
Neuro-Evolution Using Recombinational Algorithms and
Embryogenesis for Robotic Control

Thesis by

Anthony M. Roy

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2010

(Defended December 11, 2009)

ii

c© 2010

Anthony M. Roy

All Rights Reserved

iii

To Kellie, my future wife

iv

Acknowledgments

A great many individuals helped in the creation of the research presented here, and it would

be near impossible to list them all. However, I’d like to begin by thanking my advisors-three,

Dr. Antonsson, Dr. Shapiro, and Dr. Burdick. Dr. Erik Antonsson was an integral part of

the initial envisioning and often used his considerable expertise to refine the presentation

of this work. Dr. Andrew Shapiro helped as a sounding board to bounce ideas off of

frequently, and was the prime motivator for studying the inner workings of NEURAE . Dr.

Joel Burdick is served as a valuable resource of robotic information as well as administrative

advice.

I’d also like to acknowledge the contributions of Or Yogev, Fabien Nicase, and Tomonori

Honda, other ESSL members whose frequent exchange of technical information was a foun-

tain of fresh ideas.

Furthermore, I’d like to thank Dr. Swaminathan Krishnan for allowing the use of his

Garuda computing cluster. Without it, the algorithms contained within would still be

running for another decade or so.

I’d also like to thank the following Caltech students, whose brilliance I occasionally

borrowed when needed:

Michael Shearn, Anna Beck, Valerie Scott, Andrew Downard, Jason Keith, Virgil Grif-

fith, Justus Brevik, Julia Braman, Jeremy Ma, David Pekarek, Kakani Young, Mary Dun-

lop, Matthew Eichenfield, Pablo Abad-Manterola, Angela Capece, Christopher Kovalchick,

Philipp Boettcher, Ronnie Bryan, Roseanna Zia, Derek Riendikirk, Geoffrey Lovely, Leonard

Lucas, Emily McDowell, Sameer Walavalkar, and Timothy Chung.

Last, but certainly not least, I’d like to thank Anthony Roy, Arnetress Roy, and Yolanda

Ware. My family, whose support has been a constant long before, and I’m sure long after

the this dissertation, is the bedrock upon much of my success has been built.

v

Abstract

Control tasks involving dramatic nonlinearities, such as decision making, can be challeng-

ing for classical design methods. However, autonomous, stochastic design methods such

as evolutionary computation have proved effective. In particular, genetic algorithms that

create designs via the application of recombinational rules are robust and highly scalable.

Neuro-Evolution Using Recombinational Algorithms and Embryogenesis (NEURAE) is a

genetic algorithm that creates C++ programs that in turn create neural networks which

can function as logic gates. The neural networks created are scalable and robust enough

to feature redundancies that allow the network to function despite internal failures. An

analysis of NEURAE evinces how biologically inspired phenomena apply to simulated evo-

lution. This allows for an optimization of NEURAE that enables it to create controllers for

a simulated swarm of Khepera-inspired robots.

vi

Contents

Acknowledgments iv

Abstract v

1 Introduction 1

1.1 Motivation . 1

1.2 Outline . 6

2 Methodology 8

2.1 Background . 8

2.1.1 Neural Networks . 8

2.1.2 Genetic Algorithms . 9

2.2 The NEURAE Genotype . 11

2.2.1 Overview . 11

2.2.2 Biological Analog . 12

2.2.3 If Structure Nucleotide . 12

2.2.4 Condition Nucleotides . 14

2.2.5 Action Nucleotides . 16

2.2.6 C++ Programs (Proteins) . 16

2.3 Evaluation, Mutation, and Selection . 20

3 Logic-Gate Evolution 24

3.1 Overview . 24

3.2 Robust XOR Gate . 25

3.2.1 Evaluation Parameters . 25

3.2.2 Evolution Results . 26

vii

3.3 Large Parity Gate . 28

3.3.1 Evaluation Parameters . 28

3.3.2 Evolution Results . 29

4 Sensitivity Analysis 33

4.1 Mutation Rates . 33

4.2 Qualities of Productive Evolution . 38

4.3 Variation of Nucleotides within the NEURAE Codon 41

5 Derivation of Simulation Environment 43

5.1 Nomenclature . 43

5.2 Two-Wheeled Robot Movement . 46

5.3 Collision Detection . 52

5.4 Sensor and World Interaction . 53

6 Robotic-Controller Evolution 58

6.1 Overview . 58

6.2 Line-Following Robot . 58

6.2.1 Evaluation Parameters . 58

6.2.2 Evolution Results . 59

6.3 Obstacle-Avoiding Robot . 61

6.3.1 Evaluation Parameters . 61

6.3.2 Evolution Results . 64

6.4 Goal-Finding Swarm Robots . 65

6.4.1 Evaluation Parameters . 65

6.4.2 Evolution Results . 68

7 Conclusion 73

Bibliography 84

Appendix 85

viii

List of Figures

2.1 McCulloch-Pitts neuron model. 9

2.2 Steps of a standard genetic algorithm. 10

2.3 Sample genome and biological analog . 12

2.4 Nucleotides of each codon . 12

2.5 If structure codon and protein transcription 13

2.6 Sample genome and protein pseudocode . 17

2.7 Protein pseudocode and sample NAND gate 18

2.8 Flowchart of protein pseudocode . 18

2.9 Steps showing the embryogenesis of NAND gate 19

2.10 Point mutation example. The underlined nucleotides are switched 21

2.11 Single-point crossover mutation example. Parts of the genome which have

been swapped are underlined . 21

2.12 Two-point crossover mutation example. Parts of the genome which have been

swapped are underlined . 21

2.13 Conjugation mutation example. Parts of the genome which have been inserted

are underlined . 22

2.14 Gene duplication example. The nucleotides copied more than once are underlined 22

2.15 Gene deletion example. The nucleotides deleted are underlined 23

2.16 Translocation example. The underlined nucleotides are moved to another gene

locus . 23

3.1 Best fitness throughout the evolution of a robust exclusive-OR logic gate . . 26

3.2 First generated XOR gate . 27

3.3 Network functionality . 27

3.4 Best generated XOR gate . 27

ix

3.5 Network functionality . 27

3.6 Code for creating a robust XOR gate . 28

3.7 Larger XOR gate . 28

3.8 Fitness of best-performing individual throughout the evolution of a scalable

parity gate . 30

3.9 Scalable parity gate with two inputs . 30

3.10 Scalable parity gate with four inputs . 31

3.11 Scalable parity gate with 13 inputs . 31

3.12 Code for creating parity gates of arbitrary size 32

4.1 Log-log plot of α generation vs. log
(

1
1−F

)
for a point mutation rate of µ = 0.4. 34

4.2 Probability density function and histogram of α generation for mutation rate

of µ = 0.4. 34

4.3 Gaussian distribution of best fitness at the end of evolutionary runs with a

point mutation rate of µ = 0.4. 35

4.4 The prism is representative of the mutation rate landscape as bounded by the

above constraints. 37

4.5 Genes used by the top 10% within a successful evolution 39

4.6 Genes used by the top 10% within an unsuccessful evolution 39

4.7 Structure of genes used by the top 10% of each generation during a successful

evolution. 40

4.8 Structure of genes used by the top 10% of each generation during an unsuc-

cessful evolution. 40

5.1 Diagram of variables for two-wheeled motion derivation 46

5.2 Verification of rotational accuracy with and without approximation. 49

5.3 Verification of rotational and translational accuracy used the respective left

and right wheel speeds of ν1 = 0 m/s and ν2 = 1 m/s. The maximum orien-

tation, x-position, and y-position errors are 0.017 rad, 0.0079 m, and 0.0083

m, respectively. 50

x

5.4 Verification of rotational and translational accuracy used the respective left

and right wheel speeds of ν1 = 0.5 m/s and ν2 = 1 m/s. The maximum

orientation, x-position, and y-position errors are 0.037 rad, 0.055 m, and 0.056

m, respectively. 51

5.5 Diagram of variables for obstacle collision check. 52

5.6 Collision detection was verified by placing the robot within a small obstacle

and having it move around. As shown above, the center of the robot is never

closer than 0.5 m (the radius) to the obstacle wall. 54

5.7 Model of robot sensor configuration for path following simulations. 54

5.8 Diagram of variables used for path detection calculations. 54

5.9 Model of robot sensor configuration for full 2-D navigation. 56

5.10 Diagram of variables used for full 2-D navigation. 56

5.11 Graphical verification of accurate laser/object interaction. A blue line indi-

cates the corresponding ANN input is inactivate while red line indicates the

corresponding ANN input has been activated. The concentric circles are in-

dicative of the desired goal . 57

6.1 Preference function for position error in line following evaluation 59

6.2 Robot path compared with desired path . 60

6.3 ANN controller for a line following robot . 60

6.4 Code used to make line following controller 61

6.5 Goal sensor configuration for the obstacle avoiding robots. Detection is sepa-

rated into left, center, and right. 62

6.6 Environment for tier 4 evaluation . 63

6.7 Environment for tier 5 evaluation . 63

6.8 ANN controller for obstacle avoidance . 64

6.9 Obstacle avoidance robot in a densely obstructed environment 65

6.10 Obstacle avoidance robot in a environment with concave obstacle 65

6.11 Code used to make obstacle avoidance controller 66

6.12 Goal sensor configuration for swarming robots where the goal is obstructed

from the entire swarm. 67

xi

6.13 Goal sensor configuration for swarming robots where a member of the swarm

can detect the goal. 67

6.14 A single swarming robot in an environment with a convex obstacle 67

6.15 A single swarming robot in an environment with a star obstacle 67

6.16 Two swarming robots in an environment with a star obstacle 68

6.17 Two swarming robots in a large environment with various obstacles 68

6.18 ANN controller for each swarming robot . 69

6.19 Steps showing the movement of an evolved swarm 71

6.20 A single swarming robot in an environment with concave obstacle 72

6.21 Three swarming robots in a large environment with various obstacles 72

xii

List of Tables

2.1 Universal tiers for adjusting fitness exponent (x) 20

3.1 Desired output pattern for XOR logic-gate 25

3.2 Tiers for adjusting fitness exponent (x) in robust XOR evolution 25

3.3 Tiers for adjusting fitness exponent (x) in scalable parity evolution 29

4.1 The statistical results for varying mutation rates while only using point mutations 35

4.2 Mutation rates for 3-dimensional sensitivity analysis with variables in bold

are indicative of the chosen points on Figure 4.4 38

4.3 The statistical results for varying mutation rates across the mutation rate

landscape given in Figure 4.4 . 38

4.4 Actions in executed genes . 41

6.1 Tier for adjusting fitness exponent (x) in line following evaluation 59

6.2 Dominant logic for line following robots . 60

6.3 Tiers for adjusting fitness exponent (x) in obstacle avoidance evaluation . . 62

6.4 Logic test goal finding robots are required to pass before simulation. For this

test, all LIDAR inputs are inactive . 63

6.5 Tiers for adjusting fitness exponent (x) . 68

1

Chapter 1

Introduction

1.1 Motivation

Artificial neural networks (ANNs) are able to solve mathematically ill-defined problems

with a network of computationally simple elements. Inspired by the architecture of the hu-

man brain, McCulloch and Pitts (1943) modeled biological neurons as simple mathematical

units capable of comprising large networks. Turing (1950) described the plausibility of a

complex computing machine being constructed from simple computational units. Hornik

et al. (1989) proved that with the proper architecture, an ANN composed of McCulloch-

Pitts neurons can approximate any regular function within a finite space to an arbitrary

degree of accuracy.

The potential of ANNs has inspired their application in a wide range of fields. The

primary use of neural networks has been for classification purposes. Wu et al. (1993) and

Odewahn et al. (1992) showed how ANNs can be used to classify malignant tumors in

mammograms and star types in telescopic images, respectively. Waibel (1989) found use

of temporal ANNs in the realm of speech recognition. Atiya (2001) detailed how neural

networks can be capable tools for analyzing credit risk.

Neural networks have also been used for robotic control. Naito et al. (1997) argued the

nonlinearity and distributed information storage of ANNs make them attractive candidates

for control. Biewald (1996) used a neural network controller for obstacle avoidance by

partitioning the problem into separate path planning and local navigation regions. Cui and

Shin (1993) controlled multiple manipulators by using neural networks to approximate the

Jacobian at various points of the robots’ range of motion. Beer et al. (1992) and Lewis et al.

(1994) employed recurrent neural networks to control the gait of a hexapod robot. Hornby

2

et al. (2001) used ANNs as controllers that are able to evolve alongside the morphology of

the controlled robots. Yue and Rind (2006) used a neural network for object recognition in

an obstacle avoiding robot.

However, there are limits to what current ANN learning algorithms can accomplish.

Convergence of the widely used back propagation algorithm is dependent on network ar-

chitecture and learning rates (Hecht-Nielsen 1992). The setting of these parameters require

significant expertise and a priori knowledge of the problem to be solved. Otherwise, the

network is likely to converge to a non-optimal solution or be unduly influenced by the se-

quence of learning examples that are given (Sutton 1986). Furthermore, training session

require large amounts of historical data and are computationally demanding.

Hebb (1949) posited a theory that biological neural networks adapt by repeated firing.

As the activation of one neuron coincides with the activation of another several times,

the connection between the two strengthens in such a way that it becomes easier for the

first neuron to excite the second. Perhaps the most well-known application of Hebbian

learning in an ANN is a Hopfield network. Hopfield (1982) proved that an ANN can

use Hebbian learning to converge to a local minimum, thus making the network stable.

However, stability requires the network be symmetrical, with nodes being connected to

each other with identical weights. Even if this constraint is not enforced, Hebbian learning

is a capable method for getting ANNs to classify data (Sanger 1989; Oja 1992; Daucé et al.

1998). However, these methods often converge to local minima and are not suited to finding

an global optimum.

Real-time reinforcement is yet another scheme for adapting network connections. Onat

et al. (1998) showed how positive reinforcement can be used to strengthen connections

between neurons when the network is performing as desired. Chialvo and Bak (1999) showed

how similar learning occur with negative reinforcement. Bosman et al. (2003) gave a more

generalized approach which combined Hebbian and reinforcement learning. However, as

evident in the work of Sutton and Barto (1999), there are several learning parameters of

the reward function which must be tuned, and these values require expertise or trial and

error to set correctly.

Because training ANNs is inherently a trial-and-error process, it was a natural extension

to use a genetic algorithm (GA) to train them. Genetic algorithms, also known as evolu-

tionary algorithms, use simulated evolution to design solutions. As conceived by Holland

3

(1975), GAs are a machine learning paradigm in which the parameters of a possible design

solution are varied over time to eventually find a viable solution. Furthermore, many so-

lutions are designed in parallel, and the parameters of one solution may be used, partly or

completely, in the parameters of another. As a result, the design solutions within a GA

improve over time in a manner similar to biological evolution. Like ANNs, GAs have found

applications in a wide range of fields such as circuit design in electrical engineering (Miller

et al. 1997), ligand bonding in chemistry (Morris et al. 1998), and granular composites in

material science (Fraternali et al. 2009).

Most ANNs designed by evolutionary algorithms involved optimizing the weight of a

set network architecture (Montana and Davis 1989; Eberhart and Kennedy 1995). Further

work focused on evolving the parameter of various different learning algorithms (Roy et al.

1999; Chen et al. 1999).

Eventually there was an emergence of GAs in which network architecture and connection

weights are coevolved in a process known as neuro-evolution. Reed (1999) gives a good

overview of many GAs which evolve network architectures through decomposition, where

a large, fully connected network has connections and nodes removed. The shortcomings of

such schemes were addressed by Angeline et al. (1999) who offered GNARL as an alternative.

According to Angeline, decomposition methods often become trapped at local network

minima, which causes them to suffer the same non-optimum finding deficiencies GAs were

designed to overcome.

More current neuro-evolution efforts include NEAT by Stanley and Miikkulainen (2002),

and AGE by Duerr et al. (2006). Both methods utilize genomes that represent the nodes

and connections of ANNs. The genomes of NEAT explicitly contain the connection weights.

The three tiers of NEAT, gene tracking, speciation, and complexifying, have become so well

studied and efficient that Stanley et al. (2005) managed to evolve networks in real time. In

AGE, the genome includes a section for each node that, when combined with the similar

section of another node, determines the weight of connections. Both NEAT and AGE are

able to use evolution to construct networks capable of performing complex control tasks.

However, the practical size of evolved networks is limited by the requirement that each node

of the network is directly represented in the genome.

There are applications where a large network is necessary, such as the Gammon project

(Tesauro 1992). The Gammon project was an attempt to make a neural network a successful

4

backgammon player. Gammon looks at the current state of the board and possible moves for

a given roll of the dice. It then uses the neural net to calculate which possible move for the

given dice roll would lead to the highest probability of winning, and moves accordingly. With

198 input units and 40 hidden neurons, it plays on a level even with the best backgammon

players in the world. If one were to design such a network with a genetic algorithm, the

GA would have to be scalable.

One of the first examples of a scalable GA was introduced by Kitano (1990). In his sem-

inal paper, he used matricies to represent ANN connection weights. He achieved scalability

by using single bits to represent small connectivity graphs and allowing recursion of such

bits. As a result, a neural network could be represented more compactly with reasonable

modularity. Tufte and Haddow (2000) used a similar genome shorthand to evolve large

digital circuits.

Theraulaz and Bonabeau (1995) have shown that the reuse of a small set of rules to

create a phenotype is an effective alternative to storing and manipulating the large amount

of data that describes each individual directly. Bentley and Kumar (1999) have shown that

indirect encodings produce solutions to design problems faster and better than their directly

encoded counterparts. Federici and Downing (2006) have shown that rule-based encoded

designs are more robust as well. Grajdeanu (2007) evolved rules capable of making virtual

2-D organisms with interesting properties such as cell differentiation and repair. Yogev and

Antonsson (2007) created 3-dimensional structures by evolving a set a rules which directs

how a single cell should grow through a process called embryogenesis.

Embryogenesis is best described as genetic programming (GP) applied to the evolution

of instructions which in turn determines how an artificial embryo should grow (Garis 1992).

A genetic program is a genetic algorithm where the evolution is performed on a computer

program. In its inception, Fogel et al. (1966) devised a way to use the evolutionary pro-

cess that allowed the recombination of a computer program into various configurations.

Later, LISP programs were evolved by Koza (1989) to create programs which could discover

recursive expressions for numerical sequences and pattern recognition. O’Neill and Ryan

(2001) went on to make grammatical evolution (GE), which was a scheme for how to do

genetic programming in any arbitrary language. However, in GP the program is the end

result of evolution. It is when these programs are used to grow something else when true

embryogenesis occurs.

5

Embryogenesis was applied to ANN evolution when Gruau (1992) created cellular en-

coding (CE), which dictates how a network grows from a single cell. CE was able to create

a network of arbitrary size that is capable of detecting logical parity. However, as noted by

Luke and Spector (1996), Gruau achieves much of his modularity by using a recursion rule

that results in generating nodes with identical inputs and outputs. While his networks are

able to perform well for tasks requiring symmetry, his method performs poorly for networks

that require asymmetric weights.

Kitano (1995) used his compact representation to encode instructions for the growth

of virtual axions and dendrites in graphical ANN. His scheme also implemented cell differ-

entiation. However, this application was geared more towards simulating the growth of a

biological neural network instead of creating ANNs for engineering purposes.

Astor and Adami (2000) expanded on the idea of growing neural networks by creating

NORGEV, a simulated wet chemistry set. Within their evolutionary algorithm, a network

is grown from a single neuron by using cell chemistry and protein diffusion models. One key

distinction of their work is that the evolved proteins not only provide growth instructions

for the network, but also halt growth. While this method is able to make large neural

networks, it can take excessive evolution time as much of the processing power is devoted

to simulating chemical diffusion.

Since GAs have been applied successfully in control problems (Yakovenko et al. 2004;

Vigraham et al. 2005; Dupuis and Parizeau 2008; Zhang et al. 2008) it may come as now

surprise that the synergy of GAs, ANN, and control is a current area of research. Naito et al.

(1997) evolved ANN controllers for simulated Khepera (Harlan et al. 2001) robots. Lipson

and Pollack (2000); Pollack et al. (2003) have had much success in evolving the morphology

and control of robots. Floreano et al. (2007) evolved a swarm of robots which learn complex

communication behaviors. Yet, all of these methods use direct representations, and if one

were to evolve an ANN complex enough to control an autonomous vehicle(s) (Cremean

et al. 2006; Murray 2007), one would need a large ANN and a scalable GA to create it.

While Calabretta et al. (1998) and Stanley et al. (2009) have implemented GA with some

scalability, their designs scale by using predetermined modules and symmetries, which are

not generally known a priori.

6

1.2 Outline

This thesis will detail the methodology, analysis, and implementation of a new genetic

algorithm for neuro-evolution. Designs in the GA are grown via a set of variable-length rules

that are decoded to create a C++ program. The C++ programs used to create the ANNs

have an If-CONDITION-Then-ACTION structure. Each program has multiple sections

that cycle through all pairings of nodes with tests and actions of the form:

If Node α and/or Node β meet certain CONDITION(S), Then perform AC-

TION(S).

The expected result is to create an encoding scheme that, like CE, can take advan-

tage of modularity to create large networks. However, it will also use the innovations of

NORGEV to evolve a more controlled growth as well. Having the growth directed by C++

programs comprising various recombinations of If-Then statements instead of solutions of

complex diffusion equations will lead to shorter evolution times. While Neuro-Evolution

Using Recombinational Algorithms and Embryogenesis, or NEURAE, may seem akin to

the GE of Tsoulos et al. (2005), the work presented here is only superficially similar. Limit-

ing the evolution to only If-Then commands constrains the search while remaining flexible

enough to explore highly productive regions of the solution space. Furthermore, the pro-

grams generated by NEURAE are the rules for embryogenesis, which provide scalability

and produce modularity. Conversely, the programs created by conventional GAs are direct

representations of an ANN, and do not exhibit such scalability or modularity.

This thesis will show that NEURAE is a unifying GA capable of accomplishing a wide

range of neuro-evolutionary goals. Chapter 2 will introduce the methodology of NEURAE

after a brief background of artificial neural networks and genetic algorithms. Chapter 3

will show that NEURAE is capable of evolving two types of parity evaluators. The first is

a 2-input XOR gate with many network redundancies. The second is a parity gate of an

arbitrary size. The first task has definitive exploration versus exploitation regions, which

simplifies the analysis of the evolved rules. Furthermore, it will be shown that modularity

can be produced in a randomly changing environment, in opposition to Kashtan and Alon

(2005). The second task can be directly compared to existing literature, particularly that

of Gruau (1994), and will show how NEURAE can scale well to create large ANNs.

7

Chapter 4 will analyze how and why NEURAE works in an effort to make the evolution-

ary process more efficient. Like evolutionary algorithms themselves, many of the mutations

used in NEURAE where inspired by natural mutations. Experiments were conducted to

verify if and how the artificial mutations actually enhance evolution as well as their biologi-

cal counterparts are theorized to do. Next is an analysis of the individual created in a good

and failed evolution to see what differences lie on a genomic level. Finally, an investigation

was conducted to see how different conditions and actions are used, and how their removal

affects the GA.

Chapter 5 will give the derivations of the formulas used to create the robotic simulations

in Chapter 6. Chapter 6 will show how NEURAE is able to evolve robotic controllers in

deceptive design domains. NEURAE will easily make controllers for a line following robot,

and obstacle avoiding robot, and a coordinated swarm without any changes to its core

functionality. Chapter 7 will provide a conclusion and the possible future of NEURAE.

8

Chapter 2

Methodology

2.1 Background

2.1.1 Neural Networks

An artificial neural network (ANN) is a computing paradigm which is a gestalt of simple

computational units called neurons or nodes. All ANNs in NEURAE are composed of

McCulloch and Pitts (1943) modeled neurons. The input to each neuron is multiplied by

some scalar, or weight, wn. Next, the weighted inputs are summed and are in turn used as

the input, u, for a (usually) nonlinear activation function O(·), as shown in Equation 2.1. In

the original McCulloch-Pitts model, the nonlinearity could be any bounded function. Due

to the desire to make learning algorithms easier to prove and implement, the activation

function usually forces the output of the neuron to be within [-1, 1]. This, however, is not

a requirement and an activation function that bounds the output between 0 and 1 can be

used. Furthermore, digital networks usually use a discontinuous activation function while

O(·) in an analog network would likely be continuous (Kartalopoulos 1996). Finally, neurons

usually feature a constant, or bias, which is also summed to the inputs and serves to shift

the activation function along the dependent axis.

u =
n∑
i=1

wi (2.1)

The neurons in NEURAE use the activation function shown in Equation 2.2. The

activation function, O(·), is a Heaviside function with a bias which acts as a threshold

and separates the on/off regions at the constant, t. Thus, each neuron in NEURAE is

either completely off or on. Even though the bounded output of each neuron may be

9

weighted before it is used as an input to another node, O(u) for an output neuron is always

unweighted, resulting in a binary output for the entire ANN. The model of neurons used

in NEURAE is shown in Figure 2.1.

O(u) =

 1 if u > t,

0 if u ≤ t.
(2.2)

1

0

Figure 2.1: McCulloch-Pitts neuron model.

2.1.2 Genetic Algorithms

Genetic Algorithms (GAs) are a class of evolutionary computation, and repeatedly reiterate

randomly created designs to find a desired solution. The design solutions are commonly

referred to as individuals, and the goal is to eventually create individuals that are capable of

solving the design problem. Figure 2.2 is a simplified flowchart of the various steps contained

within a standard GA. GAs begin with an initial population of individuals with randomly

created genomes. For all GAs there is a difference between the genotype and phenotype.

The genotype dictates the design parameters of the individual, and it is the altering of

the genotype that ultimately alters the design parameters of the solution. The phenotype,

however, is the realization of the individual, and it is the phenotype which is evaluated.

Thus, the individuals’ fitnesses are based upon how well their phenotypes complete the

design challenge.

However, the randomly created initial population is made up of poorly performing indi-

viduals. The best performing of these individuals are selected from the population. These

selected individuals are slightly modified to create a new population. This process of eval-

10

uation, selection, and mutation is repeated until either a prescribed time limit has passed

or a good design is found.

Population Embryogenesis*

Evaluation

Selection

Mutation

End

Figure 2.2: Steps of a standard genetic algorithm.
(*Denotes an optional step).

The way individuals are represented, or encoded, within a GA is of paramount impor-

tance to how they are evolved. As the encoding becomes more complex, the genotype to

phenotype mapping becomes a more involved process known as embryogenesis in which the

phenotype starts as a small embryo, then grows according to its genome before or even

during evaluation. Stanley and Miikkulainen (2003) offer classifications for the different

types of genomic encoding within present-day GAs.

• Direct - The design parameters of the phenotype are represented directly within the

genotype. The approach works well for optimizing a design parameter, but the one-

to-one, genotype to phenotype relationship makes scalability a significant problem.

Also, the lack of inherent modularity and symmetry makes it a poor candidate for

design synthesis.

• Developmental - The genotype is a compacted representation of the phenotype,

and makes the phenotype by using a prescribed set of rules. This can scale well and

takes advantage of known modularity and symmetry. However, evolution is unable

to discover and exploit unknown symmetries. Furthermore, the way modularity and

symmetry are used to compact genomic representation can unduly bias or even limit

the solutions acquired.

• Implicit - The genotype is the rules that, when executed, create a phenotype from

11

an embryo. This approach offers the widest range of possible answers, and thus is the

best method for generating completely novel designs. However, optimization is ham-

pered by the strongly non-injective mapping between the genotype and phenotype.

Evolution times can also be slowed by extended periods of embryogenesis.

For NEURAE, an implicit encoding scheme was decided to place as little restriction as

possible on the type of ANNs created. Thus, many of the examples of NEURAE exemplify

the creation of novel network architectures rather than the optimization of well-known ANN

problems.

2.2 The NEURAE Genotype

2.2.1 Overview

Each individual in NEURAE is a digital, feed-forward neural network. However, the implicit

encoding scheme of NEURAE means each ANN is created by the execution of the rules

encoded in its genome. When the genomes are decoded, the result is a C++ program.

When the program is compiled and executed, the ANN is created.

The neural networks begin as a few neurons, but are grown according to the instructions

encoded within their genomes. All ANNs start as the desired number of input neurons with

a threshold of 0. Each input node is able to create up to seven addition neurons. These

subsequent neurons can exist within either the hidden or output layers, and can each make

up to seven addition hidden or output neurons. However, once the desired number of output

nodes are created, the entire ANN is unable to create any additional neurons.

Each neuron can also make connections, and can continue to do so even after no more

neurons can be created. To ensure the ANNs are feed-forward, nodes are only able to make

connections to neurons created after themselves. Furthermore, connections to any input

node are prohibited. While nodes within the same hidden layer are unable to connect to

each other in most ANN applications, no such constraint is imposed here. Neurons within

the hidden layer are able to connect to any other node within the hidden layer so long as

the receiving node was created after the transmitting node. Finally, each neuron can have

a maximum of 99 inputs and 99 outputs.

12

2.2.2 Biological Analog

A biological analogy was the inspiration for the encoding scheme used here. The genome

of each individual is a variable-length array of integers which is decoded to create a C++

program. Every digit is analogous to a nucleotide whose value is inclusively between 1

and 100. A collection of six nucleotides forms a complete If-CONDITION-Then-ACTION

statement, and are analogous to a codon. These tests in the If-Then statements are not

independent, and the sequence of codons will greatly influence how the individual will grow.

In particular, the If-Then structure can be arranged such that multiple conditions are tested

before an action can be executed. The closure of all If-Then statements, condition tests,

and actions form a block analogous to a gene. The resulting (closed) If-Then statements

in the C++ programs are similar to proteins. These concepts are shown in Figure 2.3.

↙ Nucleotide

1− 1− 15− 15− 10− 26︸ ︷︷ ︸
Codon

−40− 38− 2− 1− 95− 16− 100− 1− 2− 3− 4− 5

︸ ︷︷ ︸
Gene

Figure 2.3: Sample genome and biological analog

2.2.3 If Structure Nucleotide

If Structure Test Value Action Type
nucleotide nucleotide nucleotide

↘ ↓ ↙
1 - 1 - 15 - 15 - 10 - 26
↗ ↑ ↖

Attribute Test Range Action Value
nucleotide nucleotide nucleotideww�

if(|Nodeα.ID1−B| ≤ 1)
make.connection(-0.5)

Figure 2.4: Nucleotides of each codon

The first nucleotide of each codon dictates the overall logic of the corresponding C++

program. As shown in Figure 2.5, a simple change in the order or nesting of the If-

13

CONDITION-Then-ACTION tests can have a large effect on the computational process.

This flexibility allows the GA to build complex algorithms from simple building blocks.

The logic corresponding to the numerical value of the first nucleotide is listed below.

• If - Opens an If-Then statement. Adds action to the action stack. Nucleotides [1−25]

• End-If - Writes in and removes last action placed into the action stack. Closes an

If-Then statement. Opens another If-Then statement. Adds action to the action

stack. Nucleotides [26− 40]

• End-End-If - Writes in and removes last action placed into the action stack. Closes

an If-Then statement. Executes and removes last action placed into the action stack

stack. Closes another If-Then statement. Opens an If-Then statement. Adds action

to the action stack. Nucleotides [41− 55]

• End - Writes in and removes last action placed into the action stack. Closes an If-Then

statement. Nucleotides [56− 75]

• End-End - Writes in and removes last action placed into the action stack. Closes an

If-Then statement. Executes and removes new last action placed into the action stack

stack. Closes an If-Then statement. Nucleotides [76− 90]

• End-All - Writes in and removes last action placed into the action stack. Closes

an If-Then statement. Repeats until all If-Then statements are closed. Nucleotides

[91− 100]

if (Test a)(Action A)
end-if (Test b)(Action B)

if (Test a)(Action A)
if (Test b)(Action B)

if (Test b)(Action B)
end-if (Test a)(Action A)

a a

A A

a

A B

B

b b b

B

B

A
if (a)
 A
end
if (b)
 B
end

if (b)
 B
end
if (a)
 A
end

if (a)
 if (b)
 B
 end
 A
end

Figure 2.5: If structure codon and protein transcription

14

2.2.4 Condition Nucleotides

The next three nucleotides determine which of the ANN states that can cause actions to

occur will be tested. The second nucleotide in each codon dictates which attribute will be

tested. The attributes are current states of Node α and/or Node β. Many of these attributes

affect the functionality of the neural network, such as the threshold of the neuron or the

number of connections it has. However, each node also has a three-part identification

number that aids in evolution without affecting the functionality of the neuron. The first

part of the identification number (ID1) is denoted by a letter between A and H. Input nodes

all have an ID1 of A and output nodes all have an ID1 of H. Hidden nodes can have an

ID1 of B through G, which is determined explicitly by the action which creates it. A node’s

second ID number (ID2) is determined by the parent node which created it. If this is the

first node the parent node has made, the new node will have an ID2 of 1. If it is the third

node the parent node has made, the new node will have an ID2 of 3. ID2 values can range

between 1 and 8 since any node can make, at most, 8 other nodes. ID3 values denote how

many nodes within the entire network have the same ID1 and ID2 values. Thus the first

node with an ID1 value of B and an ID2 value of 5 will have an ID3 value of 1, while the

second node with the same ID1 and ID2 values will have an ID3 value of 2. These values

can range from 1 to 100. The result of the three different ID types is that each node will

have a unique identification number.

The following list presents all possible node states which can be used by the attribute

nucleotide. In addition to using the explicit values of Node α and/or Node β, relative

differences between the two nodes can be considered as well. For values where a state of

Node α relative to Node β or Rel αβ are considered, the attribute of Node β is subtracted

from the value of the same attribute of Node α.

Similarly, there are options to consider the attributes of Node β relative to Node α, or

Rel βα. This can apply to all of the attributes listed above except for the connection weight.

The value used for connection weight is the value of the weight from Node α to β or vice

versa. The nucleotide ranges are for [Node α] [Node β] [Rel αβ] [Rel βα]. Equation 2.3 is

used to get discrete values between ±1, excluding 0, where z is the nucleotide and v is the

value written into the C++ program.

The test attributes corresponding to the numerical value of the second nucleotide are

15

listed below.

• ID1 - Takes the ID1 value of a node, which can be between A and H. Nucleotides

[1− 5][27− 31][53− 55][77− 79]

• ID2 - Takes the ID2 value of a node, which can be between 1 and 8. Nucleotides

[6− 10][32− 36][56− 58][80− 82]

• ID3 - Takes the ID3 value of a node, which can be between 1 and 100. Nucleotides

[11− 14][37− 40][59− 61][83− 85]

• Threshold - Takes the threshold of a neuron. Due to Equation 2.3, this can be a

number in the range [-1− 1]/0 in 0.02 increments. Nucleotides [15− 17][41− 43][62−

64][86− 88]

• Number of Nodes Made - The number of subsequent nodes a node has made. Can be

between 1 and 8. Nucleotides [18− 20][44− 46][65− 67][89− 91]

• Number of inputs - Number of inputs into a node. Can be between 0 and 99. Nu-

cleotides [21− 23][47− 49][68− 70][92− 94]

• Number of outputs - Number of outputs from a node. Can be between 0 and 99.

Nucleotides [24− 26][50− 52][71− 73][95− 97]

• Connection weight - Takes the weight of a connection between two nodes. Due to

Equation 2.3, this can be a number in the range [-1 − 1]/0 in 0.02 increments. Nu-

cleotides [74− 76][98− 100]

v(z) =

z−50
50 if z ≥ 51,

z−51
50 if z < 51.

(2.3)

The third nucleotide writes the appropriate value into the test. In order for a condition

test to return textit/true, the attribute (second) nucleotide must be within a certain range

of this test value nucleotide. The values written into the program depend on the attribute

being tested. If the possible range is [0, 99], the number written into the program is the

test value nucleotide minus 1. However, attributes that have only 8 possible values require

equation 2.4 to convert the test value nucleotide into values suitable for the comparison.

