝑥,𝑦𝑦) 
in which the condition 𝜙𝜙 = 𝑦𝑦 is fulfilled. The obtained results are given in Figure 2. 

 
Figure 2 – Free surface calculated using analytic equation and PINN 

As can be seen from Figure 2, free surfaces provided by the PINN model and calculated by 
the analytic method are very similar. The value of the Root Mean Squared Error (RMSE) 
calculated between the analytic Φ(𝑥𝑥) and the predicted Φ�(𝑥𝑥) free surface is 𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 =
0.0072𝑚𝑚. 

4. Conclusions 
Based on the presented results, we may conclude that the created PINN model can solve 

the steady flow problem with the free surface, predicting not only the potential field as a 
solution of the PDE, but also the position of the free surface. With respect to the obtained 
results, future research will be directed toward solving transient flow through the soil with 
inhomogeneous and anisotropic characteristics. Hyperparameter tuning using evolutionary 
algorithms will also be considered. 
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