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Abstract

Control tasks involving dramatic nonlinearities, such as decision making, can be challeng-

ing for classical design methods. However, autonomous, stochastic design methods such

as evolutionary computation have proved effective. In particular, genetic algorithms that

create designs via the application of recombinational rules are robust and highly scalable.

Neuro-Evolution Using Recombinational Algorithms and Embryogenesis (NEURAE) is a

genetic algorithm that creates C++ programs that in turn create neural networks which

can function as logic gates. The neural networks created are scalable and robust enough

to feature redundancies that allow the network to function despite internal failures. An

analysis of NEURAE evinces how biologically inspired phenomena apply to simulated evo-

lution. This allows for an optimization of NEURAE that enables it to create controllers for

a simulated swarm of Khepera-inspired robots.
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Chapter 1

Introduction

1.1 Motivation

Artificial neural networks (ANNs) are able to solve mathematically ill-defined problems

with a network of computationally simple elements. Inspired by the architecture of the hu-

man brain, McCulloch and Pitts (1943) modeled biological neurons as simple mathematical

units capable of comprising large networks. Turing (1950) described the plausibility of a

complex computing machine being constructed from simple computational units. Hornik

et al. (1989) proved that with the proper architecture, an ANN composed of McCulloch-

Pitts neurons can approximate any regular function within a finite space to an arbitrary

degree of accuracy.

The potential of ANNs has inspired their application in a wide range of fields. The

primary use of neural networks has been for classification purposes. Wu et al. (1993) and

Odewahn et al. (1992) showed how ANNs can be used to classify malignant tumors in

mammograms and star types in telescopic images, respectively. Waibel (1989) found use

of temporal ANNs in the realm of speech recognition. Atiya (2001) detailed how neural

networks can be capable tools for analyzing credit risk.

Neural networks have also been used for robotic control. Naito et al. (1997) argued the

nonlinearity and distributed information storage of ANNs make them attractive candidates

for control. Biewald (1996) used a neural network controller for obstacle avoidance by

partitioning the problem into separate path planning and local navigation regions. Cui and

Shin (1993) controlled multiple manipulators by using neural networks to approximate the

Jacobian at various points of the robots’ range of motion. Beer et al. (1992) and Lewis et al.

(1994) employed recurrent neural networks to control the gait of a hexapod robot. Hornby
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et al. (2001) used ANNs as controllers that are able to evolve alongside the morphology of

the controlled robots. Yue and Rind (2006) used a neural network for object recognition in

an obstacle avoiding robot.

However, there are limits to what current ANN learning algorithms can accomplish.

Convergence of the widely used back propagation algorithm is dependent on network ar-

chitecture and learning rates (Hecht-Nielsen 1992). The setting of these parameters require

significant expertise and a priori knowledge of the problem to be solved. Otherwise, the

network is likely to converge to a non-optimal solution or be unduly influenced by the se-

quence of learning examples that are given (Sutton 1986). Furthermore, training session

require large amounts of historical data and are computationally demanding.

Hebb (1949) posited a theory that biological neural networks adapt by repeated firing.

As the activation of one neuron coincides with the activation of another several times,

the connection between the two strengthens in such a way that it becomes easier for the

first neuron to excite the second. Perhaps the most well-known application of Hebbian

learning in an ANN is a Hopfield network. Hopfield (1982) proved that an ANN can

use Hebbian learning to converge to a local minimum, thus making the network stable.

However, stability requires the network be symmetrical, with nodes being connected to

each other with identical weights. Even if this constraint is not enforced, Hebbian learning

is a capable method for getting ANNs to classify data (Sanger 1989; Oja 1992; Daucé et al.

1998). However, these methods often converge to local minima and are not suited to finding

an global optimum.

Real-time reinforcement is yet another scheme for adapting network connections. Onat

et al. (1998) showed how positive reinforcement can be used to strengthen connections

between neurons when the network is performing as desired. Chialvo and Bak (1999) showed

how similar learning occur with negative reinforcement. Bosman et al. (2003) gave a more

generalized approach which combined Hebbian and reinforcement learning. However, as

evident in the work of Sutton and Barto (1999), there are several learning parameters of

the reward function which must be tuned, and these values require expertise or trial and

error to set correctly.

Because training ANNs is inherently a trial-and-error process, it was a natural extension

to use a genetic algorithm (GA) to train them. Genetic algorithms, also known as evolu-

tionary algorithms, use simulated evolution to design solutions. As conceived by Holland
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(1975), GAs are a machine learning paradigm in which the parameters of a possible design

solution are varied over time to eventually find a viable solution. Furthermore, many so-

lutions are designed in parallel, and the parameters of one solution may be used, partly or

completely, in the parameters of another. As a result, the design solutions within a GA

improve over time in a manner similar to biological evolution. Like ANNs, GAs have found

applications in a wide range of fields such as circuit design in electrical engineering (Miller

et al. 1997), ligand bonding in chemistry (Morris et al. 1998), and granular composites in

material science (Fraternali et al. 2009).

Most ANNs designed by evolutionary algorithms involved optimizing the weight of a

set network architecture (Montana and Davis 1989; Eberhart and Kennedy 1995). Further

work focused on evolving the parameter of various different learning algorithms (Roy et al.

1999; Chen et al. 1999).

Eventually there was an emergence of GAs in which network architecture and connection

weights are coevolved in a process known as neuro-evolution. Reed (1999) gives a good

overview of many GAs which evolve network architectures through decomposition, where

a large, fully connected network has connections and nodes removed. The shortcomings of

such schemes were addressed by Angeline et al. (1999) who offered GNARL as an alternative.

According to Angeline, decomposition methods often become trapped at local network

minima, which causes them to suffer the same non-optimum finding deficiencies GAs were

designed to overcome.

More current neuro-evolution efforts include NEAT by Stanley and Miikkulainen (2002),

and AGE by Duerr et al. (2006). Both methods utilize genomes that represent the nodes

and connections of ANNs. The genomes of NEAT explicitly contain the connection weights.

The three tiers of NEAT, gene tracking, speciation, and complexifying, have become so well

studied and efficient that Stanley et al. (2005) managed to evolve networks in real time. In

AGE, the genome includes a section for each node that, when combined with the similar

section of another node, determines the weight of connections. Both NEAT and AGE are

able to use evolution to construct networks capable of performing complex control tasks.

However, the practical size of evolved networks is limited by the requirement that each node

of the network is directly represented in the genome.

There are applications where a large network is necessary, such as the Gammon project

(Tesauro 1992). The Gammon project was an attempt to make a neural network a successful
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backgammon player. Gammon looks at the current state of the board and possible moves for

a given roll of the dice. It then uses the neural net to calculate which possible move for the

given dice roll would lead to the highest probability of winning, and moves accordingly. With

198 input units and 40 hidden neurons, it plays on a level even with the best backgammon

players in the world. If one were to design such a network with a genetic algorithm, the

GA would have to be scalable.

One of the first examples of a scalable GA was introduced by Kitano (1990). In his sem-

inal paper, he used matricies to represent ANN connection weights. He achieved scalability

by using single bits to represent small connectivity graphs and allowing recursion of such

bits. As a result, a neural network could be represented more compactly with reasonable

modularity. Tufte and Haddow (2000) used a similar genome shorthand to evolve large

digital circuits.

Theraulaz and Bonabeau (1995) have shown that the reuse of a small set of rules to

create a phenotype is an effective alternative to storing and manipulating the large amount

of data that describes each individual directly. Bentley and Kumar (1999) have shown that

indirect encodings produce solutions to design problems faster and better than their directly

encoded counterparts. Federici and Downing (2006) have shown that rule-based encoded

designs are more robust as well. Grajdeanu (2007) evolved rules capable of making virtual

2-D organisms with interesting properties such as cell differentiation and repair. Yogev and

Antonsson (2007) created 3-dimensional structures by evolving a set a rules which directs

how a single cell should grow through a process called embryogenesis.

Embryogenesis is best described as genetic programming (GP) applied to the evolution

of instructions which in turn determines how an artificial embryo should grow (Garis 1992).

A genetic program is a genetic algorithm where the evolution is performed on a computer

program. In its inception, Fogel et al. (1966) devised a way to use the evolutionary pro-

cess that allowed the recombination of a computer program into various configurations.

Later, LISP programs were evolved by Koza (1989) to create programs which could discover

recursive expressions for numerical sequences and pattern recognition. O’Neill and Ryan

(2001) went on to make grammatical evolution (GE), which was a scheme for how to do

genetic programming in any arbitrary language. However, in GP the program is the end

result of evolution. It is when these programs are used to grow something else when true

embryogenesis occurs.
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Embryogenesis was applied to ANN evolution when Gruau (1992) created cellular en-

coding (CE), which dictates how a network grows from a single cell. CE was able to create

a network of arbitrary size that is capable of detecting logical parity. However, as noted by

Luke and Spector (1996), Gruau achieves much of his modularity by using a recursion rule

that results in generating nodes with identical inputs and outputs. While his networks are

able to perform well for tasks requiring symmetry, his method performs poorly for networks

that require asymmetric weights.

Kitano (1995) used his compact representation to encode instructions for the growth

of virtual axions and dendrites in graphical ANN. His scheme also implemented cell differ-

entiation. However, this application was geared more towards simulating the growth of a

biological neural network instead of creating ANNs for engineering purposes.

Astor and Adami (2000) expanded on the idea of growing neural networks by creating

NORGEV, a simulated wet chemistry set. Within their evolutionary algorithm, a network

is grown from a single neuron by using cell chemistry and protein diffusion models. One key

distinction of their work is that the evolved proteins not only provide growth instructions

for the network, but also halt growth. While this method is able to make large neural

networks, it can take excessive evolution time as much of the processing power is devoted

to simulating chemical diffusion.

Since GAs have been applied successfully in control problems (Yakovenko et al. 2004;

Vigraham et al. 2005; Dupuis and Parizeau 2008; Zhang et al. 2008) it may come as now

surprise that the synergy of GAs, ANN, and control is a current area of research. Naito et al.

(1997) evolved ANN controllers for simulated Khepera (Harlan et al. 2001) robots. Lipson

and Pollack (2000); Pollack et al. (2003) have had much success in evolving the morphology

and control of robots. Floreano et al. (2007) evolved a swarm of robots which learn complex

communication behaviors. Yet, all of these methods use direct representations, and if one

were to evolve an ANN complex enough to control an autonomous vehicle(s) (Cremean

et al. 2006; Murray 2007), one would need a large ANN and a scalable GA to create it.

While Calabretta et al. (1998) and Stanley et al. (2009) have implemented GA with some

scalability, their designs scale by using predetermined modules and symmetries, which are

not generally known a priori.
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1.2 Outline

This thesis will detail the methodology, analysis, and implementation of a new genetic

algorithm for neuro-evolution. Designs in the GA are grown via a set of variable-length rules

that are decoded to create a C++ program. The C++ programs used to create the ANNs

have an If-CONDITION-Then-ACTION structure. Each program has multiple sections

that cycle through all pairings of nodes with tests and actions of the form:

If Node α and/or Node β meet certain CONDITION(S), Then perform AC-

TION(S).

The expected result is to create an encoding scheme that, like CE, can take advan-

tage of modularity to create large networks. However, it will also use the innovations of

NORGEV to evolve a more controlled growth as well. Having the growth directed by C++

programs comprising various recombinations of If-Then statements instead of solutions of

complex diffusion equations will lead to shorter evolution times. While Neuro-Evolution

Using Recombinational Algorithms and Embryogenesis, or NEURAE, may seem akin to

the GE of Tsoulos et al. (2005), the work presented here is only superficially similar. Limit-

ing the evolution to only If-Then commands constrains the search while remaining flexible

enough to explore highly productive regions of the solution space. Furthermore, the pro-

grams generated by NEURAE are the rules for embryogenesis, which provide scalability

and produce modularity. Conversely, the programs created by conventional GAs are direct

representations of an ANN, and do not exhibit such scalability or modularity.

This thesis will show that NEURAE is a unifying GA capable of accomplishing a wide

range of neuro-evolutionary goals. Chapter 2 will introduce the methodology of NEURAE

after a brief background of artificial neural networks and genetic algorithms. Chapter 3

will show that NEURAE is capable of evolving two types of parity evaluators. The first is

a 2-input XOR gate with many network redundancies. The second is a parity gate of an

arbitrary size. The first task has definitive exploration versus exploitation regions, which

simplifies the analysis of the evolved rules. Furthermore, it will be shown that modularity

can be produced in a randomly changing environment, in opposition to Kashtan and Alon

(2005). The second task can be directly compared to existing literature, particularly that

of Gruau (1994), and will show how NEURAE can scale well to create large ANNs.
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Chapter 4 will analyze how and why NEURAE works in an effort to make the evolution-

ary process more efficient. Like evolutionary algorithms themselves, many of the mutations

used in NEURAE where inspired by natural mutations. Experiments were conducted to

verify if and how the artificial mutations actually enhance evolution as well as their biologi-

cal counterparts are theorized to do. Next is an analysis of the individual created in a good

and failed evolution to see what differences lie on a genomic level. Finally, an investigation

was conducted to see how different conditions and actions are used, and how their removal

affects the GA.

Chapter 5 will give the derivations of the formulas used to create the robotic simulations

in Chapter 6. Chapter 6 will show how NEURAE is able to evolve robotic controllers in

deceptive design domains. NEURAE will easily make controllers for a line following robot,

and obstacle avoiding robot, and a coordinated swarm without any changes to its core

functionality. Chapter 7 will provide a conclusion and the possible future of NEURAE.
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Chapter 2

Methodology

2.1 Background

2.1.1 Neural Networks

An artificial neural network (ANN) is a computing paradigm which is a gestalt of simple

computational units called neurons or nodes. All ANNs in NEURAE are composed of

McCulloch and Pitts (1943) modeled neurons. The input to each neuron is multiplied by

some scalar, or weight, wn. Next, the weighted inputs are summed and are in turn used as

the input, u, for a (usually) nonlinear activation function O(·), as shown in Equation 2.1. In

the original McCulloch-Pitts model, the nonlinearity could be any bounded function. Due

to the desire to make learning algorithms easier to prove and implement, the activation

function usually forces the output of the neuron to be within [-1, 1]. This, however, is not

a requirement and an activation function that bounds the output between 0 and 1 can be

used. Furthermore, digital networks usually use a discontinuous activation function while

O(·) in an analog network would likely be continuous (Kartalopoulos 1996). Finally, neurons

usually feature a constant, or bias, which is also summed to the inputs and serves to shift

the activation function along the dependent axis.

u =
n∑
i=1

wi (2.1)

The neurons in NEURAE use the activation function shown in Equation 2.2. The

activation function, O(·), is a Heaviside function with a bias which acts as a threshold

and separates the on/off regions at the constant, t. Thus, each neuron in NEURAE is

either completely off or on. Even though the bounded output of each neuron may be
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weighted before it is used as an input to another node, O(u) for an output neuron is always

unweighted, resulting in a binary output for the entire ANN. The model of neurons used

in NEURAE is shown in Figure 2.1.

O(u) =

 1 if u > t,

0 if u ≤ t.
(2.2)

1

0

Figure 2.1: McCulloch-Pitts neuron model.