16

For threshold and connection values, Equation 2.3 is used if the attribute is a connection

or the threshold of a neuron. However, if the attribute is the relative threshold of a neuron,

Equation 2.5, which gives a range of [0, 1.98], is used instead.

v =

⌊
z − 1

12.5

⌋
, (2.4)

v(z) =
z − 1

50
. (2.5)

The fourth nucleotide determines the range over which the attribute can vary from the

test value and still have the condition return true. Similar to the test value nucleotide, the

test range the nucleotide writes into the code depends on the attribute being tested. For

cases where letters are compared, this is the lexicographical range between the letters where

two sequential letters have a lexicographical difference of 1.

2.2.5 Action Nucleotides

The final two nucleotides determine which actions are performed if the condition test is true.

The fifth nucleotide determines which type of action will be placed into the action stack.

As mentioned above, the last in the “stack” of actions is written into the program whenever

an If-Then statement is closed. Some nucleotides will result in the creation of a new node.

Others will create a connection between Node α and Node β. In both these cases, the

action value nucleotide dictates the threshold of the new node or weight of the connection,

respectively. The nucleotide-to-program transcription options are given by Equation 2.3.

However, there are also No Action and End Turn action type nucleotides which will not

insert any new action commands and end the pairing permutation, respectively. In these

cases, the action value nucleotide is not used for anything. Figure 2.6 shows the genetic

string used to create a C++ program.

2.2.6 C++ Programs (Proteins)

Each C++ program is a collection of proteins that build the phenotype. While the genome

creates the bulk of the algorithm, there are a few rules hard-coded into the C++ program

of every individual. These hard-coded rules are implemented to impose the minimum con-

straints any viable feed-forward ANN must have, while leaving enough flexibility to create

17

Looping for
pairing permutations

1-1-15-15-10-26

40-38-2-1-95-16

100-1-2-3-4-5

End of genome

{
{
{

{

Figure 2.6: Sample genome and protein pseudocode

a variety of architectures. First, the test statements described in the previous section are

always placed within two for loops which cycle through all the different pairs of the ANN.

Also, all of the inputs nodes have a ID2 value of 1. As there is no option to create another

input, each ANN will have the same number of input nodes.

However, there are also other mandatory conditions that must be met before an action

is executed, even if the CONDITION within the genome is true. For actions that make a

connection, the first test is to make sure the two nodes are not already connected. Next, the

process ensures that the neuron being connected to is not an input to the entire ANN, and

that the neuron being connected from is not the output for the entire ANN. Finally, there

is a check that the neuron being connected to was made before the neuron which spawned

the connection to ensure the ANN is feed-forward.

To keep ANN size reasonable, ANNs have a limited amount of energy available for

growth. The act of creating a node or connection consumes one of the predetermined

energy units for the entire ANN. Once a pairing executes an action that uses an energy

unit, that pairing is over. The individual is considered to be completely developed once the

individual uses all 200 energy units or the programs cycles through all pairing permutations

without performing any actions. Figure 2.7 shows the development of a NAND gate using

the pseudo-code from Figure 2.6. It is important to note that an infinite number of different

genomes could have created an identical ANN.

18

A-1-1

A-1-2

H-1-1

Figure 2.7: Protein pseudocode and sample NAND gate

NN

N

N

save =
α ∩ βα = 1Start β = 1

a? b?

A? B?

A B

Y

N

Y

Y

Y

β =
ANN
end?

energy --

β = 1

energy
= 200

Y

N

β ++

α =
ANN
end?

save =
α ∩ β

α∩β =
save?

energy > 0 ?

End

α = 1

α ++

Y

Y

Y

N

N

LEGEND

a? = if (|Nodeα. ID1 – B| < 1)
b? = if (|Nodeβ. ID3 – 1| < 0)
A? = Is making a connection feasible?
B? = Is making a node feasible?
A = Make a connection with weight of -0.5.
B = Make a node with ID 1 H and threshold

of -0.75.

Figure 2.8: Flowchart of protein pseudocode

19

Step 1: Step 2:
EMBRYOGENESIS Neuron α = A-1-1 Neuron α = A-1-2
START Neuron β = A-1-1 Neuron β = A-1-1

Action: Make Node Action: None

0

A-1-1

0

A-1-2

0

A-1-1

0

A-1-2

0

A-1-1

0

A-1-2
-0.75

H-1-1

Step 3: Step 4: Step 5:
Neuron α = A-1-1 Neuron α = A-1-2 Neuron α = H-1-1
Neuron β = A-1-2 Neuron β = H-1-1 Neuron β = A-1-1
Action: None Action: Make Connection Action: None

0

A-1-1

0

A-1-2
-0.75

H-1-1

0

A-1-1

0

A-1-2
-0.75

H-1-1

0

A-1-1

0

A-1-2
-0.75

H-1-1

-0.5

Step 6: Step 7: Step 8:
Neuron α = H-1-1 Neuron α = H-1-1 Neuron α = A-1-1
Neuron β = A-1-2 Neuron β = H-1-1 Neuron β = A-1-1
Action: None Action: None Action: None

0

A-1-1

0

A-1-2
-0.75

H-1-1

-0.5

0

A-1-1

0

A-1-2
-0.75

H-1-1

-0.5

0

A-1-1

0

A-1-2
-0.75

H-1-1

-0.5

Step 9: Step 10:
Neuron α = A-1-1 Neuron α = A-1-1 EMBRYOGENESIS
Neuron β = A-1-2 Neuron β = H-1-1 FINISHED
Action: None Action: Make Connection

0

A-1-1

0

A-1-2
-0.75

H-1-1

-0.5

0

A-1-1

0

A-1-2
-0.75

H-1-1

-0.5

0

A-1-1

0

A-1-2
-0.75

H-1-1

-0.5

-0.5

Figure 2.9: Steps showing the embryogenesis of NAND gate

20

2.3 Evaluation, Mutation, and Selection

Each ANN is evaluated after the embryogenesis of each individual, as described by the

method above. Evaluations in NEURAE are performed in tiers to ensure network feasibility

and to promote evolution of complex behaviors (Graham et al. 2009).

The first tier ensures the individual grows the correct number of output nodes. If the

correct number of outputs are made, the individual advances to the second tier, where the

exponent is increased for each output node with a connection. These two requirements,

listed in Table 2.1, are the minimum for any possibly viable ANN circuit, and once met,

will yield an exponent value of x−1 = 1. The remaining tiers vary depending on the design

problem, and are listed alongside the design problem to which they pertain.

Table 2.1: Universal tiers for adjusting fitness exponent (x)

Tier Test Change in Exponent

1 Are there enough
output nodes?

fraction of desired
output nodes

2 Are there a connec-
tions to each out-
put node?

+ fraction of output
nodes with connec-
tions

Another commonality all evaluations share is the fitness function shown in Equation 2.6.

While x is a linear comparison of two individuals, the exponential nature of Equation 2.6

magnifies any improvements and greatly improves convergence in NEURAE. Furthermore,

the floor function ensures individuals which are unable to pass the first tier have zero fitness,

virtually nullifying their odds of survival.

Fitness =
⌊
2x−1

⌋
. (2.6)

A roulette style of selection determines which individuals are used for creating the next

generation. The population size in each generation is conserved. The probability of selecting

an individual is determined using Equation 2.7; where Pi, fi, and N are the probability

of selecting the ith individual, the fitness of the ith individual, and the population size,

respectively. A quarter of the population of the current generation survives to the next

generation. The remainder of the population is created by using the operations of point

21

mutation, conjugation, translocation, genome replication, and genome deletion.

Pi =
fi∑N
j=1 fj

. (2.7)

As described by Holland (1992), classical GAs change the genotype of future populations

through point mutation and crossover of current individuals. Figure 2.10 shows an example

of a point mutation in a binary genome where a random bit is flipped. Point mutations

are also used in NEURAE, but instead of a binary bit flip, a random nucleotide is replaced

with a randomly chosen integer inclusively between 1 and 100.

111000111000 ⇒ 110000111010

Figure 2.10: Point mutation example. The underlined nucleotides are switched

Crossover mutations require two individuals to make two more individuals and are usu-

ally either single-point or two-point crossover. With single-point crossover, two individuals

make two new individuals by having their genomes broken and swapped at a random loca-

tion on the genetic string. In two-point crossover, only a section of the genomes are swapped.

Figures 2.11 and 2.12 give an example of both types. For GAs in which all genomes must

be the same size, the sections to be swapped must be of identical length. Furthermore, the

sections are usually at the same genome locus such that the information being exchanged

at that locus has some correlation to its purpose in the phenotype. In NEURAE, however,

there is little correlation between the functions of the same section of genome between two

different individuals. Furthermore, while crossover may produce one improved individual,

they seldom create two. Thus, genetic material is shared during mutations in NEURAE

through a process inspired by, and named after, biological conjugation.

111000111000 ⇒ 111000101010
101010101010 101010111000

Figure 2.11: Single-point crossover mutation
example. Parts of the genome which have
been swapped are underlined

111000111000 ⇒ 111010101000
101010101010 101000111010

Figure 2.12: Two-point crossover mutation
example. Parts of the genome which have
been swapped are underlined

In biology, conjugation is a process used by many species of bacteria where one bacterium

gives part of its DNA to another. Martin and Russell (2002) showed how this type of genomic

22

exchange may have been key in the evolutionary jump from prokaryotes to eukaryotes and

Jain et al. (1999) and Ochman et al. (2000) offer conjugation as a reason for the high

adaptability of present-day bacteria. NEURAE uses conjugation in the manner shown in

Figure 2.13, where a section of one genome is inserted into the genome into another. Thus,

new rules can be exchanged between individuals and, hopefully, the benefits of biological

conjugation can also be used by NEURAE.

111000111000 ⇒ 1110001010111000
10101010101010

Figure 2.13: Conjugation mutation example. Parts of the genome which have been inserted
are underlined

Ohno (1970) introduced the concept of genome duplication as another key component

of biological evolution. During replication, portions of the genome are at times copied more

than once, resulting in an offspring that has two genes which make the same protein. Ohno

theorized this redundancy made the individual more robust to future mutations, because if

one gene became non-functional, there is another copy to do the same job. This redundancy

was also noted by Britten (2005), who observed that many sections of the human genome

have sequences that are too similar to have arisen independently. NEURAE uses a genome

duplication process as shown in Figure 2.14, where a section of a genome is copied more

than once when it is being replicated.

111000111000 ⇒ 111000111111000

Figure 2.14: Gene duplication example. The nucleotides copied more than once are
underlined

The final two mutation types are gene deletion and translocation. In gene deletion a

section of the genome is removed during replication. While gene deletion is an observable

phenomenon in biology, its effects are usually damaging (Lewis 2005). However, it was

added as a mutation here to counter the concatenating effects of conjugation and gene

duplication. Translocation, where a section of the genome is moved to another locus, is yet

another observed biological mutation. Regardless of its implications to biological evolution,

Figure 2.5 shows that the order of rules are very important in the embryogenesis of an

individual, so an operation which varies this order was included. Figures 2.15 and 2.16

23

show examples of these two processes in NEURAE.

111000111000 ⇒ 111000000

Figure 2.15: Gene deletion example. The nucleotides deleted are underlined

111000111000 ⇒ 111111000000

Figure 2.16: Translocation example. The underlined nucleotides are moved to another gene
locus

Finally, it was necessary to prevent frame-shift mutations. A frame-shift mutation adds

or deletes only part of a codon. The result is a shift in nucleotides that causes all following

codons after the mutation to be different. Ohno (1970) detailed how such mutations are

almost always deleterious in biology and care is taken to avoid them here.

24

Chapter 3

Logic-Gate Evolution

3.1 Overview

This chapter will describe how NEURAE creates logic gates. Each evolutionary run begins

with the random creation of 200 individuals for 1000 generations. These values were found

to give good results in run times around 4 hours on a cluster of 25 dual quad-core, 2.33 GHz

computers. Furthermore, each individual started with a genome 300 nucleotides (50 codons)

long. During evolution, a genome is allowed to double in size before being trimmed to the

default length. Genome length was constrained to prevent the well-documented problem

of bloat in genetic programming (Koza 1992; Langdon 2000). While this arbitrary setting

of genome length may bias evolution, Szathmáry and Smith (1995) have evidence showing

that overall genome length of a biological organism has little to do with the complexity of

the phenotype.

The first goal is to evolve an ANN that can serve as an XOR logic gate (Table 3.1),

even if the ANN suffers multiple failures. This circuit was chosen because its nonlinearity

requires the creation of a hidden layer and is a common benchmark in the evolution of ANN

logic circuits (Koehn 1996; Ashlock 2006). The next logic gate to be evolved is a parity gate.

A parity gate is a standard logic circuit used in simple error detection. An even parity logic

circuit will always have an even number of inputs and output active. This design challenge

exemplifies NEURAE’s capability to make a scalable ANN.

25

Table 3.1: Desired output pattern for XOR logic-gate

Input 2
0 1

Input 1
0 0 1
1 1 0

3.2 Robust XOR Gate

3.2.1 Evaluation Parameters

Table 3.2 shows the tiers used in evaluating the evolved XOR gates, the exponent gets an

additional point for each correct answer. If an individual is able to get to the third tier,

the exponent in Equation 2.6 has a value of x − 1 = 1. At this point, the network’s truth

table is compared with that of the desired circuit in tier 3. If the individual passes tier 3

and is a functional XOR gate, x = 6 and the individual will have an overall fitness of 32.

In tier 4, a node is randomly removed, and the ANN is compared to the target XOR logic

again. Nodes are continually removed until the circuit no longer produces the target logic.

This test for robustness is performed for each generation the individual is alive. Because

the order in which the nodes are removed changes with each generation, the fitness of an

individual is not constant, and the overall robustness will increase.

Table 3.2: Tiers for adjusting fitness exponent (x) in robust XOR evolution

Tier Test Change in Exponent

1 Are there enough
output nodes?

fraction of desired
output nodes

2 Are there a connec-
tions to each out-
put node?

+ fraction of output
nodes with connec-
tions

3 Compare to the de-
sired truth table

+ # of correct an-
swers in each table
entry

4 Break nodes until
failure

+ fraction of nodes
broken

26

3.2.2 Evolution Results

Figure 3.1 shows the fitness of the best individual of each generation. Figure 3.2 shows

the first XOR gate synthesized by evolution in generation 823, and Figure 3.3 shows how it

functions. In these figures, a node is filled-in (black) when it is activated. A solid connection

indicates a positive weight while a dashed connection is indicative of a negative weight. As

shown in Figure 3.3, the activation of either input will activate only the output. Once both

nodes are on, three of the four hidden nodes are activated, and their inhibitory connections

to the output are enough to deactivate it. However, this ANN is not robust, as all three

hidden nodes are needed to counter the activation of both inputs, and the removal of any

one will break the entire ANN.

Generation

B
es
t F
itn
es
s

Figure 3.1: Best fitness throughout the evolution of a robust exclusive-OR logic gate

By the end of the evolutionary run, a much larger ANN was created and is shown in

Figure 3.4. This ANN comprises 49 nodes and 140 connections. The algorithm created this

ANN by taking the smallest possible XOR gate (shown in Figure 3.5) and making duplicate

copies of it. The resulting ANN can have all but one hidden node removed, and is as robust

to node removal as possible. Furthermore, the ANN used 189 out of the 200 possible energy

units, making it close to the maximum size this evolution would allow.

Nevertheless, this is not the largest, fully redundant ANN this genetic algorithm could

have made. Figure 3.6 shows a refined version of the individual’s code, which shows only

the proteins used in making the ANN. The last protein in the code is responsible for making

27

Input
Nodes

Hidden
Nodes Output

Node

Figure 3.2: First generated XOR gate Figure 3.3: Network functionality

Figure 3.4: Best generated XOR gate Figure 3.5: Network functionality

28

the output node, which in turn halts all further neuron growth. If the test value is increased

from 3 to 5, and the maximum number of energy units available for growth is not limited,

then the 195 node network shown in Figure 3.7 is produced.

Figure 3.6: Code for creating a robust XOR
gate Figure 3.7: Larger XOR gate

The results of this experiment show that NEURAE is able to create large and complex

network structures. Not only is this GA able to solve the standard benchmark in logic

neuroevolution, it was able to expand on it by finding the core module and replicating it.

The ability of NEURAE to construct large networks with such regular structure will be key

for future applications.

3.3 Large Parity Gate

3.3.1 Evaluation Parameters

Table 3.3 shows that for the creation of a variable-size parity gate, the exponent is increased

by the fraction of entries in the truth table that are correct. Here, a 2-input parity gate will

have an exponent of x−1 = 2 and a fitness of 4. Once 2-input even parity is developed, the

ANN is rebuilt using the same genome, but starts with three inputs. The individual goes

through the three tiers again, with the exponent increasing by one for each test. Therefore,

a successful three-input parity gate will have an exponent of x− 1 = 5 and a fitness of 32.

These three tiers are repeated for up to 21 inputs.

29

Table 3.3: Tiers for adjusting fitness exponent (x) in scalable parity evolution

Tier Test Change in Exponent

1 Are there enough
output nodes?

fraction of desired
output nodes

2 Are there a connec-
tions to each out-
put node?

+ fraction of output
nodes with connec-
tions

3 Compare to the de-
sired truth table

+ fraction of correct
answers in each table
entry

3.3.2 Evolution Results

The genetic algorithm was also able to create a parity gate for an arbitrary number of in-

puts. Figure 3.8 shows the fitness of the best performing individual throughout evolution.

The particular evolutionary run shown here produced a 2-input parity (i.e., XOR) gate

much more quickly than the run shown in the previous section. This large variability is

a by-product of the stochastic nature of GAs. At the 621st generation, NEURAE finally

generated a fully scalable individual. However, the discovery of this individual resulted in

the halting of the GA due to the excessive time required to evaluate
21∑
n=2

2n input configura-

tions. While a more elegant evaluation method could have circumvented this issue (Gruau

1994), the fact still remains that NEURAE was able to solve the problem at hand.

As shown in Figure 3.9, the 2-input parity gate works by having hidden nodes which

inhibit the output once both input nodes are activated. The hidden nodes, however, also

inhibit the activation of other hidden nodes that were made afterwards. This cascading effect

can also be seen in the 4-input parity gate shown in Figure 3.10. The internal cascading

structure of the 2-input network is able to scale accordingly to the 4-input network by having

the number of hidden nodes equal the number of output nodes. Having two inputs active

in the 4-input gate is identical to having two inputs active in the 2-input gate. Activating

a third input is able to turn on the output node without activating another hidden node.

However, the activation of a fourth input activates another hidden node, which in turn is

sufficient to inhibit the excitation of all four inputs. Figure 3.11 shows this cascading effect

scales with the number of inputs in an ANN with 13 inputs.

As shown in the code in Figure 3.12 the magnitude of a negative connection is exactly

30

Generation

B
es
t F
itn
es
s
(lo
g
) 2

Figure 3.8: Fitness of best-performing individual throughout the evolution of a scalable
parity gate

Figure 3.9: Scalable parity gate with two inputs

31

Figure 3.10: Scalable parity gate with four inputs

00.10.20.30.40.50.60.70.80.91
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

00.10.20.30.40.50.60.70.80.91
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
00.10.20.30.40.50.60.70.80.91

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

00.10.20.30.40.50.60.70.80.91
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.11: Scalable parity gate with 13 inputs

32

twice the magnitude of a positive connection. Thus the excitation of two input nodes is

canceled out by the excitation of one hidden node. Furthermore, as the network begins

with more inputs, the number of hidden nodes made during embryogenesis increase as well,

providing scalability.

Once again, certain hard limits prevent parity gates of any arbitrarily large size to be

created. First, a limit of 200 energy units prevents this network from growing a parity gate

with more than 13 inputs. Also, the 99 connection limit placed on the maximum number

of inputs and outputs caps the parity gate size at 66 inputs. Fortunately, both these limits

were established only to help the evolution process and can be increased as necessary to

allow the code in Figure 3.12 to create parity logic for an arbitrary number of inputs.

Figure 3.12: Code for creating parity gates of arbitrary size

33

Chapter 4

Sensitivity Analysis

4.1 Mutation Rates

Many of the values used for the genetic algorithm were heuristic. Fortunately, NEURAE is

able to solve the robust XOR problem with a wide range of values. Still, as the design chal-

lenges for NEURAE become more difficult, it is important to not disadvantage NEURAE

by using suboptimal evolutionary parameters. Some parameters, such as population size

and number of generations per evolution, are dependent on the computer resources avail-

able. However, the mutation rates were arbitrarily chosen, and are likely not the optimum.

Furthermore, these mutation values can be adjusted independently of the hardware used

and, hopefully, independently of the problem being solved.

NEURAE has a two-step process in determining mutations. After an individual is

selected to produce offspring, its genome is scanned using the overall mutation rate, µ ∈

[0, 1]. Each codon has a probability µ of undergoing some type of mutation. Based on

this random selection, when a mutation will occur, NEURAE then randomly selects from

the secondary mutation options the type of mutation the codon will undergo. The possible

mutations of point, conjugation, duplication (recopy), deletion, and translocation have the

respective rates of µP , µC , µR, µD, and µT .

In order to determine the appropriate balance of the various mutation rates, a series of

experiments were conducted. Each series was composed of ten evolutionary runs. Because

the creation of an XOR gate is feasible by using only point mutations, a series of tests

were run to determine the optimal point mutation rate. These tests set the µP rate to

1.0, and varied the µ rate from 0.05 to 1.0. The metrics by which the different tests were

judged were the number of generations it took to make an XOR gate and the fitness of the

34

highest-scoring individual at the end of evolution.

Statistical data for the first generation in which an XOR gate was made, or α generation,

was fitted to a two-parameter Weibull distribution (Weibull 1951). A Weibull distribution

has the cumulative distribution function (CDF) and probability distribution function (PDF)

given in Equations 4.1 and 4.2, respectively. In these equations, k is the shape parameter

and λ is the scale parameter. These parameters were found by performing a least-squares

line-fit on the data shown in Figure 4.1, where the slope of the line is k, and the x-intercept is

λ. Once these values are found the integral of the PDF (Equation 4.2) is used to determine

the likelihood of an XOR gate will being created within 1000 generations.

F (x) = 1− e−(x/λ)
k

, (4.1)

P (x) =
k

λ

(x
λ

)k−1
e−(x/λ)

k

. (4.2)

α generation

ln
1 1-
F

(
)

__
_

Figure 4.1: Log-log plot of α generation

vs. log
(

1
1−F

)
for a point mutation rate

of µ = 0.4.

α generation

P
D
F

Figure 4.2: Probability density function
and histogram of α generation for muta-
tion rate of µ = 0.4.

The Ω fitness is the fitness of the best performing individual at the end of the evolu-

tionary run. Because cases where an XOR is never found are capped at 16, those runs are

excluded to focus on the exploitative effects of the mutation rates. This statistical data was

found to be best fit to a Gaussian distribution, as shown in Figure 4.3.

Table 4.1 illustrates that evolutions using mutation rates at the extremes are both less

likely to make an XOR gate and are worse at optimizing a gate if it does. This is congruent

35

75 80 85 90 95 100 105 110 115 120 125
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 4.3: Gaussian distribution of best fitness at the end of evolutionary runs with a point
mutation rate of µ = 0.4.

Table 4.1: The statistical results for varying mutation rates while only using point mutations

Case µ Probability α gen ≤ 1000 Ω fit mean Ω fit st. dev.

1 0.05 73.1% 99.67 10.36

2 0.1 90.2% 108.8 7.26

3 0.2 92.9% 106.0 8.40

4 0.4 97.3% 101.1 10.12

5 0.6 99.5% 97.39 23.64

6 0.8 99.1% 94.35 18.47

7 1.0 88.1% 86.70 17.76

36

with other literature which shows that extremely high and low mutation rates are often

deleterious to GAs (Mühlenbein 1992; Bäck and Schutz 1996).

However, mutation rates between 0.1 and 0.8 offer a trade-off between the likelihood of

finding an XOR gate and optimizing an ANN. As shown in Table 4.1, a higher mutation

rate makes finding an XOR gate more likely. However, lower mutation rates are generally

more capable of exploiting a functional XOR design and making it robust. Thus, a user

can either decide whether the problem being solved is more explorative or exploitative in

nature, and choose µP accordingly, or use variable mutation rates, such as those shown by

McGinley et al. (2008).

It may be possible to improve both the explorative and exploitative capabilities of NEU-

RAE without using a variable mutation rate which comes with its own biases and problems

(Bäck 1992). It was hoped that other mutations found in nature would be beneficial to

include in NEURAE as well. As mentioned in Chapter 2, NEURAE is capable of altering

newly created genomes using mutations besides simple point mutations. A sensitivity anal-

ysis was conducted to determine the appropriate rates of the rest of the mutation types.

However, the mutation rates are interdependent, so the sensitivity analysis was adminis-

tered in a manner detailed by Montgomery (2004) for studying the effects of dependent

variables. Overall, there are 6 variables. However, there are a few constraints that reduce

the degrees of freedom.

The first constraint, Equation 4.3, requires the probability of a point mutation to be

held at 0.4. The value of 0.4 was chosen because it is in the middle of the plateau of

mutation rates that perform well. Furthermore, the previous experiments prove that the

overall mutation rate can be increased without adversely affecting NEURAE.

µ · µP = 0.4. (4.3)

Next, the secondary mutation rates must sum to 1, as shown in Equation 4.4. This is

to ensure that a mutation happens as the overall mutation rate, µ, dictates. The constraint

shown in Equation 4.5 was added because the operations of crossover and gene duplication

lengthens the genome while deletion shortens it. Having the mutation rates of these oper-

ations balanced makes sure the genomes’ lengths are not unduly biased. This constraint,

when combined with the constraint that all mutation rates must sum to 1.0, leads to the

37

µ

µ
C

µ
R0

0

1.0

0.6

8

14

13

12

11

10

9

1 - µP
2

1 - µP
2

Figure 4.4: The prism is representative of the mutation rate landscape as bounded by the
above constraints.

inequality in Equation 4.6.

µP + µC + µR + µD + µT = 1.0, (4.4)

µC + µR = µD, (4.5)

µC + µR ≤
1− µP

2
. (4.6)

These constraints can be used to create the mutation rate landscape shown in Figure

4.4 and a 3-dimensional sensitivity analysis can be performed by varying µ, µC , and µR

with data taken at the corners and centroid of the prism to maximize the exploration of the

mutation rate landscape. Table 4.2 shows the values used for exploring the mutation rate

landscape, which are at the corners and centroid of the prism shown in Figure 4.4.

Table 4.3 offers the results of the mutation rate sensitivity analysis. In general, the

excessively high mutation rates (µ = 1.0) were once again the poorest performing. Fur-

thermore, cases that use only point mutations and genome size changing mutations (i.e.,

conjugation, duplication, and deletion) perform worse than using point mutations alone.

However, using only point and translocation mutation with a moderate overall mutation

38

Table 4.2: Mutation rates for 3-dimensional sensitivity analysis with variables in bold are
indicative of the chosen points on Figure 4.4

Case µ µP µC µR µD µT
8 0.6 0.66 0.0 0.0 0.0 0.34

9 1.0 0.40 0.0 0.0 0.0 0.60

10 0.6 0.66 0.17 0.0 0.17 0.0

11 1.0 0.40 0.30 0.0 0.30 0.0

12 0.6 0.66 0.0 0.17 0.17 0.0

13 1.0 0.40 0.0 0.30 0.30 0.0

14 0.8 0.5 0.075 0.075 0.15 0.20

rate, as was done in case 8, achieved good results. Still, there is a delicate balance between

these values since case 9, which also only used point and translocation mutations, was by

far the worst performing test case. This case only had two of the 10 runs produce an XOR

gate. Nevertheless, the best combination of mutations rates is case 14, which uses all of the

mutation types. These runs have a high probability of discovering an XOR gate (99.95%)

coupled with good optimization. As a result, this became the balance of mutation rates

used for future design problems.

Table 4.3: The statistical results for varying mutation rates across the mutation rate land-
scape given in Figure 4.4

Case Probability α gen ≤ 1000 Ω fit mean Ω fit St. Dev.

8 97.3% 106.6 8.48

9 19.1% 75.7 40.6

10 86.1% 92.99 18.84

11 56.6% 100.8 8.95

12 71.8% 98.34 10.52

13 56.5% 92.95 5.48

14 99.95% 102.8 10.60

4.2 Qualities of Productive Evolution

While it is important to see which mutation values optimizes NEURAE, an analysis of why

could help make improvements as well. Thus, a look at two different runs from an earlier

version of NEURAE (Roy et al. 2008) were analyzed. Both evolutions were performed

39

using only point mutations, but one case had a moderate mutation rate (µ = 0.2, µP = 1.0)

which often produced XOR gates. The second group had a higher mutation rate (µ =

0.8, µP = 1.0) which seldom produced an XOR gate. Characteristics of successful, XOR

producing runs were compared to those of non-XOR producing, unsuccessful runs. While

the quantitative results differ between the two groups, the qualitative results for each group

are similar.

B
es
t F
itn
es
s

G
en
e
N
um
be
r

Generation

Figure 4.5: Genes used by the top 10%
within a successful evolution

Generation

B
es
t F
itn
es
s

G
en
e
N
um
be
r

Figure 4.6: Genes used by the top 10%
within an unsuccessful evolution

Figures 4.5 and 4.6 show which genes were used by the best individuals (top 10%)

throughout evolution. Each time a gene is used, a dot is placed that shows in which

generation it was used. Furthermore, the figure is overlaid with a plot of the fitness of the

best performing individual of each generation.

In Figure 4.5 there are sudden shifts in the genome of the population elite, known as

punctuated equilibria (PEs). Eldredge and Gould (1972) describe PEs as sudden shifts in

the phenotype of a population that results in speciation happening quickly as opposed to

gradually. While this theory was applied to observations of phenotypes within paleological

records, Figure 4.5 shows PEs happen on a genomic level in the simulated evolution near

generations 270 and 610. The first PE happens shortly after the first jump in fitness of the

best individual. The second PE happens after a relatively small change (∼1%) increase in

the best fitness. Finally, the majority of fitness improvements do not result in a large shift

of the genomes in the population.

The analysis was repeated for poorly performing evolutions with the elevated mutation

rate. Figure 4.6 reveals what happens within the genome of the best performing 10% during

40

an unsuccessful evolution. Due to the elevated mutation rate, more genes are generated.

However, the lack of any PEs show that none of the genes are ever eliminated within the

elite population. Thus, there is a correlation between PE and evolutionary progress.

Figure 4.7: Structure of genes used by the
top 10% of each generation during a suc-
cessful evolution.

(Once nested is at the bottom).

Figure 4.8: Structure of genes used by the
top 10% of each generation during an un-
successful evolution.

(Once nested is at the bottom).

Figure 4.7 shows how the rules become more complex throughout evolution. The height

of the overall bar diagram shows how many different genes were used throughout evolution,

grouped for every hundred generations. The number of nestings indicate the number of

additional conditions that must test true in order for an action to be executed. Thus, a

thrice-nested rule must have four IF statements prove true for its action to execute. Over

time, a higher percentage of the rules used have additional nestings. Furthermore, the

number of genes used by the best individuals changes as well. As Adami et al. (2000)

argues, a more complex gene contains more information about its environment, and genes

that require more specified conditions to execute an action contain more information about

the required state of the network. The results of Figure 4.7 are contrasted with the unsuc-

cessful results shown in Figure 4.8. The illustration reconfirms that many more genes were

generated during the unsuccessful evolution. However, there is little variation throughout

evolution. Furthermore, the rules used do not become more complex.

Finally, statistics looking at the structure of the rules are examined. The actions of

every codon within each gene that is executed are tallied for each run. It is important to

note that the sum of these tallies will be higher than the total number of genes used because

nested genes contain multiple codons, and thus, multiple actions. Furthermore, while the

41

actual numbers are given, it is the relative ratios that remain consistent among similar runs.

Table 4.4 reveals that making a connection was the most common action. However, the

second most common action was the end turn action, which prevents the growing network

from performing tasks. This suggests that the control of growth is nearly as important as

growth itself. In other words, evolving rules prohibiting actions may be as important as

involving rules that promote actions.

Table 4.4: Actions in executed genes

Make Make Do End
Connection Node Nothing Turn

Successful Run 4297 1628 1566 3981

Unsuccessful Run 12750 4346 612 8054

4.3 Variation of Nucleotides within the NEURAE Codon

It was argued earlier that having more complex genomes meant using more information

from the environment. Furthermore, the previous section showed that as individuals be-

came more fit, the rules often required a growing ANN to meet more conditions before an

action is executed. However, this just means the use of more environmental information is

correlated to more successful evolutions, but not necessarily the cause of them. Thus, the

following experiment was devised to disable the genome from using any information from

the environment for embryogenesis. Every test range (4th) nucleotide was set to write a

large number (250) into the C++ program. This test range is large enough to encompass all

possible ANN states and results in every condition test to be true. With this configuration,

the programs in NEURAE run similar to the programs in Gruau’s CE, where the order

in which actions are executed are completely determined by the sequence of actions in the

program.

This change seems to completely break NEURAE, as none of the evolutionary runs

produced an XOR gate. While it can be argued that implementing more action options or

not resetting the program for each pairing permutation could have produced an XOR gate,

it’s clear that NEURAE benefits in having information from the environment to correctly

apply embryogenesis.

42

The second experiment tested the effect of growth controls. For this experiment, End

Turn action (5th) nucleotides were replaced with Do Nothing nucleotides. This results in a

set of rules in which actions cannot be actively halted.

Even though this experiment used the same mutation rates as in case 14, the removal

of End Turn nucleotides results in the probability of an XOR gate being created dropping

to 88.8%. However, if a desirable circuit was created, the runs were able to optimize it as

effectively as the evolutions in case 14, with an Ω fitness average at 102.6 and Ω fitness

standard deviation of 10.3. However, one curious side effect is that evolutions without End

Turn nucleotides took more than twice the computational time. While computation time

was not an explicit evaluation parameter for evolution, clearly using more time to get worse

results is undesirable. Thus, its clear that including End Turn action codons is beneficial

for the practical application of NEURAE.

43

Chapter 5

Derivation of Simulation
Environment

5.1 Nomenclature

A = Amplitude of path sinusoid

~a = Shortest vector from robot center to obstacle wall

ax = x-coordinate of ~a

ay = y-coordinate of ~a

~b = Vector coincident with obstacle wall

bx = x-coordinate of ~b

by = y-coordinate of ~b

C = Slope of path sinusoid

c1 = Chord length of left wheel movement approximation

c2 = Chord length of right wheel movement approximation

d = Diameter of robot

f = Frequency for path sinusoid

g(·) = Function which is centerline of path

h = Distance from left wheel to point of rigid body rotation

44

~l = Unit vector coincident with LIDAR sensor

lx = x-coordinate of ~l

ly = y-coordinate of ~l

~l⊥ = Unit vector perpendicular to LIDAR sensor.

m = Slope of line connecting photovoltaic sensor and closest point to path

~p1 = Global position vector to first obstacle vertex

p1x = x-coordinate of ~p1

p1y = y-coordinate of ~p1

~p2 = Global position vector to second obstacle vertex

p2x = x-coordinate of ~p2

p2y = y-coordinate of ~p2

~q1 = Vector from robot center to first obstacle vertex

q1x = x-coordinate of ~q1

q1y = y-coordinate of ~q1

~q2 = Vector from robot center to first obstacle vertex

q2x = x-coordinate of ~q2

q2y = y-coordinate of ~q2

r = Radius of robot

s1 = Arc traversed by left wheel

s2 = Arc traversed by right wheel

t = Time

~v1 = Left wheel movement approximation vector

45

~v2 = Right wheel movement approximation vector

~vcg = Robot center movement approximation vector

w = Width of the path

x1 = x-coordinate of photovoltaic sensor

x2 = x-coordinate of path closest to photovoltaic sensor

~xi = Vector to initial robot global position

~xf = Vector to final robot global position

~xt = Vector to test robot global position

xtx = x-coordinate of ~xt

xty = y-coordinate of ~xt

y1 = y-coordinate of photovoltaic sensor

y2 = y-coordinate of path closest to photovoltaic sensor

α = Angle of rigid body rotation

β = Angle between ~v2 and vector pointing from the left wheel to the right wheel

η = Distance from laser origin to wall

γ = Angle perpendicular to initial robot orientation

θ = Angle laser makes with global x-axis.

κ = Scalar used to find an arbitrary location along obstacle wall

ν1 = Left wheel translational speed

ν2 = Right wheel translational speed

σ = Angle between ~v1 and global x-axis

τ = Discrete time between simulation steps

46

φi = Initial robot orientation

φf = Final robot orientation

φt = Test robot orientation

5.2 Two-Wheeled Robot Movement

Figure 5.1: Diagram of variables for two-wheeled motion derivation

While the following robots may have varying sensor setups, they all have the same basic

movement model. All robots herein have the two-wheeled model shown in Figure 5.1. The

assumption that the wheels never slip enables robot movement to be modeled as rotation

of a rigid body rotating about some point in the 2-D plane.

As the left wheel travels, it moves along the arc,

s1 = hα. (5.1)

Figure 5.1 illustrates ~v1 and ~v2 are respective chords for the arcs s1 and s2. Using the

47

Law of Cosines, the magnitude of the chord, c1, squared is

c21 = 2h2 − 2h2cos(α) = 2h2(1− cos(α)). (5.2)

However the Taylor series expansion of cos(α) about α = 0 is

cos(α)|α=0 = 1− α2

2!
+
α4

4!
−H.O.T. (5.3)

Plugging the truncation of the Taylor series expansion into Equation 5.2 gives

c21 ≈ 2h2
(

1− (1− α2

2
+
α4

24
)

)
, (5.4)

c1 ≈ hα−
α2

2
√

3
. (5.5)

The error between the arc length in Equation 5.1 and the chord length in Equation 5.5

has a maximum error of α2

2
√
3
. If α is small, using the chord to approximate wheel movement

in Equation 5.1 is acceptable. Thus, the simulation time steps are kept small and the wheels

are assumed to move along the chords instead of the arcs.

Equation 5.2 can be rewritten to make

cos(α) =
2h2 − c21

2h2
= 1− c21

2h2
. (5.6)

Using similar triangles,

c1
h

=
c2

h− d
, (5.7)

h =
c1d

c1 − c2
. (5.8)

Substituting Equation 5.8 into Equation 5.6 gives

cos(α) = 1− (c1 − c2)2

2d2
. (5.9)

Now, Equation 5.9 can be solved for α in terms of known qualities,

48

α = cos−1
(

1− (c1 − c2)2

2d2

)
. (5.10)

It is necessary to verify that the assumption made in Equation 5.5 is accurate enough.

Having the wheels rotate in opposite directions and at equal magnitudes will result in the

the robot spinning in place and have the largest possible estimation error of the orientation.

If the wheels are assumed to move along the arc, the orientation will change according to

Equation 5.11,

α(t) =
s1t

h
. (5.11)

The exact movement represented by Equation 5.11 and the approximate movement

represented by Equation 5.10 are compared. For the verification of rotational accuracy the

following values were given: ν1 = 1 m/s, ν2 = −1 m/s, d = 1 m, τ = 0.02 s. This leads to

the following values of s1 = c1 = τν1 = 0.02 m, c2 = τν2 = −0.02 m, and h = d
2 = 0.5 m

during each simulation step. The exact and approximated results are shown in Figure 5.2

to be nearly identical with a maximum error of 0.003 rad.

Once it is known how much the robot has changed its orientation during the time step,

it is necessary to determine the displacement of its center. Due to the fact that the angles of

the isosceles triangle in Figure 5.1 must add up to π, β = π−α
2 . However, there is a need to

account for clockwise or counterclockwise rotations for determining the global orientation

of the two displacement vectors, ~v1 and ~v2.

φt =

 γ + β if c1 > c2,

γ − β + π if c1 ≤ c2.
(5.12)

By knowing the orientation and magnitude of the displacement of each wheel, ~v1 and

~v2 can be found by Equations 5.13 and 5.14.

~v1 =

 cos(φt)

sin(φt)

 c1, (5.13)

~v2 =

 cos(φt)

sin(φt)

 c2. (5.14)

49

(s)

Figure 5.2: Verification of rotational accuracy with and without approximation.

The displacement of the center of the robot is the average of the displacement of the

two wheels, so ~vcg = ~v1+~v2
2 . Finally, the overall change of the robot position is shown in

Equations 5.15 and 5.16.

φt = φi + α, (5.15)

~xt = ~xi + ~vcg. (5.16)

To verify that the approximations are accurate, two more simulations were run: one

with a stationary wheel, and another with the wheels at two different, but constant, speeds.

The exact movement results from Equations 5.17 - 5.22 are compared to the approximation

results in Equations 5.15 and 5.16.

α(t) =
c1t

2r
. (5.17)

50

x(t) = r sin

(
c1t

2r

)
. (5.18)

y(t) = r

(
1− cos

(
c1t

2r

))
. (5.19)

α(t) =
c1t

4r
. (5.20)

x(t) = 3r sin

(
c1t

4r

)
. (5.21)

y(t) = 3r

(
1− cos

(
c1t

4r

))
. (5.22)

Time (s)

R
ob
ot
 O
rie
nt
at
io
n
(r
ad
)

Time (s)

X
 C
oo
rd
in
at
e
(m
)

Time (s)

Y
 C
oo
rd
in
at
e
(m
)

Figure 5.3: Verification of rotational and translational accuracy used the respective left and
right wheel speeds of ν1 = 0 m/s and ν2 = 1 m/s. The maximum orientation, x-position,
and y-position errors are 0.017 rad, 0.0079 m, and 0.0083 m, respectively.

51

Time (s)

R
ob
ot
 O
rie
nt
at
io
n
(r
ad
)

X
 C
oo
rd
in
at
e
(m
)

Time (s)

Time (s)

Y
 C
oo
rd
in
at
e
(m
)

Figure 5.4: Verification of rotational and translational accuracy used the respective left and
right wheel speeds of ν1 = 0.5 m/s and ν2 = 1 m/s. The maximum orientation, x-position,
and y-position errors are 0.037 rad, 0.055 m, and 0.056 m, respectively.

52

5.3 Collision Detection

Figure 5.5: Diagram of variables for obstacle collision check.

The next thing to account for is interactions between the robot and obstacles. All

obstacles in the simulation world are polygons. Before the robot moves to the new position

determined by Equation 5.16, there is first a check to make sure it does not pass the

boundaries of an obstacle, i.e., collide with an obstacle. In Figure 5.5, the point where ~a

intersects ~b is shown in Equations 5.23 and 5.24.

~xt + ~a = ~p1 + κ~b, (5.23)

~a = ~p1 + κ~b− ~xt. (5.24)

However, ~a⊥~b, so there dot product is zero, as shown in Equation 5.25.

~a ·~b = (~p1 + κ~b− ~xt) ·~b = 0. (5.25)

Solving Equation 5.25 for κ yields the result shown in Equation 5.26.

κ =
(bxxtx + byxty)− (bxp1x + byp1y)

b2x + b2y
. (5.26)

53

If 0 < κ < 1, then ~a coincides with the line ~b within the line segment of the wall.

Equation 5.27 is used to check if the shortest distance from the center of the robots to the

wall is greater than the radius of the robot.

‖a‖ = ‖~p1 + κ~b− ~x‖ > r. (5.27)

If κ is not within the range (0,1), Equation 5.28 is used to ensure the robot clears the

vertices of the obstacle.

‖~p1 − ~x‖ > r ∩ ‖~p2 − ~x‖ > r. (5.28)

If the inequalities in either Equation 5.27 or Equation 5.28 are not satisfied, then the

robot will cross a boundary within the next simulation step. To prohibit this, the robot

keeps the same position it previously had. However, the robot is free to rotate as it normally

would. For verification, the robot is placed in a box and moves and rotates in increments.

5.4 Sensor and World Interaction

After the robot moves to the new orientation, the sensors are updated. For the line following

robot, photovoltaic sensors are configured to be on if the sensor is positioned above the black

line, and off otherwise. The centerline of the line to be followed is a sinusoid with a slope

and is governed by Equations 5.29 and 5.30.

g(x) = Acos(fx)−A− Cx, (5.29)

y2 = Acos(fx2)−A− Cx2. (5.30)

The line connecting the photovoltaic sensor and the point on the centerline closest to

it, as shown in Figure 5.8, is represented by Equation 5.31.

y2 = y1 +m(x2 − x1). (5.31)

However, the slope of the centerline of the path at x2 can be found by Equation 5.32.

54

Figure 5.6: Collision detection was verified by placing the robot within a small obstacle and
having it move around. As shown above, the center of the robot is never closer than 0.5 m
(the radius) to the obstacle wall.

Figure 5.7: Model of robot sensor config-
uration for path following simulations.

Figure 5.8: Diagram of variables used for
path detection calculations.

55

g′(x2) = C −Afsin(fx). (5.32)

This slope, however, is perpendicular to the connecting line shown in Figure 5.8. Thus,

the slope, m, of the connecting line must be the negative inverse of the slope of the centerline

as shown in Equation 5.33.

m =
−1

(g′(x2)
=

1

Afsin(fx)− C
. (5.33)

Substituting Equations 5.30 and 5.33 into Equation 5.31 yields Equation 5.34.

Acos(fx2)−A+ Cx2 = y1 +
x1 − x2

C −Afsin(fx2)
. (5.34)

However, Equation 5.34 will have problems when the slope of the sinusoid is 0. Thus it

is converted to the following equation:

x1 − x2 + (C −Afsin(fx2))(y1 +A−Acos(fx2)− Cx2) = 0. (5.35)

Equation 5.35 is used to solve for x2 within the range of x1− w
2 and x1 + w

2 numerically

via the secant method. If a zero for x2 is not within these bounds, the sensor must be

further than w
2 away from the centerline and off the path. However, the search region must

be broken in two sections to account for multiple roots. Thus, for regions [x1 − w
2 , x1]

and [x1, x1 + w
2] are searched separately. If a zero is found within these bounds, the secant

method finds the root quickly. Once x2 is calculated, y2 can be found with Equation 5.30. If(
(x1 − x2)2 + (y1 − y2)2

)
≤ w2

4 then the sensor is over the line and is consequently activated.

Otherwise, the sensor is off.

The fully 2-D robot navigates by using simulated LIDAR sensors which can detect the

distance to an obstacle in front of it. ~l is a unit vector collinear with the LIDAR. ~l⊥ is

used to check if the LIDAR unit intersects ~b within the wall segment with the following

inequality,

(~l⊥ · ~q1) · (~l⊥ · ~q2) ≤ 0. (5.36)

If Inequality 5.36 is true, it is necessary to first check if the laser is collinear with the

56

Obstacle

Lidar
sensor
array

Figure 5.9: Model of robot sensor config-
uration for full 2-D navigation.

Figure 5.10: Diagram of variables used
for full 2-D navigation.

wall by evaluating Equation 5.37.

(~l⊥ · ~q1) · (~l⊥ · ~q2) = 0. (5.37)

If Equation 5.37 is true, it is necessary to check (~l⊥ · ~q1) and (~l⊥ · ~q2) separately. If both

equal 0, η = min(‖~q1‖, ‖~q2‖). Otherwise, η = ‖~qi‖ for which (~l⊥ · ~qi) = 0.

However, if the product of dot products in Equation 5.36 is less than 0, then ~l⊥ intersects

~b. To find the distance Equation 5.38 is used.

~q1 + κ~b = η~l, (5.38)

which becomes the linear equation shown in Equation 5.39.

 lxbx

lyby

 η

−κ

 =

 q1x

q1y

 . (5.39)

Then, the distance η becomes

η =
q1xby − q1ybx
lxby − lybx

. (5.40)

If η ≥ 0, the LIDAR sensor will hit the wall and return a distance η. If η < 0, the wall

is behind the sensor so there is no reading. This process is repeated for each wall, and the

smallest distance is the value that the sensor returns. A value less than the diameter of the

robot will cause the corresponding ANN input to active. Figure 5.4 shows the simulated

57

robot with laser/obstacle interaction.

Figure 5.11: Graphical verification of accurate laser/object interaction. A blue line indicates
the corresponding ANN input is inactivate while red line indicates the corresponding ANN
input has been activated. The concentric circles are indicative of the desired goal

58

Chapter 6

Robotic-Controller Evolution

6.1 Overview

This chapter will describe the evolution of digital controllers for the simulated robots de-

tailed in Chapter 5. All evolutionary runs have a population of 200 individuals with a

starting genome length of 150 nucleotides. The mutation rates are set in accordance with

the best performing case runs found in Chapter 4, µ = 0.80, µP = 0.50, µC = 0.075, µR =

0.075, µD = 0.15, and µT = 0.20. The design problems to be solved are creating a controller

for a line-following robot, creating an obstacle avoiding robot, and creating controllers for

a swarm of goal finding robots. As a result, the exponential fitness has the form in Equa-

tion 6.1 to further magnify slight improvements in the later tiers.

Fitness =
⌊
22(x−1)

⌋
. (6.1)

6.2 Line-Following Robot

6.2.1 Evaluation Parameters

Each ANN begins as three input neurons, one for each photovoltaic sensor. Table 6.1 shows

the tiers used for the exponent in this simulation. Once again, an individual that passes

the second tier has a fitness exponent of x−1 = 1. However, these individuals need to grow

and connect two outputs instead of the one in the previous logic evolutions.

Once an individual grows and connects to two outputs, it gets to tier 3 and its line

following ability is tested. The path to be followed is a line with a width w, and a centerline

that satisfies Equation 5.29. The robot starts at the origin facing in the direction of the

59

Tier Test Change in Exponent

1 Are there enough
output nodes?

% of desired output
nodes

2 Are there a connec-
tions to each out-
put node?

+ % of output nodes
with connections

3 Simulate robot for
20 seconds

+ % of path followed
correctly

Table 6.1: Tier for adjusting fitness exponent (x) in line following evaluation

positive x-axis. The constants are chosen to ensure the line intersects the origin with the

center sensor over the line. Furthermore, the curvature of the line is always less than the

turning radius of the robot, r. An individual is allotted 20 seconds of simulated time. At

each time step, it is evaluated by Equation 6.2 where ε is the error between the robot’s

center and the centerline of the path. These values are summed and divided by the sum of

Equation 6.2 if ε were 0 for all time steps. This fraction is then added to the exponent in

Equation 6.1.

f(x) = 1− 1

1 + e−4
ε−r
w

. (6.2)

Figure 6.1: Preference function for position error in line following evaluation

6.2.2 Evolution Results

Figure 6.2 shows that the center of the robot traveled along the path and is a capable line

follower. The ANN controller of the robot is shown in Figure 6.3. While there was no

explicit penalty for building extra neurons, an ANN with a hidden layer could cause a lag

in response time which would cause a larger error while following the path.

60

Desired Path
Path of Robot Center

Figure 6.2: Robot path compared with de-
sired path

INPUTS

OUTPUTS

LEFT RIGHT

Figure 6.3: ANN controller for a line following
robot

Left Center Right Left Right
Sensor Sensor Sensor Wheel Wheel

0 0 0 1 1

0 0 1 1 0

0 1 0 1 1

0 1 1 1 0 or 1

1 0 0 0 1

1 1 0 0 or 1 1

Table 6.2: Dominant logic for line following robots

The resulting line-following logic is show in Table 6.2. While some of the entries are

self-evident, such as turn right when only the right sensor is active, it was not clear what the

right action should be when the line is not sensed. However, it was found through evolution

that the best course of action if the line is not detected is to go forward. Given the limited

sensing abilities of the robot, this is the best general-purpose line search the robot could

perform.

61

Figure 6.4: Code used to make line following controller

6.3 Obstacle-Avoiding Robot

6.3.1 Evaluation Parameters

For this problem an ANN was evolved that could function as a controller for a robot that

could find a goal within a closed 2-D room. The inputs to the ANN are the goal sensors and

LIDAR sensors of the robot. The three goal sensors are configured to be on in accordance

to Figure 6.5 with the center sensor having a 45◦ arc. These sensors give directional data,

but not ranging information. Furthermore, the goal sensors are able to detect the goal

regardless of distance or if there is an obstacle between the robot and the goal. As shown

in Figure 5.4, there are five LIDAR sensors which are set at equivalent angles in the 120◦

arc in front of the robot. Goal sensor inputs for the ANN have an ID1 of A and LIDAR

inputs have an ID1 of B. Because an ID1 of B is being used for an input, neurons grown

during embryogenesis cannot have an ID1 of B.

Originally, the third tier was a simulation tier of having the robot find the goal in an

enclosed room without internal obstacles. However, several individuals were able to find the

62

Figure 6.5: Goal sensor configuration for the obstacle avoiding robots. Detection is sepa-
rated into left, center, and right.

Tier Test Change in Exponent

1 Are there enough
output nodes?

% of desired output
nodes

2 Are there a connec-
tions to each out-
put node?

+ % of output nodes
with connections

3 Logic test + % correct answers

4 Simulate with con-
vex obstacle

+ summed distance
to goal

5 Simulate with star
obstacle

+ summed distance
to goal

Table 6.3: Tiers for adjusting fitness exponent (x) in obstacle avoidance evaluation

obstacle without evolving the ability to turn both left and right! Usually, individuals would

only be able to sense if the goal was to one side or another, and then use LIDAR detection

of the border to make enough turns to compensate. Thus, the third tier was replaced with

the logic test shown in Table 6.4. For these tests, it is assumed all the LIDAR inputs are

off. This ensured the controller exhibited efficient logic in finding the goal in the absence of

obstacles.

Once an ANN controller evinces the logic in Table 6.4, it moves to tier 4. Here, the

robot is tested to see if it can find a goal with an obstacle between the starting point and

goal. The environment shown in Figure 6.6 starts the robot in a random position and

63

Left Goal Center Goal Right Goal Left Right
Sensor Sensor Sensor Wheel Wheel

0 0 1 1 0

0 1 0 1 1

1 0 0 0 1

Table 6.4: Logic test goal finding robots are required to pass before simulation. For this
test, all LIDAR inputs are inactive

orientation in the upper-right corner, and its movement is simulated for 20 seconds. At

each time step, the distance of the robot is evaluated by Equation 6.3, with ε being the

distance between the robot and the goal. This distance is doubled if the robot is in contact

with an obstacle, providing further evolutionary pressure for obstacle avoidance. As with

line following evaluation, this value is summed and divided by the sum of Equation 6.3 if ε

is equal to 0 for all time steps. This fraction is then added to the exponent in Equation 6.1.

If at the end of the simulation, the robot is within one diameter of the goal, it is allowed to

move on to tier 5.

Figure 6.6: Environment for tier 4 evaluation Figure 6.7: Environment for tier 5 evaluation

f(x) =

1

1+e
2ε−10

3
if there is a collision,

1

1+e
ε−10

3
otherwise.

(6.3)

Tier 5 is almost identical to tier 4, except now the environment includes the star obstacle

shown in Figure 6.7. Usually, robots which performed well in tier 4 also performed well

here, but this tier did help refine the controllers. Figure 6.7 shows the path taken by a

successful individual.

64

6.3.2 Evolution Results

The synthesized controller shown in Figure 6.8 was able to navigate around convex and star

obstacles. In the figure, the left three inputs correspond to the goal sensors, and the right

five are the inputs from the LIDAR unit. The activation pattern shown in Figure 6.8 is

the result of the goal being in front of the robot, but a wall is in close proximity of the two

leftmost LIDAR sensors. The corresponding output is to have the left wheel on and the

right wheel off, which will cause the robot to turn right, as desired.

GOAL
SENSORS

LIDAR
INPUTS

Figure 6.8: ANN controller for obstacle avoidance

In order to demonstrate the general capabilities of this controller, the individual was

placed in two more simulation environments after evolution was completed. The first is

an environment that is densely obstructed. As Figure 6.9 shows, the robot is still able

to avoid the obstacles and reach the goal. The next task shown in Figure 6.10 could not

be accomplished by the individual. In order to surmount this challenge, the robot had to

be able to encounter the obstacle, then move away from the goal as it moved along the

contour of the wall. Figure 6.10 shows that the robot was able to trace the wall and is able

to follow the wall until the robot is facing the away from the goal. However, the goal sensors

indicate the goal is on the right side of the robot, although nearly behind it. As a result, the

65

robot continues to turn right, looping toward the goal and away from the obstacle. Once

it encounters the obstacle again, the cycle is restarted. While there may be a fine-tuned

solution to create a feed-forward network for this problem, it is likely that this solution will

be brittle. This problem may require a recursive neural network so that the controller can

store and use gathered information about the environment.

Figure 6.9: Obstacle avoidance robot in a
densely obstructed environment

Figure 6.10: Obstacle avoidance robot in a
environment with concave obstacle

6.4 Goal-Finding Swarm Robots

6.4.1 Evaluation Parameters

A network capable of controlling swarm behavior was the final goal. For this challenge,

individuals had the same types of inputs as they did in the previous obstacle avoidance

section, but the number of LIDAR input were increased to eight to provide higher fidelity.

Furthermore, the goal sensors were reconfigured to not be able to detect the goal if an

obstacle is blocking it, as shown in Figure 6.12. Thus, the individual had to evolve logic

which enables it to search for the goal, then converge once found.

While, the robots here were unable to detect the goal if there is an obstacle between

the two, Figure 6.13 shows that once a robot is able to see the goal, it sends out a signal at

its own location, which other robots are able to detect. If the second robot is unable to see

the goal, its goal sensors will indicate in what direction the first robot is. However, once a

robot is able to detect the goal on its own, the goal sensors will ignore the signal from other

goal-detecting robots, and give the direction of the goal.

66

Figure 6.11: Code used to make obstacle avoidance controller

Table 6.5 shows the tiers used for evaluating swarm behavior. Rather than forcing a

viable ANN to conform to an imposed logic table, the robot was simulated in the convex

and star obstacle environments displayed in Figures 6.14 and 6.15.

The fifth tier is the first time swarming behavior is tested. For this challenge, one robot

is placed near the goal. A second robot is placed on the other side of a star obstacle. The

challenge for the individual is to create a controller where one robot can go toward a global

signal without colliding with an obstacle. Figure 6.16 shows that NEURAE produced an

individual capable of completing this task.

The sixth and final tier places the swarm in a larger room shown in Figure 6.17. For

this tier, both robots are placed outside of detection range of the goal. Eventually, one

of the robots finds the goal and the other is able to find it as well. Due to the increased

number of tiers present in this evolution, most populations were still improving at the

67

Figure 6.12: Goal sensor configuration for
swarming robots where the goal is obstructed
from the entire swarm.

Figure 6.13: Goal sensor configuration for
swarming robots where a member of the
swarm can detect the goal.

Figure 6.14: A single swarming robot in an
environment with a convex obstacle

Figure 6.15: A single swarming robot in an
environment with a star obstacle

68

Tier Test Change in Exponent

1 Are there enough
output nodes?

% of desired output
nodes

2 Are there a connec-
tions to each out-
put node?

+ % of output nodes
with connections

3 Simulate single
robot with convex
obstacle

+ summed distance
to goal

4 Simulated single
robot with star
obstacle

+ % summed dis-
tance to goal

5 Simulate swarm
with star obstacle

+ average summed
distance to goal

6 Simulate swarm in
large room

+ average summed
distance to goal

Table 6.5: Tiers for adjusting fitness exponent (x)

1000th generation. As a result, evolutionary runs evolving swarming behavior were allowed

to run for 1500 generations.

Figure 6.16: Two swarming robots in an en-
vironment with a star obstacle

Figure 6.17: Two swarming robots in a large
environment with various obstacles

6.4.2 Evolution Results

The individual that could control a swarm of robots as shown above, produced the controller

shown in Figure 6.18. This particular ANN eventually evolved the logic to turn right

whenever any of the LIDAR sensors detected a wall. As in the previous section, individuals

69

GOAL
SENSORS LIDAR INPUTS

Figure 6.18: ANN controller for each swarming robot

that had a single robot capable of passing tier 3 seldom had trouble with tier 4. However,

evolving the ability to avoid objects while tracking the signal of a robot in tier 5 was an

equivalent challenge to the obstacle avoidance in section 6.3. Tier 6 proved to be an effective

trial in which the swarm controllers were further refined.

Figure 6.19 shows the progression of the two robots at various times during the simu-

lation of a successful individual in tier 6. The goal is in the lower left-corner, and the two

robots begin in the upper-left and upper-right corners of the environment. For discussion,

robot 1 begins in the upper left and robot 2 starts in the upper right. The robots roam

about the room avoiding obstacles until, eventually, robot 1 is within direct line of sight

of the goal, as shown at time = 31.00 s. The causes robot 1 to emit a signal, shown in

Figure 6.19 by the concentric circles, that allows the goal sensors of robot 2 to detect the

position of robot 1. Robot 2 begins to move toward robot 1, but the L-shaped obstacle

prevents it from taking a direct path. Furthermore, at time = 45.00 s, robot 1 loses sight

of the goal and both robots reenter their goal searching behavior. Nevertheless, robot 1

quickly reacquires the goal by time = 50.00 s, and moves toward it. Robot 2 once again

moves toward robot 1, and begins to maneuver around the vertical obstacle. At time 75.00

s, robot 2 can also detect the goal and by time 80.00 s, both robots circle around the goal,

70

while avoiding contact with each other.

Once again, the evolved individuals were verified by being presented situations in which

they were not explicitly evolved. The first is a revisit to the single robot seeking the goal

with a concave obstacle. This time, however, the goal sensors do not cause the robot to

loop within the obstacle because the robot is not within line of sight of the goal. As a

result, a single robot is able to navigate around the environment to find the goal, as shown

in Figure 6.20. Next, a swarm of three robots was placed in the environment shown in

Figure 6.21. The entire swarm is once again able to converge at the goal. However, the

robots are not able to avoid each other in such close proximity, and end up colliding.

71

Time = 0.00 s Time = 14.00 s Time = 28.00 s

Time = 31.00 s Time = 41.00 s Time = 45.00 s

Time = 50.00 s Time = 57.90 s Time = 61.00 s

Time = 69.14 s Time = 75.00 s Time = 85.00 s

Figure 6.19: Steps showing the movement of an evolved swarm

72

Figure 6.20: A single swarming robot in an
environment with concave obstacle

Figure 6.21: Three swarming robots in a large
environment with various obstacles

73

Chapter 7

Conclusion

This dissertation has presented NEURAE, a genetic algorithm capable of generating ar-

tificial neural networks via the application of interchangeable rules. Furthermore, these

networks have shown to be modular, scalable, and suitable for robotic control. The If-

CONDITION-Then-ACTION structure of programs produced by NEURAE allows rules to

be easily rearranged and create unanticipated, yet desirable results. In fact, the develop-

ment of complex rules from simple building blocks may be a key element to the modularity

expressed in the phenotypes. The design of the robust XOR gate demonstrates the ability

of NEURAE to find and use the inherent modularity within a problem. Having a GA which

can discover and use modules on its own is particularly advantageous when these modules

are not known beforehand. Furthermore, modules predetermined by a human designer may

unintentionally exclude desirable designs. Embryogenesis also provides the scalability re-

quired to create parity networks of arbitrary size. NEURAE was able to evolve a genome

which could create an even parity logic gate for 2 or 200 inputs. The fact that both ANNs

could be made from the same four codons demonstrates that NEURAE can evolve large

neural networks in a manner most neuro-evolutionary GAs cannot.

While this was an accomplishment in its own right, NEURAE was honed further through

a sensitivity analysis of the mutation rates and types. Experiments were conducted to

properly balance the point mutation, conjugation, gene duplication, gene deletion, and

translocation mutation rates. As a result, the explorative and exploitative capabilities of

NEURAE were optimized. It also shows that biologically inspired mutations, such as gene

duplication and conjugation, are important to virtual evolutions as well. These experiments

provided further evidence that as evolution used more information from the environment,

the designs produced became more complex.

74

This refined version of NEURAE was used to make robotic controllers. The neural

networks for these cases were able to find the correct controller logic by simulating the

robot, not by fitting an explicit logic table. As a result, a controller can be designed

without having to know the controller’s precise functionality but instead by rewarding the

higher level behavior.

These goals were achieved even with several constraints placed on NEURAE that are

not necessary for future applications. For example, NEURAE is inherently able to make

recurrent networks, but that ability was specifically removed in the examples provided here

to simplify the evaluation of ANN logic. A version of NEURAE with recursion enabled

could exhibit many of desirable properties networks mentioned in the introduction have,

but with the modularity and scalability embryogenesis provides. NEURAE is also capable

of generated networks that are not purely digital. Most ANN applications use a continuous

activation function within each neuron to produce a range of values between -1 and 1.

A particular benefit to using analog networks would be the ability to use Hebbian type

learning, for control applications in particular. Nolfi et al. (1994), Stanley et al. (2003), and

Soltoggio et al. (2007) have all successfully used reinforcement learning for the real time

training of an ANN controller. However, these methods have been used for directly encoded

genetic algorithms and are thus impractical for large networks. NEURAE, however, could

find the core module necessary for such real-time learning ANNs and replicate it to make

large networks.

Future iterations of NEURAE could benefit from other advancements in the field of

evolutionary computation. One of the key components of NEAT (Stanley and Miikkulainen

2002) was an evaluation which rewarded robotic controllers for novelty. Instead of dictating

a single evolutionary path with evaluation in tiers, rewarding novelty promotes several

evolutionary paths at once. Another improvement might be the use of other selection

methods. Rather than using the roulette method shown in Equation 2.7, selection can be

done via tournaments (Miller and Goldberg 1995) or Pareto optimization (Horn et al. 1994).

These improvements would likely further optimize NEURAE for use in other applica-

tions. Many of the classification methods mentioned in the introduction train a large ANN

with a set architecture. These training sessions are sensitive to the initial weights and the

training sequence. NEURAE has shown it can make large, robust ANNs, and such ANNs

would be less sensitive to varying initial weights and training sequences. As a result, better

75

classifiers could be made, which would have applications in computer vision for robotics, or

many of the other fields mentioned in the introduction.

Most promising, the results obtained here may have implications beyond robotics and

neuro-evolution. While the importance of point and crossover mutations have been well

studied in classical GAs, the effects of gene duplication, gene deletion, and translocation

have not. It would be interesting to study how these mutations affect other implicit GAs,

and in particular, see if similar results are yielded. Likewise, Davidson (2006) has shown how

controlling growth is an important feature of biological regulatory systems, and more work

is needed to test the effect of regulatory systems in other GAs which use embryogenesis.

Finally, the occurrence and correlation of punctuated equilibrium in an artificial evolution

with embryogenesis is not well studied and is likely not unique to NEURAE.

76

Bibliography

Adami, C., Ofria, C., and Collier, T. C. (2000). Evolution of biological complexity. Pro-

ceeding of the National Academy of Sciences, 97(9):4463–4468.

Angeline, P. J., Saunders, G. M., and Pollack, J. B. (1999). An evolutionary algorithm that

constructs recurrent neural networks. IEEE Transactions on Neural Networks, 5(1):54 –

65.

Ashlock, D. (2006). Optimization and Modeling with Evolutionary Computation. Springer-

Verlag.

Astor, J. C. and Adami, C. (2000). A developmental model for the evolution of artificial

neural networks. Artificial Life, 6(3):189–218.

Atiya, A. F. (2001). Bankruptcy prediction for credit risk using neural networks: A survey

and new results. IEEE Transactions on Neural Networks, 12:929–935.

Bäck, T. (1992). Self-adaptation in genetic algorithm. In Proceedings of the 1st European

Conference on Artificial Life, pages 263–271.

Bäck, T. and Schutz, M. (1996). Intellegent mutation rate control in canonical gas. In

Proceeding of Foundation of Intellegent Systems 9th International Symposium, volume 2,

pages 158–167.

Beer, R. D., Chiel, H. J., Quinn, R. D., Espenschied, K. S., and Larsson, P. (1992). A dis-

tributed neural network architecture for hexapod robot locomotion. Neural Computation,

4(3):356–365.

Bentley, P. and Kumar, S. (1999). Three ways to grow designs: A comparison of embryo-

genesis for an evolutionary design problem. In Genetic and Evolutionary Computation

Conference, pages 35–43, New York, NY, USA. ACM.

77

Biewald, R. (1996). A neural network controller for the navigation and obstacle avoidance

of a mobile robot. In Zalzala, A. M. S. and Morris, A. S., editors, Neural network for

robotic control, pages 162–191. Ellis Horwood, Upper Saddle River, NJ, USA.

Bosman, R. J. C., van Leeuwen, W. A., and Wemmenhove, B. (2003). Combining hebbian

and reinforcement learning in a minibrain model. Neural Networks, 17:29–36.

Britten, R. J. (2005). The majority of human genes have regions repeated in other human

genes. Proceeding of the National Academy of Sciences, 102(15):5466–5470.

Calabretta, R., Nolfi, S., Parisi, D., and Wagner, G. P. (1998). Emergence of functional

modularity in robots. In Proceedings of the fifth international conference on simulation

of adaptive behavior on From animals to animats, pages 497–504.

Chen, S., Wu, Y., and Luk, B. L. (1999). Combined genetic algorithm optimization and

regularized orthogonal least squares learning for radial basis function networks. IEEE

Transactions on Neural Networks, 10(5):1239–1243.

Chialvo, D. R. and Bak, P. (1999). Learning from mistakes. Neuroscience, 90(4):1137–1167.

Cremean, L. B., Foote, T. B., Gillula, J. H., Hines, G. H., Kogan, D., Kriechbaum, K. L.,

Lamb, J. C., Leibs, J., Lindzey, L., Rasmussen, C. E., Stewart, A. D., Burdick, J. W.,

and Murray, R. M. (2006). Alice: An information-rich autonomous vehicle for high-speed

desert navigation. Journal of Field Robotics, 23(9):777–810.

Cui, X. and Shin, K. G. (1993). Direct control and coordination using neural networks.

IEEE Transactions on Systems, Man and Cybernetics, 23:686–697.

Daucé, E., Quoy, M., Cessac, B., and Samuelides, M. (1998). Self-organization and pattern-

induced reduction of dynamics in recurrent networks. Neural Networks, 11:521–533.

Davidson, E. H. (2006). The Regulatory Genome: Gene Regulatory Networks in Develop-

ment and Evolution. Elsevier, London, UK.

Duerr, P., Mattiussi, C., and Floreano, D. (2006). Neuroevolution with analog genetic

encoding. In Parallel Problem Solving from Nature, volume 9, pages 671 – 680.

78

Dupuis, J.-F. and Parizeau, M. (2008). Evolving a vision-based line-following robot con-

troller. In Proceedings of the Third Canadian Conference on Computer and Robot Vision,

pages 75–81.

Eberhart, R. and Kennedy, J. (1995). A new optimizer using particles swarm theory. In

Proceedings of the Sixth International Symposium on Micro Machine and Human Science,

pages 39–43, Piscataway, NJ. IEEE Press.

Eldredge, N. and Gould, S. J. (1972). Punctuated equilibria: An alternative to phyletic

gradualism. In Schopf, T. J., editor, Models in Paleobiology, chapter 5, pages 82–115.

Freeman, Cooper and Company, San Francisco, U.S.A.

Federici, D. and Downing, K. (2006). Evolution and development of a multicellular organ-

ism: Scalability, resilience, and neutral complexification. Artificial Life, 12(3):381–409.

Floreano, D., Mitri, S., and Magnenat, S. (2007). Evolutionary conditions for the emergence

of communication in robots. Crruent Biology, 17(6):514–519.

Fogel, L. J., Owens, A. J., and Walsh, M. J. (1966). Artifical intiellegence through simulation

evolution. Wiley, New York, NY, USA.

Fraternali, F., Porter, M. A., and Daraio, C. (2009). Optimal design of composite granular

protectors. Mechanics of Advanced Materials and Structures. In Press.

Garis, H. D. (1992). Artificial embryology - the genetic programming of an artificial em-

bryo. In Soucek, B. and IRIS, editors, Dynamic, Genetic, and Chaotic Programming,

chapter 14, pages 373–393. Wiley, New York, NY, USA.

Graham, L., Cattral, R., and Oppacher, F. (2009). Beneficial preadaptation in the evolution

of a 2d agent control system with genetic programming. In Proceedings of the 12th

European Conference on Genetic Programming, pages 303 – 314.