2.1.2 Genetic Algorithms

Genetic Algorithms (GAs) are a class of evolutionary computation, and repeatedly reiterate

randomly created designs to find a desired solution. The design solutions are commonly

referred to as individuals, and the goal is to eventually create individuals that are capable of

solving the design problem. Figure 2.2 is a simplified flowchart of the various steps contained

within a standard GA. GAs begin with an initial population of individuals with randomly

created genomes. For all GAs there is a difference between the genotype and phenotype.

The genotype dictates the design parameters of the individual, and it is the altering of

the genotype that ultimately alters the design parameters of the solution. The phenotype,

however, is the realization of the individual, and it is the phenotype which is evaluated.

Thus, the individuals’ fitnesses are based upon how well their phenotypes complete the

design challenge.

However, the randomly created initial population is made up of poorly performing indi-

viduals. The best performing of these individuals are selected from the population. These

selected individuals are slightly modified to create a new population. This process of eval-
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uation, selection, and mutation is repeated until either a prescribed time limit has passed

or a good design is found.

Population Embryogenesis*

Evaluation

Selection

Mutation

End

Figure 2.2: Steps of a standard genetic algorithm.
(*Denotes an optional step).

The way individuals are represented, or encoded, within a GA is of paramount impor-

tance to how they are evolved. As the encoding becomes more complex, the genotype to

phenotype mapping becomes a more involved process known as embryogenesis in which the

phenotype starts as a small embryo, then grows according to its genome before or even

during evaluation. Stanley and Miikkulainen (2003) offer classifications for the different

types of genomic encoding within present-day GAs.

• Direct - The design parameters of the phenotype are represented directly within the

genotype. The approach works well for optimizing a design parameter, but the one-

to-one, genotype to phenotype relationship makes scalability a significant problem.

Also, the lack of inherent modularity and symmetry makes it a poor candidate for

design synthesis.

• Developmental - The genotype is a compacted representation of the phenotype,

and makes the phenotype by using a prescribed set of rules. This can scale well and

takes advantage of known modularity and symmetry. However, evolution is unable

to discover and exploit unknown symmetries. Furthermore, the way modularity and

symmetry are used to compact genomic representation can unduly bias or even limit

the solutions acquired.

• Implicit - The genotype is the rules that, when executed, create a phenotype from
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an embryo. This approach offers the widest range of possible answers, and thus is the

best method for generating completely novel designs. However, optimization is ham-

pered by the strongly non-injective mapping between the genotype and phenotype.

Evolution times can also be slowed by extended periods of embryogenesis.

For NEURAE, an implicit encoding scheme was decided to place as little restriction as

possible on the type of ANNs created. Thus, many of the examples of NEURAE exemplify

the creation of novel network architectures rather than the optimization of well-known ANN

problems.

2.2 The NEURAE Genotype

2.2.1 Overview

Each individual in NEURAE is a digital, feed-forward neural network. However, the implicit

encoding scheme of NEURAE means each ANN is created by the execution of the rules

encoded in its genome. When the genomes are decoded, the result is a C++ program.

When the program is compiled and executed, the ANN is created.

The neural networks begin as a few neurons, but are grown according to the instructions

encoded within their genomes. All ANNs start as the desired number of input neurons with

a threshold of 0. Each input node is able to create up to seven addition neurons. These

subsequent neurons can exist within either the hidden or output layers, and can each make

up to seven addition hidden or output neurons. However, once the desired number of output

nodes are created, the entire ANN is unable to create any additional neurons.

Each neuron can also make connections, and can continue to do so even after no more

neurons can be created. To ensure the ANNs are feed-forward, nodes are only able to make

connections to neurons created after themselves. Furthermore, connections to any input

node are prohibited. While nodes within the same hidden layer are unable to connect to

each other in most ANN applications, no such constraint is imposed here. Neurons within

the hidden layer are able to connect to any other node within the hidden layer so long as

the receiving node was created after the transmitting node. Finally, each neuron can have

a maximum of 99 inputs and 99 outputs.



12

2.2.2 Biological Analog

A biological analogy was the inspiration for the encoding scheme used here. The genome

of each individual is a variable-length array of integers which is decoded to create a C++

program. Every digit is analogous to a nucleotide whose value is inclusively between 1

and 100. A collection of six nucleotides forms a complete If-CONDITION-Then-ACTION

statement, and are analogous to a codon. These tests in the If-Then statements are not

independent, and the sequence of codons will greatly influence how the individual will grow.

In particular, the If-Then structure can be arranged such that multiple conditions are tested

before an action can be executed. The closure of all If-Then statements, condition tests,

and actions form a block analogous to a gene. The resulting (closed) If-Then statements

in the C++ programs are similar to proteins. These concepts are shown in Figure 2.3.

↙ Nucleotide

1− 1− 15− 15− 10− 26︸ ︷︷ ︸
Codon

−40− 38− 2− 1− 95− 16− 100− 1− 2− 3− 4− 5

︸ ︷︷ ︸
Gene

Figure 2.3: Sample genome and biological analog

2.2.3 If Structure Nucleotide

If Structure Test Value Action Type
nucleotide nucleotide nucleotide

↘ ↓ ↙
1 - 1 - 15 - 15 - 10 - 26
↗ ↑ ↖

Attribute Test Range Action Value
nucleotide nucleotide nucleotideww�

if( |Nodeα.ID1−B| ≤ 1 )
make.connection(-0.5)

Figure 2.4: Nucleotides of each codon

The first nucleotide of each codon dictates the overall logic of the corresponding C++

program. As shown in Figure 2.5, a simple change in the order or nesting of the If-
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CONDITION-Then-ACTION tests can have a large effect on the computational process.

This flexibility allows the GA to build complex algorithms from simple building blocks.

The logic corresponding to the numerical value of the first nucleotide is listed below.

• If - Opens an If-Then statement. Adds action to the action stack. Nucleotides [1−25]

• End-If - Writes in and removes last action placed into the action stack. Closes an

If-Then statement. Opens another If-Then statement. Adds action to the action

stack. Nucleotides [26− 40]

• End-End-If - Writes in and removes last action placed into the action stack. Closes

an If-Then statement. Executes and removes last action placed into the action stack

stack. Closes another If-Then statement. Opens an If-Then statement. Adds action

to the action stack. Nucleotides [41− 55]

• End - Writes in and removes last action placed into the action stack. Closes an If-Then

statement. Nucleotides [56− 75]

• End-End - Writes in and removes last action placed into the action stack. Closes an

If-Then statement. Executes and removes new last action placed into the action stack

stack. Closes an If-Then statement. Nucleotides [76− 90]

• End-All - Writes in and removes last action placed into the action stack. Closes

an If-Then statement. Repeats until all If-Then statements are closed. Nucleotides

[91− 100]

if (Test a)(Action A)
end-if (Test b)(Action B)

if (Test a)(Action A)
if (Test b)(Action B)

if (Test b)(Action B)
end-if (Test a)(Action A)

a a

A A

a

A B

B

b b b

B

B

A
if (a)
    A
end
if (b)
    B
end

if (b)
    B
end
if (a)
    A
end

if (a)
    if (b)
        B
    end
    A
end

Figure 2.5: If structure codon and protein transcription
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2.2.4 Condition Nucleotides

The next three nucleotides determine which of the ANN states that can cause actions to

occur will be tested. The second nucleotide in each codon dictates which attribute will be

tested. The attributes are current states of Node α and/or Node β. Many of these attributes

affect the functionality of the neural network, such as the threshold of the neuron or the

number of connections it has. However, each node also has a three-part identification

number that aids in evolution without affecting the functionality of the neuron. The first

part of the identification number (ID1) is denoted by a letter between A and H. Input nodes

all have an ID1 of A and output nodes all have an ID1 of H. Hidden nodes can have an

ID1 of B through G, which is determined explicitly by the action which creates it. A node’s

second ID number (ID2) is determined by the parent node which created it. If this is the

first node the parent node has made, the new node will have an ID2 of 1. If it is the third

node the parent node has made, the new node will have an ID2 of 3. ID2 values can range

between 1 and 8 since any node can make, at most, 8 other nodes. ID3 values denote how

many nodes within the entire network have the same ID1 and ID2 values. Thus the first

node with an ID1 value of B and an ID2 value of 5 will have an ID3 value of 1, while the

second node with the same ID1 and ID2 values will have an ID3 value of 2. These values

can range from 1 to 100. The result of the three different ID types is that each node will

have a unique identification number.

The following list presents all possible node states which can be used by the attribute

nucleotide. In addition to using the explicit values of Node α and/or Node β, relative

differences between the two nodes can be considered as well. For values where a state of

Node α relative to Node β or Rel αβ are considered, the attribute of Node β is subtracted

from the value of the same attribute of Node α.

Similarly, there are options to consider the attributes of Node β relative to Node α, or

Rel βα. This can apply to all of the attributes listed above except for the connection weight.

The value used for connection weight is the value of the weight from Node α to β or vice

versa. The nucleotide ranges are for [Node α] [Node β] [Rel αβ] [Rel βα]. Equation 2.3 is

used to get discrete values between ±1, excluding 0, where z is the nucleotide and v is the

value written into the C++ program.

The test attributes corresponding to the numerical value of the second nucleotide are
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listed below.

• ID1 - Takes the ID1 value of a node, which can be between A and H. Nucleotides

[1− 5][27− 31][53− 55][77− 79]

• ID2 - Takes the ID2 value of a node, which can be between 1 and 8. Nucleotides

[6− 10][32− 36][56− 58][80− 82]

• ID3 - Takes the ID3 value of a node, which can be between 1 and 100. Nucleotides

[11− 14][37− 40][59− 61][83− 85]

• Threshold - Takes the threshold of a neuron. Due to Equation 2.3, this can be a

number in the range [-1− 1]/0 in 0.02 increments. Nucleotides [15− 17][41− 43][62−

64][86− 88]

• Number of Nodes Made - The number of subsequent nodes a node has made. Can be

between 1 and 8. Nucleotides [18− 20][44− 46][65− 67][89− 91]

• Number of inputs - Number of inputs into a node. Can be between 0 and 99. Nu-

cleotides [21− 23][47− 49][68− 70][92− 94]

• Number of outputs - Number of outputs from a node. Can be between 0 and 99.

Nucleotides [24− 26][50− 52][71− 73][95− 97]

• Connection weight - Takes the weight of a connection between two nodes. Due to

Equation 2.3, this can be a number in the range [-1 − 1]/0 in 0.02 increments. Nu-

cleotides [74− 76][98− 100]

v(z) =


z−50
50 if z ≥ 51,

z−51
50 if z < 51.

(2.3)

The third nucleotide writes the appropriate value into the test. In order for a condition

test to return textit/true, the attribute (second) nucleotide must be within a certain range

of this test value nucleotide. The values written into the program depend on the attribute

being tested. If the possible range is [0, 99], the number written into the program is the

test value nucleotide minus 1. However, attributes that have only 8 possible values require

equation 2.4 to convert the test value nucleotide into values suitable for the comparison.
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For threshold and connection values, Equation 2.3 is used if the attribute is a connection

or the threshold of a neuron. However, if the attribute is the relative threshold of a neuron,

Equation 2.5, which gives a range of [0, 1.98], is used instead.

v =

⌊
z − 1

12.5

⌋
, (2.4)

v(z) =
z − 1

50
. (2.5)

The fourth nucleotide determines the range over which the attribute can vary from the

test value and still have the condition return true. Similar to the test value nucleotide, the

test range the nucleotide writes into the code depends on the attribute being tested. For

cases where letters are compared, this is the lexicographical range between the letters where

two sequential letters have a lexicographical difference of 1.

2.2.5 Action Nucleotides

The final two nucleotides determine which actions are performed if the condition test is true.

The fifth nucleotide determines which type of action will be placed into the action stack.

As mentioned above, the last in the “stack” of actions is written into the program whenever

an If-Then statement is closed. Some nucleotides will result in the creation of a new node.

Others will create a connection between Node α and Node β. In both these cases, the

action value nucleotide dictates the threshold of the new node or weight of the connection,

respectively. The nucleotide-to-program transcription options are given by Equation 2.3.

However, there are also No Action and End Turn action type nucleotides which will not

insert any new action commands and end the pairing permutation, respectively. In these

cases, the action value nucleotide is not used for anything. Figure 2.6 shows the genetic

string used to create a C++ program.

2.2.6 C++ Programs (Proteins)

Each C++ program is a collection of proteins that build the phenotype. While the genome

creates the bulk of the algorithm, there are a few rules hard-coded into the C++ program

of every individual. These hard-coded rules are implemented to impose the minimum con-

straints any viable feed-forward ANN must have, while leaving enough flexibility to create
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Looping for
pairing permutations

1-1-15-15-10-26

40-38-2-1-95-16

100-1-2-3-4-5

End of genome

{
{
{

{

Figure 2.6: Sample genome and protein pseudocode

a variety of architectures. First, the test statements described in the previous section are

always placed within two for loops which cycle through all the different pairs of the ANN.

Also, all of the inputs nodes have a ID2 value of 1. As there is no option to create another

input, each ANN will have the same number of input nodes.

However, there are also other mandatory conditions that must be met before an action

is executed, even if the CONDITION within the genome is true. For actions that make a

connection, the first test is to make sure the two nodes are not already connected. Next, the

process ensures that the neuron being connected to is not an input to the entire ANN, and

that the neuron being connected from is not the output for the entire ANN. Finally, there

is a check that the neuron being connected to was made before the neuron which spawned

the connection to ensure the ANN is feed-forward.

To keep ANN size reasonable, ANNs have a limited amount of energy available for

growth. The act of creating a node or connection consumes one of the predetermined

energy units for the entire ANN. Once a pairing executes an action that uses an energy

unit, that pairing is over. The individual is considered to be completely developed once the

individual uses all 200 energy units or the programs cycles through all pairing permutations

without performing any actions. Figure 2.7 shows the development of a NAND gate using

the pseudo-code from Figure 2.6. It is important to note that an infinite number of different

genomes could have created an identical ANN.
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A-1-1

A-1-2

H-1-1

Figure 2.7: Protein pseudocode and sample NAND gate

NN

N

N

save =
α ∩ βα = 1Start β = 1

a? b?

A? B?

A B

Y

N

Y

Y

Y

β =
ANN
end?

energy --

β = 1

energy
= 200

Y

N

β ++

α =
ANN
end?

save =
α ∩ β

α∩β =
save?

energy > 0 ?

End

α = 1

α ++

Y

Y

Y

N

N

LEGEND

a? = if ( |Nodeα. ID1 – B|  < 1)
b? = if ( |Nodeβ. ID3 – 1|  < 0)
A? = Is making a connection feasible?
B? = Is making a node feasible?
A = Make a connection with weight of -0.5.
B = Make a node with ID 1 H and threshold                                                

of -0.75.