Grajdeanu, A. (2007). Methods for open-box analysis in artificial development. In Genetic

and Evolutionary Computation Conference, pages 1005–1012, New York, NY, USA. ACM.

Gruau, F. (1992). Genetic synthesis of boolean neural networks with a cell rewriting de-

velopmental process. In International Workshop on Combinations of Genetic Algorithms

and Neural Networks, 1992 (COGANN-92), pages 55–74.

79

Gruau, F. (1994). Neural Network Synthesis using Cellular Encoding and the Genetic

Algorithm. PhD thesis, Laboratoire de l’Informatique du Parallilisme, Ecole Normale

Supirieure de Lyon, France.

Harlan, R. M., Levine, D. B., and McClarigan, S. (2001). Evolving neural networks. ACM

SIGCSE Bulletin, 33(1):105–109.

Hebb, D. (1949). The Organization of Behavior. Wiley, New York, NY, USA.

Hecht-Nielsen, R. (1992). Theory of the backpropagation neural network. Neural Network

for Perception, 2:65–93.

Holland, J. (1975). Adaptation in Natural and Artificial Systems. University of Michigan

Press, Ann Arbor, MI, USA.

Holland, J. (1992). Genetic algorithms. Scientific American, 267(1):66–72.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective

computational abilities. Proceeding of the National Academy of Sciences, 79(8):2554–

2558.

Horn, J., Nafpliotis, N., and Goldberg, D. E. (1994). A niched pareto genetic algorithm for

multiobjective optimization. In Proceedings of the First IEEE Conference on Evolutionary

Computation, pages 82–87.

Hornby, G. S., Lipson, H., and Pollack, J. B. (2001). Evolution of generative design systems

for modular physical robots. IEEE International Conference on Robotics and Automation,

pages 4146 – 4151.

Hornik, K., Stinchcombe, M. B., and White, H. (1989). Multilayer feedforward networks

are universal approximators. Neural Networks, 2:359 – 366.

Jain, R., Rivera, M. C., and Lake, J. A. (1999). Horizontal gene transfer among genomes:

The complexity hypothesis. Proceeding of the National Academy of Sciences, 96(7):3801–

3806.

Kartalopoulos, S. V. (1996). Understanding Neural Networks and Fuzzy Logic. IEEE Press,

Piscataway, NJ.

80

Kashtan, N. and Alon, U. (2005). Spontaneous evolution of modularity and network motifs.

Proceeding of the National Academy of Sciences, 102(39):13773–13778.

Kitano, H. (1990). Designing neural networks using genetic algorithms with graph genera-

tion system. Complex Systems, 4(4):461–476.

Kitano, H. (1995). A simple model of neurogenesis and cell differentialtion based on evolu-

tionary large-scale choas. Artificial Life, 2(1):79–97.

Koehn, P. (1996). Genetic encoding strategies for neural networks. In Proceedings of

Information Processing and Management of Uncertainty in Knowledge-Based Systems.

Koza, J. R. (1989). Hierarchical genetic algorithms operating on populations of computer

programs. In Proceedings of the Eleventh International Joint Conference on Artificial

Intelligence, pages 768–774, San Mateo, CA, USA. Morgan Kaufman.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means

of Natural Selection. MIT Press, Cambridge, MA, USA.

Langdon, W. B. (2000). Quadratic bloat in genetic programming. In Proceedings of the

Genetic and Evolutionary Computation Conference, pages 451–458.

Lewis, M. A., Fagg, A. H., and Bekey, G. A. (1994). Genetic algorithms for gait synthesis

in a hexapod robot. In Zheng, Y. F., editor, Recent Trends in Mobile Robots. World

Scientific, New Jersey, USA.

Lewis, R. (2005). Human Genetics: Concepts and Applications. McGraw-Hill.

Lipson, H. and Pollack, J. B. (2000). Automatic design and manufacture of robotic lifeforms.

Nature, 406:974–977.

Luke, S. and Spector, L. (1996). Evolving graphs and networks with edge encoding: Pre-

liminary report. In Late Breaking Papers at the Genetic Programming 1996 Conference,

pages 117–124.

Martin, W. and Russell, M. J. (2002). On the origins of cells: a hypothesis for the evolu-

tionary transition from abiotic geochemistry to chemoautotropic prokaryotes, and from

prokaryotes to nucleated cells. Philosophical Transactions of the Royal Society, 358:59–85.

81

McCulloch, W. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous

activity. Bulletin of Mathematical Biophysics, 5:115–133.

McGinley, B., Morgan, F., and O’Riordan, C. (2008). Maintaining diversity through adap-

tive selection, crossover and mutation. In Genetic and Evolutionary Computation Con-

ference, pages 1127–1128, New York, NY, USA. ACM.

Miller, B. L. and Goldberg, D. E. (1995). Genetic algorithms, tournament selection, and

the effects of noise. Complex Systems, 9(3):193–212.

Miller, J. F., P.Thomson, and Fogarty, T. (1997). Designing electronic circuits using evo-

lutionary algorithms. arithmetic circuits: A case study. In Quagliarella, D., Periaux,

J., Poloni, C., and Winter, G., editors, Genetic Algorithms and Evolution Strategies in

Engineering and Computer Science: Recent Advancements and Industrial Applications.

Wiley, New York, NY, USA.

Montana, D. J. and Davis, L. (1989). Training feedforward neural networks using genetic

algorithms. In Proceedings of the Eleventh International Joint Conference on Artificial

Intelligence, pages 762–767, San Mateo, CA,USA. Morgan Kaufmann.

Montgomery, D. C. (2004). Design and Analysis of Experiments. Wiley, New York, NY,

USA, 6 edition.

Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., and

Olson, A. J. (1998). Automated docking using a lamarckian genetic algorithm and an em-

pirical binding free energy function. Journal of Computational Chemistry, 19(14):1639–

1662.

Mühlenbein, H. (1992). How genetic algorithms really work I: Mutation and hillclimbing.

In Parallel Problem Solving from Nature, volume 2, pages 15–25.

Murray, R. M. (2007). Recent research in cooperative controls of mulit-vehicle sytems.

ASME Journal of Dynamic Systems Measurement and control, 129(5):571–582.

Naito, T., Odagiri, R., Matsunaga, Y., Tanifuji, M., and Murase, K. (1997). Genetic

evolution of a logic circuit which controls an autonomous mobile robot. Lecture Notes in

Computer Science, 1259:210–219.

82

Nolfi, S., Miglino, O., and Parisi, D. (1994). Phenotypic plasticity in evolving neural net-

works. In Proceedings of the First Conference Frome Perception to Action, pages 146–157.

IEEE Computer Society Press.

Ochman, H., Lawrence, J. G., and Groisman, E. A. (2000). Lateral gene transfer and the

nature of bacterial innovation. Nature, 405:299–304.

Odewahn, S. C., Pennington, E. B. S. R. L., Humphreys, R. M., and Zumach, W. A.

(1992). Automated star / galaxy discrimination with neural networks. Astronomical

Journal, 103(1):318 – 331.

Ohno, S. (1970). Evolution by gene duplication. Springer-Verlag.

Oja, E. (1992). Princle components, minor components, and linear neural networks. Neural

Networks, 5:927–935.

Onat, A., Kita, H., and Nishikawa, Y. (1998). Recurrent neural networks for reinforce-

ment learning: architecture, learning algorithms and internal representation. In IEEE

International Joint Conference on Neural Networks, pages 2010–2015.

O’Neill, M. and Ryan, C. (2001). Grammatical evolution. IEEE Transactions on Evolu-

tionary Computation, 5:349–358.

Pollack, J. B., Hornby, G. S., Lipson, H., and Funes, P. (2003). Computer creativity in the

automatic design of robots. Leonardo, 36(2):115–121.

Reed, R. (1999). Pruning algorithms - a survey. IEEE Transactions on Neural Networks,

4(5):740–744.

Roy, A., Govil, S., and Miranda, R. (1999). A neural-network learning theory and a poly-

nomial time rbf algorithm. IEEE Transactions on Neural Networks, 8(6):1301–1306.

Roy, A. M., Antonsson, E. K., and Shapiro, A. A. (2008). An investigation into the structure

of genomes within an evolution that uses empryogenesis. In Genetic and Evolutionary

Computation Conference: Late Breaking Papers, pages 2137–2142, New York, NY, USA.

ACM.

Sanger, T. D. (1989). Optimal unsupervised learning in a single-layer linear feedforward

neural network. Neural Networks, 2:459–473.

83

Soltoggio, A., Peter Dü, r., Mattiussi, C., and Floreano, D. (2007). Evolving neuromod-

ularity topologies for reinforcement learning-like problems. In IEEE International Joint

Conference on Neural Networks, pages 2010–2015.

Stanley, K. O., Bryant, B. D., and Miikkulainen, R. (2003). Evolving adaptive neural

networks with and without adaptive synapses. In Proceedings of the IEEE Congress on

Evolutionary Computation, CEC 2003, pages 2557–2564.

Stanley, K. O., Bryant, B. D., and Miikkulainen, R. (2005). Real-time neuroevolution in

the nero video game. IEEE Transactions on Evolutionary Computation, 9(6):653–693.

Stanley, K. O., D’Ambrosio, D., and Gauci, J. (2009). A hypercube-based indirect encoding

for evolving large-scale neural networks. Artificial Life, 15(2):185–223.

Stanley, K. O. and Miikkulainen, R. (2002). Evolving neural networks through augmenting

topologies. Evolutionary Computation, 10(2):99–127.

Stanley, K. O. and Miikkulainen, R. (2003). A taxonomy for artificial embryogeny. Artificial

Life, 9(2):93 – 130.

Sutton, R. S. (1986). Two problems with backpropogation and other steepest-descent learn-

ing procedures for networks. In Proceeding of the Eighth Annual Conference of the Cog-

nitive Science Society, pages 823–831.

Sutton, R. S. and Barto, A. G. (1999). Reinforcement learning. Journal of cognitive neu-

roscience, 11:126–134.

Szathmáry, E. and Smith, J. M. (1995). The major evolutionary transitions. Nature,

374:227–232.

Tesauro, G. (1992). Practical issues in temporal difference learning. Machine Learning,

8:257–277.

Theraulaz, G. and Bonabeau, E. (1995). Coordination in distributed building. Science,

269(5224):686–688.

Tsoulos, I. G., Gavrili, D., and Glavas, E. (2005). Neural network construction using

grammatical evolution. In IEEE International Symposium on Signal Processing and In-

formation Technology, pages 827–831.

84

Tufte, G. and Haddow, P. C. (2000). An evolvable hardware fpga for adaptive hardware.

In Proceedings of the 2000 Conference on Evolutionary Computation, pages 553–560.

Turing, A. (1950). Computing machinery and intelligence. Mind, 59(236):433–460.

Vigraham, S. A., Gallagher, J. C., and Boddhu, S. K. (2005). Evolving analog controllers

for correcting thermoacoustic instability in real hardware. In Genetic and Evolutionary

Computation Conference, pages 933–940, New York, NY, USA. ACM.

Waibel, A. (1989). Modular construction of time-delay neural networks for speech recogni-

tion. Neural Computation, 1:39 – 46.

Weibull, W. (1951). A statistical distribution function of wide applicability. Journal of

applied mechanics, 18:292–297.

Wu, Y., Giger, M. L., Doi, K., and Vyborny, K. (1993). Artificial neural networks in mam-

mography: Application to decision making in the diagnosis of breast cancer. Radiology,

187(1):81.

Yakovenko, S., Gritsenko, V., and Prochazka, A. (2004). Contribution of strech reflexes to

locomotor control: a modeling study. Biological Cybernetics, 90:146–155.

Yogev, O. and Antonsson, E. K. (2007). Growth and development of continuous structures.

In Genetic and Evolutionary Computation Conference, pages 1064–1065, New York, NY,

USA. ACM.

Yue, S. and Rind, F. C. (2006). Collision detection in complex dynamic scenes using an

lgmd-based visual neural network with feature enhancement. IEEE TRANSACTIONS

ON NEURAL NETWORKS, 17(3):705–716.

Zhang, Y., Antonsson, E. K., and Martinoli, A. (2008). Evolutionary engineering design

synthesis of on-board traffic monitoring sensors. Research in engineering design, 19:113–

125.

85

Appendix

Included in the appendix is the source code used to make NEURAE work. Because many

different version of NEURAE were developed in the process of this thesis, the codes have

several sections which were obsolete or never finished. Furthermore, the first three programs

listed were for evolving the robust XOR logic gate, while the final library was used for the

evolution of swarming robot controllers.

• Evovle.cpp is the executable program, and contains the various libraries listed af-

terwards. This is the program which conducted the genetic algorithm. Pages 86 -

106

• node lib.h is a libraries which defined the node and neural network object class, as

well as useful functions for both. Pages 107 - 115

• evo lib.h contains many useful functions used throughout evolution, such as those used

for evaluation and mutation. It also contains the definition for an individual as well.

Furthermore, the make protien function contained within evo lib.h was responsible

for transcibing the integers of an individual’s genome into a compilable C++ program.

Pages 116 - 163

• robot lib.h contains the definition and functions needed for robot simulations. Pages

164 - 180

1C:\Documents and Settings\...\Evolve_omega4.cpp

1 //This is the main script that will control evolution
2
3 #include <iostream>
4 #include <fstream>
5 #include <vector>
6 #include <string>
7 #include <sstream>
8 #include <ctime>
9 #include <math.h>

10 #include "chimera_lib.h"
11 #include "node_lib_omega4.h"
12 #include "evo_lib_omega4.h"
13 #include <mpi.h>
14
15 using namespace std;
16
17
18 int main(int argc, char *argv[]){
19 //----- These values are set by arguments during

program calls ---------------
20 //Template for new runs:
21 // Evolve.exe N last_generation default genome

length
22 //Template for continuing runs
23 // Evolve.exe -c N last_generation

restarting_generation
24 char restart; //This determines whether evolution will

 start from scratch or a member of Ark.txt
25 int N; //The number of individuals per generation
26 int default_genome_length;
27 int last_generation; //Max number of generations
28 int start_gen,counter; //Used for regenesis
29 vector<int> restart_individuals; //Used for regenesis
30 //---
31 //--- Number of inputs and outputs for each ANN ------

--
32 const int no_of_inputs = 2;
33 const int max_no_of_outputs = 1;
34 const int max_connections = 99;
35 //------ Mutation Rates & Values -----------
36 const float mu = 1.0; //Chance of mutation at each

reading frame
37 vector < vector<float> > mutation_ratios; //Ratio for

 each case. The # of cases determines the number of
children each individual can have

38 vector<float> mu_ratio (5, 1.0); //Mutation rate of
each mutator. Make sure they add up to 1.0

39 mu_ratio[0] = 0.40;mu_ratio[1] = 0.30;mu_ratio[2] = 0.
00;mu_ratio[3] = 0.30;mu_ratio[4] = 0.00;

40 mutation_ratios.push_back(mu_ratio);
41 mu_ratio[0] = 0.40;mu_ratio[1] = 0.30;mu_ratio[2] = 0.

00;mu_ratio[3] = 0.30;mu_ratio[4] = 0.00;

86

2C:\Documents and Settings\...\Evolve_omega4.cpp

42 mutation_ratios.push_back(mu_ratio);
43 mu_ratio[0] = 0.40;mu_ratio[1] = 0.30;mu_ratio[2] = 0.

00;mu_ratio[3] = 0.30;mu_ratio[4] = 0.00;
44 mutation_ratios.push_back(mu_ratio);
45 float mu_point_mutation;
46 float mu_conjugation;
47 float mu_recopy;
48 float mu_deletion;
49 float mu_translocation;
50 //----------------------------
51 //----- Random Seeding -----------
52 time_t start,end,seed;
53 int dif_t;
54 time (&start); //Sets the start time for this

evolution run
55 time (&seed);
56 //seed = 1244495693;
57 srand(seed); //Seeds the randomizer
58 //--------------------------
59 //------Used for organizing individuals throughout

evolution -----------------------
60 int generation = 0;//The current generation
61 int newly_made,vets,reduced; //Keeps track of the

number of individuals made each generation
62 int Ark_no, my_Ark_no, Ark_no2; //Used to keep track

of Ark numbers within the hub and satellite computers
63 int genome_size;
64 vector<int> recalled_genome; //Used for regenesis
65 vector<individual> Ark; //Holds all the individuals
66 vector<individual> my_Ark; //Array for satellite

computers that has its individuals
67 vector<int> my_Ark_conversion; //Ark_conversion[i] on

satellite comp == Ark_no on comp 0
68 int Ark_search; //Used to find the right Ark_no on

satellites
69 //--

70 //----- Used for selection in survival and proceation

71 vector<int> procreation; //For selecting whose genes

will be passed on
72 vector<int> unmade; //Individuals whose ANN's haven't

been made
73 vector<int> alive; // All individuals alive this

generation
74 vector<int> still_alive; // Individuals that were

alive this generation and will live onto the next
75 vector<int> stay_alive; //Individuals that have been

selected during death and procreation loops
76 float all_fitness,max_fitness;
77 int lucky_one,newbies,mutation_method;
78 vector< vector<int> > mutation_info; //The individuals

87

3C:\Documents and Settings\...\Evolve_omega4.cpp

' subject number and the method of its mutation
79 vector< vector<int> > mutation_Ark; //The individuals

' genomes
80 float low_fit, high_fit, range_fit, num_fit;
81 int selection_q, low_int, high_int, range_int, num_int

;
82 //--

-
83 // -------- Declared here and used to temporarily

hold info --------------
84 int junk_int;
85 char junk_char;
86 float junk_float;
87 vector<int> junk_ints;
88 //-----------------------------
89 //MPI Variables
90 MPI::Init(argc, argv);
91 int dest, noProcesses, processID, tag, src;
92 int hub = 0;
93 vector<int> mutationID, embryogenesisID;
94 tag = 0;
95 MPI_Status status;
96 noProcesses = MPI::COMM_WORLD.Get_size();
97 processID = MPI::COMM_WORLD.Get_rank();
98 int data_pack[2]; //Used to hold info when sending

info to other comps
99 int data_pack2[3]; //Also used to hold info when

sending info to other comps in mutation loop
100 int back_size; //Tells hub how much info is being sent

 back
101 vector<int> temp_genome; //Used as a temp place holder

 for sending genomes to other comps
102 vector<int> temp_genome2;
103 vector<int> sub_back; //Used to send subject numbers

back to computer hub
104 vector<float> fit_back; //Used to send fitnesses back

to computer hub
105 vector<int> ruleset_length_back; //Used to prep

computer hub for the number of rules coming back
106 vector<int> ruleset_back; //Rules creating in making

each ANN.
107 int ruleset_back_size; //Same as ruleset_back.size(),

 but shorter way can't be used alone
108 //----------//
109
110 if((processID%8) == 0){ //This is a fix for GARUDA so

each computer does this only once
111 //Cleans up scratch if anything is there
112 //Copies necessary libraries to /scratch

directories of each comp
113 //-------------------CHANGE THIS FOR EACH VERSION-

88

4C:\Documents and Settings\...\Evolve_omega4.cpp

114 system("scp /home/roy/chimera_lib.h /scratch/
chimera_lib.h");

115 system("scp /home/roy/Evolution/Version_omega4/
node_lib_omega4.h /scratch/node_lib_omega4.h");

116 //--

117 }
118 else{
119 system("sleep 5");
120 }
121 //--
122 //This if/else loop determines if we are continuing

from a past evo run or starting a new one, then sets
the variables accordingly

123 if(argc == 5){
124 N = atoi(argv[2]);
125 last_generation = atoi(argv[3]);
126 start_gen = atoi(argv[4]);
127 counter = 0; //Tracks how many indivuals have been

 restarted
128 Ark_no = 0;
129 if (processID == hub){
130 //First, we read the Chronograph to see which

individuals were alive at the given gen
131 ifstream infile1("Chronograph.txt");
132 for(int i=0;i<start_gen;i++){ //Skips down the

 right gen
133 infile1>>junk_int; //Gets the gen
134 for(int j=0;j<N;j++){
135 infile1>>junk_int; //Gets the subject

number
136 infile1>>junk_float; //Get the fitness
137 }
138 }
139 infile1>>junk_int; //Gets the gen again
140 for(int i=0;i<N;i++){ //Gets and saves the

subject numbers
141 infile1>>junk_int; //Gets the subject

number
142 restart_individuals.push_back(junk_int);
143 infile1>>junk_float; //Get the fitness
144 }
145 if(restart_individuals.size()!= N){ //Check
146 cout<<"There was a problem with

determining which individuals were alive at generation
 "<<start_gen<<endl;

147 return 0;
148 }
149 sort_vector(restart_individuals);
150 cout<<"Individuals to be restarted from

generation "<<start_gen<<":"<<endl;
151 print_vector(restart_individuals);

89

5C:\Documents and Settings\...\Evolve_omega4.cpp

152 system("cp ./Ark.txt ./Arktmp.txt"); //Creates
 a temp file to read from

153 system("rm Ark.txt");
154 system("rm Chronograph.txt");
155 ofstream datafile_temp("Ark.txt");
156 datafile_temp<<seed<<endl; //Gets the seed
157 ifstream infile2("Arktmp.txt");
158 //Now we read through the Ark and compares the

 subject number of the Ark with the individuals marked
 for restart

159 infile2>>junk_int; //Gets the old seed
160 while(counter<N){
161 if(any(restart_individuals,Ark_no)){//Save

 the individual
162 infile2>>junk_int;
163 infile2>>junk_int;
164 infile2>>junk_int;
165 infile2>>junk_char;
166 infile2>>genome_size;
167 for(int j=0;j<genome_size;j++){
168 infile2>>junk_int;
169 recalled_genome.push_back

(junk_int);
170 }
171 generate_designed(Ark,recalled_genome,

generation);
172 recalled_genome.clear();
173 Ark_Load(Ark[counter]);
174 unmade.push_back(counter);
175 alive.push_back(counter);
176 cout<<"Individual "<<Ark_no<<" was

reborn as "<<Ark[counter].get_fcall()<<endl;
177 counter++;
178 }
179 else{//Discards it
180 infile2>>junk_int;
181 infile2>>junk_int;
182 infile2>>junk_int;
183 infile2>>junk_char;
184 infile2>>genome_size;
185 for(int j=0;j<genome_size;j++){
186 infile2>>junk_int;
187 }
188 }
189 Ark_no++;// Moves onto next individual in

the Ark
190 }
191 system("rm Arktmp.txt");
192 newly_made = unmade.size();
193 vets = 0;
194 reduced = 0;
195 }

90

6C:\Documents and Settings\...\Evolve_omega4.cpp

196 }
197 else{
198 N = atoi(argv[1]);
199 last_generation = atoi(argv[2]);
200 default_genome_length = atoi(argv[3]);
201 if (processID == hub){
202 system("rm Ark.txt");
203 system("rm Chronograph.txt");
204 ofstream datafile_temp("Ark.txt");
205 datafile_temp<<seed<<endl;
206 for(int i=0;i<N;i++){ //This will generate N

random individuals
207 generate_random(Ark,default_genome_length,

generation);
208 Ark_Load(Ark[i]);
209 unmade.push_back(i);
210 alive.push_back(i);
211 }
212 newly_made = unmade.size();
213 vets = 0;
214 reduced = 0;
215 }
216 }
217 //---
218 // --- This partions the satellites into evaluators

and mutators -----------
219 if((int(N/24)+2)<noProcesses){
220 for(int i=0;i<N/24;i++){
221 mutationID.push_back(i+1);
222 }
223 if(mutationID.size()==0){ //A fix for small runs

where there would be no mutation processor
224 mutationID.push_back(1);
225 }
226 for(int i=(mutationID.size()+1);i<noProcesses;i++)

{
227 embryogenesisID.push_back(i);
228 }
229 }
230 else{
231 cout<<"Use more processors or this will be VERY

slow"<<endl;
232 mutationID.push_back(1);
233 for(int i=1;i<noProcesses;i++){
234 embryogenesisID.push_back(i);
235 }
236 }
237 // ---

238 MPI::COMM_WORLD.Bcast(&newly_made,1,MPI::INT,hub);
239 MPI::COMM_WORLD.Bcast(&vets,1,MPI::INT,hub);
240 MPI::COMM_WORLD.Bcast(&reduced,1,MPI::INT,hub);

91

7C:\Documents and Settings\...\Evolve_omega4.cpp

241 // --

242 // ------------- BEGINNING OF EVOLUTION LOOP --------

243 // --

244 for(generation;generation<last_generation;generation+
+){

245 if(processID == hub){
246 cout<<"Generation: "<<generation<<endl;
247 assert((still_alive.size()+unmade.size())==N);
248 assert(alive.size()==N);
249 }
250
251 // --- Re-evaluates the individuals that lived

from last generation ---
252 if(generation != 0){
253 for(int i=0;i<vets;i++){
254 if(processID == hub){
255 Ark_no = still_alive[i];
256 }
257 MPI::COMM_WORLD.Bcast(&Ark_no,1,MPI::INT,

hub);
258 dest = embryogenesisID[Ark_no%

(embryogenesisID.size())]; //See page 20 Vol. 2 for
logic

259 if(processID == hub){
260 Ark_no = still_alive[i];
261 MPI::COMM_WORLD.Send(&Ark_no,1,MPI::

INT,dest,tag);
262 }
263 if(processID == dest){
264 MPI::COMM_WORLD.Recv(&Ark_no,1,MPI::

INT,hub,tag);
265 Ark_search = -1;
266 int my_Ark_counter = 0;
267 while(Ark_search < Ark_no){
268 Ark_search = my_Ark_conversion

[my_Ark_counter];
269 my_Ark_counter++;
270 }
271 my_Ark_no = my_Ark_counter-1;
272 //cout<<"Process "<<processID<<" is re

-evaluating "<<my_Ark[my_Ark_no].get_fcall()<<endl;
273 if(my_Ark[my_Ark_no].get_fitness() >=

pow(2.0,(2*max_no_of_outputs - 1))){ //Repeats if a
good ANN is made

274 my_Ark[my_Ark_no].eval_robustness
();

275 }
276 sub_back.push_back(Ark_no);

92

8C:\Documents and Settings\...\Evolve_omega4.cpp

277 fit_back.push_back(my_Ark[my_Ark_no].
get_fitness());

278 }
279 }
280 if(any(embryogenesisID,processID)){ //Sends

results to process the hub
281 back_size = sub_back.size();
282 MPI::COMM_WORLD.Send(&back_size,1,MPI::INT

,hub,tag);
283 MPI::COMM_WORLD.Send(&sub_back[0],

back_size,MPI::INT,hub,tag);
284 MPI::COMM_WORLD.Send(&fit_back[0],

back_size,MPI::FLOAT,hub,tag);
285 //cout<<"Process ID "<<processID<<" sent

back (from re-evaluation):"<<endl;
286 //print_vector(sub_back);
287 sub_back.clear();
288 fit_back.clear();
289 }
290 if(processID == hub){ //The hub collects

results
291 for(int i=0; i<embryogenesisID.size(); i+

+){
292 src = embryogenesisID[i];
293 MPI::COMM_WORLD.Recv(&back_size,1,MPI:

:INT,src,tag);
294 sub_back.resize(back_size);
295 fit_back.resize(back_size);
296 MPI::COMM_WORLD.Recv(&sub_back[0],

back_size,MPI::INT,src,tag);
297 MPI::COMM_WORLD.Recv(&fit_back[0],

back_size,MPI::FLOAT,src,tag);
298 //cout<<"Hub received ";
299 //print_vector(sub_back);
300 //cout<<" from process "<<src<<endl;
301 for(int j=0;j<back_size;j++){
302 Ark[sub_back[j]].make_fitness

(fit_back[j]);//Gives the individual sub_back[i] the
fitness fit_back[i]

303 }
304 sub_back.clear();
305 fit_back.clear();
306 }
307 }
308 }
309 // ------------- End of re-evaluating survivors --

310
311 // ---

312 // ------- Sends out indivuals for embryogenesis

and evaluation-----

93

9C:\Documents and Settings\...\Evolve_omega4.cpp

313 for(int i=0;i<(newly_made+reduced);i++){
314 if(processID == hub){
315 Ark_no = unmade[i];
316 }
317 MPI::COMM_WORLD.Bcast(&Ark_no,1,MPI::INT,hub);
318 dest = embryogenesisID[Ark_no%(embryogenesisID

.size())]; //See page 20 Vol. 2 for logic
319 // --- Hub loop -------
320 if(processID == hub){
321 Ark_no = unmade[i];
322 genome_size = Ark[Ark_no].

get_genome_length();
323 data_pack[0] = Ark_no;
324 data_pack[1] = genome_size;
325 //cout<<Ark[Ark_no].get_fcall()<<" was

sent to process "<<dest<<" for evaluation."<<endl;

326 for(int j=0;j<genome_size;j++)
327 temp_genome.push_back(Ark[Ark_no].

get_genome(j));
328 MPI::COMM_WORLD.Send(&data_pack,2,MPI::INT

,dest,tag);
329 MPI::COMM_WORLD.Send(&temp_genome[0],

genome_size,MPI::INT,dest,tag);
330 temp_genome.clear(); //Empties for next

time
331 }
332 // ---

333 // -------------- Satellite Loop -------------

334 if(processID == dest){
335 MPI::COMM_WORLD.Recv(&data_pack[0],2,MPI::

INT,hub,tag);
336 Ark_no = data_pack[0];
337 my_Ark_conversion.push_back(Ark_no);
338 my_Ark_no = my_Ark.size();
339 genome_size = data_pack[1];
340 temp_genome.resize(genome_size);
341 MPI::COMM_WORLD.Recv(&temp_genome[0],

genome_size,MPI::INT,hub,tag);
342 generate_satellite(my_Ark,temp_genome,

generation,Ark_no);
343 make_protein(my_Ark[my_Ark_no],

no_of_inputs,max_no_of_outputs,max_connections,
processID);

344 my_Ark[my_Ark_no].make_ANN(processID);
345 my_Ark[my_Ark_no].eval_XOR_logic();
346 my_Ark[my_Ark_no].eval_robustness();
347 //cout<<"Process ID = "<<processID<<"

Ark_no = "<<Ark_no<<" my_Ark_no = "<<my_Ark_no<<endl;

94

10C:\Documents and Settings\...\Evolve_omega4.cpp

348 sub_back.push_back(Ark_no);
349 fit_back.push_back(my_Ark[my_Ark_no].

get_fitness());
350 ruleset_length_back.push_back(my_Ark

[my_Ark_no].get_rules_length());
351 for(int j=0;j<my_Ark[my_Ark_no].

get_rules_length();j++){
352 ruleset_back.push_back(my_Ark

[my_Ark_no].get_rule(j));
353 }
354 }
355 //-------------------------------
356 }
357 //------------------------------
358 // ------------ Collects the info at the hub ----

359 // ------------ Satellite loop -----------------

360 if(any(embryogenesisID,processID)){ //Sends

results to process 0
361 back_size = sub_back.size();
362 MPI::COMM_WORLD.Send(&back_size,1,MPI::INT,hub

,tag);
363 MPI::COMM_WORLD.Send(&sub_back[0],back_size,

MPI::INT,hub,tag);
364 MPI::COMM_WORLD.Send(&fit_back[0],back_size,

MPI::FLOAT,hub,tag);
365 MPI::COMM_WORLD.Send(&ruleset_length_back[0],

back_size,MPI::INT,0,tag);
366 //cout<<"Process ID "<<processID<<" sent back:

"<<endl;
367 //print_vector(sub_back);
368 ruleset_back_size = 0;
369 for(int j=0;j<back_size;j++){
370 ruleset_back_size = ruleset_back_size +

ruleset_length_back[j];
371 }
372 MPI::COMM_WORLD.Send(&ruleset_back[0],

ruleset_back_size,MPI::INT,0,tag);
373 sub_back.clear();
374 fit_back.clear();
375 ruleset_length_back.resize(0);
376 ruleset_back.resize(0);
377 }
378 // --
379 // ----------- Hub loop -------------------------
380 if(processID == hub){ //If rank is 0, collect

results and preps for next gen
381 for(int i=0; i<embryogenesisID.size(); i++){

382 src = embryogenesisID[i];
383 MPI::COMM_WORLD.Recv(&back_size,1,MPI::INT

95

11C:\Documents and Settings\...\Evolve_omega4.cpp

,src,tag);
384 sub_back.resize(back_size);
385 fit_back.resize(back_size);
386 ruleset_length_back.resize(back_size);
387 MPI::COMM_WORLD.Recv(&sub_back[0],

back_size,MPI::INT,src,tag);
388 MPI::COMM_WORLD.Recv(&fit_back[0],

back_size,MPI::FLOAT,src,tag);
389 MPI::COMM_WORLD.Recv(&ruleset_length_back

[0],back_size,MPI::INT,src,tag);
390 ruleset_back_size = 0;
391 for(int j=0;j<back_size;j++){
392 ruleset_back_size = ruleset_back_size

+ ruleset_length_back[j];
393 }
394 ruleset_back.resize(ruleset_back_size);
395 MPI::COMM_WORLD.Recv(&ruleset_back[0],

ruleset_back_size,MPI::INT,src,tag);
396 int rule_pointer = 0;
397 for(int j=0;j<back_size;j++){
398 Ark[sub_back[j]].make_fitness(fit_back

[j]);//Gives the individual sub_pack[i] the fitness
fit_pack[i]

399 for(int k=0;k<ruleset_length_back[j];k
++){

400 Ark[sub_back[j]].save_rule
(ruleset_back[rule_pointer+k]);

401 }
402 rule_pointer = rule_pointer +

ruleset_length_back[j];
403 }
404 sub_back.clear();
405 fit_back.clear();
406 ruleset_length_back.resize(0);
407 ruleset_back.resize(0);
408 }
409 Record_Gen(Ark,still_alive,unmade,generation);

 //Saves final state
410 newly_made = 0;
411 reduced = 0;
412 unmade.clear(); //Empties unmade...
413 }
414 // ---------------------------------
415 // --- The hub selectes the survivors and parents

for the next generation ----------
416 if(processID == hub){ //If rank is 0, collect

results and preps for next gen
417 //All that are alive have a chance to

procreate
418 procreation.clear();
419 for(int i=0;i<alive.size();i++){
420 Ark_no = alive[i];

96

12C:\Documents and Settings\...\Evolve_omega4.cpp

421 procreation.push_back(Ark_no);

422 }
423 /*
424 //------------Fitness check-------------------
425
426 for(int i=0;i<alive.size();i++){
427 cout<<Ark[alive[i]].get_fcall()<<" has a

fitness of "<<Ark[alive[i]].get_fitness()<<endl;
428 }
429 */
430
431 //------------------------------DEATH LOOP----

432 while(stay_alive.size()<N/4){
433 all_fitness = 0;
434 max_fitness = 0;
435 for(int i=0;i<alive.size();i++){
436 Ark_no = alive[i];
437 if(!any(stay_alive,Ark_no)){
438 all_fitness += Ark[Ark_no].

get_fitness();
439 }
440 if(Ark[Ark_no].get_fitness()==-1){
441 cout<<Ark[Ark_no].get_fcall()<<"

wasn't evaluated. Ending program."<<endl;
442 return 0;
443 }
444 // -----------The fittest one last

made is always pardoned!---------------
445 if((Ark[Ark_no].get_fitness()>=

max_fitness)&&(stay_alive.size()==0)){
446 max_fitness = Ark[Ark_no].

get_fitness();
447 lucky_one = Ark_no;
448 }
449 }
450 all_fitness -= max_fitness;
451 //Max fitness is always 0 if something has

 been pardoned
452 //This does the actually pardoning of the

fittest one last made
453 if(stay_alive.size() == 0){
454 stay_alive.push_back(lucky_one);
455 cout<<Ark[lucky_one].get_fcall()<<"

has stayed alive (ELITE) with fitness: "<<Ark
[lucky_one].get_fitness()<<endl;

456 }
457 //----------End of elite selection--------

458 //cout<<"End of elite selection"<<endl;

97

13C:\Documents and Settings\...\Evolve_omega4.cpp

459 if(all_fitness!=0){
460 num_fit = random_float(.000001,

all_fitness);
461 selection_q = 0;
462 while(num_fit>0){
463 Ark_no = alive[selection_q];
464 if(!any(stay_alive,Ark_no)){
465 num_fit -= Ark[Ark_no].

get_fitness();
466 }
467 selection_q++;
468 }
469 stay_alive.push_back(Ark_no);//

PARDONED!!
470 cout<<Ark[Ark_no].get_fcall()<<" has

stayed alive with fitness: "<<Ark[Ark_no].get_fitness
()<<endl;

471 }
472 else{
473 //cout<<"Zero fitness"<<endl;
474 low_int = 0;
475 high_int = alive.size()-1;
476 vector<int> exclude;
477 for(int i=0;i<alive.size();i++){
478 if(any(stay_alive,alive[i])){
479 exclude.push_back(i);
480 }
481 }
482 num_int = random_int(low_int,high_int,

exclude);
483 Ark_no = alive[num_int];
484 stay_alive.push_back(Ark_no); //

PARDONED (Zero Fitness)!!
485 cout<<Ark[Ark_no].get_fcall()<<" has

randomly stayed alive with "<<Ark[Ark_no].get_fitness
()<<" (zero) fitness."<<endl;

486 }
487 }
488
489 for(int i=0;i<alive.size();i++){
490 if(!any(stay_alive,alive[i])){
491 Ark[alive[i]].kill(generation); //COLD

-BLOODED!!
492 //cout<<Ark[alive[i]].get_fcall()<<"

did not make it across the river."<<endl;
493 }
494 }
495
496 alive.clear(); //Empties alive...
497 still_alive.clear();//...and empties

still_alive...
498 for(int i=0;i<stay_alive.size();i++){//...then

98

14C:\Documents and Settings\...\Evolve_omega4.cpp

 refills them with stay alive
499 alive.push_back(stay_alive[i]);
500 //cout<<Ark[stay_alive[i]].get_fcall()<<"

is alive."<<endl;
501 still_alive.push_back(stay_alive[i]);
502 //cout<<Ark[stay_alive[i]].get_fcall()<<"

is still alive."<<endl;
503 }
504 stay_alive.clear();
505 vets = still_alive.size();
506 //--

507 }
508 MPI::COMM_WORLD.Bcast(&vets,1,MPI::INT,hub);
509
510 //----------------Procreation Selection Loop(s)---

511 //This (these) loops will select a primary and

secondary parent for each loop
512 //The number of loops is determined by the number

of mutation ratio sets
513 if(processID == hub){
514 while((newly_made+reduced+still_alive.size() <

 N)){
515 for(int i=0;i<mutation_ratios.size();i++){

516 vector<int> primary_parents;
517 vector<int> secondary_parents;
518 while((secondary_parents.size()<((N-

(reduced+still_alive.size()))/mutation_ratios.size
()))){

519 //The primary parent is selected
first

520 all_fitness = 0;
521 for(int j=0;j<procreation.size();j

++){
522 Ark_no = procreation[j];
523 if(!any(primary_parents,

Ark_no)){
524 all_fitness += Ark[Ark_no]

.get_fitness();
525 }
526 }
527 if(all_fitness!=0){
528 num_fit = random_float(.000001

,all_fitness);
529 selection_q = 0;
530 while(num_fit>0){
531 Ark_no = procreation

[selection_q];
532 if(!any(primary_parents,

Ark_no)){

99

15C:\Documents and Settings\...\Evolve_omega4.cpp

533 num_fit -= Ark[Ark_no]
.get_fitness();

534 }
535 selection_q++;
536 }
537 primary_parents.push_back

(Ark_no);
538 //cout<<Ark[Ark_no].get_fcall

()<<" with fitness "<<Ark[Ark_no].get_fitness()<<" was
 selected as primary parent for selection loop "<<i<
<endl;

539 }
540 else{
541 //cout<<"Zero fitness loop for

 primary parent in selection loop "<<i<<endl;
542 low_int = 0;
543 high_int = procreation.size()-

1;
544 vector<int> exclude;
545 for(int i=0;i<procreation.size

();i++){
546 if(any(primary_parents,

procreation[i])){
547 exclude.push_back(i);
548 }
549 }
550 num_int = random_int(low_int,

high_int,exclude);
551 Ark_no = procreation[num_int];
552 primary_parents.push_back

(Ark_no);
553 //cout<<Ark[Ark_no].get_fcall

()<<" has been randomly selection for primary parent
with "<<Ark[Ark_no].get_fitness()<<" (zero) fitness."<
<endl;

554 }
555 //Repeat for secondary parents
556 all_fitness = 0;
557 for(int j=0;j<procreation.size();j

++){
558 Ark_no = procreation[j];
559 if((!any(secondary_parents,

Ark_no))&&Ark_no!=primary_parents.back()){ //Skips
already chosen secodanry parents and the primary
parent that was last chosen

560 all_fitness += Ark[Ark_no]
.get_fitness();

561 }
562 }
563 if(all_fitness!=0){
564 num_fit = random_float(.000001

,all_fitness);

100

16C:\Documents and Settings\...\Evolve_omega4.cpp

565 selection_q = 0;
566 while(num_fit>0){
567 Ark_no = procreation

[selection_q];
568 if((!any(secondary_parents

,Ark_no))&&Ark_no!=primary_parents.back()){ //Skips
already chosen secodanry parents and the primary
parent that was last chosen

569 num_fit -= Ark[Ark_no]
.get_fitness();

570 }
571 selection_q++;
572 }
573 secondary_parents.push_back

(Ark_no);
574 //cout<<Ark[Ark_no].get_fcall

()<<" with fitness "<<Ark[Ark_no].get_fitness()<<" was
 selected as secondary parent for selection loop "<<i<
<endl;

575 }
576 else{
577 //cout<<"Zero fitness loop for

 secondary parent in selection loop "<<i<<endl;
578 low_int = 0;
579 high_int = procreation.size()-

1;
580 vector<int> exclude;
581 //I want to exclude the

primary parent that was just chosen
582 exclude.push_back(num_int);
583 for(int i=0;i<procreation.size

();i++){
584 if(any(secondary_parents,

procreation[i])){
585 exclude.push_back(i);
586 }
587 }
588 num_int = random_int(low_int,

high_int,exclude);
589 Ark_no = procreation[num_int];
590 secondary_parents.push_back

(Ark_no);
591 //cout<<Ark[Ark_no].get_fcall

()<<" has been randomly selection for secondary parent
 with "<<Ark[Ark_no].get_fitness()<<" (zero) fitness."
<<endl;

592 }

593 }
594 //Check to make sure an equal number

of primary and seconday parents were chosen
595 if(primary_parents.size()!=

101

17C:\Documents and Settings\...\Evolve_omega4.cpp

secondary_parents.size()){
596 cout<<"An equal number of primary

and seconday parents were chosen"<<endl;
597 return 0;
598 }
599 //Place primary parent, secondary

parent, and mutation method into mutation info
600 for(int j=0;j<secondary_parents.size()

;j++){
601 junk_ints.push_back

(primary_parents[j]);
602 junk_ints.push_back

(secondary_parents[j]);
603 junk_ints.push_back(i);
604 mutation_info.push_back(junk_ints)

;
605 newly_made++;
606 junk_ints.clear();
607 }
608 primary_parents.clear();
609 secondary_parents.clear();
610 }
611 }
612 }
613 //--

614
615 //--

616
617 MPI::COMM_WORLD.Bcast(&newly_made,1,MPI::INT,hub);
618
619 //----------------------Sends genomes to be

mutated----------------------------------
620
621 for(int i=0;i<newly_made;i++){
622 dest = mutationID[i%(mutationID.size())]; //

See page 20 Vol. 2 for logic
623 if(processID == hub){
624 Ark_no = mutation_info[i][0];

625 genome_size = Ark[Ark_no].

get_genome_length();
626 data_pack2[0] = Ark_no;
627 data_pack2[1] = mutation_info[i][2];
628 data_pack2[2] = genome_size;
629 for(int j=0;j<genome_size;j++){
630 temp_genome.push_back(Ark[Ark_no].

get_genome(j));
631 }
632 MPI::COMM_WORLD.Send(&data_pack2,3,MPI::

INT,dest,tag);

102

18C:\Documents and Settings\...\Evolve_omega4.cpp

633 MPI::COMM_WORLD.Send(&temp_genome[0],
genome_size,MPI::INT,dest,tag);

634 temp_genome.clear(); //Empties for next
time

635 //This sends another genome selected for a
 mutation

636 Ark_no = mutation_info[i][1];
637 genome_size = Ark[Ark_no].

get_genome_length();
638 data_pack[0] = Ark_no;
639 data_pack[1] = genome_size;
640 for(int j=0;j<genome_size;j++){
641 temp_genome.push_back(Ark[Ark_no].

get_genome(j));
642 }
643 MPI::COMM_WORLD.Send(&data_pack,2,MPI::INT

,dest,tag);
644 MPI::COMM_WORLD.Send(&temp_genome[0],

genome_size,MPI::INT,dest,tag);
645 temp_genome.clear(); //Empties for next

time
646 }
647 if(processID == dest){
648 MPI::COMM_WORLD.Recv(&data_pack2[0],3,MPI:

:INT,hub,tag);
649 Ark_no = data_pack2[0];
650 mutation_method = data_pack2[1];
651 genome_size = data_pack2[2];
652 temp_genome.resize(genome_size);
653 MPI::COMM_WORLD.Recv(&temp_genome[0],

genome_size,MPI::INT,hub,tag);
654 MPI::COMM_WORLD.Recv(&data_pack[0],2,MPI::

INT,hub,tag);
655 Ark_no2 = data_pack[0];
656 genome_size = data_pack[1];
657 temp_genome2.resize(genome_size);
658 MPI::COMM_WORLD.Recv(&temp_genome2[0],

genome_size,MPI::INT,hub,tag);
659 mu_point_mutation = mu_ratio[0];
660 mu_conjugation = mu_ratio[1];
661 mu_recopy = mu_ratio[2];
662 mu_deletion = mu_ratio[3];
663 mu_translocation = mu_ratio[4];
664 mutator(temp_genome,temp_genome2,mu,

mu_point_mutation,mu_conjugation,mu_recopy,mu_deletion
,mu_translocation);

665 junk_ints.push_back(Ark_no);
666 junk_ints.push_back(Ark_no2);
667 junk_ints.push_back(mutation_method);
668 mutation_info.push_back(junk_ints);

669 mutation_Ark.push_back(temp_genome);

103

19C:\Documents and Settings\...\Evolve_omega4.cpp

670 junk_ints.clear();
671 temp_genome.clear();
672 temp_genome2.clear();
673 }
674 }
675
676 //Satallites send the new genomes back to the hub
677 if(any(mutationID,processID)){
678 back_size = mutation_Ark.size();
679 MPI::COMM_WORLD.Send(&back_size,1,MPI::INT,hub

,tag);
680 for(int j=0;j<back_size;j++){
681 data_pack2[0] = mutation_info[j][0];
682 data_pack2[1] = mutation_info[j][1];
683 data_pack2[2] = mutation_info[j][2];
684 MPI::COMM_WORLD.Send(&data_pack2,3,MPI::

INT,hub,tag);
685 genome_size = mutation_Ark[j].size();
686 MPI::COMM_WORLD.Send(&genome_size,1,MPI::

INT,hub,tag);
687 MPI::COMM_WORLD.Send(&mutation_Ark[j][0],

genome_size,MPI::INT,hub,tag);
688 }
689 mutation_info.clear();
690 mutation_Ark.clear();
691 }
692
693 if(processID == hub){
694 //Collects and places new individuals into the

 Ark
695 mutation_info.clear();
696 mutation_Ark.clear();
697 for(int i=0;i<mutationID.size();i++){
698 src = mutationID[i];
699 MPI::COMM_WORLD.Recv(&back_size,1,MPI::INT

,src,tag);
700 for(int j=0;j<back_size;j++){
701 MPI::COMM_WORLD.Recv(&data_pack2[0],3,

MPI::INT,src,tag);
702 Ark_no = data_pack2[0];
703 Ark_no2 = data_pack2[1];
704 mutation_method = data_pack2[2];
705 junk_ints.push_back(Ark_no);
706 junk_ints.push_back(Ark_no2);
707 junk_ints.push_back(mutation_method);
708 mutation_info.push_back(junk_ints);

709 junk_ints.clear();
710 MPI::COMM_WORLD.Recv(&genome_size,1,

MPI::INT,src,tag);
711 temp_genome.resize(genome_size);
712 MPI::COMM_WORLD.Recv(&temp_genome[0],

104

20C:\Documents and Settings\...\Evolve_omega4.cpp

genome_size,MPI::INT,src,tag);
713 mutation_Ark.push_back(temp_genome);
714 temp_genome.clear();
715 }
716 }
717 for(int i=0;i<mutation_Ark.size();i++){
718 Ark_no = mutation_info[i][0];
719 Ark_no2 = mutation_info[i][1];
720 generate_offspring(Ark,mutation_Ark[i],

Ark_no,Ark_no2,(generation+1));
721 Ark_Load(Ark[Ark.size()-1]);
722 unmade.push_back(Ark.size()-1);
723 //cout<<Ark[Ark.size()-1].get_fcall()<<"

is unmade."<<endl;
724 alive.push_back(Ark.size()-1);
725 //cout<<Ark[Ark.size()-1].get_fcall()<<"

is alive (2)."<<endl;
726 }
727 mutation_info.clear();
728 mutation_Ark.clear();
729 }
730
731 } //----------End of generation loop----------------

732
733 // ------- This echoes the Final results
734 if(processID==hub){
735 cout<<"-----------FINAL RESULTS-------------"<

<endl;
736 time (&end);
737 dif_t = int(difftime(end,start));
738 int hr,min,sec;
739 hr = int(dif_t/3600);
740 min = int((dif_t%3600)/60);
741 sec = dif_t%60;
742 cout<<"Evolution took "<<hr<<" hours, "<<min<<"

minutes and "<<sec<<" seconds."<<endl;
743
744 //Echo back certain results for debugging
745 /*
746 for(int i=0;i<Ark.size();i++)
747 cout<<Ark[i].get_fcall()<<" "<<Ark[i].get_fitness

()<<endl;
748 for(int i=0;i<unmade.size();i++)
749 cout<<unmade[i]<<" ";
750 cout<<endl;
751 for(int i=0;i<alive.size();i++)
752 cout<<alive[i]<<" ";
753 cout<<endl;
754 */
755
756 Record_Gen(Ark,still_alive,unmade,generation); //

105

21C:\Documents and Settings\...\Evolve_omega4.cpp

Saves final state
757 }
758 MPI::Finalize();
759 return 0;
760 }
761

106

1C:\Documents and Settings\...\node_lib_omega4.h

1 using namespace std;
2
3 //------------------Classes for Neural Nets---------------

4 class connection
5 {private:
6 float weight;
7 int node_from;
8 int node_to;
9 float Heb_rate;

10 float random_rate;
11 public:
12 connection()
13 {}
14 void operator = (const connection& right){
15 if (this != &right){
16 weight = right.weight;
17 node_from = right.node_from;
18 node_to = right.node_to;
19 Heb_rate = right.Heb_rate;
20 random_rate = right.random_rate;
21 }
22 }
23
24 void make_connection_private(int n_from,int n_to,float

 w,float h, float r)//Used with make_connection
function

25 {
26 weight = w;
27 node_from = n_from;
28 node_to = n_to;
29 Heb_rate = h;
30 random_rate = r;
31 }
32 float get_weight(){
33 return(weight);
34 }
35 void set_weight_private(float x){
36 weight = x;
37 }
38 int get_node_from(){
39 return(node_from);
40 }
41 int get_node_to(){
42 return(node_to);
43 }
44 float get_Hebbian_rate(){
45 return(Heb_rate);
46 }
47 float get_random_rate(){
48 return(random_rate);
49 }

107

2C:\Documents and Settings\...\node_lib_omega4.h

50 };
51
52 class node
53 {private:
54 float bias;
55 float slope;
56 char layer; //Denote whether a node is an input (I),

hidden (H), or an output(O) Don't confuse with type 1
57 int type1; //Denotes the type of node. Integer corralates

 to A - H
58 int type2; //Also denotes numerical order of the node
59 int type3;
60 int nodes_made; //Records the number of new nodes a node

has made
61 float activation; //Tells us the activation level of a

node
62 public:
63 node()
64 { }
65 //It works, but I get an warning evrytime it's compiled
66 void operator = (const node& right){
67 if (this != &right){
68 bias = right.bias;
69 slope = right.slope;
70 layer = right.layer;
71 type1 = right.type1;
72 type2 = right.type2;
73 type3 = right.type3;
74 nodes_made = right.nodes_made;
75 activation = right.activation;
76 }
77 }
78
79 void make_node_private(char l,int t1,int t2,int t3,

float s,float b){//Used with make_node function
80 layer = l;
81 type1 = t1;
82 bias = b;
83 slope = s;
84 type2 = t2;
85 type3 = t3;
86 nodes_made = 0;
87 activation = 0.0;
88 }
89 char get_layer(){
90 return(layer);
91 }
92 int get_nodes_made(){
93 return(nodes_made);
94 }
95 void inc_nodes_made(){
96 nodes_made++;

108

3C:\Documents and Settings\...\node_lib_omega4.h

97 }
98 float get_bias(){
99 return(bias);

100 }
101 float get_slope(){
102 return(slope);
103 }
104 int get_type1(){
105 return(type1);
106 }
107 int get_type2(){
108 return(type2);
109 }
110 int get_type3(){
111 return(type3);
112 }
113 float get_activation_private(){
114 return(activation);
115 }
116 void set_activation_private(float x){
117 activation = x;
118 }
119 };
120
121 class neural_net
122 {private:
123 vector<connection> connections;
124 vector<node> nodes;
125 float reinforcement;
126 public:
127 neural_net()
128 { }
129 //It works, but I get an warning everytime it's

compiled
130 void operator= (const neural_net& right){
131 if (this != &right){
132 connections = right.connections;
133 nodes = right.nodes;
134 }
135 }
136 void clear_ANN(){
137 connections.clear();
138 nodes.clear();
139 }
140 int get_ANN_size(){
141 return(nodes.size());
142 }
143 node get_node(int n){
144 return(nodes[n]);
145 }
146 float get_activation(int n){
147 return(nodes[n].get_activation_private());

109

4C:\Documents and Settings\...\node_lib_omega4.h

148 }
149 void set_activation(int n, float x){
150 nodes[n].set_activation_private(x);
151 }
152 void make_node(int p_node,char l,int t1,float s,float

b){
153 int t2,t3;
154 int counter = 0;
155 node new_node;
156 t2 = nodes[p_node].get_nodes_made();
157 for(int i=0;i<nodes.size();i++){
158 if((nodes[i].get_type1()== t1)&&(nodes[i].

get_type2()== t2)){
159 counter++;
160 }
161 }
162 t3 = counter%100;
163 new_node.make_node_private(l,t1,t2,t3,s,b);
164 nodes.push_back(new_node);
165 nodes[p_node].inc_nodes_made();
166 }
167 void make_input(int t1){
168 int t2,t3;
169 int counter = 0;
170 node new_node;
171 t2 = 0;
172 for(int i=0;i<nodes.size();i++){
173 if(nodes[i].get_type1()== t1){
174 counter++;
175 }
176 }
177 t3 = counter%100;
178 new_node.make_node_private('I',t1,t2,t3,0,0);

179 nodes.push_back(new_node);
180 }
181 void make_output(int p_node,int t1,float s,float b){
182 int t2,t3;
183 int counter = 0;
184 node new_node;
185 t2 = nodes[p_node].get_nodes_made();
186 for(int i=0;i<nodes.size();i++){
187 if((nodes[i].get_type1()== t1)&&(nodes[i].

get_type2()== t2)){
188 counter++;
189 }
190 }
191 t3 = counter%100;
192 new_node.make_node_private('O',t1,t2,t3,s,b);

193 nodes.push_back(new_node);
194 nodes[p_node].inc_nodes_made();

110

5C:\Documents and Settings\...\node_lib_omega4.h

195 }
196 int get_total_connections(){
197 return(connections.size());
198 }
199 connection get_connection(int n){
200 return(connections[n]);
201 }
202 void set_weight(int n,float x){
203 connections[n].set_weight_private(x);
204 }
205 void make_connection(int n_from,int n_to,float w,float

 h,float r){
206 connection new_connection;
207 new_connection.make_connection_private(n_from,n_to

,w,h,r);
208 connections.push_back(new_connection);
209 }
210 int get_total_inputs(){
211 int count = 0;
212 node temp_node;
213 for(int i=0;i<nodes.size();i++){
214 temp_node = nodes[i];
215 if(temp_node.get_layer()=='I'){
216 count++;
217 }
218 }
219 return(count);
220 }
221 int get_total_outputs(){
222 int count = 0;
223 node temp_node;
224 for(int i=0;i<nodes.size();i++){
225 temp_node = nodes[i];
226 if(temp_node.get_layer()=='O'){
227 count++;
228 }
229 }
230 return(count);
231 }
232 float get_reinforcement(){
233 return(reinforcement);
234 }
235 void set_reinforcement(float x){
236 reinforcement = x;
237 }
238 int get_inputs_to(int n){
239 int ins = 0;
240 for(int i=0;i<connections.size();i++){
241 if(connections[i].get_node_to()==n){
242 ins++;
243 }
244 }

111

6C:\Documents and Settings\...\node_lib_omega4.h

245 return(ins);
246 }
247 int get_outputs_from(int n){
248 int outs = 0;
249 for(int i=0;i<connections.size();i++){
250 if(connections[i].get_node_from()==n){
251 outs++;
252 }
253 }
254 return(outs);
255 }
256 float sum_inputs_to(int n){
257 float ins = 0;
258 for(int i=0;i<connections.size();i++){
259 if(connections[i].get_node_to()==n){
260 ins = ins + connections[i].get_weight();
261 }
262 }
263 return(ins);
264 }
265 float sum_outputs_from(int n){
266 float outs = 0;
267 for(int i=0;i<connections.size();i++){
268 if(connections[i].get_node_from()==n){
269 outs = outs + connections[i].get_weight();
270 }
271 }
272 return(outs);
273 }
274 float get_connection_weight(int i,int j){
275 //float w = 0;
276 float w = -100; //Changed to this so it will

return a non-working answer if there is no connection
277 for(int i=0;i<connections.size();i++){
278 if((connections[i].get_node_from()==i)&&

(connections[i].get_node_to()==j)){
279 w = connections[i].get_weight();
280 }
281 }
282 return(w);
283 }
284 void print_net(){
285 cout<<"Node:\tLayer\tType:\tBias:\tSlope:\n";
286 for(int i=0;i<nodes.size();i++){
287 cout<<i<<"\t"<<nodes[i].get_layer()<<"\t"<

<nodes[i].get_type1()<<nodes[i].get_type2();
288 cout<<"\t"<<nodes[i].get_bias()<<"\t"<<nodes

[i].get_slope()<<endl;
289 }
290 cout<<"Conn:\tFrom\tTo:\tWeight:\tHeb:\tRand:\n";
291 for(int i=0;i<connections.size();i++){
292 cout<<i<<"\t"<<connections[i].get_node_from()<

112

7C:\Documents and Settings\...\node_lib_omega4.h

<"\t"<<connections[i].get_node_to();
293 cout<<"\t"<<connections[i].get_weight()<<"\t"<

<connections[i].get_Hebbian_rate();
294 cout<<"\t"<<connections[i].get_random_rate()<

<endl;
295 }
296 }
297 void write_net(string& filename){
298 ofstream ANNfile(&filename[0]);
299 ANNfile<<nodes.size()<<endl;
300 for(int i=0;i<nodes.size();i++){
301 ANNfile<<i<<" "<<nodes[i].get_layer()<<" "<

<nodes[i].get_type1()<<" "<<nodes[i].get_type2()<<" "<
<nodes[i].get_type3();

302 ANNfile<<" "<<nodes[i].get_bias()<<" "<<nodes
[i].get_slope()<<" "<<nodes[i].get_nodes_made()<<endl;

303 }
304 ANNfile<<connections.size()<<endl;
305 for(int i=0;i<connections.size();i++){
306 ANNfile<<i<<"\t"<<connections[i].get_node_from

()<<"\t"<<connections[i].get_node_to();
307 ANNfile<<"\t"<<connections[i].get_weight()<<"\

t"<<connections[i].get_Hebbian_rate();
308 ANNfile<<"\t"<<connections[i].get_random_rate

()<<endl;
309 }
310 }
311 void read_net(string& filename){
312 ifstream ANNfile(&filename[0]);
313 int number_of_nodes,nodes_made,

number_of_connections;
314 int junk_int,type1,type2,type3,node_from,node_to;
315 char layer;
316 float bias,slope,weight,Heb,rand;
317 node temp_node;
318 connection temp_conn;
319 ANNfile>>number_of_nodes;
320 for(int i=0;i<number_of_nodes;i++){
321 ANNfile>>junk_int;
322 ANNfile>>layer;
323 ANNfile>>type1;
324 ANNfile>>type2;
325 ANNfile>>type3;
326 ANNfile>>bias;
327 ANNfile>>slope;
328 ANNfile>>nodes_made;
329 temp_node.make_node_private(layer,type1,type2,

type3,slope,bias);
330 nodes.push_back(temp_node);
331 for(int j=0;j<nodes_made;j++){
332 nodes[i].inc_nodes_made();
333 }

113

8C:\Documents and Settings\...\node_lib_omega4.h

334 }
335 ANNfile>>number_of_connections;
336 for(int i=0;i<number_of_connections;i++){
337 ANNfile>>junk_int;
338 ANNfile>>node_from;
339 ANNfile>>node_to;
340 ANNfile>>weight;
341 ANNfile>>Heb;
342 ANNfile>>rand;
343 temp_conn.make_connection_private(node_from,

node_to,weight,Heb,rand);
344 connections.push_back(temp_conn);
345 }
346 }
347 };
348 //---------------------------End of Neural Net Classes----

349
350 //--------------Functions for making and using ANN

Matricies------------------
351
352 bool make_node_check(neural_net ANN,int n,int max_outs){
353 node temp_node = ANN.get_node(n);
354 int outs = ANN.get_total_outputs();
355 bool verdict = false;
356 if((temp_node.get_nodes_made()<7) &&(outs < max_outs))

{
357 verdict = true;
358 }
359 return(verdict);
360 }
361
362 bool make_connection_check(neural_net ANN,int n_from,int

n_to,int max_conns){
363 bool verdict = true;
364 connection temp_conn;
365 node from_node = ANN.get_node(n_from);
366 node to_node = ANN.get_node(n_to);
367 int from_counter = 0;
368 int to_counter = 0;
369 for(int i=0;i<ANN.get_total_connections();i++){
370 temp_conn = ANN.get_connection(i);
371 if(temp_conn.get_node_from() == n_from){
372 from_counter++;
373 }
374 if(temp_conn.get_node_to() == n_to){
375 to_counter++;
376 }
377 if((temp_conn.get_node_from() == n_from)&&

(temp_conn.get_node_to() == n_to)){
378 verdict = false;
379 }

114

9C:\Documents and Settings\...\node_lib_omega4.h

380 }
381 if(n_to <= n_from){
382 verdict = false;
383 }
384 if(from_node.get_layer() == 'O'){
385 verdict = false;
386 }
387 if(to_node.get_layer() == 'I'){
388 verdict = false;
389 }
390 if((from_counter>=max_conns)|(to_counter>=max_conns)){
391 verdict = false;
392 }
393 return(verdict);
394 }
395
396 //--

397

115

1C:\Documents and Settings\...\evo_lib_omega4.h

1 // This is the library that contains functions necessary
for manipulating individuals thoughout evolution

2 // It should follow chimera_lib.h and node_lib.h when
being called

3
4
5 using namespace std;
6
7 //--------------------------------Individual Class-------

8 class individual
9 {private:

10 int genome_length;
11 vector<int> genome; //The actual genetic string
12 vector<int> ruleset; //Rules within the genome that make

the ANN
13 string fcall; //Records the name of the .cpp file that

has the subject's protiens
14 float fitness; //The fitness of an individual. Can become

 an array
15 int genesis[3]; //An array to tell ["gen made" "Parent 1"

 "Parent 2"]
16 char method; /*Tells how the individual was created
17 P - Point Mutation
18 D - Duplication/Deletion of codon(s)
19 C - Crossover
20 R - Randomly Generated
21 I - Intellegently Designed
22 S - Say Again */
23 int death; //Tells the last generation in which an

individual appeared, thus a -1 means it is still
alive

24 neural_net ANN; //The individual's neural net
25 vector< vector<float> > ANN_weights; //The individual's

neural net weight in matrix form
26 vector<float> ANN_biases; //The individual's neural net

biases in vector form
27 vector<float> ANN_slopes; //The individual's neural net

slopes in vector form
28 public:
29 individual(){} //Default Constructor
30
31 individual(int sega[3],vector<int> genes){ //

Constructor - given creation info and genome
32 genome_length = genes.size();
33 genome = genes;
34 fcall = "Subject-1.cpp";
35 fitness = -1;
36 genesis[0] = sega[0];
37 genesis[1] = sega[1];
38 genesis[2] = sega[2];
39 method = 'I';

116

2C:\Documents and Settings\...\evo_lib_omega4.h

40 death = -1;
41 }
42 void operator= (const individual& right){
43 if (this != &right){
44 genome = right.genome;
45 ruleset = right.ruleset;
46 fcall = right.fcall;
47 fitness = right.fitness;
48 genesis[0] = right.genesis[0];
49 genesis[1] = right.genesis[1];
50 genesis[2] = right.genesis[2];
51 method = right.method;
52 death = right.death;
53 ANN = right.ANN;
54 ANN_weights.resize(0); ANN_weights.assign

(right.ANN_weights.begin(),right.ANN_weights.end());
55 ANN_biases.resize(0); ANN_biases.assign(right

.ANN_biases.begin(),right.ANN_biases.end());
56 ANN_slopes.resize(0); ANN_slopes.assign(right

.ANN_slopes.begin(),right.ANN_slopes.end());

57 }
58 }
59
60 int get_genome(int n){
61 return(genome[n]);
62 }
63 int get_genome_length(){
64 return(genome_length);
65 }
66 int get_nucleotide(int n){
67 return(genome[n]);
68 }
69 void save_rule(int rule){
70 ruleset.push_back(rule);
71 }
72 int get_rule(int n){
73 return(ruleset[n]);
74 }
75 int get_rules_length(){
76 return(ruleset.size());
77 }
78 string get_fcall(){
79 return(fcall);
80 }
81 float get_fitness(){
82 return(fitness);
83 }
84 void make_fitness(float x){
85 fitness = x;
86 }
87 void inc_fitness(float x){

117

3C:\Documents and Settings\...\evo_lib_omega4.h

88 fitness = fitness + x;
89 }
90 void mult_fitness(float x){
91 fitness = fitness*x;
92 }
93 void dec_fitness(float x){
94 fitness = fitness - x;
95 }
96 int get_genesis(int n){
97 return(genesis[n]);
98 }
99 char get_method(){

100 return(method);
101 }
102 int get_death(){
103 return(death);
104 }
105 void kill(int gen){
106 death = gen;
107 }
108 bool alive(){
109 if(death == -1)
110 return(true);
111 else
112 return(false);
113 }
114 void generate_random_private(int l,int gen,int sub){

 //Will generate a random genome of length l
115 int lowest=1, highest=100;
116 int range=(highest-lowest)+1;
117 int temp;
118 for(int i=0; i<l; i++){
119 temp = lowest+int(range*(rand()/(RAND_MAX + 1

.0)));
120 genome.push_back(temp);
121 }
122 genome_length = l;
123 string num = int2string(sub);
124 fcall = "Subject" + num + ".cpp";
125 fitness = -1;
126 genesis[0] = gen;
127 genesis[1] = 0;
128 genesis[2] = 0;
129 method = 'R';
130 death = -1;
131 }
132 void generate_designed_private(int arr[],int gen,int

sub){ //Will generate an individual with the given
genome

133 int find_array_length(int[]);
134 int l = find_array_length(arr);
135 for(int i=0; i<l; i++){

118

4C:\Documents and Settings\...\evo_lib_omega4.h

136 genome.push_back(arr[i]);
137 }
138 genome_length = l;
139 string num = int2string(sub);
140 fcall = "Subject" + num + ".cpp";
141 fitness = -1;
142 genesis[0] = gen;
143 genesis[1] = 0;
144 genesis[2] = 0;
145 method = 'I';
146 death = -1;
147 }
148 void generate_designed_private(vector<int> arr,int

gen,int sub){ //Will generate an individual with the
 given genome

149 int l = arr.size();
150 for(int i=0; i<l; i++){
151 genome.push_back(arr[i]);
152 }
153 genome_length = l;
154 string num = int2string(sub);
155 fcall = "Subject" + num + ".cpp";
156 fitness = -1;
157 genesis[0] = gen;
158 genesis[1] = 0;
159 genesis[2] = 0;
160 method = 'I';
161 death = -1;
162 }
163
164 void generate_reduced_private(vector<int> arr,int gen

,int sub,int parent){ //Will generate an individual
with the given genome

165 int l = arr.size();
166 for(int i=0; i<l; i++){
167 if((arr[i]>=1)&&(arr[i]<=100)){
168 genome.push_back(arr[i]);
169 }
170 else{
171 int temp_int;
172 temp_int = random_int(1,100);
173 genome.push_back(temp_int);
174 cout<<"The invalid nucleotide "<<arr[i]<

<" was replaced with "<<temp_int<<endl;
175 }
176 }
177 genome_length = l;
178 string num = int2string(sub);
179 fcall = "Subject" + num + ".cpp";
180 fitness = -1;
181 genesis[0] = gen;
182 genesis[1] = parent;

119

5C:\Documents and Settings\...\evo_lib_omega4.h

183 genesis[2] = parent;
184 method = 'S';
185 death = -1;
186 }
187
188 void generate_offspring_private(vector<int> arr,int

gen,int sub,int indy1,int indy2){ //Will generate an
 individual with the given genome

189 int l = arr.size();
190 for(int i=0; i<l; i++){
191 genome.push_back(arr[i]);
192 }
193 genome_length = l;
194 string num = int2string(sub);
195 fcall = "Subject" + num + ".cpp";
196 fitness = -1;
197 genesis[0] = gen;
198 genesis[1] = indy1;
199 genesis[2] = indy2;
200 method = 'O';
201 death = -1;
202 }
203 void Say_Again_private(int sega[],char meth,vector

<int> arr){
204 int l = arr.size();
205 for(int i=0; i<l; i++)
206 genome.push_back(arr[i]);
207 genome_length = genome.size();
208 fcall = "Subject-1.cpp";
209 fitness = -1;
210 genesis[0] = sega[0];
211 genesis[1] = sega[1];
212 genesis[2] = sega[2];
213 method = meth;
214 death = -1;
215 }
216
217 void show_genome(){ //The following prints out the

genomes
218 for(int i=0; i<genome.size(); i++)
219 cout << genome[i] << " ";
220 cout << endl;
221 }
222
223 void show_rules(){ //The following prints frames as

they are used
224 for(int i=0; i<ruleset.size(); i++){
225 if(ruleset[i]!=-1){
226 cout<<ruleset[i]<<' ';
227 for(int j=0;j<6;j++)
228 cout<<genome[ruleset[i]+j]<<' ';
229 cout<<endl;

120

6C:\Documents and Settings\...\evo_lib_omega4.h

230 }
231 else
232 cout <<endl;
233 }
234 }
235
236 void reduce_rules(vector< vector <int> >&

reduced_protein_table){
237 //This will show which frame numbers made the

individual
238 reduced_protein_table.clear();
239 if(ruleset.size()==0){
240 return;
241 }
242 vector< vector<int> >used_proteins_table;
243 vector< vector<int> >sorted_used_proteins_table;
244 vector <int> test_protein;
245 int lowest_rule = 100000;
246 int lowest_rule_size = 100000;
247 int lowest_rule_index = -1;
248 vector <int> used_indexes;
249 for(int i=0;i<ruleset.size();i++){
250 if(ruleset[i]!= -1){
251 test_protein.push_back(ruleset[i]);
252 }
253 else{
254 if(!any(test_protein,

used_proteins_table)){
255 used_proteins_table.push_back

(test_protein);
256 }
257 test_protein.clear();
258 }
259 }
260 //print_matrix(used_proteins_table);
261 while(sorted_used_proteins_table.size() <

used_proteins_table.size()){
262 for(int i=0;i<used_proteins_table.size();i++)