Figure 2.8: Flowchart of protein pseudocode
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Step 1: Step 2:
EMBRYOGENESIS Neuron α = A-1-1 Neuron α = A-1-2
START Neuron β = A-1-1 Neuron β = A-1-1

Action: Make Node Action: None

0

A-1-1

0

A-1-2

0

A-1-1

0

A-1-2

0

A-1-1

0

A-1-2
-0.75

H-1-1

Step 3: Step 4: Step 5:
Neuron α = A-1-1 Neuron α = A-1-2 Neuron α = H-1-1
Neuron β = A-1-2 Neuron β = H-1-1 Neuron β = A-1-1
Action: None Action: Make Connection Action: None

0

A-1-1

0

A-1-2
-0.75

H-1-1

0

A-1-1

0

A-1-2
-0.75

H-1-1

0

A-1-1

0

A-1-2
-0.75

H-1-1

-0.5

Step 6: Step 7: Step 8:
Neuron α = H-1-1 Neuron α = H-1-1 Neuron α = A-1-1
Neuron β = A-1-2 Neuron β = H-1-1 Neuron β = A-1-1
Action: None Action: None Action: None

0

A-1-1

0

A-1-2
-0.75

H-1-1

-0.5

0

A-1-1

0

A-1-2
-0.75

H-1-1

-0.5

0

A-1-1

0

A-1-2
-0.75

H-1-1

-0.5

Step 9: Step 10:
Neuron α = A-1-1 Neuron α = A-1-1 EMBRYOGENESIS
Neuron β = A-1-2 Neuron β = H-1-1 FINISHED
Action: None Action: Make Connection

0

A-1-1

0

A-1-2
-0.75

H-1-1

-0.5

0

A-1-1

0

A-1-2
-0.75

H-1-1

-0.5

0

A-1-1

0

A-1-2
-0.75

H-1-1

-0.5

-0.5

Figure 2.9: Steps showing the embryogenesis of NAND gate
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2.3 Evaluation, Mutation, and Selection

Each ANN is evaluated after the embryogenesis of each individual, as described by the

method above. Evaluations in NEURAE are performed in tiers to ensure network feasibility

and to promote evolution of complex behaviors (Graham et al. 2009).

The first tier ensures the individual grows the correct number of output nodes. If the

correct number of outputs are made, the individual advances to the second tier, where the

exponent is increased for each output node with a connection. These two requirements,

listed in Table 2.1, are the minimum for any possibly viable ANN circuit, and once met,

will yield an exponent value of x−1 = 1. The remaining tiers vary depending on the design

problem, and are listed alongside the design problem to which they pertain.

Table 2.1: Universal tiers for adjusting fitness exponent (x)

Tier Test Change in Exponent

1 Are there enough
output nodes?

fraction of desired
output nodes

2 Are there a connec-
tions to each out-
put node?

+ fraction of output
nodes with connec-
tions

Another commonality all evaluations share is the fitness function shown in Equation 2.6.

While x is a linear comparison of two individuals, the exponential nature of Equation 2.6

magnifies any improvements and greatly improves convergence in NEURAE. Furthermore,

the floor function ensures individuals which are unable to pass the first tier have zero fitness,

virtually nullifying their odds of survival.

Fitness =
⌊
2x−1

⌋
. (2.6)

A roulette style of selection determines which individuals are used for creating the next

generation. The population size in each generation is conserved. The probability of selecting

an individual is determined using Equation 2.7; where Pi, fi, and N are the probability

of selecting the ith individual, the fitness of the ith individual, and the population size,

respectively. A quarter of the population of the current generation survives to the next

generation. The remainder of the population is created by using the operations of point
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mutation, conjugation, translocation, genome replication, and genome deletion.

Pi =
fi∑N
j=1 fj

. (2.7)

As described by Holland (1992), classical GAs change the genotype of future populations

through point mutation and crossover of current individuals. Figure 2.10 shows an example

of a point mutation in a binary genome where a random bit is flipped. Point mutations

are also used in NEURAE, but instead of a binary bit flip, a random nucleotide is replaced

with a randomly chosen integer inclusively between 1 and 100.

111000111000 ⇒ 110000111010

Figure 2.10: Point mutation example. The underlined nucleotides are switched

Crossover mutations require two individuals to make two more individuals and are usu-

ally either single-point or two-point crossover. With single-point crossover, two individuals

make two new individuals by having their genomes broken and swapped at a random loca-

tion on the genetic string. In two-point crossover, only a section of the genomes are swapped.

Figures 2.11 and 2.12 give an example of both types. For GAs in which all genomes must

be the same size, the sections to be swapped must be of identical length. Furthermore, the

sections are usually at the same genome locus such that the information being exchanged

at that locus has some correlation to its purpose in the phenotype. In NEURAE, however,

there is little correlation between the functions of the same section of genome between two

different individuals. Furthermore, while crossover may produce one improved individual,

they seldom create two. Thus, genetic material is shared during mutations in NEURAE

through a process inspired by, and named after, biological conjugation.

111000111000 ⇒ 111000101010
101010101010 101010111000

Figure 2.11: Single-point crossover mutation
example. Parts of the genome which have
been swapped are underlined

111000111000 ⇒ 111010101000
101010101010 101000111010

Figure 2.12: Two-point crossover mutation
example. Parts of the genome which have
been swapped are underlined

In biology, conjugation is a process used by many species of bacteria where one bacterium

gives part of its DNA to another. Martin and Russell (2002) showed how this type of genomic
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exchange may have been key in the evolutionary jump from prokaryotes to eukaryotes and

Jain et al. (1999) and Ochman et al. (2000) offer conjugation as a reason for the high

adaptability of present-day bacteria. NEURAE uses conjugation in the manner shown in

Figure 2.13, where a section of one genome is inserted into the genome into another. Thus,

new rules can be exchanged between individuals and, hopefully, the benefits of biological

conjugation can also be used by NEURAE.

111000111000 ⇒ 1110001010111000
10101010101010

Figure 2.13: Conjugation mutation example. Parts of the genome which have been inserted
are underlined

Ohno (1970) introduced the concept of genome duplication as another key component

of biological evolution. During replication, portions of the genome are at times copied more

than once, resulting in an offspring that has two genes which make the same protein. Ohno

theorized this redundancy made the individual more robust to future mutations, because if

one gene became non-functional, there is another copy to do the same job. This redundancy

was also noted by Britten (2005), who observed that many sections of the human genome

have sequences that are too similar to have arisen independently. NEURAE uses a genome

duplication process as shown in Figure 2.14, where a section of a genome is copied more

than once when it is being replicated.

111000111000 ⇒ 111000111111000

Figure 2.14: Gene duplication example. The nucleotides copied more than once are
underlined

The final two mutation types are gene deletion and translocation. In gene deletion a

section of the genome is removed during replication. While gene deletion is an observable

phenomenon in biology, its effects are usually damaging (Lewis 2005). However, it was

added as a mutation here to counter the concatenating effects of conjugation and gene

duplication. Translocation, where a section of the genome is moved to another locus, is yet

another observed biological mutation. Regardless of its implications to biological evolution,

Figure 2.5 shows that the order of rules are very important in the embryogenesis of an

individual, so an operation which varies this order was included. Figures 2.15 and 2.16
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show examples of these two processes in NEURAE.

111000111000 ⇒ 111000000

Figure 2.15: Gene deletion example. The nucleotides deleted are underlined

111000111000 ⇒ 111111000000

Figure 2.16: Translocation example. The underlined nucleotides are moved to another gene
locus

Finally, it was necessary to prevent frame-shift mutations. A frame-shift mutation adds

or deletes only part of a codon. The result is a shift in nucleotides that causes all following

codons after the mutation to be different. Ohno (1970) detailed how such mutations are

almost always deleterious in biology and care is taken to avoid them here.
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Chapter 3

Logic-Gate Evolution

3.1 Overview

This chapter will describe how NEURAE creates logic gates. Each evolutionary run begins

with the random creation of 200 individuals for 1000 generations. These values were found

to give good results in run times around 4 hours on a cluster of 25 dual quad-core, 2.33 GHz

computers. Furthermore, each individual started with a genome 300 nucleotides (50 codons)

long. During evolution, a genome is allowed to double in size before being trimmed to the

default length. Genome length was constrained to prevent the well-documented problem

of bloat in genetic programming (Koza 1992; Langdon 2000). While this arbitrary setting

of genome length may bias evolution, Szathmáry and Smith (1995) have evidence showing

that overall genome length of a biological organism has little to do with the complexity of

the phenotype.

The first goal is to evolve an ANN that can serve as an XOR logic gate (Table 3.1),

even if the ANN suffers multiple failures. This circuit was chosen because its nonlinearity

requires the creation of a hidden layer and is a common benchmark in the evolution of ANN

logic circuits (Koehn 1996; Ashlock 2006). The next logic gate to be evolved is a parity gate.

A parity gate is a standard logic circuit used in simple error detection. An even parity logic

circuit will always have an even number of inputs and output active. This design challenge

exemplifies NEURAE’s capability to make a scalable ANN.
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Table 3.1: Desired output pattern for XOR logic-gate

Input 2
0 1

Input 1
0 0 1
1 1 0

3.2 Robust XOR Gate

3.2.1 Evaluation Parameters

Table 3.2 shows the tiers used in evaluating the evolved XOR gates, the exponent gets an

additional point for each correct answer. If an individual is able to get to the third tier,

the exponent in Equation 2.6 has a value of x − 1 = 1. At this point, the network’s truth

table is compared with that of the desired circuit in tier 3. If the individual passes tier 3

and is a functional XOR gate, x = 6 and the individual will have an overall fitness of 32.

In tier 4, a node is randomly removed, and the ANN is compared to the target XOR logic

again. Nodes are continually removed until the circuit no longer produces the target logic.

This test for robustness is performed for each generation the individual is alive. Because

the order in which the nodes are removed changes with each generation, the fitness of an

individual is not constant, and the overall robustness will increase.

Table 3.2: Tiers for adjusting fitness exponent (x) in robust XOR evolution

Tier Test Change in Exponent

1 Are there enough
output nodes?

fraction of desired
output nodes

2 Are there a connec-
tions to each out-
put node?

+ fraction of output
nodes with connec-
tions

3 Compare to the de-
sired truth table

+ # of correct an-
swers in each table
entry

4 Break nodes until
failure

+ fraction of nodes
broken
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3.2.2 Evolution Results

Figure 3.1 shows the fitness of the best individual of each generation. Figure 3.2 shows

the first XOR gate synthesized by evolution in generation 823, and Figure 3.3 shows how it

functions. In these figures, a node is filled-in (black) when it is activated. A solid connection

indicates a positive weight while a dashed connection is indicative of a negative weight. As

shown in Figure 3.3, the activation of either input will activate only the output. Once both

nodes are on, three of the four hidden nodes are activated, and their inhibitory connections

to the output are enough to deactivate it. However, this ANN is not robust, as all three

hidden nodes are needed to counter the activation of both inputs, and the removal of any

one will break the entire ANN.

Generation

B
es
t F
itn
es
s

Figure 3.1: Best fitness throughout the evolution of a robust exclusive-OR logic gate

By the end of the evolutionary run, a much larger ANN was created and is shown in

Figure 3.4. This ANN comprises 49 nodes and 140 connections. The algorithm created this

ANN by taking the smallest possible XOR gate (shown in Figure 3.5) and making duplicate

copies of it. The resulting ANN can have all but one hidden node removed, and is as robust

to node removal as possible. Furthermore, the ANN used 189 out of the 200 possible energy

units, making it close to the maximum size this evolution would allow.

Nevertheless, this is not the largest, fully redundant ANN this genetic algorithm could

have made. Figure 3.6 shows a refined version of the individual’s code, which shows only

the proteins used in making the ANN. The last protein in the code is responsible for making
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Input
Nodes

Hidden
Nodes Output

Node

Figure 3.2: First generated XOR gate Figure 3.3: Network functionality

Figure 3.4: Best generated XOR gate Figure 3.5: Network functionality
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the output node, which in turn halts all further neuron growth. If the test value is increased

from 3 to 5, and the maximum number of energy units available for growth is not limited,

then the 195 node network shown in Figure 3.7 is produced.

Figure 3.6: Code for creating a robust XOR
gate Figure 3.7: Larger XOR gate

The results of this experiment show that NEURAE is able to create large and complex

network structures. Not only is this GA able to solve the standard benchmark in logic

neuroevolution, it was able to expand on it by finding the core module and replicating it.

The ability of NEURAE to construct large networks with such regular structure will be key

for future applications.

3.3 Large Parity Gate

3.3.1 Evaluation Parameters

Table 3.3 shows that for the creation of a variable-size parity gate, the exponent is increased

by the fraction of entries in the truth table that are correct. Here, a 2-input parity gate will

have an exponent of x−1 = 2 and a fitness of 4. Once 2-input even parity is developed, the

ANN is rebuilt using the same genome, but starts with three inputs. The individual goes

through the three tiers again, with the exponent increasing by one for each test. Therefore,

a successful three-input parity gate will have an exponent of x− 1 = 5 and a fitness of 32.

These three tiers are repeated for up to 21 inputs.
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Table 3.3: Tiers for adjusting fitness exponent (x) in scalable parity evolution

Tier Test Change in Exponent

1 Are there enough
output nodes?

fraction of desired
output nodes

2 Are there a connec-
tions to each out-
put node?

+ fraction of output
nodes with connec-
tions

3 Compare to the de-
sired truth table

+ fraction of correct
answers in each table
entry

3.3.2 Evolution Results

The genetic algorithm was also able to create a parity gate for an arbitrary number of in-

puts. Figure 3.8 shows the fitness of the best performing individual throughout evolution.

The particular evolutionary run shown here produced a 2-input parity (i.e., XOR) gate

much more quickly than the run shown in the previous section. This large variability is

a by-product of the stochastic nature of GAs. At the 621st generation, NEURAE finally

generated a fully scalable individual. However, the discovery of this individual resulted in

the halting of the GA due to the excessive time required to evaluate
21∑
n=2

2n input configura-

tions. While a more elegant evaluation method could have circumvented this issue (Gruau

1994), the fact still remains that NEURAE was able to solve the problem at hand.

As shown in Figure 3.9, the 2-input parity gate works by having hidden nodes which

inhibit the output once both input nodes are activated. The hidden nodes, however, also

inhibit the activation of other hidden nodes that were made afterwards. This cascading effect

can also be seen in the 4-input parity gate shown in Figure 3.10. The internal cascading

structure of the 2-input network is able to scale accordingly to the 4-input network by having

the number of hidden nodes equal the number of output nodes. Having two inputs active

in the 4-input gate is identical to having two inputs active in the 2-input gate. Activating

a third input is able to turn on the output node without activating another hidden node.

However, the activation of a fourth input activates another hidden node, which in turn is

sufficient to inhibit the excitation of all four inputs. Figure 3.11 shows this cascading effect

scales with the number of inputs in an ANN with 13 inputs.

As shown in the code in Figure 3.12 the magnitude of a negative connection is exactly
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Figure 3.8: Fitness of best-performing individual throughout the evolution of a scalable
parity gate

Figure 3.9: Scalable parity gate with two inputs
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Figure 3.10: Scalable parity gate with four inputs
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Figure 3.11: Scalable parity gate with 13 inputs



32

twice the magnitude of a positive connection. Thus the excitation of two input nodes is

canceled out by the excitation of one hidden node. Furthermore, as the network begins

with more inputs, the number of hidden nodes made during embryogenesis increase as well,

providing scalability.