{
263 if((used_proteins_table[i][0]

<lowest_rule)&&(!any(i,used_indexes))){
264 lowest_rule = used_proteins_table[i]

[0];
265 lowest_rule_size =

used_proteins_table[i].size();
266 lowest_rule_index = i;
267 }
268 else if((used_proteins_table[i][0]==

lowest_rule)&&(used_proteins_table[i].size()
<lowest_rule_size)&&(!any(i,used_indexes))){

269 lowest_rule = used_proteins_table[i]
[0];

121

7C:\Documents and Settings\...\evo_lib_omega4.h

270 lowest_rule_size =
used_proteins_table[i].size();

271 lowest_rule_index = i;
272 }
273 else if((used_proteins_table[i][0]==

lowest_rule)&&(used_proteins_table[i].size()==
lowest_rule_size)&&(!any(i,used_indexes))){

274 for(int j=i;j<used_proteins_table[i].
size();j++){

275 if(used_proteins_table[i][j]
<used_proteins_table[lowest_rule_index][j]){

276 lowest_rule =
used_proteins_table[i][0];

277 lowest_rule_size =
used_proteins_table[i].size();

278 lowest_rule_index = i;
279 }
280 }
281 }
282 }
283 sorted_used_proteins_table.push_back

(used_proteins_table[lowest_rule_index]);
284 used_indexes.push_back(lowest_rule_index);
285 lowest_rule = 100000;
286 lowest_rule_size = 100000;
287 }
288 //print_matrix(sorted_used_proteins_table);
289 for(int i=0;i<(sorted_used_proteins_table.size()-

1);i++){
290 if(sorted_used_proteins_table[i].size()==

sorted_used_proteins_table[i+1].size()){
291 reduced_protein_table.push_back

(sorted_used_proteins_table[i]);
292 }
293 else{
294 for(int j=0;j<sorted_used_proteins_table

[i].size();j++){
295 if(sorted_used_proteins_table[i][j]!=

sorted_used_proteins_table[i+1][j]){
296 reduced_protein_table.push_back

(sorted_used_proteins_table[i]);
297 break;
298 }
299 }
300 }
301 }
302 reduced_protein_table.push_back

(sorted_used_proteins_table[
(sorted_used_proteins_table.size()-1)]);

303 //print_matrix(reduced_protein_table);
304 }
305

122

8C:\Documents and Settings\...\evo_lib_omega4.h

306 void reduce_rules(){
307 vector< vector <int> > reduced_protein_table;
308 //This will show which frame numbers made the

individual
309 if(ruleset.size()==0){
310 return;
311 }
312 vector< vector<int> >used_proteins_table;
313 vector< vector<int> >sorted_used_proteins_table;
314 vector <int> test_protein;
315 int lowest_rule = 100000;
316 int lowest_rule_size = 100000;
317 int lowest_rule_index = -1;
318 vector <int> used_indexes;
319 for(int i=0;i<ruleset.size();i++){
320 if(ruleset[i]!= -1){
321 test_protein.push_back(ruleset[i]);
322 }
323 else{
324 if(!any(test_protein,

used_proteins_table)){
325 used_proteins_table.push_back

(test_protein);
326 }
327 test_protein.clear();
328 }
329 }
330 //print_matrix(used_proteins_table);
331 while(sorted_used_proteins_table.size() <

used_proteins_table.size()){
332 for(int i=0;i<used_proteins_table.size();i++)

{
333 if((used_proteins_table[i][0]

<lowest_rule)&&(!any(i,used_indexes))){
334 lowest_rule = used_proteins_table[i]

[0];
335 lowest_rule_size =

used_proteins_table[i].size();
336 lowest_rule_index = i;
337 }
338 else if((used_proteins_table[i][0]==

lowest_rule)&&(used_proteins_table[i].size()
<lowest_rule_size)&&(!any(i,used_indexes))){

339 lowest_rule = used_proteins_table[i]
[0];

340 lowest_rule_size =
used_proteins_table[i].size();

341 lowest_rule_index = i;
342 }
343 else if((used_proteins_table[i][0]==

lowest_rule)&&(used_proteins_table[i].size()==
lowest_rule_size)&&(!any(i,used_indexes))){

123

9C:\Documents and Settings\...\evo_lib_omega4.h

344 for(int j=i;j<used_proteins_table[i].
size();j++){

345 if(used_proteins_table[i][j]
<used_proteins_table[lowest_rule_index][j]){

346 lowest_rule =
used_proteins_table[i][0];

347 lowest_rule_size =
used_proteins_table[i].size();

348 lowest_rule_index = i;
349 }
350 }
351 }
352 }
353 sorted_used_proteins_table.push_back

(used_proteins_table[lowest_rule_index]);
354 used_indexes.push_back(lowest_rule_index);
355 lowest_rule = 100000;
356 lowest_rule_size = 100000;
357 }
358 //print_matrix(sorted_used_proteins_table);
359 for(int i=0;i<(sorted_used_proteins_table.size()-

1);i++){
360 if(sorted_used_proteins_table[i].size()==

sorted_used_proteins_table[i+1].size()){
361 reduced_protein_table.push_back

(sorted_used_proteins_table[i]);
362 }
363 else{
364 for(int j=0;j<sorted_used_proteins_table

[i].size();j++){
365 if(sorted_used_proteins_table[i][j]!=

sorted_used_proteins_table[i+1][j]){
366 reduced_protein_table.push_back

(sorted_used_proteins_table[i]);
367 break;
368 }
369 }
370 }
371 }
372 reduced_protein_table.push_back

(sorted_used_proteins_table[
(sorted_used_proteins_table.size()-1)]);

373 print_matrix(reduced_protein_table);
374 }
375
376 //---

--
377 //--ANN

COMMANDS---
378 //---

--
379

124

10C:\Documents and Settings\...\evo_lib_omega4.h

380 neural_net get_neural_net(){
381 return(ANN);
382 }
383
384 void make_ANN(int rank_no){
385 ANN.clear_ANN();
386 string pcall = "/scratch/subject"+int2string

(rank_no)+".exe";
387 string pmake = "g++ -o " + pcall + " /scratch/"+

fcall;
388 string ANNfilename = "/scratch/ANN"+int2string

(rank_no)+".dat";
389 string Rulecall = "/scratch/Rules"+int2string

(rank_no)+".dat";
390 char *syscall;
391 syscall = &pmake[0];
392 system(syscall);
393 syscall = &pcall[0];
394 system(syscall);
395 ANN.read_net(ANNfilename);
396 ANN_weights.resize(0);
397 ANN_biases.resize(0);
398 ANN_slopes.resize(0);
399 ruleset.resize(0);
400 vector<float> w_fill(ANN.get_ANN_size(),0);
401 node temp_node;
402 connection temp_conn;
403 float temp_slopes,temp_biases,temp_w;
404 int node_to,node_from;
405
406 for(int i=0;i<ANN.get_ANN_size();i++){
407 ANN_weights.push_back(w_fill);
408 temp_node = ANN.get_node(i);
409 ANN_biases.push_back(temp_node.get_bias());
410 ANN_slopes.push_back(temp_node.get_slope());
411 }
412 for(int i=0;i<ANN.get_total_connections();i++){
413 temp_conn = ANN.get_connection(i);
414 node_to = temp_conn.get_node_to();
415 node_from = temp_conn.get_node_from();
416 temp_w = temp_conn.get_weight();
417 ANN_weights[node_from][node_to] = temp_w;

418 }
419 ifstream infile2(&Rulecall[0]);
420 int temprule;
421 while(!infile2.eof()){
422 infile2 >> temprule;
423 ruleset.push_back(temprule);
424 }
425 ruleset.pop_back(); //For some reason, it always

saves an extra -1

125

11C:\Documents and Settings\...\evo_lib_omega4.h

426 }
427
428 void make_ANN_matrix(){
429 ANN_weights.resize(0);
430 ANN_biases.resize(0);
431 ANN_slopes.resize(0);
432 vector<float> w_fill(ANN.get_ANN_size(),0);
433 node temp_node;
434 connection temp_conn;
435 float temp_slopes,temp_biases,temp_w;
436 int node_to,node_from;
437
438 for(int i=0;i<ANN.get_ANN_size();i++){
439 ANN_weights.push_back(w_fill);
440 temp_node = ANN.get_node(i);
441 ANN_biases.push_back(temp_node.get_bias());
442 ANN_slopes.push_back(temp_node.get_slope());
443 }
444 for(int i=0;i<ANN.get_total_connections();i++){
445 temp_conn = ANN.get_connection(i);
446 node_to = temp_conn.get_node_to();
447 node_from = temp_conn.get_node_from();
448 temp_w = temp_conn.get_weight();
449 ANN_weights[node_from][node_to] = temp_w;

450 }
451 }
452
453 void show_ANN_matrix(){
454 int type1;
455 for(int i=0;i<ANN.get_ANN_size();i++){
456 node temp_node = ANN.get_node(i);
457 for(int j=0;j<ANN.get_ANN_size();j++){
458 cout<<ANN_weights[i][j]<<" \t";
459 }
460 cout<<" \t"<<ANN_biases[i];
461 //cout<<" \t"<<ANN_slopes[i];
462 type1 = temp_node.get_type1();
463 cout<<" \t";
464 if(type1 == 0)
465 cout<<"A";
466 else if (type1 == 1)
467 cout<<"B";
468 else if (type1 == 2)
469 cout<<"C";
470 else if (type1 == 3)
471 cout<<"D";
472 else if (type1 == 4)
473 cout<<"E";
474 else if (type1 == 5)
475 cout<<"F";
476 else if (type1 == 6)

126

12C:\Documents and Settings\...\evo_lib_omega4.h

477 cout<<"G";
478 else if (type1 == 7)
479 cout<<"H";
480 cout<<temp_node.get_type2()<<"-"<<temp_node.

get_type3()<<endl;
481 }
482 }
483 void break_node_off(int n){
484 ANN_biases[n] = 1000;
485 }
486 void break_node_on(int n){
487 ANN_biases[n] = -1000;
488 }
489 void break_connection(int i, int j){
490 ANN_weights[i][j] = 0;
491 }
492 float get_ANN_weight(int i, int j){
493 return(ANN_weights[i][j]);
494 }
495 float get_ANN_bias(int i){
496 return(ANN_biases[i]);
497 }
498 float get_ANN_slope(int i){
499 return(ANN_slopes[i]);
500 }
501 void Matlab_ANN(){
502 //This puts the matrix weights, biases, and

slopes into a Matlab script
503 //Rearanges the Matrix so inputs are first,

outputs are last, and hidden nodes are in between
504 float Matlab_weights[ANN.get_ANN_size()][ANN.

get_ANN_size()];
505 float Matlab_biases[ANN.get_ANN_size()];
506 float Matlab_slopes[ANN.get_ANN_size()];
507 vector< vector <int> > translation; //Holds the

old node number [0] and the new one [1] The [0] entry
 is just the index and isn't necessary, but it makes
it easier to decipher

508 node temp_node;
509 int temp_int;
510 float temp_float;
511 vector< int > temp_vect;
512 for(int i=0;i<ANN.get_ANN_size();i++){
513 temp_node = ANN.get_node(i);
514 if(temp_node.get_layer()== 'I'){
515 temp_int = translation.size();
516 temp_vect.push_back(temp_int);
517 temp_vect.push_back(i);
518 translation.push_back(temp_vect);
519 temp_vect.clear();
520 }
521 }

127

13C:\Documents and Settings\...\evo_lib_omega4.h

522 for(int i=0;i<ANN.get_ANN_size();i++){
523 temp_node = ANN.get_node(i);
524 if(temp_node.get_layer()== 'H'){
525 temp_int = translation.size();
526 temp_vect.push_back(temp_int);
527 temp_vect.push_back(i);
528 translation.push_back(temp_vect);
529 temp_vect.clear();
530 }
531 }
532 for(int i=0;i<ANN.get_ANN_size();i++){
533 temp_node = ANN.get_node(i);
534 if(temp_node.get_layer()== 'O'){
535 temp_int = translation.size();
536 temp_vect.push_back(temp_int);
537 temp_vect.push_back(i);
538 translation.push_back(temp_vect);
539 temp_vect.clear();
540 }
541 }
542 if(translation.size()!= ANN.get_ANN_size()){
543 cout<<"ERROR: The nodes were not recorded

properly"<<endl;
544 }
545 for(int i=0;i<translation.size();i++){
546 Matlab_biases[i] = ANN_biases[translation[i]

[1]];
547 Matlab_slopes[i] = ANN_slopes[translation[i]

[1]];
548 for(int j=0;j<translation.size();j++){
549 Matlab_weights[i][j] = ANN_weights

[translation[i][1]][translation[j][1]];
550 }
551 }
552
553 ofstream ANNfile("ANN.m");
554 ANNfile<<"W=[";
555 for(int i=0;i<translation.size();i++){
556 for(int j=0;j<translation.size();j++){
557 ANNfile<<Matlab_weights[i][j]<<" ";
558 }
559 ANNfile<<";";
560 }
561 ANNfile<<"]\n";
562 ANNfile<<"B=[";
563 for(int i=0;i<translation.size();i++){
564 ANNfile<<Matlab_biases[i]<<"; ";
565 }
566 ANNfile<<"]\n";
567 ANNfile<<"S=[";
568 for(int i=0;i<translation.size();i++){
569 ANNfile<<Matlab_slopes[i]<<"; ";

128

14C:\Documents and Settings\...\evo_lib_omega4.h

570 }
571 ANNfile<<"]\n";
572 }
573
574 void Matlab_ANN_growth(){
575 //This records the order and type of rules used

so the growth of the ANN can be seen
576
577 vector<float> Matlab_rules;
578 int action_nucleotide,action_value_nucleotide,

action_type,nodes_made,outputs_made,max_outputs;
579 float action_value;
580 int make_connection[] = {1,20};
581 int do_nothing[] = {21,35};
582 int end_turn[] = {36,50};
583 int make_node[] = {51,100};
584 int make_nodeH[] = {86,100};
585 nodes_made = 0;
586 outputs_made = 0;
587 max_outputs = 0;
588 node temp_node;
589
590 for(int i=0;i<ANN.get_ANN_size();i++){
591 temp_node = ANN.get_node(i);
592 if(temp_node.get_layer()== 'I'){
593 nodes_made++;
594 }
595 else if(temp_node.get_layer()== 'O'){
596 max_outputs++;
597 }
598 }
599
600 ofstream ANNfile("ANN_growth.m");
601 ANNfile<<"rules = [";
602 for(int i = 0; i<ruleset.size(); i++){
603 if(ruleset[i]!=-1){
604 if(ruleset[i+1]==-1){
605 action_nucleotide = genome[ruleset[i]

+4];
606 action_value_nucleotide = genome

[ruleset[i]+5];
607 if ((make_node[0]<=action_nucleotide)

&&(make_node[1]>=action_nucleotide)&&(outputs_made
<max_outputs)){

608 action_type = 0;

609 nodes_made++;
610 if ((make_nodeH[0]<=

action_nucleotide)&&(make_nodeH[1]>=
action_nucleotide)){

611 action_value = 2;
612 outputs_made++;

129

15C:\Documents and Settings\...\evo_lib_omega4.h

613 }
614 else {
615 action_value = 1;
616 }
617 }
618 else if ((make_connection[0]<=

action_nucleotide)&&(make_connection[1]>=
action_nucleotide)){

619 action_type = 1;
620 if(action_value_nucleotide >= 51)

{
621 action_value = float

(action_value_nucleotide-50.0)/50.0;
622 }
623 else{
624 action_value = float

(action_value_nucleotide-51.0)/50.0;
625 }
626 }
627 else if ((do_nothing[0]<=

action_nucleotide)&&(do_nothing[1]>=
action_nucleotide)){

628 //Do nothing
629 }
630 else {
631 action_type = 2;
632 action_value = random_int(1,

nodes_made);
633 }
634 ANNfile<<action_type<<" "<

<action_value<<";";
635 }
636 }
637 }
638 ANNfile<<"];\n";
639 }
640
641 void show_ANN_states(){
642 node temp_node;
643 for(int i=0;i<ANN.get_ANN_size();i++){
644 cout<<ANN.get_activation(i)<<" ";
645 }
646 cout<<endl;
647 }
648 void update_ANN(vector<float> input,bool learning,

float r_signal){
649 float unbounded_next,bias,slope,h_rate,r_rate,

old_weight,del_weight;
650 int node_to,node_from,activated_inputs;
651 int ANN_size = ANN.get_ANN_size();
652 int total_inputs = ANN.get_total_inputs();
653 vector<float> node_activation_levels(ANN_size,0.

130

16C:\Documents and Settings\...\evo_lib_omega4.h

0);
654 vector<float> new_activation_levels(ANN_size,0.0)

;
655 node temp_node;
656 connection temp_connection;
657 for(int i=0;i<ANN_size;i++){
658 node_activation_levels[i] = ANN.

get_activation(i);
659 }
660 activated_inputs = 0;
661 for(int i=0;i<ANN_size;i++){
662 assert(activated_inputs<=ANN.get_total_inputs

());
663 unbounded_next = 0;
664 temp_node = ANN.get_node(i);
665 bias = ANN_biases[i];
666 slope = ANN_slopes[i];
667 for(int j=0;j<ANN_size;j++){
668 unbounded_next = unbounded_next +

ANN_weights[j][i]*node_activation_levels[j];
669 }
670 if(temp_node.get_layer() == 'I'){//An input

stays unbounded
671 new_activation_levels[i] = unbounded_next

 + input[activated_inputs] - bias;
672 activated_inputs++;
673 }
674 else{
675 //new_activation_levels[i] = tanh(

(unbounded_next-bias)/(2*slope)); //For a range of -1
 to 1

676 //For digital nodes ranged 0 - 1
677 if(unbounded_next>bias){
678 new_activation_levels[i] = 1;
679 }
680 else{
681 new_activation_levels[i] = 0;
682 }
683 }
684 }
685 for(int i=0;i<ANN_size;i++){
686 ANN.set_activation(i,new_activation_levels

[i]);
687 }
688 if(!learning){
689 return; //Stops here so weights don't change
690 }
691 for(int i=0;i<ANN.get_total_connections();i++){
692 temp_connection = ANN.get_connection(i);
693 node_to = temp_connection.get_node_to();
694 node_from = temp_connection.get_node_from();
695 h_rate = temp_connection.get_Hebbian_rate();

131

17C:\Documents and Settings\...\evo_lib_omega4.h

696 r_rate = temp_connection.get_random_rate();
697 old_weight = temp_connection.get_weight();
698 ANN.set_reinforcement(r_signal);
699 del_weight = 0;
700 //Hebbian Learning
701 del_weight = (1-r_signal)*h_rate*fabs

(old_weight)*ANN.get_activation(node_from)*ANN.
get_activation(node_to);

702 //Random Reinforcement
703 del_weight = del_weight + (1-r_signal)*(1-

r_signal)*r_rate*fabs(old_weight)*random_float(-1,1);
704 ANN.set_weight(i,(old_weight-del_weight));
705 }
706 make_ANN_matrix();
707 //temp_connection = ANN.get_connection(0);
708 //cout<<"To: "<<temp_connection.get_node_to()<<"

From: "<<temp_connection.get_node_from();
709 //cout<<" Weight: "<<temp_connection.get_weight()

<<" H Rate: "<<temp_connection.get_Hebbian_rate()<
<endl;

710 }
711 void eval_XOR_logic(){
712 int no_of_inputs = 2;
713 float desired_no_of_outputs = 1;
714 float exponent = -1;
715 vector<int> connected_outputs;
716 connection test_conn;
717 node test_node;
718 vector<float> test_input(no_of_inputs,0);
719 bool learning = false;
720 float r_signal = 0;
721 int desired_answer;
722 //Tier 1 - check for number of outputs
723 if(ANN.get_total_outputs() == 0){
724 fitness = 0;
725 return;
726 }
727 exponent += ANN.get_total_outputs()/

desired_no_of_outputs;
728 if(exponent < 0){
729 fitness = pow(2.0,exponent);
730 return;
731 }
732 //Tier 2 - outputs with connections
733 for(int i=0;i<ANN.get_total_connections();i++){
734 test_conn = ANN.get_connection(i);
735 test_node = ANN.get_node(test_conn.

get_node_to());
736 if((test_node.get_layer()=='O')&&(!any

(connected_outputs,test_conn.get_node_to()))){
737 connected_outputs.push_back(test_conn.

get_node_to());

132

18C:\Documents and Settings\...\evo_lib_omega4.h

738 }
739 }
740 exponent += connected_outputs.size()/

desired_no_of_outputs;
741 if(exponent < 1){
742 fitness = pow(2.0,exponent);
743 return;
744 }
745 // Tier 3 - Logic test
746 for(int test_no = 0;test_no<pow(2.0,no_of_inputs)

;test_no++){
747 int2binary(test_no,test_input);
748 desired_answer = 0;
749 for(int i=0;i<test_input.size();i++){
750 if(test_input[i] == 1){
751 desired_answer++;
752 }
753 }
754 desired_answer = desired_answer%2;
755 for(float t=0;t<1;t+=0.01){
756 update_ANN(test_input,learning,r_signal);
757 }
758 for(int i=0;i<ANN.get_ANN_size();i++){
759 test_node = ANN.get_node(i);
760 if(test_node.get_layer()=='O'){
761 if(within_range(0.01,ANN.

get_activation(i),desired_answer)){
762 exponent++;
763 }
764 break;
765 }
766 }
767 }
768 fitness = pow(2.0,exponent);
769 }
770
771 void eval_robustness(){
772 //Tier 4 test - remove nodes until logic fails
773 int no_of_inputs = 2;
774 int no_of_outputs = 1;
775 node test_node;
776 float exponent;
777 float tier_4_exponent = 1 + pow(2.0,no_of_inputs)

;
778 if(fitness < pow(2.0,tier_4_exponent)){
779 return;
780 }
781 int node_break;
782 vector<int> broken_nodes;
783 broken_nodes.clear();
784 bool keep_breaking_nodes = true;
785 vector<float> test_input(no_of_inputs,0);

133

19C:\Documents and Settings\...\evo_lib_omega4.h

786 int desired_answer;
787 bool learning = false;
788 float r_signal = 0;
789
790 for(int i=0;i<ANN.get_ANN_size();i++){
791 node test_node = ANN.get_node(i);
792 if((test_node.get_layer()=='I')|(test_node.

get_layer()=='O')){
793 broken_nodes.push_back(i);
794 }
795 }
796
797 while((keep_breaking_nodes)&&(broken_nodes.size()

<ANN.get_ANN_size())){
798 node_break = random_int(0,ANN.get_ANN_size()-

1,broken_nodes);
799 break_node_off(node_break);
800 broken_nodes.push_back(node_break);
801 //print_vector(broken_nodes);
802 //Logic retested
803 for(int test_no = 0;test_no<pow(2.0,

no_of_inputs);test_no++){
804 int2binary(test_no,test_input);
805 desired_answer = 0;
806 for(int i=0;i<test_input.size();i++){
807 if(test_input[i] == 1){
808 desired_answer++;
809 }
810 }
811 desired_answer = desired_answer%2;

812 for(float t=0;t<1;t+=0.01){
813 update_ANN(test_input,learning,

r_signal);
814 }
815 for(int i=0;i<ANN.get_ANN_size();i++){
816 test_node = ANN.get_node(i);
817 if(test_node.get_layer()=='O'){
818 if(!within_range(0.01,ANN.

get_activation(i),desired_answer)){
819 keep_breaking_nodes = false;
820 broken_nodes.pop_back();
821 }
822 break;
823 }
824 }
825 }
826 }
827
828 make_ANN_matrix(); //Rebuilds ANN
829 //print_vector(broken_nodes);
830 //cout<<"ANN size ="<<ANN.get_ANN_size()<<endl;

134

20C:\Documents and Settings\...\evo_lib_omega4.h

831 //indy.show_ANN_matrix();
832 exponent = float(broken_nodes.size()-

(no_of_inputs+no_of_outputs))/ANN.get_ANN_size();
833 //cout<<"exponent = "<<exponent<<endl;
834 fitness = pow(2.0,(tier_4_exponent + 2*exponent))

;
835 if(fitness > pow(2.0,(tier_4_exponent + 2))){ //

Sometimes, a bug makes the fitness go to infinity.
This is a fix

836 fitness = 0;
837 }
838 }
839 //---

840 };
841
842 //-------------------------End of Individual class-------

843
844
845 //-------------------------GENERATE_NEW_INDIVIDUALS------

846 void generate_random(vector<individual>& Ark,int l, int

gen)
847 {
848 int Ark_size = Ark.size();
849 Ark.push_back(individual());
850 int subject = Ark_size;
851 Ark[Ark_size].generate_random_private(l,gen,subject);
852 }
853
854 void generate_designed(vector<individual>& Ark,int arr[],

 int gen)
855 {
856 int Ark_size = Ark.size();
857 Ark.push_back(individual());
858 int subject = Ark_size;
859 Ark[Ark_size].generate_designed_private(arr,gen,

subject);
860 }
861
862 void generate_designed(vector<individual>& Ark,vector

<int> arr, int gen)
863 {
864 int Ark_size = Ark.size();
865 Ark.push_back(individual());
866 int subject = Ark_size;
867 Ark[Ark_size].generate_designed_private(arr,gen,

subject);
868 }
869
870 void generate_satellite(vector<individual>& Ark,int arr[]

135

21C:\Documents and Settings\...\evo_lib_omega4.h

,int gen,int subject)
871 {
872 int Ark_size = Ark.size();
873 Ark.push_back(individual());
874 Ark[Ark_size].generate_designed_private(arr,gen,

subject);
875 }
876
877 void generate_satellite(vector<individual>& Ark,vector

<int> arr,int gen,int subject)
878 {
879 int Ark_size = Ark.size();
880 Ark.push_back(individual());
881 Ark[Ark_size].generate_designed_private(arr,gen,

subject);
882 }
883
884 void generate_reduced(vector<individual>& Ark,vector<int>

 arr,int gen,int parent)
885 {
886 int Ark_size = Ark.size();
887 Ark.push_back(individual());
888 int subject = Ark_size;
889 Ark[Ark_size].generate_reduced_private(arr,gen,

subject,parent);
890 }
891
892 void mutator(vector<int>& genome, vector<int> genome2,

float mu, float p_mu, float c_mu, float r_mu, float
d_mu, float t_mu)

893 {
894 vector<int> proto_genome;
895 vector<int> codon;
896 int skip_to_codon = 0;
897 vector< vector<int> > translocated_codons;
898 vector<int> translocation_codon_numbers;
899 float x,y;
900 int start,stop,temp_int; //Start and stop FRAME

numbers
901 float mu_point_mutation, mu_recopy, mu_deletion,

mu_conjugation, mu_translocation;
902
903 //If there is a mutation within the codon, odds of

that mutation being of this given type
904 mu_point_mutation = p_mu; //Make sure
905 mu_conjugation = c_mu; //these add
906 mu_recopy = r_mu; //up to 1.0
907 mu_deletion = d_mu;
908 mu_translocation = t_mu;
909 for(int i=0;i<genome.size();i+=6){
910 for(int j=0;j<6;j++){
911 if((i+j)<genome.size()){

136

22C:\Documents and Settings\...\evo_lib_omega4.h

912 codon.push_back(genome[i+j]);
913 }
914 else{ //Fills genome with dummy nucleotides

if genome is too short
915 codon.push_back(100);
916 }
917 }
918 x = rand();
919 y = x/RAND_MAX;
920 if(i<(skip_to_codon*6)){
921 codon.clear();
922 }
923 else if(y > mu){
924 for(int j=0;j<6;j++){
925 proto_genome.push_back(codon[j]);
926 }
927 codon.clear();
928 }
929 else{ //Perform a mutation
930 y = y/mu; // y is now a random number between

 0 and 1
931 if(y <= mu_point_mutation){
932 //This will change exactly one nucleotide

 within the reading frame
933 vector<int> old_nuc;
934 int change_nuc;
935 change_nuc = random_int(0,5);
936 old_nuc.push_back(codon[change_nuc]);
937 codon[change_nuc] = random_int(1,100,

old_nuc);
938 for(int j=0;j<6;j++){
939 proto_genome.push_back(codon[j]);
940 }
941 codon.clear();
942 }
943 else if(y < (mu_point_mutation+

mu_conjugation)){
944 //This will insert a section from the

secondary parent
945 int lowest, highest;
946 lowest = 0;
947 highest = int((genome2.size())/6);
948 start = random_int(lowest,highest);
949 stop = random_int(start,highest);
950 for(int j=(start*6);j<(stop*6);j++){
951 proto_genome.push_back(genome2[j]);
952 }
953 for(int j=0;j<6;j++){
954 proto_genome.push_back(codon[j]);
955 }
956 codon.clear();
957 }

137

23C:\Documents and Settings\...\evo_lib_omega4.h

958 else if(y < (mu_point_mutation+mu_conjugation
+mu_recopy)){

959 //This will duplicate a section of the
genome

960 start = i/6;
961 stop = random_int(start,int(genome.size()

/6));
962 for(int j=(start*6);j<(stop*6);j++){
963 proto_genome.push_back(genome[j]);
964 }
965 for(int j=0;j<6;j++){
966 proto_genome.push_back(codon[j]);
967 }
968 codon.clear();
969 }
970 else if(y < (mu_point_mutation+mu_conjugation

+mu_recopy+mu_deletion)){
971 //This will delete a section of the

genome
972 start = i/6;
973 skip_to_codon = random_int(start,int

(genome.size()/6));
974 codon.clear();
975 }
976 else if(y <= (mu_point_mutation+

mu_conjugation+mu_recopy+mu_deletion+
mu_translocation)){

977 //This will delete a section of the
genome and save for later insertion

978 start = i/6;
979 skip_to_codon = random_int(start,int

(genome.size()/6));
980 for(int j=((start+1)*6);j<(skip_to_codon*

6);j++){
981 codon.push_back(genome[j]);
982 }
983 translocated_codons.push_back(codon);
984 codon.clear();
985 }
986 }
987 }
988 genome.clear();
989 int counter = 0;
990 while((counter<translocated_codons.size())&&

(translocation_codon_numbers.size()<=int(proto_genome
.size()/6))){

991 temp_int = random_int(0,int(proto_genome.size()/
6),translocation_codon_numbers);

992 translocation_codon_numbers.push_back(temp_int);
993 counter++;
994 }
995 //If the genome is too short, this check will delete

138

24C:\Documents and Settings\...\evo_lib_omega4.h

extra translocations
996 if(translocation_codon_numbers.size()

<translocated_codons.size()){
997 translocated_codons.resize

(translocation_codon_numbers.size());
998 }
999 for(int i=0;i<proto_genome.size();i++){

1000 if((i%6 == 0)&&any(translocation_codon_numbers,
int(i/6))){

1001 for(int j=0;j<translocation_codon_numbers.
size();j++){

1002 if((i/6) == translocation_codon_numbers
[j]){

1003 temp_int = j;
1004 }
1005 }
1006 for(int j=0;j<translocated_codons[temp_int].

size();j++){
1007 genome.push_back(translocated_codons

[temp_int][j]);
1008 }
1009 }
1010 genome.push_back(proto_genome[i]);
1011 }
1012 for(int i=0;i<translocation_codon_numbers.size();i++)

{
1013 //Inserts translocations
1014 if(translocation_codon_numbers[i] == int

(proto_genome.size()/6)){
1015 for(int j=0;j<translocated_codons[i].size();j

++){
1016 genome.push_back(translocated_codons[i]

[j]);
1017 }
1018 }
1019 }
1020 if(genome.size()<6){
1021 for(int i=genome.size(); i<6; i++){
1022 genome.push_back(100);
1023 }
1024 }
1025 if (genome.size()>600)
1026 genome.resize(300);
1027 /*
1028 for(int i = 0;i<genome.size();i++)
1029 cout<<genome[i]<<" ";
1030 cout<<endl;
1031 */
1032 }
1033
1034 void focused_mutator(vector<int>& genome, vector<int>

genome2, float mu, float p_mu, float c_mu, float r_mu

139

25C:\Documents and Settings\...\evo_lib_omega4.h

, float d_mu, float t_mu)
1035 {
1036 vector<int> proto_genome;
1037 vector<int> codon;
1038 int skip_to_codon = 0;
1039 vector< vector<int> > translocated_codons;
1040 vector<int> translocation_codon_numbers;
1041 float x,y;
1042 int start,stop,temp_int; //Start and stop FRAME

numbers
1043 float mu_point_mutation, mu_recopy, mu_deletion,

mu_conjugation, mu_translocation;
1044 bool connection_codon;
1045 int make_connection[] = {1,25};
1046 int action_nucleotide;
1047 //If there is a mutation within the codon, odds of

that mutation being of this given type
1048 mu_point_mutation = p_mu; //Make sure
1049 mu_conjugation = c_mu; //these add
1050 mu_recopy = r_mu; //up to 1.0
1051 mu_deletion = d_mu;
1052 mu_translocation = t_mu;
1053 for(int i=0;i<genome.size();i+=6){
1054 for(int j=0;j<6;j++){
1055 if((i+j)<genome.size()){
1056 codon.push_back(genome[i+j]);
1057 }
1058 else{ //Fills genome with dummy nucleotides

if genome is too short
1059 codon.push_back(100);
1060 }
1061 if(j==5){
1062 action_nucleotide = genome[i+j];
1063 }
1064 }
1065 connection_codon = false;
1066 if((make_connection[0]<=action_nucleotide)&&

(make_connection[1]>=action_nucleotide)){
1067 connection_codon = true;
1068 }
1069 x = rand();
1070 y = x/RAND_MAX;
1071 if(i<(skip_to_codon*6)){
1072 codon.clear();
1073 }
1074 else if(y > mu){
1075 for(int j=0;j<6;j++){
1076 proto_genome.push_back(codon[j]);
1077 }
1078 codon.clear();
1079 }
1080 else{ //Perform a mutation

140

26C:\Documents and Settings\...\evo_lib_omega4.h

1081
1082 //The following will always mutate a

connection weight
1083 if(connection_codon){
1084 codon[5] = random_int(1,100);
1085 }
1086
1087 y = y/mu; // y is now a random number between

 0 and 1
1088 if(y <= mu_point_mutation){
1089 //This will change exactly one nucleotide

 within the reading frame
1090 vector<int> old_nuc;
1091 int change_nuc;
1092 change_nuc = random_int(0,5);
1093 old_nuc.push_back(codon[change_nuc]);
1094 codon[change_nuc] = random_int(1,100,

old_nuc);
1095 for(int j=0;j<6;j++){
1096 proto_genome.push_back(codon[j]);
1097 }
1098 codon.clear();
1099 }
1100 else if(y < (mu_point_mutation+

mu_conjugation)){
1101 //This will insert a section from the

secondary parent
1102 int lowest, highest;
1103 lowest = 0;
1104 highest = int((genome2.size())/6);
1105 start = random_int(lowest,highest);
1106 stop = random_int(start,highest);
1107 for(int j=(start*6);j<(stop*6);j++){
1108 proto_genome.push_back(genome2[j]);
1109 }
1110 for(int j=0;j<6;j++){
1111 proto_genome.push_back(codon[j]);
1112 }
1113 codon.clear();
1114 }
1115 else if(y < (mu_point_mutation+mu_conjugation

+mu_recopy)){
1116 //This will duplicate a section of the

genome
1117 start = i/6;
1118 stop = random_int(start,int(genome.size()

/6));
1119 for(int j=(start*6);j<(stop*6);j++){
1120 proto_genome.push_back(genome[j]);
1121 }
1122 for(int j=0;j<6;j++){
1123 proto_genome.push_back(codon[j]);

141

27C:\Documents and Settings\...\evo_lib_omega4.h

1124 }
1125 codon.clear();
1126 }
1127 else if(y < (mu_point_mutation+mu_conjugation