Once again, certain hard limits prevent parity gates of any arbitrarily large size to be

created. First, a limit of 200 energy units prevents this network from growing a parity gate

with more than 13 inputs. Also, the 99 connection limit placed on the maximum number

of inputs and outputs caps the parity gate size at 66 inputs. Fortunately, both these limits

were established only to help the evolution process and can be increased as necessary to

allow the code in Figure 3.12 to create parity logic for an arbitrary number of inputs.

Figure 3.12: Code for creating parity gates of arbitrary size
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Chapter 4

Sensitivity Analysis

4.1 Mutation Rates

Many of the values used for the genetic algorithm were heuristic. Fortunately, NEURAE is

able to solve the robust XOR problem with a wide range of values. Still, as the design chal-

lenges for NEURAE become more difficult, it is important to not disadvantage NEURAE

by using suboptimal evolutionary parameters. Some parameters, such as population size

and number of generations per evolution, are dependent on the computer resources avail-

able. However, the mutation rates were arbitrarily chosen, and are likely not the optimum.

Furthermore, these mutation values can be adjusted independently of the hardware used

and, hopefully, independently of the problem being solved.

NEURAE has a two-step process in determining mutations. After an individual is

selected to produce offspring, its genome is scanned using the overall mutation rate, µ ∈

[0, 1]. Each codon has a probability µ of undergoing some type of mutation. Based on

this random selection, when a mutation will occur, NEURAE then randomly selects from

the secondary mutation options the type of mutation the codon will undergo. The possible

mutations of point, conjugation, duplication (recopy), deletion, and translocation have the

respective rates of µP , µC , µR, µD, and µT .

In order to determine the appropriate balance of the various mutation rates, a series of

experiments were conducted. Each series was composed of ten evolutionary runs. Because

the creation of an XOR gate is feasible by using only point mutations, a series of tests

were run to determine the optimal point mutation rate. These tests set the µP rate to

1.0, and varied the µ rate from 0.05 to 1.0. The metrics by which the different tests were

judged were the number of generations it took to make an XOR gate and the fitness of the



34

highest-scoring individual at the end of evolution.

Statistical data for the first generation in which an XOR gate was made, or α generation,

was fitted to a two-parameter Weibull distribution (Weibull 1951). A Weibull distribution

has the cumulative distribution function (CDF) and probability distribution function (PDF)

given in Equations 4.1 and 4.2, respectively. In these equations, k is the shape parameter

and λ is the scale parameter. These parameters were found by performing a least-squares

line-fit on the data shown in Figure 4.1, where the slope of the line is k, and the x-intercept is

λ. Once these values are found the integral of the PDF (Equation 4.2) is used to determine

the likelihood of an XOR gate will being created within 1000 generations.

F (x) = 1− e−(x/λ)
k

, (4.1)

P (x) =
k

λ

(x
λ

)k−1
e−(x/λ)

k

. (4.2)

α generation

ln
1 1-
F

(
)

__
_

Figure 4.1: Log-log plot of α generation

vs. log
(

1
1−F

)
for a point mutation rate

of µ = 0.4.

α generation

P
D
F

Figure 4.2: Probability density function
and histogram of α generation for muta-
tion rate of µ = 0.4.

The Ω fitness is the fitness of the best performing individual at the end of the evolu-

tionary run. Because cases where an XOR is never found are capped at 16, those runs are

excluded to focus on the exploitative effects of the mutation rates. This statistical data was

found to be best fit to a Gaussian distribution, as shown in Figure 4.3.

Table 4.1 illustrates that evolutions using mutation rates at the extremes are both less

likely to make an XOR gate and are worse at optimizing a gate if it does. This is congruent
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Figure 4.3: Gaussian distribution of best fitness at the end of evolutionary runs with a point
mutation rate of µ = 0.4.

Table 4.1: The statistical results for varying mutation rates while only using point mutations

Case µ Probability α gen ≤ 1000 Ω fit mean Ω fit st. dev.

1 0.05 73.1% 99.67 10.36

2 0.1 90.2% 108.8 7.26

3 0.2 92.9% 106.0 8.40

4 0.4 97.3% 101.1 10.12

5 0.6 99.5% 97.39 23.64

6 0.8 99.1% 94.35 18.47

7 1.0 88.1% 86.70 17.76



36

with other literature which shows that extremely high and low mutation rates are often

deleterious to GAs (Mühlenbein 1992; Bäck and Schutz 1996).

However, mutation rates between 0.1 and 0.8 offer a trade-off between the likelihood of

finding an XOR gate and optimizing an ANN. As shown in Table 4.1, a higher mutation

rate makes finding an XOR gate more likely. However, lower mutation rates are generally

more capable of exploiting a functional XOR design and making it robust. Thus, a user

can either decide whether the problem being solved is more explorative or exploitative in

nature, and choose µP accordingly, or use variable mutation rates, such as those shown by

McGinley et al. (2008).

It may be possible to improve both the explorative and exploitative capabilities of NEU-

RAE without using a variable mutation rate which comes with its own biases and problems

(Bäck 1992). It was hoped that other mutations found in nature would be beneficial to

include in NEURAE as well. As mentioned in Chapter 2, NEURAE is capable of altering

newly created genomes using mutations besides simple point mutations. A sensitivity anal-

ysis was conducted to determine the appropriate rates of the rest of the mutation types.

However, the mutation rates are interdependent, so the sensitivity analysis was adminis-

tered in a manner detailed by Montgomery (2004) for studying the effects of dependent

variables. Overall, there are 6 variables. However, there are a few constraints that reduce

the degrees of freedom.

The first constraint, Equation 4.3, requires the probability of a point mutation to be

held at 0.4. The value of 0.4 was chosen because it is in the middle of the plateau of

mutation rates that perform well. Furthermore, the previous experiments prove that the

overall mutation rate can be increased without adversely affecting NEURAE.

µ · µP = 0.4. (4.3)

Next, the secondary mutation rates must sum to 1, as shown in Equation 4.4. This is

to ensure that a mutation happens as the overall mutation rate, µ, dictates. The constraint

shown in Equation 4.5 was added because the operations of crossover and gene duplication

lengthens the genome while deletion shortens it. Having the mutation rates of these oper-

ations balanced makes sure the genomes’ lengths are not unduly biased. This constraint,

when combined with the constraint that all mutation rates must sum to 1.0, leads to the
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Figure 4.4: The prism is representative of the mutation rate landscape as bounded by the
above constraints.

inequality in Equation 4.6.

µP + µC + µR + µD + µT = 1.0, (4.4)

µC + µR = µD, (4.5)

µC + µR ≤
1− µP

2
. (4.6)

These constraints can be used to create the mutation rate landscape shown in Figure

4.4 and a 3-dimensional sensitivity analysis can be performed by varying µ, µC , and µR

with data taken at the corners and centroid of the prism to maximize the exploration of the

mutation rate landscape. Table 4.2 shows the values used for exploring the mutation rate

landscape, which are at the corners and centroid of the prism shown in Figure 4.4.

Table 4.3 offers the results of the mutation rate sensitivity analysis. In general, the

excessively high mutation rates (µ = 1.0) were once again the poorest performing. Fur-

thermore, cases that use only point mutations and genome size changing mutations (i.e.,

conjugation, duplication, and deletion) perform worse than using point mutations alone.

However, using only point and translocation mutation with a moderate overall mutation
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Table 4.2: Mutation rates for 3-dimensional sensitivity analysis with variables in bold are
indicative of the chosen points on Figure 4.4

Case µ µP µC µR µD µT
8 0.6 0.66 0.0 0.0 0.0 0.34

9 1.0 0.40 0.0 0.0 0.0 0.60

10 0.6 0.66 0.17 0.0 0.17 0.0

11 1.0 0.40 0.30 0.0 0.30 0.0

12 0.6 0.66 0.0 0.17 0.17 0.0

13 1.0 0.40 0.0 0.30 0.30 0.0

14 0.8 0.5 0.075 0.075 0.15 0.20

rate, as was done in case 8, achieved good results. Still, there is a delicate balance between

these values since case 9, which also only used point and translocation mutations, was by

far the worst performing test case. This case only had two of the 10 runs produce an XOR

gate. Nevertheless, the best combination of mutations rates is case 14, which uses all of the

mutation types. These runs have a high probability of discovering an XOR gate (99.95%)

coupled with good optimization. As a result, this became the balance of mutation rates

used for future design problems.

Table 4.3: The statistical results for varying mutation rates across the mutation rate land-
scape given in Figure 4.4

Case Probability α gen ≤ 1000 Ω fit mean Ω fit St. Dev.

8 97.3% 106.6 8.48

9 19.1% 75.7 40.6

10 86.1% 92.99 18.84

11 56.6% 100.8 8.95

12 71.8% 98.34 10.52

13 56.5% 92.95 5.48

14 99.95% 102.8 10.60

4.2 Qualities of Productive Evolution

While it is important to see which mutation values optimizes NEURAE, an analysis of why

could help make improvements as well. Thus, a look at two different runs from an earlier

version of NEURAE (Roy et al. 2008) were analyzed. Both evolutions were performed
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using only point mutations, but one case had a moderate mutation rate (µ = 0.2, µP = 1.0)

which often produced XOR gates. The second group had a higher mutation rate (µ =

0.8, µP = 1.0) which seldom produced an XOR gate. Characteristics of successful, XOR

producing runs were compared to those of non-XOR producing, unsuccessful runs. While

the quantitative results differ between the two groups, the qualitative results for each group

are similar.
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Figure 4.5: Genes used by the top 10%
within a successful evolution
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Figure 4.6: Genes used by the top 10%
within an unsuccessful evolution

Figures 4.5 and 4.6 show which genes were used by the best individuals (top 10%)

throughout evolution. Each time a gene is used, a dot is placed that shows in which

generation it was used. Furthermore, the figure is overlaid with a plot of the fitness of the

best performing individual of each generation.

In Figure 4.5 there are sudden shifts in the genome of the population elite, known as

punctuated equilibria (PEs). Eldredge and Gould (1972) describe PEs as sudden shifts in

the phenotype of a population that results in speciation happening quickly as opposed to

gradually. While this theory was applied to observations of phenotypes within paleological

records, Figure 4.5 shows PEs happen on a genomic level in the simulated evolution near

generations 270 and 610. The first PE happens shortly after the first jump in fitness of the

best individual. The second PE happens after a relatively small change (∼1%) increase in

the best fitness. Finally, the majority of fitness improvements do not result in a large shift

of the genomes in the population.

The analysis was repeated for poorly performing evolutions with the elevated mutation

rate. Figure 4.6 reveals what happens within the genome of the best performing 10% during
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an unsuccessful evolution. Due to the elevated mutation rate, more genes are generated.

However, the lack of any PEs show that none of the genes are ever eliminated within the

elite population. Thus, there is a correlation between PE and evolutionary progress.

Figure 4.7: Structure of genes used by the
top 10% of each generation during a suc-
cessful evolution.

(Once nested is at the bottom).

Figure 4.8: Structure of genes used by the
top 10% of each generation during an un-
successful evolution.

(Once nested is at the bottom).

Figure 4.7 shows how the rules become more complex throughout evolution. The height

of the overall bar diagram shows how many different genes were used throughout evolution,

grouped for every hundred generations. The number of nestings indicate the number of

additional conditions that must test true in order for an action to be executed. Thus, a

thrice-nested rule must have four IF statements prove true for its action to execute. Over

time, a higher percentage of the rules used have additional nestings. Furthermore, the

number of genes used by the best individuals changes as well. As Adami et al. (2000)

argues, a more complex gene contains more information about its environment, and genes

that require more specified conditions to execute an action contain more information about

the required state of the network. The results of Figure 4.7 are contrasted with the unsuc-

cessful results shown in Figure 4.8. The illustration reconfirms that many more genes were

generated during the unsuccessful evolution. However, there is little variation throughout

evolution. Furthermore, the rules used do not become more complex.

Finally, statistics looking at the structure of the rules are examined. The actions of

every codon within each gene that is executed are tallied for each run. It is important to

note that the sum of these tallies will be higher than the total number of genes used because

nested genes contain multiple codons, and thus, multiple actions. Furthermore, while the
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actual numbers are given, it is the relative ratios that remain consistent among similar runs.

Table 4.4 reveals that making a connection was the most common action. However, the

second most common action was the end turn action, which prevents the growing network

from performing tasks. This suggests that the control of growth is nearly as important as

growth itself. In other words, evolving rules prohibiting actions may be as important as

involving rules that promote actions.

Table 4.4: Actions in executed genes

Make Make Do End
Connection Node Nothing Turn

Successful Run 4297 1628 1566 3981

Unsuccessful Run 12750 4346 612 8054

4.3 Variation of Nucleotides within the NEURAE Codon

It was argued earlier that having more complex genomes meant using more information

from the environment. Furthermore, the previous section showed that as individuals be-

came more fit, the rules often required a growing ANN to meet more conditions before an

action is executed. However, this just means the use of more environmental information is

correlated to more successful evolutions, but not necessarily the cause of them. Thus, the

following experiment was devised to disable the genome from using any information from

the environment for embryogenesis. Every test range (4th) nucleotide was set to write a

large number (250) into the C++ program. This test range is large enough to encompass all

possible ANN states and results in every condition test to be true. With this configuration,

the programs in NEURAE run similar to the programs in Gruau’s CE, where the order

in which actions are executed are completely determined by the sequence of actions in the

program.

This change seems to completely break NEURAE, as none of the evolutionary runs

produced an XOR gate. While it can be argued that implementing more action options or

not resetting the program for each pairing permutation could have produced an XOR gate,

it’s clear that NEURAE benefits in having information from the environment to correctly

apply embryogenesis.
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The second experiment tested the effect of growth controls. For this experiment, End

Turn action (5th) nucleotides were replaced with Do Nothing nucleotides. This results in a

set of rules in which actions cannot be actively halted.

Even though this experiment used the same mutation rates as in case 14, the removal

of End Turn nucleotides results in the probability of an XOR gate being created dropping

to 88.8%. However, if a desirable circuit was created, the runs were able to optimize it as

effectively as the evolutions in case 14, with an Ω fitness average at 102.6 and Ω fitness

standard deviation of 10.3. However, one curious side effect is that evolutions without End

Turn nucleotides took more than twice the computational time. While computation time

was not an explicit evaluation parameter for evolution, clearly using more time to get worse

results is undesirable. Thus, its clear that including End Turn action codons is beneficial

for the practical application of NEURAE.
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Chapter 5

Derivation of Simulation
Environment

5.1 Nomenclature

A = Amplitude of path sinusoid

~a = Shortest vector from robot center to obstacle wall

ax = x-coordinate of ~a

ay = y-coordinate of ~a

~b = Vector coincident with obstacle wall

bx = x-coordinate of ~b

by = y-coordinate of ~b

C = Slope of path sinusoid

c1 = Chord length of left wheel movement approximation

c2 = Chord length of right wheel movement approximation

d = Diameter of robot

f = Frequency for path sinusoid

g(·) = Function which is centerline of path

h = Distance from left wheel to point of rigid body rotation
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~l = Unit vector coincident with LIDAR sensor

lx = x-coordinate of ~l

ly = y-coordinate of ~l

~l⊥ = Unit vector perpendicular to LIDAR sensor.

m = Slope of line connecting photovoltaic sensor and closest point to path

~p1 = Global position vector to first obstacle vertex

p1x = x-coordinate of ~p1

p1y = y-coordinate of ~p1

~p2 = Global position vector to second obstacle vertex

p2x = x-coordinate of ~p2

p2y = y-coordinate of ~p2

~q1 = Vector from robot center to first obstacle vertex

q1x = x-coordinate of ~q1

q1y = y-coordinate of ~q1

~q2 = Vector from robot center to first obstacle vertex

q2x = x-coordinate of ~q2

q2y = y-coordinate of ~q2

r = Radius of robot

s1 = Arc traversed by left wheel

s2 = Arc traversed by right wheel

t = Time

~v1 = Left wheel movement approximation vector
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~v2 = Right wheel movement approximation vector

~vcg = Robot center movement approximation vector

w = Width of the path

x1 = x-coordinate of photovoltaic sensor

x2 = x-coordinate of path closest to photovoltaic sensor

~xi = Vector to initial robot global position

~xf = Vector to final robot global position

~xt = Vector to test robot global position

xtx = x-coordinate of ~xt

xty = y-coordinate of ~xt

y1 = y-coordinate of photovoltaic sensor

y2 = y-coordinate of path closest to photovoltaic sensor

α = Angle of rigid body rotation

β = Angle between ~v2 and vector pointing from the left wheel to the right wheel

η = Distance from laser origin to wall

γ = Angle perpendicular to initial robot orientation

θ = Angle laser makes with global x-axis.

κ = Scalar used to find an arbitrary location along obstacle wall

ν1 = Left wheel translational speed

ν2 = Right wheel translational speed

σ = Angle between ~v1 and global x-axis

τ = Discrete time between simulation steps
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φi = Initial robot orientation

φf = Final robot orientation

φt = Test robot orientation

5.2 Two-Wheeled Robot Movement

Figure 5.1: Diagram of variables for two-wheeled motion derivation

While the following robots may have varying sensor setups, they all have the same basic

movement model. All robots herein have the two-wheeled model shown in Figure 5.1. The

assumption that the wheels never slip enables robot movement to be modeled as rotation

of a rigid body rotating about some point in the 2-D plane.

As the left wheel travels, it moves along the arc,

s1 = hα. (5.1)

Figure 5.1 illustrates ~v1 and ~v2 are respective chords for the arcs s1 and s2. Using the
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Law of Cosines, the magnitude of the chord, c1, squared is

c21 = 2h2 − 2h2cos(α) = 2h2(1− cos(α)). (5.2)

However the Taylor series expansion of cos(α) about α = 0 is

cos(α)|α=0 = 1− α2

2!
+
α4

4!
−H.O.T. (5.3)

Plugging the truncation of the Taylor series expansion into Equation 5.2 gives

c21 ≈ 2h2
(

1− (1− α2

2
+
α4

24
)

)
, (5.4)

c1 ≈ hα−
α2

2
√

3
. (5.5)

The error between the arc length in Equation 5.1 and the chord length in Equation 5.5

has a maximum error of α2

2
√
3
. If α is small, using the chord to approximate wheel movement

in Equation 5.1 is acceptable. Thus, the simulation time steps are kept small and the wheels

are assumed to move along the chords instead of the arcs.

Equation 5.2 can be rewritten to make

cos(α) =
2h2 − c21

2h2
= 1− c21

2h2
. (5.6)

Using similar triangles,

c1
h

=
c2

h− d
, (5.7)

h =
c1d

c1 − c2
. (5.8)

Substituting Equation 5.8 into Equation 5.6 gives

cos(α) = 1− (c1 − c2)2

2d2
. (5.9)

Now, Equation 5.9 can be solved for α in terms of known qualities,
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α = cos−1
(

1− (c1 − c2)2

2d2

)
. (5.10)

It is necessary to verify that the assumption made in Equation 5.5 is accurate enough.

Having the wheels rotate in opposite directions and at equal magnitudes will result in the

the robot spinning in place and have the largest possible estimation error of the orientation.

If the wheels are assumed to move along the arc, the orientation will change according to

Equation 5.11,

α(t) =
s1t

h
. (5.11)

The exact movement represented by Equation 5.11 and the approximate movement

represented by Equation 5.10 are compared. For the verification of rotational accuracy the

following values were given: ν1 = 1 m/s, ν2 = −1 m/s, d = 1 m, τ = 0.02 s. This leads to

the following values of s1 = c1 = τν1 = 0.02 m, c2 = τν2 = −0.02 m, and h = d
2 = 0.5 m

during each simulation step. The exact and approximated results are shown in Figure 5.2

to be nearly identical with a maximum error of 0.003 rad.

Once it is known how much the robot has changed its orientation during the time step,

it is necessary to determine the displacement of its center. Due to the fact that the angles of

the isosceles triangle in Figure 5.1 must add up to π, β = π−α
2 . However, there is a need to

account for clockwise or counterclockwise rotations for determining the global orientation

of the two displacement vectors, ~v1 and ~v2.

φt =

 γ + β if c1 > c2,

γ − β + π if c1 ≤ c2.
(5.12)

By knowing the orientation and magnitude of the displacement of each wheel, ~v1 and

~v2 can be found by Equations 5.13 and 5.14.

~v1 =

 cos(φt)

sin(φt)

 c1, (5.13)

~v2 =

 cos(φt)

sin(φt)

 c2. (5.14)
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(s)

Figure 5.2: Verification of rotational accuracy with and without approximation.

The displacement of the center of the robot is the average of the displacement of the

two wheels, so ~vcg = ~v1+~v2
2 . Finally, the overall change of the robot position is shown in

Equations 5.15 and 5.16.

φt = φi + α, (5.15)

~xt = ~xi + ~vcg. (5.16)

To verify that the approximations are accurate, two more simulations were run: one

with a stationary wheel, and another with the wheels at two different, but constant, speeds.

The exact movement results from Equations 5.17 - 5.22 are compared to the approximation

results in Equations 5.15 and 5.16.

α(t) =
c1t

2r
. (5.17)
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x(t) = r sin

(
c1t

2r

)
. (5.18)

y(t) = r

(
1− cos

(
c1t

2r

))
. (5.19)

α(t) =
c1t

4r
. (5.20)

x(t) = 3r sin

(
c1t

4r

)
. (5.21)

y(t) = 3r

(
1− cos

(
c1t

4r

))
. (5.22)
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Figure 5.3: Verification of rotational and translational accuracy used the respective left and
right wheel speeds of ν1 = 0 m/s and ν2 = 1 m/s. The maximum orientation, x-position,
and y-position errors are 0.017 rad, 0.0079 m, and 0.0083 m, respectively.
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Figure 5.4: Verification of rotational and translational accuracy used the respective left and
right wheel speeds of ν1 = 0.5 m/s and ν2 = 1 m/s. The maximum orientation, x-position,
and y-position errors are 0.037 rad, 0.055 m, and 0.056 m, respectively.
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5.3 Collision Detection

Figure 5.5: Diagram of variables for obstacle collision check.

The next thing to account for is interactions between the robot and obstacles. All

obstacles in the simulation world are polygons. Before the robot moves to the new position

determined by Equation 5.16, there is first a check to make sure it does not pass the

boundaries of an obstacle, i.e., collide with an obstacle. In Figure 5.5, the point where ~a

intersects ~b is shown in Equations 5.23 and 5.24.

~xt + ~a = ~p1 + κ~b, (5.23)

~a = ~p1 + κ~b− ~xt. (5.24)

However, ~a⊥~b, so there dot product is zero, as shown in Equation 5.25.

~a ·~b = (~p1 + κ~b− ~xt) ·~b = 0. (5.25)

Solving Equation 5.25 for κ yields the result shown in Equation 5.26.

κ =
(bxxtx + byxty)− (bxp1x + byp1y)

b2x + b2y
. (5.26)
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If 0 < κ < 1, then ~a coincides with the line ~b within the line segment of the wall.

Equation 5.27 is used to check if the shortest distance from the center of the robots to the

wall is greater than the radius of the robot.

‖a‖ = ‖~p1 + κ~b− ~x‖ > r. (5.27)

If κ is not within the range (0,1), Equation 5.28 is used to ensure the robot clears the

vertices of the obstacle.

‖~p1 − ~x‖ > r ∩ ‖~p2 − ~x‖ > r. (5.28)

If the inequalities in either Equation 5.27 or Equation 5.28 are not satisfied, then the

robot will cross a boundary within the next simulation step. To prohibit this, the robot

keeps the same position it previously had. However, the robot is free to rotate as it normally

would. For verification, the robot is placed in a box and moves and rotates in increments.

5.4 Sensor and World Interaction

After the robot moves to the new orientation, the sensors are updated. For the line following

robot, photovoltaic sensors are configured to be on if the sensor is positioned above the black

line, and off otherwise. The centerline of the line to be followed is a sinusoid with a slope

and is governed by Equations 5.29 and 5.30.

g(x) = Acos(fx)−A− Cx, (5.29)

y2 = Acos(fx2)−A− Cx2. (5.30)

The line connecting the photovoltaic sensor and the point on the centerline closest to

it, as shown in Figure 5.8, is represented by Equation 5.31.

y2 = y1 +m(x2 − x1). (5.31)

However, the slope of the centerline of the path at x2 can be found by Equation 5.32.
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Figure 5.6: Collision detection was verified by placing the robot within a small obstacle and
having it move around. As shown above, the center of the robot is never closer than 0.5 m
(the radius) to the obstacle wall.

Figure 5.7: Model of robot sensor config-
uration for path following simulations.

Figure 5.8: Diagram of variables used for
path detection calculations.
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g′(x2) = C −Afsin(fx). (5.32)

This slope, however, is perpendicular to the connecting line shown in Figure 5.8. Thus,

the slope, m, of the connecting line must be the negative inverse of the slope of the centerline

as shown in Equation 5.33.

m =
−1

(g′(x2)
=

1

Afsin(fx)− C
. (5.33)

Substituting Equations 5.30 and 5.33 into Equation 5.31 yields Equation 5.34.

Acos(fx2)−A+ Cx2 = y1 +
x1 − x2

C −Afsin(fx2)
. (5.34)

However, Equation 5.34 will have problems when the slope of the sinusoid is 0. Thus it

is converted to the following equation:

x1 − x2 + (C −Afsin(fx2))(y1 +A−Acos(fx2)− Cx2) = 0. (5.35)

Equation 5.35 is used to solve for x2 within the range of x1− w
2 and x1 + w

2 numerically

via the secant method. If a zero for x2 is not within these bounds, the sensor must be

further than w
2 away from the centerline and off the path. However, the search region must

be broken in two sections to account for multiple roots. Thus, for regions [x1 − w
2 , x1]

and [x1, x1 + w
2 ] are searched separately. If a zero is found within these bounds, the secant

method finds the root quickly. Once x2 is calculated, y2 can be found with Equation 5.30. If(
(x1 − x2)2 + (y1 − y2)2

)
≤ w2

4 then the sensor is over the line and is consequently activated.

Otherwise, the sensor is off.

The fully 2-D robot navigates by using simulated LIDAR sensors which can detect the

distance to an obstacle in front of it. ~l is a unit vector collinear with the LIDAR. ~l⊥ is

used to check if the LIDAR unit intersects ~b within the wall segment with the following

inequality,

(~l⊥ · ~q1) · (~l⊥ · ~q2) ≤ 0. (5.36)

If Inequality 5.36 is true, it is necessary to first check if the laser is collinear with the
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Obstacle

Lidar
sensor
array

Figure 5.9: Model of robot sensor config-
uration for full 2-D navigation.

Figure 5.10: Diagram of variables used
for full 2-D navigation.

wall by evaluating Equation 5.37.

(~l⊥ · ~q1) · (~l⊥ · ~q2) = 0. (5.37)

If Equation 5.37 is true, it is necessary to check (~l⊥ · ~q1) and (~l⊥ · ~q2) separately. If both

equal 0, η = min(‖~q1‖, ‖~q2‖). Otherwise, η = ‖~qi‖ for which (~l⊥ · ~qi) = 0.

However, if the product of dot products in Equation 5.36 is less than 0, then ~l⊥ intersects

~b. To find the distance Equation 5.38 is used.

~q1 + κ~b = η~l, (5.38)

which becomes the linear equation shown in Equation 5.39.

 lxbx

lyby

 η

−κ

 =

 q1x

q1y

 . (5.39)

Then, the distance η becomes

η =
q1xby − q1ybx
lxby − lybx

. (5.40)

If η ≥ 0, the LIDAR sensor will hit the wall and return a distance η. If η < 0, the wall

is behind the sensor so there is no reading. This process is repeated for each wall, and the

smallest distance is the value that the sensor returns. A value less than the diameter of the

robot will cause the corresponding ANN input to active. Figure 5.4 shows the simulated
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robot with laser/obstacle interaction.

Figure 5.11: Graphical verification of accurate laser/object interaction. A blue line indicates
the corresponding ANN input is inactivate while red line indicates the corresponding ANN
input has been activated. The concentric circles are indicative of the desired goal
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Chapter 6

Robotic-Controller Evolution

6.1 Overview

This chapter will describe the evolution of digital controllers for the simulated robots de-

tailed in Chapter 5. All evolutionary runs have a population of 200 individuals with a

starting genome length of 150 nucleotides. The mutation rates are set in accordance with

the best performing case runs found in Chapter 4, µ = 0.80, µP = 0.50, µC = 0.075, µR =

0.075, µD = 0.15, and µT = 0.20. The design problems to be solved are creating a controller

for a line-following robot, creating an obstacle avoiding robot, and creating controllers for

a swarm of goal finding robots. As a result, the exponential fitness has the form in Equa-

tion 6.1 to further magnify slight improvements in the later tiers.

Fitness =
⌊
22(x−1)

⌋
. (6.1)

6.2 Line-Following Robot

6.2.1 Evaluation Parameters

Each ANN begins as three input neurons, one for each photovoltaic sensor. Table 6.1 shows

the tiers used for the exponent in this simulation. Once again, an individual that passes

the second tier has a fitness exponent of x−1 = 1. However, these individuals need to grow

and connect two outputs instead of the one in the previous logic evolutions.