+mu_recopy+mu_deletion)){
1128 //This will delete a section of the

genome
1129 start = i/6;
1130 skip_to_codon = random_int(start,int

(genome.size()/6));
1131 codon.clear();
1132 }
1133 else if(y <= (mu_point_mutation+

mu_conjugation+mu_recopy+mu_deletion+
mu_translocation)){

1134 //This will delete a section of the
genome and save for later insertion

1135 start = i/6;
1136 skip_to_codon = random_int(start,int

(genome.size()/6));
1137 for(int j=((start+1)*6);j<(skip_to_codon*

6);j++){
1138 codon.push_back(genome[j]);
1139 }
1140 translocated_codons.push_back(codon);
1141 codon.clear();
1142 }
1143 }
1144 }
1145 genome.clear();
1146 int counter = 0;
1147 while((counter<translocated_codons.size())&&

(translocation_codon_numbers.size()<=int(proto_genome
.size()/6))){

1148 temp_int = random_int(0,int(proto_genome.size()/
6),translocation_codon_numbers);

1149 translocation_codon_numbers.push_back(temp_int);
1150 counter++;
1151 }
1152 //If the genome is too short, this check will delete

extra translocations
1153 if(translocation_codon_numbers.size()

<translocated_codons.size()){
1154 translocated_codons.resize

(translocation_codon_numbers.size());
1155 }
1156 for(int i=0;i<proto_genome.size();i++){
1157 if((i%6 == 0)&&any(translocation_codon_numbers,

int(i/6))){
1158 for(int j=0;j<translocation_codon_numbers.

size();j++){
1159 if((i/6) == translocation_codon_numbers

142

28C:\Documents and Settings\...\evo_lib_omega4.h

[j]){
1160 temp_int = j;
1161 }
1162 }
1163 for(int j=0;j<translocated_codons[temp_int].

size();j++){
1164 genome.push_back(translocated_codons

[temp_int][j]);
1165 }
1166 }
1167 genome.push_back(proto_genome[i]);
1168 }
1169 for(int i=0;i<translocation_codon_numbers.size();i++)

{
1170 //Inserts translocations
1171 if(translocation_codon_numbers[i] == int

(proto_genome.size()/6)){
1172 for(int j=0;j<translocated_codons[i].size();j

++){
1173 genome.push_back(translocated_codons[i]

[j]);
1174 }
1175 }
1176 }
1177 if(genome.size()<6){
1178 for(int i=genome.size(); i<6; i++){
1179 genome.push_back(100);
1180 }
1181 }
1182 if (genome.size()>600)
1183 genome.resize(300);
1184 /*
1185 for(int i = 0;i<genome.size();i++)
1186 cout<<genome[i]<<" ";
1187 cout<<endl;
1188 */
1189 }
1190
1191 void reduce_genome(vector<int>& genome,vector< vector

<int> > rule_table){
1192 //This operation will reduce the genome into the

rules that actually produced the ANN
1193 vector <int> new_genome;
1194 int reading_frame,temp_int;
1195 for(int i=0;i<rule_table.size();i++){
1196 for(int j=0;j<rule_table[i].size();j++){
1197 reading_frame = rule_table[i][j];
1198 for(int k=0;k<6;k++){
1199 if(k==0){
1200 new_genome.push_back(1); //

Homogenizes IF's
1201 }

143

29C:\Documents and Settings\...\evo_lib_omega4.h

1202 else{
1203 new_genome.push_back(genome

[reading_frame+k]);
1204 }
1205 }
1206 }
1207 for(int k=0;k<6;k++){ //Ends Gene
1208 new_genome.push_back(100);
1209 }
1210 }
1211 genome.clear();
1212 genome = new_genome;
1213 if(genome.size()<6){
1214 for(int i=genome.size(); i<6; i++){
1215 genome.push_back(100);
1216 }
1217 }
1218 //print_vector(new_genome);
1219 }
1220
1221 void generate_offspring(vector<individual>& Ark,vector

<int> arr,int indy1,int indy2,int gen)
1222 {
1223 int Ark_size = Ark.size();
1224 Ark.push_back(individual());
1225 int subject = Ark_size;
1226 Ark[Ark_size].generate_offspring_private(arr,gen,

subject,indy1,indy2);
1227 }
1228
1229
1230 //---

1231 //------------------------------MAKE_PROTEIN-------------

1232 //---

1233 //The script that transform the genome into proteins/

programs
1234 void make_protein(individual indy,int no_of_inputs,int

outputs,int max_conns,int rank_no){
1235 int genome_length = indy.get_genome_length();
1236 int l,openifs,g;
1237 vector<int> genome;
1238 for(int i=0;i<genome_length;i++){
1239 g = indy.get_genome(i);
1240 genome.push_back(g);
1241 }
1242 string filename1= "/scratch/"+indy.get_fcall();
1243 char *filename2;
1244 filename2 = &filename1[0];
1245 ofstream file(filename2);

144

30C:\Documents and Settings\...\evo_lib_omega4.h

1246 //--------------Protien Primer-----------------------

1247 file << "#include <iostream>\n";
1248 file << "#include <fstream>\n";
1249 file << "#include <vector>\n";
1250 file << "#include <string>\n";
1251 file << "#include <sstream>\n";
1252 file << "#include <ctime>\n";
1253 file << "#include <math.h>\n";
1254 file << "#include \"chimera_lib.h\"\n";
1255 file << "#include \"node_lib_omega4.h\"\n"; //WILL

HAVE TO CHANGE THIS LINE TO MATCH VERSION
1256 file << "using namespace std;\n";
1257 file << "int main()\n{\n";
1258 file << "neural_net ANN;\n";
1259 file << "string rules;\n";
1260 file << "int no_of_inputs = "<<no_of_inputs<<";\n";
1261 file << "int Max_Outputs = "<<outputs<<";\n";
1262 file << "int Max_Connections = "<<max_conns<<";\n";
1263 file << "int ANN_Size;\n";
1264 file << "float bias,weight;\n";
1265 file << "int NodeA_type1,NodeA_type2,NodeA_type3,

NodeA_bias,NodeA_nodes_made,NodeA_inputs,
NodeA_outputs;\n";

1266 file << "int NodeB_type1,NodeB_type2,NodeB_type3,
NodeB_bias,NodeB_nodes_made,NodeB_inputs,
NodeB_outputs;\n";

1267 file << "int relAB_type1,relAB_type2,relAB_type3,
relAB_bias,relAB_nodes_made,relAB_inputs,
relAB_outputs,relAB_connection;\n";

1268 file << "int relBA_type1,relBA_type2,relBA_type3,
relBA_bias,relBA_nodes_made,relBA_inputs,
relBA_outputs,relBA_connection;\n";

1269 file << "bool keep_going=true;\n";
1270 file << "bool turn_over=false;\n";
1271 file << "int no_of_outputs = 0;\n";
1272 file << "int energy_units = 200;\n";
1273 // For looped input creation
1274 file << "for(int i=0;i<no_of_inputs;i++) \n" ;
1275 file << "ANN.make_input(0);\n";
1276 file << "while(keep_going && energy_units > 0){\n";
1277 file << "keep_going = false;\n";
1278 file << "ANN_Size = ANN.get_ANN_size();\n";
1279 file << "for(int i=0;i<ANN_Size;i++){\n";
1280 file << "turn_over = false;\n";
1281 file << "node NodeA = ANN.get_node(i);\n";
1282 file << "NodeA_type1 = NodeA.get_type1();\n";
1283 file << "NodeA_type2 = NodeA.get_type2();\n";
1284 file << "NodeA_type3 = NodeA.get_type3();\n";
1285 //Need to change bias into an integer
1286 file << "bias = NodeA.get_bias();\n";
1287 file << "if(bias>0){\n";

145

31C:\Documents and Settings\...\evo_lib_omega4.h

1288 file << "NodeA_bias = int(50*bias+50+0.5);\n}\nelse{\
n";

1289 file << "NodeA_bias = int(50*bias+51+0.5);\n}\n";
1290 file << "NodeA_nodes_made = NodeA.get_nodes_made();\n

";
1291 file << "NodeA_inputs = ANN.get_inputs_to(i);\n";
1292 file << "NodeA_outputs = ANN.get_outputs_from(i);\n";
1293 file << "for(int j=0;j<ANN_Size;j++){\n";
1294 file << "node NodeB = ANN.get_node(j);\n";
1295 file << "if(turn_over)\n";
1296 file << "break;\n";
1297 file << "NodeB_type1 = NodeB.get_type1();\n";
1298 file << "NodeB_type2 = NodeB.get_type2();\n";
1299 file << "NodeB_type3 = NodeB.get_type3();\n";
1300 //Need to change bias into an integer
1301 file << "bias = NodeB.get_bias();\n";
1302 file << "if(bias>0){\n";
1303 file << "NodeB_bias = int(50*bias+50+0.5);\n}\nelse{\

n";
1304 file << "NodeB_bias = int(50*bias+51+0.5);\n}\n";
1305 file << "NodeB_nodes_made = NodeB.get_nodes_made();\n

";
1306 file << "NodeB_inputs = ANN.get_inputs_to(j);\n";
1307 file << "NodeB_outputs = ANN.get_outputs_from(j);\n";
1308 file << "relAB_type1 = NodeA_type1 - NodeB_type1;\n";
1309 file << "relAB_type2 = NodeA_type2 - NodeB_type2;\n";
1310 file << "relAB_type3 = NodeA_type3 - NodeB_type3;\n";
1311 file << "relAB_bias = NodeA_bias - NodeB_bias;\n";
1312 file << "relAB_nodes_made = NodeA_nodes_made -

NodeB_nodes_made;\n";
1313 file << "relAB_inputs = NodeB_inputs - NodeA_inputs;\

n";
1314 file << "relAB_outputs = NodeB_outputs -

NodeA_outputs;\n";
1315 file << "weight = ANN.get_connection_weight(i,j);\n";
1316 file << "if(weight>0){\n";
1317 file << "relAB_connection = int(50*weight+50+0.5);\n}

\nelse{\n";
1318 file << "relAB_connection = int(50*weight+51+0.5);\n}

\n";
1319 file << "relBA_type1 = NodeB_type1 - NodeA_type1;\n";
1320 file << "relBA_type2 = NodeB_type2 - NodeA_type2;\n";
1321 file << "relBA_type3 = NodeB_type3 - NodeA_type3;\n";
1322 file << "relBA_bias = NodeB_bias - NodeA_bias;\n";
1323 file << "relBA_nodes_made = NodeB_nodes_made -

NodeA_nodes_made;\n";
1324 file << "relBA_inputs = NodeA_inputs - NodeB_inputs;\

n";
1325 file << "relBA_outputs = NodeA_outputs -

NodeB_outputs;\n";
1326 file << "weight = ANN.get_connection_weight(j,i);\n";
1327 file << "if(weight>0){\n";

146

32C:\Documents and Settings\...\evo_lib_omega4.h

1328 file << "relBA_connection = int(50*weight+50+0.5);\n}
\nelse{\n";

1329 file << "relBA_connection = int(50*weight+51+0.5);\n}
\n";

1330
1331 //---

1332 openifs = 0;
1333 int if_struct_nucleotide;
1334 int criterion_nucleotide;
1335 int test_value_nucleotide;
1336 int test_range_nucleotide;
1337 int action_nucleotide;
1338 int action_value_nucleotide;
1339 vector<string> action_stack;
1340 vector<int> rule_stack;
1341 l = genome_length - (genome_length%6);
1342 bool action_commented;
1343 for(int i=0;i<l;i+=6){
1344 if_struct_nucleotide = genome[i];
1345 criterion_nucleotide = genome[i+1];
1346 test_value_nucleotide = genome[i+2];
1347 test_range_nucleotide = genome[i+3];
1348 action_nucleotide = genome[i+4];
1349 action_value_nucleotide = genome[i+5];
1350 //----------------IF STRUCTURE ALGORITHM---------

1351
1352 int make_if[] = {1,38};
1353 int make_end_if[] = {39,54};
1354 int make_end_end_if[] = {55,70};
1355 int make_end[] = {71,80};
1356 int make_end_end[] = {81,90};
1357 int make_end_all[] = {91,100};
1358
1359 if ((make_if[0]<=if_struct_nucleotide)&&(make_if

[1]>=if_struct_nucleotide)){
1360 action_commented = false;
1361 file <<"if(";
1362 openifs++;
1363 }
1364 else if ((make_end_if[0]<=if_struct_nucleotide)&&

(make_end_if[1]>=if_struct_nucleotide)){
1365 action_commented = false;
1366 if(openifs == 0){
1367 file <<" if(";
1368 openifs++;
1369 }
1370 else{
1371 file << action_stack.back();
1372 file << "if(turn_over){\n";
1373 file << "rules = rules + \"";

147

33C:\Documents and Settings\...\evo_lib_omega4.h

1374 for (int j=0;j<rule_stack.size();j++){
1375 file << int2string(rule_stack[j]) + "

 ";
1376 }
1377 file << "-1 \\n\";\n";
1378 file << "break;\n}\n";
1379 action_stack.pop_back();
1380 file<<"/*";
1381 for(int j=0;j<rule_stack.size();j++)
1382 file << rule_stack[j]<<" ";
1383 file<<"*/";
1384 rule_stack.pop_back();
1385 //file << "}//stack is "<<action_stack.

size()<<"\n if(";
1386 file << "}\n if(";
1387 }
1388 }
1389 else if((make_end_end_if[0]<=

if_struct_nucleotide)&&(make_end_end_if[1]>=
if_struct_nucleotide)){

1390 action_commented = false;
1391 if(openifs == 0){
1392 file <<" if(";
1393 openifs++;
1394 }
1395 else if(openifs == 1){
1396 file << action_stack.back();
1397 file << "if(turn_over){\n";
1398 file << "rules = rules + \"";
1399 for (int j=0;j<rule_stack.size();j++){
1400 file << int2string(rule_stack[j]) + "

 ";
1401 }
1402 file << "-1 \\n\";\n";
1403 file << "break;\n}\n";
1404 action_stack.pop_back();
1405 file<<"/*";
1406 for(int j=0;j<rule_stack.size();j++)
1407 file << rule_stack[j]<<" ";
1408 file<<"*/";
1409 rule_stack.pop_back();
1410 //file << "}//stack is "<<action_stack.

size()<<"\n if(";
1411 file << "}\n if(";
1412 }
1413 else{
1414 file << action_stack.back();
1415 file << "if(turn_over){\n";
1416 file << "rules = rules + \"";
1417 for (int j=0;j<rule_stack.size();j++){
1418 file << int2string(rule_stack[j]) + "

 ";

148

34C:\Documents and Settings\...\evo_lib_omega4.h

1419 }
1420 file << "-1 \\n\";\n";
1421 file << "break;\n}\n";
1422 action_stack.pop_back();
1423 file<<"/*";
1424 for(int j=0;j<rule_stack.size();j++)
1425 file << rule_stack[j]<<" ";
1426 file<<"*/";
1427 rule_stack.pop_back();
1428 //file << "}//stack is "<<action_stack.

size()<<"\n";
1429 file << "}\n";
1430 file << action_stack.back();
1431 file << "if(turn_over){\n";
1432 file << "rules = rules + \"";
1433 for (int j=0;j<rule_stack.size();j++){
1434 file << int2string(rule_stack[j]) + "

 ";
1435 }
1436 file << "-1 \\n\";\n";
1437 file << "break;\n}\n";
1438 action_stack.pop_back();
1439 file<<"/*";
1440 for(int j=0;j<rule_stack.size();j++)
1441 file << rule_stack[j]<<" ";
1442 file<<"*/";
1443 rule_stack.pop_back();
1444 //file << "}//stack is "<<action_stack.

size()<<"\n if(";
1445 file << "}\n if(";
1446 openifs--;
1447 }
1448 }
1449 else if((make_end_all[0]<=if_struct_nucleotide)&&

(make_end_all[1]>=if_struct_nucleotide)){
1450 action_commented = true;
1451 if(openifs == 0)
1452 file <<"//";
1453 else{
1454 for(int j=0;j<openifs;j++){
1455 file << action_stack.back();
1456 file << "if(turn_over){\n";
1457 file << "rules = rules + \"";
1458 for (int k=0;k<rule_stack.size();k++)

{
1459 file << int2string(rule_stack[k])

 + " ";
1460 }
1461 file << "-1 \\n\";\n";
1462 file << "break;\n}\n";
1463 action_stack.pop_back();
1464 file<<"/*";

149

35C:\Documents and Settings\...\evo_lib_omega4.h

1465 for(int k=0;k<rule_stack.size();k++)
1466 file << rule_stack[k]<<" ";
1467 file<<"*/";
1468 rule_stack.pop_back();
1469 //file << "}//stack is "<

<action_stack.size()<<"\n";
1470 file << "}\n";
1471 }
1472 file << "// FORCED END OF GENE stack size

 is "<<action_stack.size()<<".";
1473 openifs = 0;
1474 }
1475 }
1476
1477 else if((make_end[0]<=if_struct_nucleotide)&&

(make_end[1]>=if_struct_nucleotide)){
1478 action_commented = true;
1479 if(openifs == 0)
1480 file <<"//";
1481 else {
1482 file << action_stack.back();
1483 file << "if(turn_over){\n";
1484 file << "rules = rules + \"";
1485 for (int j=0;j<rule_stack.size();j++){
1486 file << int2string(rule_stack[j]) + "

 ";
1487 }
1488 file << "-1 \\n\";\n";
1489 file << "break;\n}\n";
1490 action_stack.pop_back();
1491 file<<"/*";
1492 for(int j=0;j<rule_stack.size();j++)
1493 file << rule_stack[j]<<" ";
1494 file<<"*/";
1495 rule_stack.pop_back();
1496 //file << "}//stack is "<<action_stack.

size()<<"\n //";
1497 file << "}\n //";
1498 openifs = openifs - 1;
1499 }
1500 }
1501 else if((make_end_end[0]<=if_struct_nucleotide)&&

(make_end_end[1]>=if_struct_nucleotide)){
1502 action_commented = true;
1503 if(openifs == 0)
1504 file <<"//";
1505 else if(openifs == 1){
1506 file << action_stack.back();
1507 file << "if(turn_over){\n";
1508 file << "rules = rules + \"";
1509 for (int j=0;j<rule_stack.size();j++){
1510 file << int2string(rule_stack[j]) + "

150

36C:\Documents and Settings\...\evo_lib_omega4.h

 ";
1511 }
1512 file << "-1 \\n\";\n";
1513 file << "break;\n}\n";
1514 action_stack.pop_back();
1515 file<<"/*";
1516 for(int j=0;j<rule_stack.size();j++)
1517 file << rule_stack[j]<<" ";
1518 file<<"*/";
1519 rule_stack.pop_back();
1520 //file << "}//stack is "<<action_stack.

size()<<"\n //";
1521 file << "}\n //";
1522 openifs = 0;
1523 }
1524 else{
1525 action_commented = true;
1526 file << action_stack.back();
1527 file << "if(turn_over){\n";
1528 file << "rules = rules + \"";
1529 for (int j=0;j<rule_stack.size();j++){
1530 file << int2string(rule_stack[j]) + "

 ";
1531 }
1532 file << "-1 \\n\";\n";
1533 file << "break;\n}\n";
1534 action_stack.pop_back();
1535 file<<"/*";
1536 for(int j=0;j<rule_stack.size();j++)
1537 file << rule_stack[j]<<" ";
1538 file<<"*/";
1539 rule_stack.pop_back();
1540 //file << "}//stack is "<<action_stack.

size()<<"\n";
1541 file << "}\n";
1542 file << action_stack.back();
1543 file << "if(turn_over){\n";
1544 file << "rules = rules + \"";
1545 for (int j=0;j<rule_stack.size();j++){
1546 file << int2string(rule_stack[j]) + "

 ";
1547 }
1548 file << "-1 \\n\";\n";
1549 file << "break;\n}\n";
1550 action_stack.pop_back();
1551 file<<"/*";
1552 for(int j=0;j<rule_stack.size();j++)
1553 file << rule_stack[j]<<" ";
1554 file<<"*/";
1555 rule_stack.pop_back();
1556 //file << "//stack is "<<action_stack.

size()<<"\n //";

151

37C:\Documents and Settings\...\evo_lib_omega4.h

1557 file << "}\n //";
1558 openifs = openifs - 2;
1559 }
1560 }
1561 else {
1562 cout<<indy.get_fcall()<<" ";
1563 cout<<"If structure did not use the following

 nucleotide: "<<if_struct_nucleotide<<endl;
1564 }
1565
1566 //cout<<if_struct_nucleotide<<"\t";
1567 //----------------------- TEST PRIMER -----------

1568 file << "abs(";
1569
1570 //---------CRITERION AND VALUE SET UP ALGORITHM--

1571
1572 int NodeA_Type1[] = {1,5};
1573 int NodeA_Type2[] = {6,10};
1574 int NodeA_Type3[] = {11,14};
1575 int NodeA_Bias[] = {15,17};
1576 int NodeA_nodes_made[] = {18,20};
1577 int NodeA_inputs[] = {21,23};
1578 int NodeA_outputs[] = {24,26};
1579
1580
1581 int NodeB_Type1[] = {27,31};
1582 int NodeB_Type2[] = {32,36};
1583 int NodeB_Type3[] = {37,40};
1584 int NodeB_Bias[] = {41,43};
1585 int NodeB_nodes_made[] = {44,46};
1586 int NodeB_inputs[] = {47,49};
1587 int NodeB_outputs[] = {50,52};
1588
1589 int RelAB_Type1[] = {53,55};
1590 int RelAB_Type2[] = {56,58};
1591 int RelAB_Type3[] = {59,61};
1592 int RelAB_Bias[] = {62,64};
1593 int RelAB_nodes_made[] = {65,67};
1594 int RelAB_inputs[] = {68,70};
1595 int RelAB_outputs[] = {71,73};
1596 int RelAB_connection[] = {74,76};
1597
1598
1599 int RelBA_Type1[] = {77,79};
1600 int RelBA_Type2[] = {80,82};
1601 int RelBA_Type3[] = {83,85};
1602 int RelBA_Bias[] = {86,88};
1603 int RelBA_nodes_made[] = {89,91};
1604 int RelBA_inputs[] = {92,94};
1605 int RelBA_outputs[] = {95,97};

152

38C:\Documents and Settings\...\evo_lib_omega4.h

1606 int RelBA_connection[] = {98,100};
1607
1608 string value_type;
1609 if((NodeA_Type1[0]<=criterion_nucleotide)&&

(NodeA_Type1[1]>=criterion_nucleotide)){
1610 file<<"NodeA_type1 ";
1611 value_type = "Type1";
1612 }
1613 else if((NodeA_Type2[0]<=criterion_nucleotide)&&

(NodeA_Type2[1]>=criterion_nucleotide)){
1614 file<<"NodeA_type2 ";
1615 value_type = "Type2";
1616 }
1617 else if((NodeA_Type3[0]<=criterion_nucleotide)&&

(NodeA_Type3[1]>=criterion_nucleotide)){
1618 file<<"NodeA_type3 ";
1619 value_type = "Type3";
1620 }
1621 else if((NodeA_Bias[0]<=criterion_nucleotide)&&

(NodeA_Bias[1]>=criterion_nucleotide)){
1622 file<<"NodeA_bias ";
1623 value_type = "Bias";
1624 }
1625 else if((NodeA_nodes_made[0]<=

criterion_nucleotide)&&(NodeA_nodes_made[1]>=
criterion_nucleotide)){

1626 file<<"NodeA_nodes_made ";
1627 value_type = "nodes_made";
1628 }
1629 else if((NodeA_inputs[0]<=criterion_nucleotide)&&

(NodeA_inputs[1]>=criterion_nucleotide)){
1630 file<<"NodeA_inputs ";
1631 value_type = "connections";
1632 }
1633 else if((NodeA_outputs[0]<=criterion_nucleotide)&

&(NodeA_outputs[1]>=criterion_nucleotide)){
1634 file<<"NodeA_outputs ";
1635 value_type = "connections";
1636 }
1637 else if((NodeB_Type1[0]<=criterion_nucleotide)&&

(NodeB_Type1[1]>=criterion_nucleotide)){
1638 file<<"NodeB_type1 ";
1639 value_type = "Type1";
1640 }
1641 else if((NodeB_Type2[0]<=criterion_nucleotide)&&

(NodeB_Type2[1]>=criterion_nucleotide)){
1642 file<<"NodeB_type2 ";
1643 value_type = "Type2";
1644 }
1645 else if((NodeB_Type3[0]<=criterion_nucleotide)&&

(NodeB_Type3[1]>=criterion_nucleotide)){
1646 file<<"NodeB_type3 ";

153

39C:\Documents and Settings\...\evo_lib_omega4.h

1647 value_type = "Type3";
1648 }
1649 else if((NodeB_Bias[0]<=criterion_nucleotide)&&

(NodeB_Bias[1]>=criterion_nucleotide)){
1650 file<<"NodeB_bias ";
1651 value_type = "Bias";
1652 }
1653 else if((NodeB_nodes_made[0]<=

criterion_nucleotide)&&(NodeB_nodes_made[1]>=
criterion_nucleotide)){

1654 file<<"NodeB_nodes_made ";
1655 value_type = "nodes_made";
1656 }
1657 else if((NodeB_inputs[0]<=criterion_nucleotide)&&

(NodeB_inputs[1]>=criterion_nucleotide)){
1658 file<<"NodeB_inputs ";
1659 value_type = "connections";
1660 }
1661 else if((NodeB_outputs[0]<=criterion_nucleotide)&

&(NodeB_outputs[1]>=criterion_nucleotide)){
1662 file<<"NodeB_outputs ";
1663 value_type = "connections";
1664 }
1665 else if((RelAB_Type1[0]<=criterion_nucleotide)&&

(RelAB_Type1[1]>=criterion_nucleotide)){
1666 file<<"relAB_type1 ";
1667 value_type = "Type1";
1668 }
1669 else if((RelAB_Type2[0]<=criterion_nucleotide)&&

(RelAB_Type2[1]>=criterion_nucleotide)){
1670 file<<"relAB_type2 ";
1671 value_type = "Type2";
1672 }
1673 else if((RelAB_Type3[0]<=criterion_nucleotide)&&

(RelAB_Type3[1]>=criterion_nucleotide)){
1674 file<<"relAB_type3 ";
1675 value_type = "Type3";
1676 }
1677 else if((RelAB_Bias[0]<=criterion_nucleotide)&&

(RelAB_Bias[1]>=criterion_nucleotide)){
1678 file<<"relAB_bias ";
1679 value_type = "Bias";
1680 }
1681 else if((RelAB_nodes_made[0]<=

criterion_nucleotide)&&(RelAB_nodes_made[1]>=
criterion_nucleotide)){

1682 file<<"relAB_nodes_made ";
1683 value_type = "nodes_made";
1684 }
1685 else if((RelAB_inputs[0]<=criterion_nucleotide)&&

(RelAB_inputs[1]>=criterion_nucleotide)){
1686 file<<"relAB_inputs ";

154

40C:\Documents and Settings\...\evo_lib_omega4.h

1687 value_type = "connections";
1688 }
1689 else if((RelAB_outputs[0]<=criterion_nucleotide)&

&(RelAB_outputs[1]>=criterion_nucleotide)){
1690 file<<"relAB_outputs ";
1691 value_type = "connections";
1692 }
1693 else if((RelAB_connection[0]<=

criterion_nucleotide)&&(RelAB_connection[1]>=
criterion_nucleotide)){

1694 file<<"relAB_connection ";
1695 value_type = "Bias";
1696 }
1697 else if((RelBA_Type1[0]<=criterion_nucleotide)&&

(RelBA_Type1[1]>=criterion_nucleotide)){
1698 file<<"relBA_type1 ";
1699 value_type = "Type1";
1700 }
1701 else if((RelBA_Type2[0]<=criterion_nucleotide)&&

(RelBA_Type2[1]>=criterion_nucleotide)){
1702 file<<"relBA_type2 ";
1703 value_type = "Type2";
1704 }
1705 else if((RelBA_Type3[0]<=criterion_nucleotide)&&

(RelBA_Type3[1]>=criterion_nucleotide)){
1706 file<<"relBA_type3 ";
1707 value_type = "Type3";
1708 }
1709 else if((RelBA_Bias[0]<=criterion_nucleotide)&&

(RelBA_Bias[1]>=criterion_nucleotide)){
1710 file<<"relBA_bias ";
1711 value_type = "Bias";
1712 }
1713 else if((RelBA_nodes_made[0]<=

criterion_nucleotide)&&(RelBA_nodes_made[1]>=
criterion_nucleotide)){

1714 file<<"relBA_nodes_made ";
1715 value_type = "nodes_made";
1716 }
1717 else if((RelBA_inputs[0]<=criterion_nucleotide)&&

(RelBA_inputs[1]>=criterion_nucleotide)){
1718 file<<"relBA_inputs ";
1719 value_type = "connections";
1720 }
1721 else if((RelBA_outputs[0]<=criterion_nucleotide)&

&(RelBA_outputs[1]>=criterion_nucleotide)){
1722 file<<"relBA_outputs ";
1723 value_type = "connections";
1724 }
1725 else if((RelBA_connection[0]<=

criterion_nucleotide)&&(RelBA_connection[1]>=
criterion_nucleotide)){

155

41C:\Documents and Settings\...\evo_lib_omega4.h

1726 file<<"relBA_connection ";
1727 value_type = "Bias";
1728 }
1729 else {
1730 cout<<"Criterion did not use the following

nucleotide: "<<criterion_nucleotide<<endl;
1731 }
1732 //cout<<criterion_nucleotide<<"\t";
1733 //---------------------VALUE ALGORITHM-----------

1734 if((value_type == "Type1")||(value_type ==

"relType1")||(value_type == "Type2")||(value_type ==
"nodes_made")){

1735 int num;
1736 num = int((test_value_nucleotide-1)/12.5);
1737 file<<"- "<<num<<")";
1738 }
1739 else if(value_type == "Bias"){
1740 int num;
1741 num = test_value_nucleotide;
1742 file<<"- "<<num<<")";
1743 }
1744 else if((value_type == "Type3")||(value_type ==

"connections")){
1745 int num;
1746 num = test_value_nucleotide-1;
1747 file<<"- "<<num<<")";
1748 }
1749 else{
1750 cout<<indy.get_fcall()<<" ";
1751 cout<<"Value type ("<<value_type<<") did not

use the following nucleotide: "<
<test_value_nucleotide<<endl;

1752 }
1753 //cout<<test_value_nucleotide<<"\t";
1754 //---------------------TEST RANGE ALGORITHM------

1755 if((value_type == "Type1")||(value_type ==

"relType1")||(value_type == "Type2")||(value_type ==
"nodes_made")){

1756 int num;
1757 num = int((test_range_nucleotide-1)/12.5);
1758 file<<" <= "<<num<<"){\n";
1759 }
1760 else if(value_type == "Bias"){
1761 int num;
1762 num = test_range_nucleotide;
1763 file<<" <= "<<num<<"){\n";
1764 }
1765 else if((value_type == "Type3")||(value_type ==

"connections")){
1766 int num;

156

42C:\Documents and Settings\...\evo_lib_omega4.h

1767 num = test_range_nucleotide-1;
1768 file<<" <= "<<num<<"){\n";
1769 }
1770 else{
1771 cout<<indy.get_fcall()<<" ";
1772 cout<<"Value type ("<<value_type<<") did not

use the following nucleotide: "<
<test_range_nucleotide<<endl;

1773 }
1774 //cout<<test_nucleotide<<"\t";
1775
1776 //----------------------ACTION ALGORITHM---------

1777 int make_connection[] = {1,20};
1778 int do_nothing[] = {21,35};
1779 int end_turn[] = {36,50};
1780 int make_node[] = {51,100};
1781 int make_nodeB[] = {51,55};
1782 int make_nodeC[] = {56,61};
1783 int make_nodeD[] = {62,67};
1784 int make_nodeE[] = {68,73};
1785 int make_nodeF[] = {74,79};
1786 int make_nodeG[] = {80,85};
1787 int make_nodeH[] = {86,100};
1788 if(!action_commented){ //Determined by

if_structure codon to comment out rule
1789 rule_stack.push_back(i);
1790 }
1791 string temp_stack = " ";
1792 if ((make_connection[0]<=action_nucleotide)&&

(make_connection[1]>=action_nucleotide)){
1793 temp_stack += "if(make_connection_check(ANN,i

,j,Max_Connections)){\n";
1794 temp_stack += "ANN.make_connection(i,j,";
1795 float x,w,h;
1796 if(action_value_nucleotide >= 51){
1797 w = float(action_value_nucleotide-50.0)/

50.0;
1798 }
1799 else{
1800 w = float(action_value_nucleotide-51.0)/

50.0;
1801 }
1802 //w = fabs(w); //Makes evolution of XOR gate

impossible
1803 x = float(action_nucleotide);
1804 h = x*0.1/64;
1805 temp_stack += float2string(w); //Base weight
1806 temp_stack += ",";
1807 temp_stack += float2string(h); //Hebbian rate
1808 temp_stack += ",";
1809 temp_stack += float2string(0.0); //Random

157

43C:\Documents and Settings\...\evo_lib_omega4.h

rate
1810 temp_stack += ");\nkeep_going = true;\

nturn_over = true;\nenergy_units--;\n}\n";
1811 }
1812 else if ((end_turn[0]<=action_nucleotide)&&

(end_turn[1]>=action_nucleotide)){
1813 temp_stack += "turn_over = true;\n";
1814 }
1815 else if ((make_node[0]<=action_nucleotide)&&

(make_node[1]>=action_nucleotide)){
1816 if ((make_nodeB[0]<=action_nucleotide)&&

(make_nodeB[1]>=action_nucleotide)){
1817 temp_stack += "if(make_node_check(ANN,i,

Max_Outputs)){\n";
1818 temp_stack += "ANN.make_node(i,'H',1,";
1819 }
1820 else if ((make_nodeC[0]<=action_nucleotide)&&

(make_nodeC[1]>=action_nucleotide)){
1821 temp_stack += "if(make_node_check(ANN,i,

Max_Outputs)){\n";
1822 temp_stack += "ANN.make_node(i,'H',2,";
1823 }
1824 else if ((make_nodeD[0]<=action_nucleotide)&&

(make_nodeD[1]>=action_nucleotide)){
1825 temp_stack += "if(make_node_check(ANN,i,

Max_Outputs)){\n";
1826 temp_stack += "ANN.make_node(i,'H',3,";
1827 }
1828 else if ((make_nodeE[0]<=action_nucleotide)&&

(make_nodeE[1]>=action_nucleotide)){
1829 temp_stack += "if(make_node_check(ANN,i,

Max_Outputs)){\n";
1830 temp_stack += "ANN.make_node(i,'H',4,";
1831 }
1832 else if ((make_nodeF[0]<=action_nucleotide)&&

(make_nodeF[1]>=action_nucleotide)){
1833 temp_stack += "if(make_node_check(ANN,i,

Max_Outputs)){\n";
1834 temp_stack += "ANN.make_node(i,'H',5,";
1835 }
1836 else if ((make_nodeG[0]<=action_nucleotide)&&

(make_nodeG[1]>=action_nucleotide)){
1837 temp_stack += "if(make_node_check(ANN,i,

Max_Outputs)){\n";
1838 temp_stack += "ANN.make_node(i,'H',6,";
1839 }
1840 else if ((make_nodeH[0]<=action_nucleotide)&&

(make_nodeH[1]>=action_nucleotide)){
1841 temp_stack += "if(make_node_check(ANN,i,

Max_Outputs)){\n";
1842 temp_stack += "ANN.make_output(i,7,";
1843 }

158

44C:\Documents and Settings\...\evo_lib_omega4.h

1844 float s;
1845 s = pow(10.0,0.0);
1846 temp_stack += float2string(s);
1847 /*
1848 if(action_codon1[2] == 1){
1849 float s;
1850 s = pow(10.0,-2.0);
1851 temp_stack += float2string(s);
1852 }
1853 else if(action_codon1[2] == 2){
1854 float s;
1855 s = pow(10.0,-0.5);
1856 temp_stack += float2string(s);
1857 }
1858 else if(action_codon1[2] == 3){
1859 float s;
1860 s = pow(10.0,0.0);
1861 temp_stack += float2string(s);
1862 }
1863 else if(action_codon1[2] == 4){
1864 float s;
1865 s = pow(10.0,0.5);
1866 temp_stack += float2string(s);
1867 }
1868 else{
1869 cout<<indy.get_fcall()<<" ";
1870 cout<<"did not use the following slope

nucleotide:"<<action_codon1[2]<<endl;
1871 }
1872 */
1873 temp_stack += ",";
1874 float b;
1875 if(action_value_nucleotide >= 51){
1876 b = float(action_value_nucleotide-50.0)/