Once an individual grows and connects to two outputs, it gets to tier 3 and its line

following ability is tested. The path to be followed is a line with a width w, and a centerline

that satisfies Equation 5.29. The robot starts at the origin facing in the direction of the
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Tier Test Change in Exponent

1 Are there enough
output nodes?

% of desired output
nodes

2 Are there a connec-
tions to each out-
put node?

+ % of output nodes
with connections

3 Simulate robot for
20 seconds

+ % of path followed
correctly

Table 6.1: Tier for adjusting fitness exponent (x) in line following evaluation

positive x-axis. The constants are chosen to ensure the line intersects the origin with the

center sensor over the line. Furthermore, the curvature of the line is always less than the

turning radius of the robot, r. An individual is allotted 20 seconds of simulated time. At

each time step, it is evaluated by Equation 6.2 where ε is the error between the robot’s

center and the centerline of the path. These values are summed and divided by the sum of

Equation 6.2 if ε were 0 for all time steps. This fraction is then added to the exponent in

Equation 6.1.

f(x) = 1− 1

1 + e−4
ε−r
w

. (6.2)

Figure 6.1: Preference function for position error in line following evaluation

6.2.2 Evolution Results

Figure 6.2 shows that the center of the robot traveled along the path and is a capable line

follower. The ANN controller of the robot is shown in Figure 6.3. While there was no

explicit penalty for building extra neurons, an ANN with a hidden layer could cause a lag

in response time which would cause a larger error while following the path.
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Desired Path
Path of Robot Center

Figure 6.2: Robot path compared with de-
sired path

INPUTS

OUTPUTS

LEFT RIGHT

Figure 6.3: ANN controller for a line following
robot

Left Center Right Left Right
Sensor Sensor Sensor Wheel Wheel

0 0 0 1 1

0 0 1 1 0

0 1 0 1 1

0 1 1 1 0 or 1

1 0 0 0 1

1 1 0 0 or 1 1

Table 6.2: Dominant logic for line following robots

The resulting line-following logic is show in Table 6.2. While some of the entries are

self-evident, such as turn right when only the right sensor is active, it was not clear what the

right action should be when the line is not sensed. However, it was found through evolution

that the best course of action if the line is not detected is to go forward. Given the limited

sensing abilities of the robot, this is the best general-purpose line search the robot could

perform.
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Figure 6.4: Code used to make line following controller

6.3 Obstacle-Avoiding Robot

6.3.1 Evaluation Parameters

For this problem an ANN was evolved that could function as a controller for a robot that

could find a goal within a closed 2-D room. The inputs to the ANN are the goal sensors and

LIDAR sensors of the robot. The three goal sensors are configured to be on in accordance

to Figure 6.5 with the center sensor having a 45◦ arc. These sensors give directional data,

but not ranging information. Furthermore, the goal sensors are able to detect the goal

regardless of distance or if there is an obstacle between the robot and the goal. As shown

in Figure 5.4, there are five LIDAR sensors which are set at equivalent angles in the 120◦

arc in front of the robot. Goal sensor inputs for the ANN have an ID1 of A and LIDAR

inputs have an ID1 of B. Because an ID1 of B is being used for an input, neurons grown

during embryogenesis cannot have an ID1 of B.

Originally, the third tier was a simulation tier of having the robot find the goal in an

enclosed room without internal obstacles. However, several individuals were able to find the
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Figure 6.5: Goal sensor configuration for the obstacle avoiding robots. Detection is sepa-
rated into left, center, and right.

Tier Test Change in Exponent

1 Are there enough
output nodes?

% of desired output
nodes

2 Are there a connec-
tions to each out-
put node?

+ % of output nodes
with connections

3 Logic test + % correct answers

4 Simulate with con-
vex obstacle

+ summed distance
to goal

5 Simulate with star
obstacle

+ summed distance
to goal

Table 6.3: Tiers for adjusting fitness exponent (x) in obstacle avoidance evaluation

obstacle without evolving the ability to turn both left and right! Usually, individuals would

only be able to sense if the goal was to one side or another, and then use LIDAR detection

of the border to make enough turns to compensate. Thus, the third tier was replaced with

the logic test shown in Table 6.4. For these tests, it is assumed all the LIDAR inputs are

off. This ensured the controller exhibited efficient logic in finding the goal in the absence of

obstacles.

Once an ANN controller evinces the logic in Table 6.4, it moves to tier 4. Here, the

robot is tested to see if it can find a goal with an obstacle between the starting point and

goal. The environment shown in Figure 6.6 starts the robot in a random position and
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Left Goal Center Goal Right Goal Left Right
Sensor Sensor Sensor Wheel Wheel

0 0 1 1 0

0 1 0 1 1

1 0 0 0 1

Table 6.4: Logic test goal finding robots are required to pass before simulation. For this
test, all LIDAR inputs are inactive

orientation in the upper-right corner, and its movement is simulated for 20 seconds. At

each time step, the distance of the robot is evaluated by Equation 6.3, with ε being the

distance between the robot and the goal. This distance is doubled if the robot is in contact

with an obstacle, providing further evolutionary pressure for obstacle avoidance. As with

line following evaluation, this value is summed and divided by the sum of Equation 6.3 if ε

is equal to 0 for all time steps. This fraction is then added to the exponent in Equation 6.1.

If at the end of the simulation, the robot is within one diameter of the goal, it is allowed to

move on to tier 5.

Figure 6.6: Environment for tier 4 evaluation Figure 6.7: Environment for tier 5 evaluation

f(x) =


1

1+e
2ε−10

3
if there is a collision,

1

1+e
ε−10

3
otherwise.

(6.3)

Tier 5 is almost identical to tier 4, except now the environment includes the star obstacle

shown in Figure 6.7. Usually, robots which performed well in tier 4 also performed well

here, but this tier did help refine the controllers. Figure 6.7 shows the path taken by a

successful individual.
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6.3.2 Evolution Results

The synthesized controller shown in Figure 6.8 was able to navigate around convex and star

obstacles. In the figure, the left three inputs correspond to the goal sensors, and the right

five are the inputs from the LIDAR unit. The activation pattern shown in Figure 6.8 is

the result of the goal being in front of the robot, but a wall is in close proximity of the two

leftmost LIDAR sensors. The corresponding output is to have the left wheel on and the

right wheel off, which will cause the robot to turn right, as desired.

GOAL
SENSORS

LIDAR
INPUTS

Figure 6.8: ANN controller for obstacle avoidance

In order to demonstrate the general capabilities of this controller, the individual was

placed in two more simulation environments after evolution was completed. The first is

an environment that is densely obstructed. As Figure 6.9 shows, the robot is still able

to avoid the obstacles and reach the goal. The next task shown in Figure 6.10 could not

be accomplished by the individual. In order to surmount this challenge, the robot had to

be able to encounter the obstacle, then move away from the goal as it moved along the

contour of the wall. Figure 6.10 shows that the robot was able to trace the wall and is able

to follow the wall until the robot is facing the away from the goal. However, the goal sensors

indicate the goal is on the right side of the robot, although nearly behind it. As a result, the
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robot continues to turn right, looping toward the goal and away from the obstacle. Once

it encounters the obstacle again, the cycle is restarted. While there may be a fine-tuned

solution to create a feed-forward network for this problem, it is likely that this solution will

be brittle. This problem may require a recursive neural network so that the controller can

store and use gathered information about the environment.

Figure 6.9: Obstacle avoidance robot in a
densely obstructed environment

Figure 6.10: Obstacle avoidance robot in a
environment with concave obstacle

6.4 Goal-Finding Swarm Robots

6.4.1 Evaluation Parameters

A network capable of controlling swarm behavior was the final goal. For this challenge,

individuals had the same types of inputs as they did in the previous obstacle avoidance

section, but the number of LIDAR input were increased to eight to provide higher fidelity.

Furthermore, the goal sensors were reconfigured to not be able to detect the goal if an

obstacle is blocking it, as shown in Figure 6.12. Thus, the individual had to evolve logic

which enables it to search for the goal, then converge once found.

While, the robots here were unable to detect the goal if there is an obstacle between

the two, Figure 6.13 shows that once a robot is able to see the goal, it sends out a signal at

its own location, which other robots are able to detect. If the second robot is unable to see

the goal, its goal sensors will indicate in what direction the first robot is. However, once a

robot is able to detect the goal on its own, the goal sensors will ignore the signal from other

goal-detecting robots, and give the direction of the goal.
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Figure 6.11: Code used to make obstacle avoidance controller

Table 6.5 shows the tiers used for evaluating swarm behavior. Rather than forcing a

viable ANN to conform to an imposed logic table, the robot was simulated in the convex

and star obstacle environments displayed in Figures 6.14 and 6.15.

The fifth tier is the first time swarming behavior is tested. For this challenge, one robot

is placed near the goal. A second robot is placed on the other side of a star obstacle. The

challenge for the individual is to create a controller where one robot can go toward a global

signal without colliding with an obstacle. Figure 6.16 shows that NEURAE produced an

individual capable of completing this task.

The sixth and final tier places the swarm in a larger room shown in Figure 6.17. For

this tier, both robots are placed outside of detection range of the goal. Eventually, one

of the robots finds the goal and the other is able to find it as well. Due to the increased

number of tiers present in this evolution, most populations were still improving at the
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Figure 6.12: Goal sensor configuration for
swarming robots where the goal is obstructed
from the entire swarm.

Figure 6.13: Goal sensor configuration for
swarming robots where a member of the
swarm can detect the goal.

Figure 6.14: A single swarming robot in an
environment with a convex obstacle

Figure 6.15: A single swarming robot in an
environment with a star obstacle
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Tier Test Change in Exponent

1 Are there enough
output nodes?

% of desired output
nodes

2 Are there a connec-
tions to each out-
put node?

+ % of output nodes
with connections

3 Simulate single
robot with convex
obstacle

+ summed distance
to goal

4 Simulated single
robot with star
obstacle

+ % summed dis-
tance to goal

5 Simulate swarm
with star obstacle

+ average summed
distance to goal

6 Simulate swarm in
large room

+ average summed
distance to goal

Table 6.5: Tiers for adjusting fitness exponent (x)

1000th generation. As a result, evolutionary runs evolving swarming behavior were allowed

to run for 1500 generations.

Figure 6.16: Two swarming robots in an en-
vironment with a star obstacle

Figure 6.17: Two swarming robots in a large
environment with various obstacles

6.4.2 Evolution Results

The individual that could control a swarm of robots as shown above, produced the controller

shown in Figure 6.18. This particular ANN eventually evolved the logic to turn right

whenever any of the LIDAR sensors detected a wall. As in the previous section, individuals
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GOAL
SENSORS LIDAR INPUTS

Figure 6.18: ANN controller for each swarming robot

that had a single robot capable of passing tier 3 seldom had trouble with tier 4. However,

evolving the ability to avoid objects while tracking the signal of a robot in tier 5 was an

equivalent challenge to the obstacle avoidance in section 6.3. Tier 6 proved to be an effective

trial in which the swarm controllers were further refined.

Figure 6.19 shows the progression of the two robots at various times during the simu-

lation of a successful individual in tier 6. The goal is in the lower left-corner, and the two

robots begin in the upper-left and upper-right corners of the environment. For discussion,

robot 1 begins in the upper left and robot 2 starts in the upper right. The robots roam

about the room avoiding obstacles until, eventually, robot 1 is within direct line of sight

of the goal, as shown at time = 31.00 s. The causes robot 1 to emit a signal, shown in

Figure 6.19 by the concentric circles, that allows the goal sensors of robot 2 to detect the

position of robot 1. Robot 2 begins to move toward robot 1, but the L-shaped obstacle

prevents it from taking a direct path. Furthermore, at time = 45.00 s, robot 1 loses sight

of the goal and both robots reenter their goal searching behavior. Nevertheless, robot 1

quickly reacquires the goal by time = 50.00 s, and moves toward it. Robot 2 once again

moves toward robot 1, and begins to maneuver around the vertical obstacle. At time 75.00

s, robot 2 can also detect the goal and by time 80.00 s, both robots circle around the goal,
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while avoiding contact with each other.

Once again, the evolved individuals were verified by being presented situations in which

they were not explicitly evolved. The first is a revisit to the single robot seeking the goal

with a concave obstacle. This time, however, the goal sensors do not cause the robot to

loop within the obstacle because the robot is not within line of sight of the goal. As a

result, a single robot is able to navigate around the environment to find the goal, as shown

in Figure 6.20. Next, a swarm of three robots was placed in the environment shown in

Figure 6.21. The entire swarm is once again able to converge at the goal. However, the

robots are not able to avoid each other in such close proximity, and end up colliding.
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Time = 0.00 s Time = 14.00 s Time = 28.00 s

Time = 31.00 s Time = 41.00 s Time = 45.00 s

Time = 50.00 s Time = 57.90 s Time = 61.00 s

Time = 69.14 s Time = 75.00 s Time = 85.00 s

Figure 6.19: Steps showing the movement of an evolved swarm
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Figure 6.20: A single swarming robot in an
environment with concave obstacle

Figure 6.21: Three swarming robots in a large
environment with various obstacles
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Chapter 7

Conclusion

This dissertation has presented NEURAE, a genetic algorithm capable of generating ar-

tificial neural networks via the application of interchangeable rules. Furthermore, these

networks have shown to be modular, scalable, and suitable for robotic control. The If-

CONDITION-Then-ACTION structure of programs produced by NEURAE allows rules to

be easily rearranged and create unanticipated, yet desirable results. In fact, the develop-

ment of complex rules from simple building blocks may be a key element to the modularity

expressed in the phenotypes. The design of the robust XOR gate demonstrates the ability

of NEURAE to find and use the inherent modularity within a problem. Having a GA which

can discover and use modules on its own is particularly advantageous when these modules

are not known beforehand. Furthermore, modules predetermined by a human designer may

unintentionally exclude desirable designs. Embryogenesis also provides the scalability re-

quired to create parity networks of arbitrary size. NEURAE was able to evolve a genome

which could create an even parity logic gate for 2 or 200 inputs. The fact that both ANNs

could be made from the same four codons demonstrates that NEURAE can evolve large

neural networks in a manner most neuro-evolutionary GAs cannot.

While this was an accomplishment in its own right, NEURAE was honed further through

a sensitivity analysis of the mutation rates and types. Experiments were conducted to

properly balance the point mutation, conjugation, gene duplication, gene deletion, and

translocation mutation rates. As a result, the explorative and exploitative capabilities of

NEURAE were optimized. It also shows that biologically inspired mutations, such as gene

duplication and conjugation, are important to virtual evolutions as well. These experiments

provided further evidence that as evolution used more information from the environment,

the designs produced became more complex.
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This refined version of NEURAE was used to make robotic controllers. The neural

networks for these cases were able to find the correct controller logic by simulating the

robot, not by fitting an explicit logic table. As a result, a controller can be designed

without having to know the controller’s precise functionality but instead by rewarding the

higher level behavior.

These goals were achieved even with several constraints placed on NEURAE that are

not necessary for future applications. For example, NEURAE is inherently able to make

recurrent networks, but that ability was specifically removed in the examples provided here

to simplify the evaluation of ANN logic. A version of NEURAE with recursion enabled

could exhibit many of desirable properties networks mentioned in the introduction have,

but with the modularity and scalability embryogenesis provides. NEURAE is also capable

of generated networks that are not purely digital. Most ANN applications use a continuous

activation function within each neuron to produce a range of values between -1 and 1.

A particular benefit to using analog networks would be the ability to use Hebbian type

learning, for control applications in particular. Nolfi et al. (1994), Stanley et al. (2003), and

Soltoggio et al. (2007) have all successfully used reinforcement learning for the real time

training of an ANN controller. However, these methods have been used for directly encoded

genetic algorithms and are thus impractical for large networks. NEURAE, however, could

find the core module necessary for such real-time learning ANNs and replicate it to make

large networks.