50.0;
1877 }
1878 else{
1879 b = float(action_value_nucleotide-51.0)/

50.0;
1880 }
1881 temp_stack += float2string(b);
1882 temp_stack += ");\nkeep_going = true;\

nturn_over = true;\nenergy_units--;\n}\n";
1883 }
1884 else{// A 'Do nothing' is added to the stack. It

does nothing
1885 temp_stack += "//Do nothing \n";
1886 }
1887 if(!action_commented){ //Determined by

if_structure codon to comment out action
1888 action_stack.push_back(temp_stack);
1889 }

159

45C:\Documents and Settings\...\evo_lib_omega4.h

1890 //cout<<action_nucleotide<<"\t" ;
1891 //cout<<action_value_nucleotide<<"\n" ;
1892 }
1893
1894 //----------------------CLOSER-----------------------

1895
1896 if(openifs != 0){
1897 for(int j=0;j<openifs;j++){
1898 for(int k=(action_stack.size()-1);k>=0;k--){
1899 file << action_stack[k];
1900 file << "if(turn_over){\n";
1901 file << "rules = rules + \"";
1902 for (int I=0;I<rule_stack.size();I++){
1903 file << int2string(rule_stack[I]) + "

 ";
1904 }
1905 file << "-1 \\n\";\n";
1906 file << "break;\n}\n";
1907 }
1908 action_stack.pop_back();
1909 file<<"/*";
1910 for(int j=0;j<rule_stack.size();j++)
1911 file << rule_stack[j]<<" ";
1912 file<<"*/";
1913 rule_stack.pop_back();
1914 file << "}\n";
1915 }
1916 }
1917 file<<"}\n}\n}\n";
1918
1919 file<<"string ANNfilename = \"/scratch/ANN"+

int2string(rank_no)+".dat\";\n";
1920 file<<"ANN.write_net(ANNfilename);\n";
1921 string rulesfilename = "/scratch/Rules"+int2string

(rank_no)+".dat";
1922 file<<"ofstream outfile2(\""<<rulesfilename<<"\");\n"

;
1923 file<<"outfile2<<rules;\n";
1924 //file<<"ANN.print_net();\n"; \\Prints ANN to screen
1925 //file<<rules;\n"; \\Prints rules to screen
1926 file<<"return 0;\n}\n";
1927 }
1928 //---

1929 //----------------------END OF MAKE_PROTIEN--------------

1930 //---

1931
1932 //---

160

46C:\Documents and Settings\...\evo_lib_omega4.h

1933 //-----------------------DATA RECORDING FUNCTIONS--------

1934 //---

1935
1936 //-------------------------RECORD_GEN--------------------

1937 //This function will record the Ark_no and fitness of the

 population at each generation
1938
1939 void Record_Gen(vector<individual> Ark,vector<int> old,

vector<int> young, int gen){
1940 ofstream datafile;
1941 datafile.open("Chronograph.txt",ios_base::app);
1942 datafile<<gen<<endl;
1943 for(int i=0;i<old.size();i++){
1944 datafile<<old[i]<<' ';
1945 datafile<<Ark[old[i]].get_fitness()<<' ';
1946 datafile<<endl;
1947 }
1948 for(int i=0;i<young.size();i++){
1949 datafile<<young[i]<<' ';
1950 datafile<<Ark[young[i]].get_fitness()<<' ';
1951 datafile<<endl;
1952 }
1953 datafile.close();
1954 }
1955
1956 //-------------------------READ_LAST_GEN-----------------

1957 //This function will get the state of the last generation

 in Chronograph.txt
1958
1959 void Read_Last_Gen(int N,vector<int>& unmade, vector<int>

& alive,vector<int>& still_alive, int gen){
1960 ifstream datafile;
1961 int temp_gen,temp_sub;
1962 float temp_fit;
1963 datafile.open("Chronograph.txt");
1964 datafile>>temp_gen;
1965 while((temp_gen <= gen)&&(!datafile.eof())){
1966 if(temp_gen < gen){ //Don't save results
1967 for(int i=0;i<N;i++){
1968 datafile>>temp_sub;
1969 datafile>>temp_fit;
1970 }
1971 datafile>>temp_gen;
1972 }
1973 else{ //Save results
1974 for(int i=0;i<N;i++){
1975 datafile>>temp_sub;
1976 alive.push_back(temp_sub);

161

47C:\Documents and Settings\...\evo_lib_omega4.h

1977 datafile>>temp_fit;
1978 if(temp_fit == -1)
1979 unmade.push_back(temp_sub);
1980 else
1981 still_alive.push_back(temp_sub);
1982 }
1983 temp_gen = gen+1; //This breaks the cycle

1984 }
1985 }
1986 datafile.close();
1987 }
1988
1989 //------------------------ARK_LOAD-----------------------

1990 //This function will place new individuals into Ark.txt
1991
1992 void Ark_Load(individual indy){
1993 ofstream datafile;
1994 datafile.open("Ark.txt",ios_base::app);
1995 datafile<<indy.get_genesis(0)<<' ';
1996 datafile<<indy.get_genesis(1)<<' ';
1997 datafile<<indy.get_genesis(2)<<' ';
1998 datafile<<indy.get_method()<<' ';
1999 datafile<<indy.get_genome_length()<<' ';
2000 for(int j=0;j<indy.get_genome_length();j++)
2001 datafile<<indy.get_genome(j)<<' ';
2002 //datafile<<indy.get_rules_length()<<' ';
2003 //for(int j=0;j<indy.get_rules_length();j++)
2004 //datafile<<indy.get_rule(j)<<' ';
2005 datafile<<endl;
2006 datafile.close();
2007 }
2008
2009 //------------------------DOCK_LOAD----------------------

2010 //This function will place a genome into Dock.txt, which

will be read for continued evolution
2011 void Dock_Load(individual indy){
2012 ofstream datafile;
2013 datafile.open("Dock.txt",ios_base::app);
2014 datafile<<indy.get_genesis(0)<<' ';
2015 datafile<<indy.get_genesis(1)<<' ';
2016 datafile<<indy.get_genesis(2)<<' ';
2017 datafile<<indy.get_method()<<' ';
2018 datafile<<indy.get_genome_length()<<' ';
2019 for(int j=0;j<indy.get_genome_length();j++)
2020 datafile<<indy.get_genome(j)<<' ';
2021 //datafile<<indy.get_rules_length()<<' ';
2022 //for(int j=0;j<indy.get_rules_length();j++)
2023 //datafile<<indy.get_rule(j)<<' ';
2024 datafile<<endl;

162

48C:\Documents and Settings\...\evo_lib_omega4.h

2025 datafile.close();
2026 }
2027

163

1C:\Documents and Settings\...\robot_lib_omega6.h

1 using namespace std;
2
3 //------------------ Robot Classes -----------------------

4 class signal_robot //A bot of 0 size that sends out a

signal
5 {private:
6 float position[2]; //The [0] and [1] are x-y location.
7 public:
8 signal_robot(){ //Default Constructor
9 position[0] = 0;

10 position[1] = 0;
11 }
12
13 signal_robot(float x,float y){ //Constructor - given

starting position and error
14 position[0] = x;
15 position[1] = y;
16 }
17 float get_x(){
18 return(position[0]);
19 }
20 float get_y(){
21 return(position[1]);
22 }
23 void set_position(float x, float y){
24 position[0] = x;
25 position[1] = y;
26 }
27 };
28
29 class laser_robot
30 {private:
31 float dia; //The diameter of the robot in meters (m)
32 float max_vel; //Maximum magnitude of output velocity (m/

s)
33 float position[3]; //The [0] and [1] are x-y location. [2]

 is heading in degrees. 0 is right/east/x-positive
34 float left_wheel; //The output speed of left wheel
35 float right_wheel; //The output speed of right wheel
36 vector <float> goal_sensors; //Activation of goal input

nodes
37 vector <float> lasers; //Activation of obstacle input

nodes
38 bool goal_line_of_sight;
39 public:
40 laser_robot(){ //Default constructor
41 dia = 1;
42 max_vel = .5;
43 position[0] = 0;
44 position[1] = 0;
45 position[2] = 0;

164

2C:\Documents and Settings\...\robot_lib_omega6.h

46 left_wheel = 0;
47 right_wheel = 0;
48 vector<float> default_lasers(8,0.0);
49 lasers = default_lasers;
50 vector<float> default_goal_sensors(3,0.0);
51 goal_sensors = default_goal_sensors;
52 goal_line_of_sight = false;
53 }
54 laser_robot(float start_x,float start_y,float

start_ang){ //Constructor - given starting position
55 dia = 1;
56 max_vel = .5;
57 position[0] = start_x;
58 position[1] = start_y;
59 position[2] = start_ang;
60 left_wheel = 0;
61 right_wheel = 0;
62 vector<float> default_lasers(8,0.0);
63 lasers = default_lasers;
64 vector<float> default_goal_sensors(3,0.0);
65 goal_sensors = default_goal_sensors;
66 goal_line_of_sight = false;
67 }
68 laser_robot(int l_s,float start_x,float start_y,float

start_ang){ //Constructor - laser size given starting
position

69 dia = 1;
70 max_vel = .5;
71 position[0] = start_x;
72 position[1] = start_y;
73 position[2] = start_ang;
74 left_wheel = 0;
75 right_wheel = 0;
76 vector<float> default_lasers(l_s,0.0);
77 lasers = default_lasers;
78 vector<float> default_goal_sensors(3,0.0);
79 goal_sensors = default_goal_sensors;
80 goal_line_of_sight = false;
81 }
82 laser_robot(float d,float v,int l_s){ //Constructor -

given diameter, max velocity and laser size
83 dia = d;
84 max_vel = v;
85 position[0] = 0;
86 position[1] = 0;
87 position[2] = 0;
88 left_wheel = 0;
89 right_wheel = 0;
90 vector<float> default_lasers(l_s,0.0);
91 lasers = default_lasers;
92 vector<float> default_goal_sensors(3,0.0);
93 goal_sensors = default_goal_sensors;

165

3C:\Documents and Settings\...\robot_lib_omega6.h

94 goal_line_of_sight = false;
95 }
96 laser_robot(float d,float v,int l_s,float start_x,

float start_y,float start_ang){ //Constructor - given
diameter, max velocity, sensor info, and starting
position

97 dia = d;
98 max_vel = v;
99 position[0] = start_x;

100 position[1] = start_y;
101 position[2] = start_ang;
102 left_wheel = 0;
103 right_wheel = 0;
104 vector<float> default_lasers(l_s,0.0);
105 lasers = default_lasers;
106 vector<float> default_goal_sensors(3,0.0);
107 goal_sensors = default_goal_sensors;
108 goal_line_of_sight = false;
109 }
110 laser_robot(float d,float v,int l_s,float start_x,

float start_y,float start_ang,float left_vel,float
right_vel){ //Constructor - given diameter, max
velocity, sensor info, starting position and velocity

111 dia = d;
112 max_vel = v;
113 position[0] = start_x;
114 position[1] = start_y;
115 position[2] = start_ang;
116 left_wheel = left_vel;
117 right_wheel = right_vel;
118 vector<float> default_lasers(l_s,0.0);
119 lasers = default_lasers;
120 vector<float> default_goal_sensors(3,0.0);
121 goal_sensors = default_goal_sensors;
122 goal_line_of_sight = false;
123 }
124 void operator= (const laser_robot& right){
125 if (this != &right){
126 dia = right.dia;
127 max_vel = right.max_vel;
128 position[0] = right.position[0];
129 position[1] = right.position[1];
130 position[2] = right.position[2];
131 left_wheel = right.left_wheel;
132 right_wheel = right.right_wheel;
133 lasers = right.lasers;
134 goal_sensors = right.goal_sensors;
135 goal_line_of_sight = right.goal_line_of_sight;
136 }
137 }
138
139 float get_diameter(){

166

4C:\Documents and Settings\...\robot_lib_omega6.h

140 return(dia);
141 }
142 float get_max_velocity(){
143 return(max_vel);
144 }
145 float get_x(){
146 return(position[0]);
147 }
148 float get_y(){
149 return(position[1]);
150 }
151 float get_heading(){
152 return(position[2]);
153 }
154 void set_position(float x, float y,float ang){
155 position[0] = x;
156 position[1] = y;
157 position[2] = ang;
158 }
159 float get_left_wheel(){
160 return(left_wheel);
161 }
162 void set_left_wheel(float x){
163 left_wheel = x;
164 }
165 float get_right_wheel(){
166 return(right_wheel);
167 }
168 void set_right_wheel(float x){
169 right_wheel = x;
170 }
171 void get_goal_sensors(vector<float>& s){
172 s = goal_sensors;
173 }
174 void set_goal_sensors(vector<float> s){
175 goal_sensors = s;
176 }
177 int get_number_of_goal_sensors(){
178 int temp_int = goal_sensors.size();
179 return(temp_int);
180 }
181 void get_lasers(vector<float>& l){
182 l = lasers;
183 }
184 void set_lasers(vector<float> l){
185 lasers = l;
186 }
187 int get_number_of_lasers(){
188 int temp_int = lasers.size();
189 return(temp_int);
190 }
191 void set_goal_visible_on(){

167

5C:\Documents and Settings\...\robot_lib_omega6.h

192 goal_line_of_sight = true;
193 }
194 void set_goal_visible_off(){
195 goal_line_of_sight = false;
196 }
197 bool get_goal_visible(){
198 return(goal_line_of_sight);
199 }
200 };
201
202 //------------------ End of Robot Class ------------------

203
204 //-------------------------------World Class--------------

205 class simulation_world
206 {private:
207 vector<vector<float> > obstacles;
208 vector<laser_robot> laserbots;
209 vector<signal_robot> sigbots;
210 public:
211 simulation_world(){
212 }
213 simulation_world(vector<vector<float> > obs){ //

Constructor - given the obstacles
214 for(int i=0;i<obs.size();i++){
215 //Makes sure obstacles have an even number of

coordinates and there are at least 3 of them
216 assert((obs[i].size()%2)==0);
217 assert(obs[i].size() >= 6);
218 }
219 obstacles = obs;
220 laserbots.clear();
221 sigbots.clear();
222 }
223 simulation_world(vector<float> obs){ //Constructor -

given one obstacle
224 //Makes sure obstacle has an even number of

coordinates and there are at least 3 of them
225 assert((obs.size()%2)==0);
226 assert(obs.size() >= 6);
227 obstacles.clear();
228 obstacles.push_back(obs);
229 laserbots.clear();
230 sigbots.clear();
231 }
232 simulation_world(vector<laser_robot> bots){ //

Constructor - given the laser robots
233 obstacles.clear();
234 laserbots = bots;
235 sigbots.clear();
236 }

168

6C:\Documents and Settings\...\robot_lib_omega6.h

237 simulation_world(vector<signal_robot> bots){ //
Constructor - given the signal robots

238 obstacles.clear();
239 laserbots.clear();
240 sigbots = bots;
241 }
242 simulation_world(vector<laser_robot> lbots, vector

<signal_robot> sbots){ //Constructor - given the laser
 and signal robots

243 obstacles.clear();
244 laserbots = lbots;
245 sigbots = sbots;
246 }
247 simulation_world(vector<vector<float> > obs, vector

<laser_robot> lbots, vector<signal_robot> sbots){ //
Constructor - given the obstacles and robots

248 for(int i=0;i<obs.size();i++){
249 //Makes sure obstacles have an even number of

coordinates and there are at least 3 of them
250 assert((obs[i].size()%2)==0);
251 assert(obs[i].size() >= 6);
252 }
253 obstacles = obs;
254 laserbots = lbots;
255 sigbots = sbots;
256 }
257 void operator= (const simulation_world& right){
258 if (this != &right){
259 obstacles = right.obstacles;
260 laserbots = right.laserbots;
261 sigbots = right.sigbots;
262 }
263 }
264 void build_obstacle(vector<float> obs){
265 //Makes sure obstacle has an even number of

coordinates and there are at least 3 of them
266 assert((obs.size()%2)==0);
267 assert(obs.size() >= 6);
268 obstacles.push_back(obs);
269 }
270 void build_obstacle(float obs[],int obs_size){
271 //Makes sure obstacle has an even number of

coordinates and there are at least 3 of them
272 assert((obs_size%2)==0);
273 assert(obs_size >= 6);
274 vector<float> new_obstacle;
275 for(int i=0;i<obs_size;i++){
276 new_obstacle.push_back(obs[i]);
277 }
278 obstacles.push_back(new_obstacle);
279 }
280 void build_obstacle(const float obs[],int obs_size){

169

7C:\Documents and Settings\...\robot_lib_omega6.h

281 //Makes sure obstacle has an even number of
coordinates and there are at least 3 of them

282 assert((obs_size%2)==0);
283 assert(obs_size >= 6);
284 vector<float> new_obstacle;
285 for(int i=0;i<obs_size;i++){
286 new_obstacle.push_back(obs[i]);
287 }
288 obstacles.push_back(new_obstacle);
289 }
290 int no_of_obstacles(){
291 return(obstacles.size());
292 }
293 void get_obstacle(int n,vector<float>& obs){
294 assert(n<obstacles.size());
295 obs.clear();
296 obs = obstacles[n];
297 }
298 void get_all_obstacles(vector< vector<float> >& obs){
299 obs = obstacles;
300 }
301 void clear_all_obstacles(){
302 obstacles.clear();
303 }
304 void clear_internal_obstacles(){
305 vector<float> border = obstacles[0];
306 obstacles.clear();
307 obstacles.push_back(border);
308 }
309 int get_no_of_laser_robots(){
310 return(laserbots.size());
311 }
312 void add_laser_robot(laser_robot new_bot){
313 laserbots.push_back(new_bot);
314 }
315 void add_signal_robot(signal_robot new_bot){
316 sigbots.push_back(new_bot);
317 }
318 void move_laser_robot(int n,float x,float y,float ang)

{
319 assert(n<laserbots.size());
320 laserbots[n].set_position(x,y,ang);
321 }
322 void update_laser_bot_actuators(int n,float x1,float

x2){
323 assert(n<laserbots.size());
324 laserbots[n].set_left_wheel(x1);
325 laserbots[n].set_right_wheel(x2);
326 }
327 void move_signal_robot(int n,float x,float y){
328 assert(n<sigbots.size());
329 sigbots[n].set_position(x,y);

170

8C:\Documents and Settings\...\robot_lib_omega6.h

330 }
331 laser_robot get_laser_robot(int n){
332 assert(n<laserbots.size());
333 return(laserbots[n]);
334 }
335 signal_robot get_signal_robot(int n){
336 assert(n<sigbots.size());
337 return(sigbots[n]);
338 }
339 void clear_all_laser_robots(){
340 laserbots.clear();
341 }
342 void clear_all_signal_robots(){
343 sigbots.clear();
344 }
345 void clear_all_robots(){
346 laserbots.clear();
347 sigbots.clear();
348 }
349 bool update_world(float dt){
350 //Gets actuator states and moves each bots, then

updates sensor states for each bot.
351 laser_robot bot, bot_2;
352 vector<float> obs;
353 bool collision;
354 //The following vectors are labeled in Vol 4 pg 10

-13
355 float diameter,v1,v2,x,y,heading,r;
356 float alpha,gamma,beta,theta; //Used for

determining new states
357 float test_x,test_y,bot_2x,bot_2y;
358 //The following vectors are labeled in Vol 3 pg 98
359 float p0x,p0y,p1x,p1y,p2x,p2y,bx,by,ax,ay,A;
360 //The following vectors are labeled in Vol 3 pg 95

 & 100
361 float lx,ly,lpx,lpy,v1x,v1y,v2x,v2y,hx,hy,range,

test_range,phi;
362 //The following vectors are labeled in Vol 4 pg

109
363 float nx,ny;
364 int ob_hit; //Used for debugging
365 int no_lasers;
366 vector<float> new_lasers;
367 int no_goal_sensors = bot.

get_number_of_goal_sensors();
368 assert(no_goal_sensors==3); //As of now, logic

works ONLY if there are 3 sensors
369 vector<float> new_goal_sensors(no_goal_sensors,0.

0);
370 float sx,sy,sensor_angle,goal_dist,swarmx,swarmy;
371 bool swarm_sees_goal;
372 int no_of_swarm_sees_goal;

171

9C:\Documents and Settings\...\robot_lib_omega6.h

373 for(int i=0;i<laserbots.size();i++){
374 collision = false;
375 //Getting actuator states
376 bot = laserbots[i];
377 diameter = bot.get_diameter();
378 r = diameter/2;
379 v1 = dt*bot.get_left_wheel();
380 v2 = dt*bot.get_right_wheel();
381 x = bot.get_x();y = bot.get_y();heading = bot.

get_heading();
382 //Finds new spot - logic on Vol 4 pg. 10 - 13
383 assert((1-((v1-v2)*(v1-v2))/(2*diameter))>=-1)

;
384 assert((1-((v1-v2)*(v1-v2))/(2*diameter))<=1);
385 alpha = acos(1-((v1-v2)*(v1-v2))/(2*diameter*

diameter));
386 //Accounts for CW or no rotations
387 if(v1==v2){
388 alpha = 0;
389 }else if(v1>v2){
390 alpha = -alpha;
391 }
392 gamma = atan2(-cos(heading),sin(heading));
393 beta = (pi()-fabs(alpha))/2;
394 if(v1 > v2){
395 theta = gamma + beta;
396 }
397 else{
398 theta = gamma + pi() - beta;
399 }
400 test_x = x + (v1*cos(theta) + v2*cos(theta))/2

; //New test position
401 test_y = y + (v1*sin(theta) + v2*sin(theta))/2

;
402 heading = heading + alpha; //New heading.

Robot can always turn even if it hits an obstacle
403 //The follow ensure heading is within +/- pi
404 while(heading > pi()){
405 heading -= 2*pi();
406 }
407 while(heading <= -pi()){
408 heading += 2*pi();
409 }
410 //Check to make sure new spot isn't within an

obstacle
411 //Logic on Vol 3 pg 97-98
412 p0x = test_x; p0y = test_y;
413 for(int j=0;j<obstacles.size();j++){
414 if(collision){
415 break;
416 }
417 obs = obstacles[j];

172

10C:\Documents and Settings\...\robot_lib_omega6.h

418 for(int k=0;k<obs.size();k+=2){
419 if((k+3)<obs.size()){
420 p1x = obs[k];
421 p1y = obs[k+1];
422 p2x = obs[k+2];
423 p2y = obs[k+3];
424 }
425 else{
426 p1x = obs[k];
427 p1y = obs[k+1];
428 p2x = obs[0];
429 p2y = obs[1];
430 }
431 bx = p2x - p1x;
432 by = p2y - p1y;
433 gamma = ((bx*p0x+by*p0y)-(bx*p1x+by*

p1y))/(bx*bx+by*by);
434 if((0<gamma)&&(gamma<1)){
435 //Bot may hit the wall
436 ax = p1x + gamma*bx - p0x;
437 ay = p1y + gamma*by - p0y;
438 A = ax*ax + ay*ay;
439 if (A < (r*r)){
440 collision = true;
441 /*
442 cout<<"COLLISION!"<<endl;
443 cout<<"Robot "<<i<<" hit

obstacle "<<j;
444 cout<<" wall with verticies

defined at (";
445 cout<<p1x<<","<<p1y<<") and ("

<<p2x<<","<<p2y<<")"<<endl;
446 */
447 }
448 }
449 else{
450 //Bot may still hit a vertex
451 ax = p0x - p1x; ay = p0y - p1y;
452 A = ax*ax + ay*ay;
453 if (A < (r*r)){
454 collision = true;
455 /*
456 cout<<"COLLISION!"<<endl;
457 cout<<"Robot "<<i<<" hit

obstacle "<<j;
458 cout<<" at vertex ("<<p1x<<","

<<p1y<<")"<<endl;
459 */
460 }
461 ax = p0x - p2x; ay = p0y - p2y;
462 A = ax*ax + ay*ay;
463 if (A < (r*r)){

173

11C:\Documents and Settings\...\robot_lib_omega6.h

464 collision = true;
465 /*
466 cout<<"COLLISION!"<<endl;
467 cout<<"Robot "<<i<<" hit

obstacle "<<j;
468 cout<<" at vertex ("<<p2x<<","

<<p2y<<")"<<endl;
469 */
470 }
471 }
472 }
473 }
474 //Checks to make sure it won't hit another

robot
475 for(int j=0;j<laserbots.size();j++){
476 if(i!=j){
477 bot_2 = laserbots[j];
478 bot_2x = bot_2.get_x();bot_2y = bot_2.

get_y();
479 ax = test_x - bot_2x;
480 ay = test_y - bot_2y;
481 A = ax*ax + ay*ay;
482 if (A < (4*r*r)){
483 collision = true;
484 /*
485 cout<<"COLLISION!"<<endl;
486 cout<<"Robot "<<i<<" hit Robot "<

<j<<endl;
487 */
488 }
489 }
490 }
491 if(!collision){
492 x = test_x; y = test_y;
493 }
494 laserbots[i].set_position(x,y,heading);//

Updates the robot's position
495 }
496 //After each bot has moved, the sensors of each

bot are updated
497 for(int i=0;i<laserbots.size();i++){

498 //Updates the robots lasers - Logic on Vol 3

pg 95 & 100
499 //cout<<"Robot: "<<i<<endl;
500 bot = laserbots[i];
501 no_lasers = bot.get_number_of_lasers();
502 new_lasers.clear();
503 new_lasers.resize(no_lasers);
504 phi = pi()/(no_lasers+1);
505 p0x = bot.get_x(); p0y = bot.get_y();
506 heading = bot.get_heading();

174

12C:\Documents and Settings\...\robot_lib_omega6.h

507 for(int j=0;j<no_lasers;j++){
508 theta = heading + pi()/2 - (j+1)*phi;

509 lx = cos(theta); ly = sin(theta);
510 lpx = -sin(theta); lpy = cos(theta);

511 range = RAND_MAX;
512 ob_hit = -1;
513 //Checks obstacles
514 for(int k=0;k<obstacles.size();k++){
515 obs = obstacles[k];
516 for(int m=0;m<obs.size();m+=2){
517 if((m+3)<obs.size()){
518 p1x = obs[m];
519 p1y = obs[m+1];
520 p2x = obs[m+2];
521 p2y = obs[m+3];
522 }
523 else{
524 p1x = obs[m];
525 p1y = obs[m+1];
526 p2x = obs[0];
527 p2y = obs[1];
528 }
529 v1x = p1x-p0x; v1y = p1y-p0y;
530 v2x = p2x-p0x; v2y = p2y-p0y;

531 if(((lpx*v1x+lpy*v1y)*(lpx*v2x+lpy

*v2y))<=0){
532 if(((lpx*v1x+lpy*v1y)*(lpx*v2x

+lpy*v2y))==0){
533 if(((lpx*v1x+lpy*v1y)==0)&

&((lpx*v2x+lpy*v2y)==0)){
534 test_range = min((v1x*

v1x+v1y*v1y),(v2x*v2x+v2y*v2y));
535 if(range > pow

(test_range,0.5)){
536 range = pow

(test_range,0.5);
537 ob_hit = k;
538 }
539 }
540 else if ((lpx*v1x+lpy*v1y)

==0){
541 test_range = pow((v1x*

v1x+v1y*v1y),0.5);
542 if(range > test_range)

{
543 range = test_range

;
544 ob_hit = k;
545 }

175

13C:\Documents and Settings\...\robot_lib_omega6.h

546 }
547 else if ((lpx*v2x+lpy*v2y)

==0){
548 test_range = pow((v2x*

v2x+v2y*v2y),0.5);
549 if(range > test_range)

{
550 range = test_range

;
551 ob_hit = k;
552 }
553 }
554 }
555 else{
556 hx = v2x-v1x; hy = v2y-v1y

;
557 test_range = (v1x*hy-v1y*

hx)/(lx*hy-ly*hx);
558 if((range > test_range)&&

(test_range>0)){
559 range = test_range;
560 ob_hit = k;
561 }
562 }
563 }
564 }
565 }
566 //Checks other robots
567 for(int k=0;k<laserbots.size();k++){
568 if(k!=i){
569 nx = laserbots[k].get_x();
570 ny = laserbots[k].get_y();
571 test_range = (lx*(nx-p0x)+ly*(ny-

p0y))/(lx*lx+ly+ly);
572 ax = nx - p0x - test_range*lx;
573 ay = ny - p0y - test_range*ly;
574 if(((ax*ax+ay*ay)<(r*r))&&(range>

test_range)&&(test_range>0)){
575 range = test_range;
576 ob_hit = k;
577 }
578 }
579 }
580
581 if (range == RAND_MAX){
582 cout<<"WARNING: Laser "<<j<<" did not

detect any obstacles"<<endl;
583 new_lasers[j] = 0;
584 }
585 else{
586 new_lasers[j] = range;
587 }

176

14C:\Documents and Settings\...\robot_lib_omega6.h

588 /*
589 cout<<"Laser "<<j<<": Range = "<<range<

<endl;
590 cout<<" obs = "<<ob_hit<<": l = ["<<range*

lx<<" "<<range*ly<<"]"<<endl;
591 */
592 }
593 laserbots[i].set_lasers(new_lasers);
594 //Goal sensors are updated
595 p1x = sigbots[0].get_x();
596 p1y = sigbots[0].get_y();
597 sx = p1x - p0x; sy = p1y - p0y;
598
599 goal_dist = pow((sx*sx+sy*sy),0.5);
600
601 //Finds if goal is within robot line of sight
602 theta = atan2(sy,sx);
603 lx = cos(theta); ly = sin(theta);
604 lpx = -sin(theta); lpy = cos(theta);

605 range = RAND_MAX;
606 ob_hit = -1;
607 for(int j=0;j<obstacles.size();j++){
608 obs = obstacles[j];
609 for(int m=0;m<obs.size();m+=2){
610 if((m+3)<obs.size()){
611 p1x = obs[m];
612 p1y = obs[m+1];
613 p2x = obs[m+2];
614 p2y = obs[m+3];
615 }
616 else{
617 p1x = obs[m];
618 p1y = obs[m+1];
619 p2x = obs[0];
620 p2y = obs[1];
621 }
622 v1x = p1x-p0x; v1y = p1y-p0y;
623 v2x = p2x-p0x; v2y = p2y-p0y;

624 if(((lpx*v1x+lpy*v1y)*(lpx*v2x+lpy*

v2y))<=0){
625 if(((lpx*v1x+lpy*v1y)*(lpx*v2x+lpy

*v2y))==0){
626 if(((lpx*v1x+lpy*v1y)==0)&&(

(lpx*v2x+lpy*v2y)==0)){
627 test_range = min((v1x*v1x+

v1y*v1y),(v2x*v2x+v2y*v2y));
628 if(range > pow(test_range,

0.5)){
629 range = pow(test_range

,0.5);

177

15C:\Documents and Settings\...\robot_lib_omega6.h

630 ob_hit = j;
631 }
632 }
633 else if ((lpx*v1x+lpy*v1y)==0)

{
634 test_range = pow((v1x*v1x+

v1y*v1y),0.5);
635 if(range > test_range){
636 range = test_range;
637 ob_hit = j;
638 }
639 }
640 else if ((lpx*v2x+lpy*v2y)==0)

{
641 test_range = pow((v2x*v2x+

v2y*v2y),0.5);
642 if(range > test_range){
643 range = test_range;
644 ob_hit = j;
645 }
646 }
647 }
648 else{
649 hx = v2x-v1x; hy = v2y-v1y;
650 test_range = (v1x*hy-v1y*hx)/

(lx*hy-ly*hx);
651 if((range > test_range)&&

(test_range>0)){
652 range = test_range;
653 ob_hit = j;
654 }
655 }
656 }
657 }
658 }
659
660 if(range < goal_dist){
661 laserbots[i].set_goal_visible_off();
662 }
663 else{
664 laserbots[i].set_goal_visible_on();
665 }
666
667 if(laserbots[i].get_goal_visible()){//If it

can see the goal, go to it
668 sensor_angle = atan2(sy,sx) - heading;
669 //The follow ensure sensor_angle is within

 +/- pi
670 while(sensor_angle > pi()){
671 sensor_angle -= 2*pi();
672 }
673 while(sensor_angle <= -pi()){

178

16C:\Documents and Settings\...\robot_lib_omega6.h

674 sensor_angle += 2*pi();
675 }
676 //cout<<"sensor_angle = "<<(sensor_angle*

180/pi())<<endl;
677 if(fabs(sensor_angle)<=pi()/8){
678 new_goal_sensors[0] = 0;
679 new_goal_sensors[1] = 1;
680 new_goal_sensors[2] = 0;
681 }
682 else if(sensor_angle < 0){
683 assert(fabs(sensor_angle)>pi()/8);
684 new_goal_sensors[0] = 0;
685 new_goal_sensors[1] = 0;
686 new_goal_sensors[2] = 1;

687 }
688 else if(sensor_angle > 0){
689 assert(fabs(sensor_angle)>pi()/8);
690 new_goal_sensors[0] = 1;
691 new_goal_sensors[1] = 0;
692 new_goal_sensors[2] = 0;
693 }
694 }
695 else{
696 swarm_sees_goal = false;
697 no_of_swarm_sees_goal = 0;
698 swarmx = 0;
699 swarmy = 0;
700 for(int j=0;j<laserbots.size();j++){//See

if others see the goal...
701 if(laserbots[j].get_goal_visible()){
702 swarm_sees_goal = true;
703 no_of_swarm_sees_goal++;

704 swarmx += laserbots[j].get_x();
705 swarmy += laserbots[j].get_y();
706 }
707 }
708 if(swarm_sees_goal){ //If so, go to center

 of others
709 assert(no_of_swarm_sees_goal != 0);
710 swarmx = swarmx/float

(no_of_swarm_sees_goal) - p0x; //Gives relative
position

711 swarmy = swarmy/float
(no_of_swarm_sees_goal) - p0y; //Gives relative
position

712 sensor_angle = atan2(swarmy,swarmx) -
heading;

713 //The follow ensure sensor_angle is
within +/- pi

714 while(sensor_angle > pi()){

179

17C:\Documents and Settings\...\robot_lib_omega6.h

715 sensor_angle -= 2*pi();
716 }
717 while(sensor_angle <= -pi()){
718 sensor_angle += 2*pi();
719 }
720 //cout<<"swarmx = "<<swarmx<<endl;
721 //cout<<"swarmy = "<<swarmy<<endl;
722 //cout<<"sensor_angle = "<<

(sensor_angle*180/pi())<<endl;
723 if(fabs(sensor_angle)<=pi()/8){
724 new_goal_sensors[0] = 0;
725 new_goal_sensors[1] = 1;
726 new_goal_sensors[2] = 0;
727 }
728 else if(sensor_angle < 0){
729 assert(fabs(sensor_angle)>pi()/8);
730 new_goal_sensors[0] = 0;
731 new_goal_sensors[1] = 0;
732 new_goal_sensors[2] = 1;

733 }
734 else if(sensor_angle > 0){
735 assert(fabs(sensor_angle)>pi()/8);
736 new_goal_sensors[0] = 1;
737 new_goal_sensors[1] = 0;
738 new_goal_sensors[2] = 0;
739 }
740 }
741 else{ //no one knows nothin'
742 new_goal_sensors[0] = 0;
743 new_goal_sensors[1] = 0;
744 new_goal_sensors[2] = 0;
745 }
746 }
747 //cout<<"goal sensors = ";
748 //print_vector(new_goal_sensors);
749 laserbots[i].set_goal_sensors

(new_goal_sensors);
750 }
751 return(collision);
752 }
753 };
754
755 //---------------------------End of World Class-----------

756
757

180