Future iterations of NEURAE could benefit from other advancements in the field of

evolutionary computation. One of the key components of NEAT (Stanley and Miikkulainen

2002) was an evaluation which rewarded robotic controllers for novelty. Instead of dictating

a single evolutionary path with evaluation in tiers, rewarding novelty promotes several

evolutionary paths at once. Another improvement might be the use of other selection

methods. Rather than using the roulette method shown in Equation 2.7, selection can be

done via tournaments (Miller and Goldberg 1995) or Pareto optimization (Horn et al. 1994).

These improvements would likely further optimize NEURAE for use in other applica-

tions. Many of the classification methods mentioned in the introduction train a large ANN

with a set architecture. These training sessions are sensitive to the initial weights and the

training sequence. NEURAE has shown it can make large, robust ANNs, and such ANNs

would be less sensitive to varying initial weights and training sequences. As a result, better
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classifiers could be made, which would have applications in computer vision for robotics, or

many of the other fields mentioned in the introduction.

Most promising, the results obtained here may have implications beyond robotics and

neuro-evolution. While the importance of point and crossover mutations have been well

studied in classical GAs, the effects of gene duplication, gene deletion, and translocation

have not. It would be interesting to study how these mutations affect other implicit GAs,

and in particular, see if similar results are yielded. Likewise, Davidson (2006) has shown how

controlling growth is an important feature of biological regulatory systems, and more work

is needed to test the effect of regulatory systems in other GAs which use embryogenesis.

Finally, the occurrence and correlation of punctuated equilibrium in an artificial evolution

with embryogenesis is not well studied and is likely not unique to NEURAE.
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Appendix

Included in the appendix is the source code used to make NEURAE work. Because many

different version of NEURAE were developed in the process of this thesis, the codes have

several sections which were obsolete or never finished. Furthermore, the first three programs

listed were for evolving the robust XOR logic gate, while the final library was used for the

evolution of swarming robot controllers.

• Evovle.cpp is the executable program, and contains the various libraries listed af-

terwards. This is the program which conducted the genetic algorithm. Pages 86 -

106

• node lib.h is a libraries which defined the node and neural network object class, as

well as useful functions for both. Pages 107 - 115

• evo lib.h contains many useful functions used throughout evolution, such as those used

for evaluation and mutation. It also contains the definition for an individual as well.

Furthermore, the make protien function contained within evo lib.h was responsible

for transcibing the integers of an individual’s genome into a compilable C++ program.

Pages 116 - 163

• robot lib.h contains the definition and functions needed for robot simulations. Pages

164 - 180



1C:\Documents and Settings\...\Evolve_omega4.cpp

1 //This is the main script that will control evolution
2
3 #include <iostream>
4 #include <fstream>
5 #include <vector>
6 #include <string>
7 #include <sstream>
8 #include <ctime>
9 #include <math.h>

10 #include "chimera_lib.h"
11 #include "node_lib_omega4.h"
12 #include "evo_lib_omega4.h"
13 #include <mpi.h>
14
15 using namespace std;
16
17
18 int main(int argc, char *argv[]){
19  //----- These values are set by arguments during 

program calls ---------------
20  //Template for new runs:
21  //   Evolve.exe N last_generation default genome 

length
22  //Template for continuing runs
23  //   Evolve.exe -c N last_generation 

restarting_generation
24  char restart; //This determines whether evolution will

 start from scratch or a member of Ark.txt
25  int N; //The number of individuals per generation
26  int default_genome_length;
27  int last_generation; //Max number of generations 
28  int start_gen,counter; //Used for regenesis
29  vector<int> restart_individuals; //Used for regenesis
30  //-----------------------------------------------
31  //--- Number of inputs and outputs for each ANN ------

--
32  const int no_of_inputs = 2; 
33  const int max_no_of_outputs = 1;
34  const int max_connections = 99;
35  //------ Mutation Rates & Values -----------
36  const float mu = 1.0; //Chance of mutation at each 

reading frame
37  vector < vector<float> > mutation_ratios;  //Ratio for

 each case.  The # of cases determines the number of 
children each individual can have

38  vector<float> mu_ratio (5, 1.0); //Mutation rate of 
each mutator.  Make sure they add up to 1.0

39  mu_ratio[0] = 0.40;mu_ratio[1] = 0.30;mu_ratio[2] = 0.
00;mu_ratio[3] = 0.30;mu_ratio[4] = 0.00;

40  mutation_ratios.push_back(mu_ratio);
41  mu_ratio[0] = 0.40;mu_ratio[1] = 0.30;mu_ratio[2] = 0.

00;mu_ratio[3] = 0.30;mu_ratio[4] = 0.00;
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2C:\Documents and Settings\...\Evolve_omega4.cpp

42  mutation_ratios.push_back(mu_ratio);
43  mu_ratio[0] = 0.40;mu_ratio[1] = 0.30;mu_ratio[2] = 0.

00;mu_ratio[3] = 0.30;mu_ratio[4] = 0.00;
44  mutation_ratios.push_back(mu_ratio);
45  float mu_point_mutation; 
46  float mu_conjugation;  
47  float mu_recopy;    
48  float mu_deletion;     
49  float mu_translocation;
50  //----------------------------
51  //----- Random Seeding   -----------
52  time_t start,end,seed;
53  int dif_t;
54  time (&start);  //Sets the start time for this 

evolution run
55  time (&seed);
56  //seed = 1244495693;
57  srand(seed);  //Seeds the randomizer
58  //--------------------------
59  //------Used for organizing individuals throughout 

evolution -----------------------
60  int generation = 0;//The current generation  
61  int newly_made,vets,reduced; //Keeps track of the 

number of individuals made each generation 
62  int Ark_no, my_Ark_no, Ark_no2;  //Used to keep track 

of Ark numbers within the hub and satellite computers
63  int genome_size;  
64  vector<int> recalled_genome; //Used for regenesis
65  vector<individual> Ark; //Holds all the individuals
66  vector<individual> my_Ark; //Array for satellite 

computers that has its individuals
67  vector<int> my_Ark_conversion; //Ark_conversion[i] on 

satellite comp == Ark_no on comp 0
68  int Ark_search;  //Used to find the right Ark_no on 

satellites
69  //----------------------------------------------------

---------
70  //----- Used for selection in survival and proceation 

--------------
71  vector<int> procreation; //For selecting whose genes 

will be passed on
72  vector<int> unmade; //Individuals whose ANN's haven't 

been made
73  vector<int> alive; // All individuals alive this 

generation
74  vector<int> still_alive; // Individuals that were 

alive this generation and will live onto the next
75  vector<int> stay_alive; //Individuals that have been 

selected during death and procreation loops
76  float all_fitness,max_fitness;  
77  int lucky_one,newbies,mutation_method;  
78  vector< vector<int> > mutation_info; //The individuals
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' subject number and the method of its mutation
79  vector< vector<int> > mutation_Ark;  //The individuals

' genomes
80  float low_fit, high_fit, range_fit, num_fit;
81  int selection_q, low_int, high_int, range_int, num_int

;
82  //----------------------------------------------------

-
83  //  -------- Declared here and used to temporarily 

hold info --------------
84  int junk_int; 
85  char junk_char;
86  float junk_float;
87  vector<int> junk_ints;
88  //-----------------------------
89  //MPI Variables
90  MPI::Init(argc, argv);
91  int dest, noProcesses, processID, tag, src;
92  int hub = 0;
93  vector<int> mutationID, embryogenesisID;
94  tag = 0;
95  MPI_Status status;
96  noProcesses = MPI::COMM_WORLD.Get_size();
97  processID = MPI::COMM_WORLD.Get_rank();    
98  int data_pack[2]; //Used to hold info when sending 

info to other comps
99     int data_pack2[3]; //Also used to hold info when 

sending info to other comps in mutation loop
100  int back_size; //Tells hub how much info is being sent

 back
101  vector<int> temp_genome; //Used as a temp place holder

 for sending genomes to other comps
102  vector<int> temp_genome2;
103  vector<int> sub_back; //Used to send subject numbers 

back to computer hub
104  vector<float> fit_back; //Used to send fitnesses back 

to computer hub
105  vector<int> ruleset_length_back; //Used to prep 

computer hub for the number of rules coming back
106  vector<int> ruleset_back;  //Rules creating in making 

each ANN.
107  int ruleset_back_size;  //Same as ruleset_back.size(),

 but shorter way can't be used alone
108  //----------//
109
110  if((processID%8) == 0){ //This is a fix for GARUDA so 

each computer does this only once
111   //Cleans up scratch if anything is there
112   //Copies necessary libraries to /scratch 

directories of each comp
113   //-------------------CHANGE THIS FOR EACH VERSION-

-----------------------
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114   system("scp /home/roy/chimera_lib.h /scratch/
chimera_lib.h");

115   system("scp /home/roy/Evolution/Version_omega4/
node_lib_omega4.h /scratch/node_lib_omega4.h");    

116   //------------------------------------------------
-------------------------------

117  }
118  else{
119   system("sleep 5");
120  }
121  //----------------------------------------------
122  //This if/else loop determines if we are continuing 

from a past evo run or starting a new one, then sets 
the variables accordingly

123  if(argc == 5){
124   N = atoi(argv[2]);
125   last_generation = atoi(argv[3]);    
126   start_gen = atoi(argv[4]);
127   counter = 0; //Tracks how many indivuals have been

 restarted
128   Ark_no = 0;
129   if (processID == hub){
130    //First, we read the Chronograph to see which 

individuals were alive at the given gen
131    ifstream infile1("Chronograph.txt");
132    for(int i=0;i<start_gen;i++){ //Skips down the

 right gen
133     infile1>>junk_int; //Gets the gen
134     for(int j=0;j<N;j++){  
135      infile1>>junk_int; //Gets the subject 

number
136      infile1>>junk_float; //Get the fitness
137     }
138    }
139    infile1>>junk_int; //Gets the gen again
140    for(int i=0;i<N;i++){  //Gets and saves the 

subject numbers
141     infile1>>junk_int; //Gets the subject 

number
142     restart_individuals.push_back(junk_int);
143     infile1>>junk_float; //Get the fitness
144    }
145    if(restart_individuals.size()!= N){ //Check
146     cout<<"There was a problem with 

determining which individuals were alive at generation
 "<<start_gen<<endl;

147     return 0;
148    }
149    sort_vector(restart_individuals);
150    cout<<"Individuals to be restarted from 

generation "<<start_gen<<":"<<endl;
151    print_vector(restart_individuals);
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152    system("cp ./Ark.txt ./Arktmp.txt"); //Creates
 a temp file to read from

153    system("rm Ark.txt");
154    system("rm Chronograph.txt"); 
155    ofstream datafile_temp("Ark.txt");
156    datafile_temp<<seed<<endl; //Gets the seed    
157    ifstream infile2("Arktmp.txt");
158    //Now we read through the Ark and compares the

 subject number of the Ark with the individuals marked
 for restart

159    infile2>>junk_int; //Gets the old seed  
160    while(counter<N){
161     if(any(restart_individuals,Ark_no)){//Save

 the individual
162      infile2>>junk_int;
163      infile2>>junk_int;
164      infile2>>junk_int;
165      infile2>>junk_char;
166      infile2>>genome_size;
167      for(int j=0;j<genome_size;j++){
168       infile2>>junk_int; 
169       recalled_genome.push_back

(junk_int);
170      }      
171      generate_designed(Ark,recalled_genome,

generation);
172      recalled_genome.clear();  
173      Ark_Load(Ark[counter]);
174      unmade.push_back(counter);
175      alive.push_back(counter);
176      cout<<"Individual "<<Ark_no<<" was 

reborn as "<<Ark[counter].get_fcall()<<endl;
177      counter++;
178     } 
179     else{//Discards it
180      infile2>>junk_int;
181      infile2>>junk_int;
182      infile2>>junk_int;
183      infile2>>junk_char;
184      infile2>>genome_size;
185      for(int j=0;j<genome_size;j++){
186       infile2>>junk_int; 
187      }  
188     }
189     Ark_no++;// Moves onto next individual in 

the Ark
190    }
191    system("rm Arktmp.txt"); 
192    newly_made = unmade.size();
193    vets = 0; 
194    reduced = 0;
195   }
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196  }
197  else{
198   N = atoi(argv[1]);
199   last_generation = atoi(argv[2]);    
200   default_genome_length = atoi(argv[3]);
201   if (processID == hub){
202    system("rm Ark.txt"); 
203    system("rm Chronograph.txt"); 
204    ofstream datafile_temp("Ark.txt");
205    datafile_temp<<seed<<endl;
206    for(int i=0;i<N;i++){ //This will generate N 

random individuals      
207     generate_random(Ark,default_genome_length,

generation);
208     Ark_Load(Ark[i]);
209     unmade.push_back(i);
210     alive.push_back(i);
211    }     
212    newly_made = unmade.size();
213    vets = 0;
214    reduced = 0;
215   }
216  }
217  //-----------------------------------------
218  // --- This partions the satellites into evaluators 

and mutators -----------
219  if((int(N/24)+2)<noProcesses){
220   for(int i=0;i<N/24;i++){
221    mutationID.push_back(i+1);
222   }
223   if(mutationID.size()==0){ //A fix for small runs 

where there would be no mutation processor
224    mutationID.push_back(1);
225   }
226   for(int i=(mutationID.size()+1);i<noProcesses;i++)

{
227    embryogenesisID.push_back(i);
228   }
229  }
230  else{
231   cout<<"Use more processors or this will be VERY 

slow"<<endl;
232   mutationID.push_back(1);
233   for(int i=1;i<noProcesses;i++){
234    embryogenesisID.push_back(i);
235   }
236  }
237  // ---------------------------------------------------

------
238  MPI::COMM_WORLD.Bcast(&newly_made,1,MPI::INT,hub);
239  MPI::COMM_WORLD.Bcast(&vets,1,MPI::INT,hub);
240  MPI::COMM_WORLD.Bcast(&reduced,1,MPI::INT,hub);
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241  //  --------------------------------------------------
--------------------

242  //  ------------- BEGINNING OF EVOLUTION LOOP --------
--------------------

243  //  --------------------------------------------------
--------------------

244  for(generation;generation<last_generation;generation+
+){  

245   if(processID == hub){
246    cout<<"Generation: "<<generation<<endl; 
247    assert((still_alive.size()+unmade.size())==N);
248    assert(alive.size()==N);   
249   }
250   
251   // --- Re-evaluates the individuals that lived 

from last generation ---
252   if(generation != 0){ 
253    for(int i=0;i<vets;i++){
254     if(processID == hub){     
255      Ark_no = still_alive[i];       
256     }
257     MPI::COMM_WORLD.Bcast(&Ark_no,1,MPI::INT,

hub);
258     dest = embryogenesisID[Ark_no%

(embryogenesisID.size())]; //See page 20 Vol. 2 for 
logic

259     if(processID == hub){ 
260      Ark_no = still_alive[i];
261      MPI::COMM_WORLD.Send(&Ark_no,1,MPI::

INT,dest,tag);
262     }
263     if(processID == dest){   
264      MPI::COMM_WORLD.Recv(&Ark_no,1,MPI::

INT,hub,tag);            
265      Ark_search = -1;
266      int my_Ark_counter = 0;
267      while(Ark_search < Ark_no){
268       Ark_search = my_Ark_conversion

[my_Ark_counter];
269       my_Ark_counter++;
270      }
271      my_Ark_no = my_Ark_counter-1;
272      //cout<<"Process "<<processID<<" is re

-evaluating "<<my_Ark[my_Ark_no].get_fcall()<<endl;
273      if(my_Ark[my_Ark_no].get_fitness() >= 

pow(2.0,(2*max_no_of_outputs - 1))){ //Repeats if a 
good ANN is made         
 

274       my_Ark[my_Ark_no].eval_robustness
();

275      }    
276      sub_back.push_back(Ark_no);
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277      fit_back.push_back(my_Ark[my_Ark_no].
get_fitness());

278     }
279    }
280    if(any(embryogenesisID,processID)){  //Sends 

results to process the hub      
281     back_size = sub_back.size();
282     MPI::COMM_WORLD.Send(&back_size,1,MPI::INT

,hub,tag);
283     MPI::COMM_WORLD.Send(&sub_back[0],

back_size,MPI::INT,hub,tag);
284     MPI::COMM_WORLD.Send(&fit_back[0],

back_size,MPI::FLOAT,hub,tag);
285     //cout<<"Process ID "<<processID<<" sent 

back (from re-evaluation):"<<endl;
286     //print_vector(sub_back);
287     sub_back.clear();
288     fit_back.clear();
289    }
290    if(processID == hub){  //The hub collects 

results
291     for(int i=0; i<embryogenesisID.size(); i+

+){ 
292      src = embryogenesisID[i];
293      MPI::COMM_WORLD.Recv(&back_size,1,MPI:

:INT,src,tag);
294      sub_back.resize(back_size);
295      fit_back.resize(back_size);
296      MPI::COMM_WORLD.Recv(&sub_back[0],

back_size,MPI::INT,src,tag);
297      MPI::COMM_WORLD.Recv(&fit_back[0],

back_size,MPI::FLOAT,src,tag);
298      //cout<<"Hub received ";
299      //print_vector(sub_back);
300      //cout<<" from process "<<src<<endl;
301      for(int j=0;j<back_size;j++){
302       Ark[sub_back[j]].make_fitness

(fit_back[j]);//Gives the individual sub_back[i] the 
fitness fit_back[i]

303      }
304      sub_back.clear();
305      fit_back.clear();
306     }    
307    }
308   }
309   // ------------- End of re-evaluating survivors --

----------------
310   
311   // -----------------------------------------------

----------------
312   // -------  Sends out indivuals for embryogenesis 

and evaluation-----
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313   for(int i=0;i<(newly_made+reduced);i++){      
314    if(processID == hub){
315     Ark_no = unmade[i];
316    }
317    MPI::COMM_WORLD.Bcast(&Ark_no,1,MPI::INT,hub);
318    dest = embryogenesisID[Ark_no%(embryogenesisID

.size())]; //See page 20 Vol. 2 for logic
319    // --- Hub loop -------
320    if(processID == hub){
321     Ark_no = unmade[i];
322     genome_size = Ark[Ark_no].

get_genome_length();
323     data_pack[0] = Ark_no;
324     data_pack[1] = genome_size;
325     //cout<<Ark[Ark_no].get_fcall()<<" was 

sent to process "<<dest<<" for evaluation."<<endl; 
   

326     for(int j=0;j<genome_size;j++)
327      temp_genome.push_back(Ark[Ark_no].

get_genome(j));    
328     MPI::COMM_WORLD.Send(&data_pack,2,MPI::INT

,dest,tag);
329     MPI::COMM_WORLD.Send(&temp_genome[0],

genome_size,MPI::INT,dest,tag);   
330     temp_genome.clear(); //Empties for next 

time
331    }
332    // -------------------------------------------

-----------------
333    // -------------- Satellite Loop -------------

---------
334    if(processID == dest){ 
335     MPI::COMM_WORLD.Recv(&data_pack[0],2,MPI::

INT,hub,tag);    
336     Ark_no = data_pack[0];
337     my_Ark_conversion.push_back(Ark_no);
338     my_Ark_no = my_Ark.size();   
339     genome_size = data_pack[1];
340     temp_genome.resize(genome_size);   
341     MPI::COMM_WORLD.Recv(&temp_genome[0],

genome_size,MPI::INT,hub,tag);
342     generate_satellite(my_Ark,temp_genome,

generation,Ark_no);
343     make_protein(my_Ark[my_Ark_no],

no_of_inputs,max_no_of_outputs,max_connections,
processID);

344     my_Ark[my_Ark_no].make_ANN(processID);  
345     my_Ark[my_Ark_no].eval_XOR_logic();
346     my_Ark[my_Ark_no].eval_robustness();
347     //cout<<"Process ID = "<<processID<<" 

Ark_no = "<<Ark_no<<" my_Ark_no = "<<my_Ark_no<<endl;
        

94



10C:\Documents and Settings\...\Evolve_omega4.cpp

348     sub_back.push_back(Ark_no);   
349     fit_back.push_back(my_Ark[my_Ark_no].

get_fitness());
350     ruleset_length_back.push_back(my_Ark

[my_Ark_no].get_rules_length());
351     for(int j=0;j<my_Ark[my_Ark_no].

get_rules_length();j++){
352      ruleset_back.push_back(my_Ark

[my_Ark_no].get_rule(j));
353     }
354    }
355    //-------------------------------
356   }              
357   //------------------------------
358   //  ------------ Collects the info at the hub ----

------------------------
359   //  ------------  Satellite loop -----------------

---------------
360   if(any(embryogenesisID,processID)){  //Sends 

results to process 0     
361    back_size = sub_back.size();
362    MPI::COMM_WORLD.Send(&back_size,1,MPI::INT,hub

,tag);
363    MPI::COMM_WORLD.Send(&sub_back[0],back_size,

MPI::INT,hub,tag);
364    MPI::COMM_WORLD.Send(&fit_back[0],back_size,

MPI::FLOAT,hub,tag);
365    MPI::COMM_WORLD.Send(&ruleset_length_back[0],

back_size,MPI::INT,0,tag);
366    //cout<<"Process ID "<<processID<<" sent back:

"<<endl;
367    //print_vector(sub_back);
368    ruleset_back_size = 0;
369    for(int j=0;j<back_size;j++){
370     ruleset_back_size = ruleset_back_size + 

ruleset_length_back[j];
371    }
372    MPI::COMM_WORLD.Send(&ruleset_back[0],

ruleset_back_size,MPI::INT,0,tag);
373    sub_back.clear();
374    fit_back.clear();
375    ruleset_length_back.resize(0);
376    ruleset_back.resize(0);
377   }
378   // ------------------------------------------
379   // ----------- Hub loop -------------------------
380   if(processID == hub){  //If rank is 0, collect 

results and preps for next gen
381    for(int i=0; i<embryogenesisID.size(); i++){

 
382     src = embryogenesisID[i];
383     MPI::COMM_WORLD.Recv(&back_size,1,MPI::INT

95



11C:\Documents and Settings\...\Evolve_omega4.cpp

,src,tag);
384     sub_back.resize(back_size);
385     fit_back.resize(back_size);
386     ruleset_length_back.resize(back_size);
387     MPI::COMM_WORLD.Recv(&sub_back[0],

back_size,MPI::INT,src,tag);
388     MPI::COMM_WORLD.Recv(&fit_back[0],

back_size,MPI::FLOAT,src,tag); 
389     MPI::COMM_WORLD.Recv(&ruleset_length_back

[0],back_size,MPI::INT,src,tag);
390     ruleset_back_size = 0;
391     for(int j=0;j<back_size;j++){
392      ruleset_back_size = ruleset_back_size 

+ ruleset_length_back[j];
393     }
394     ruleset_back.resize(ruleset_back_size);
395     MPI::COMM_WORLD.Recv(&ruleset_back[0],

ruleset_back_size,MPI::INT,src,tag);    
396     int rule_pointer = 0;
397     for(int j=0;j<back_size;j++){
398      Ark[sub_back[j]].make_fitness(fit_back

[j]);//Gives the individual sub_pack[i] the fitness 
fit_pack[i]     

399      for(int k=0;k<ruleset_length_back[j];k
++){

400       Ark[sub_back[j]].save_rule
(ruleset_back[rule_pointer+k]);

401      }
402      rule_pointer = rule_pointer + 

ruleset_length_back[j];     
403     }
404     sub_back.clear();
405     fit_back.clear();
406     ruleset_length_back.resize(0);
407     ruleset_back.resize(0); 
408    }
409    Record_Gen(Ark,still_alive,unmade,generation);

 //Saves final state 
410    newly_made = 0;
411    reduced = 0;
412    unmade.clear(); //Empties unmade...
413   }
414   // ---------------------------------
415   // --- The hub selectes the survivors and parents 

for the next generation ----------
416   if(processID == hub){  //If rank is 0, collect 

results and preps for next gen
417    //All that are alive have a chance to 

procreate
418    procreation.clear();
419    for(int i=0;i<alive.size();i++){
420     Ark_no = alive[i];
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421     procreation.push_back(Ark_no);   
 

422    } 
423    /*
424             //------------Fitness check-------------------
425    
426    for(int i=0;i<alive.size();i++){
427     cout<<Ark[alive[i]].get_fcall()<<" has a 

fitness of "<<Ark[alive[i]].get_fitness()<<endl;
428    }
429    */
430
431    //------------------------------DEATH LOOP----

---------------------------
432    while(stay_alive.size()<N/4){
433     all_fitness = 0;
434     max_fitness = 0;
435     for(int i=0;i<alive.size();i++){
436      Ark_no = alive[i];
437      if(!any(stay_alive,Ark_no)){
438       all_fitness += Ark[Ark_no].

get_fitness();
439      }
440      if(Ark[Ark_no].get_fitness()==-1){
441       cout<<Ark[Ark_no].get_fcall()<<" 

wasn't evaluated.  Ending program."<<endl;
442       return 0;
443      }
444      // -----------The fittest one last 

made is always pardoned!---------------
445      if((Ark[Ark_no].get_fitness()>=

max_fitness)&&(stay_alive.size()==0)){
446       max_fitness = Ark[Ark_no].

get_fitness();
447       lucky_one = Ark_no;   
448      }
449     }      
450     all_fitness -= max_fitness; 
451     //Max fitness is always 0 if something has

 been pardoned
452     //This does the actually pardoning of the 

fittest one last made
453     if(stay_alive.size() == 0){
454      stay_alive.push_back(lucky_one);
455      cout<<Ark[lucky_one].get_fcall()<<"  

has stayed alive (ELITE) with fitness: "<<Ark
[lucky_one].get_fitness()<<endl;     
     

456     }
457     //----------End of elite selection--------

--------
458     //cout<<"End of elite selection"<<endl;
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459     if(all_fitness!=0){     
460      num_fit = random_float(.000001,

all_fitness);  
461      selection_q = 0; 
462      while(num_fit>0){
463       Ark_no = alive[selection_q];
464       if(!any(stay_alive,Ark_no)){
465        num_fit -= Ark[Ark_no].

get_fitness();
466       }
467       selection_q++;
468      }  
469      stay_alive.push_back(Ark_no);// 

PARDONED!!
470      cout<<Ark[Ark_no].get_fcall()<<" has 

stayed alive with fitness: "<<Ark[Ark_no].get_fitness
()<<endl;   

471     }
472     else{
473      //cout<<"Zero fitness"<<endl;
474      low_int = 0;
475      high_int = alive.size()-1;
476      vector<int> exclude;
477      for(int i=0;i<alive.size();i++){
478       if(any(stay_alive,alive[i])){
479        exclude.push_back(i);
480       }
481      }       
482      num_int = random_int(low_int,high_int,

exclude);
483      Ark_no = alive[num_int];
484      stay_alive.push_back(Ark_no); //

PARDONED (Zero Fitness)!! 
485      cout<<Ark[Ark_no].get_fcall()<<" has 

randomly stayed alive with "<<Ark[Ark_no].get_fitness
()<<" (zero) fitness."<<endl;

486     }
487    }
488
489    for(int i=0;i<alive.size();i++){
490     if(!any(stay_alive,alive[i])){
491      Ark[alive[i]].kill(generation); //COLD

-BLOODED!!
492      //cout<<Ark[alive[i]].get_fcall()<<" 

did not make it across the river."<<endl;
493     }
494    }
495
496    alive.clear(); //Empties alive...
497    still_alive.clear();//...and empties 

still_alive...    
498    for(int i=0;i<stay_alive.size();i++){//...then
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 refills them with stay alive
499     alive.push_back(stay_alive[i]);
500     //cout<<Ark[stay_alive[i]].get_fcall()<<" 

is alive."<<endl;
501     still_alive.push_back(stay_alive[i]);
502     //cout<<Ark[stay_alive[i]].get_fcall()<<" 

is still alive."<<endl;
503    }
504    stay_alive.clear();
505    vets = still_alive.size();
506    //--------------------------------------------

------------------------------
507   }
508   MPI::COMM_WORLD.Bcast(&vets,1,MPI::INT,hub);
509   
510   //----------------Procreation Selection Loop(s)---

-------------------------
511   //This (these) loops will select a primary and 

secondary parent for each loop
512   //The number of loops is determined by the number 

of mutation ratio sets
513   if(processID == hub){
514    while((newly_made+reduced+still_alive.size() <

 N)){     
515     for(int i=0;i<mutation_ratios.size();i++){

     
516      vector<int> primary_parents;
517      vector<int> secondary_parents;
518      while((secondary_parents.size()<((N-

(reduced+still_alive.size()))/mutation_ratios.size
()))){

519       //The primary parent is selected 
first

520       all_fitness = 0;
521       for(int j=0;j<procreation.size();j

++){
522        Ark_no = procreation[j];
523        if(!any(primary_parents,

Ark_no)){
524         all_fitness += Ark[Ark_no]

.get_fitness();
525        }
526       }
527       if(all_fitness!=0){
528        num_fit = random_float(.000001

,all_fitness);
529        selection_q = 0; 
530        while(num_fit>0){
531         Ark_no = procreation

[selection_q];
532         if(!any(primary_parents,

Ark_no)){
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533          num_fit -= Ark[Ark_no]
.get_fitness();

534         }
535         selection_q++;
536        }
537        primary_parents.push_back

(Ark_no);
538        //cout<<Ark[Ark_no].get_fcall

()<<" with fitness "<<Ark[Ark_no].get_fitness()<<" was
 selected as primary parent for selection loop "<<i<
<endl;   

539       }     
540       else{
541        //cout<<"Zero fitness loop for

 primary parent in selection loop "<<i<<endl;
542        low_int = 0;
543        high_int = procreation.size()-

1;
544        vector<int> exclude;
545        for(int i=0;i<procreation.size

();i++){
546         if(any(primary_parents,

procreation[i])){
547          exclude.push_back(i);
548         }
549        }       
550        num_int = random_int(low_int,

high_int,exclude);
551        Ark_no = procreation[num_int];
552        primary_parents.push_back

(Ark_no);  
553        //cout<<Ark[Ark_no].get_fcall

()<<" has been randomly selection for primary parent 
with "<<Ark[Ark_no].get_fitness()<<" (zero) fitness."<
<endl;

554       }
555       //Repeat for secondary parents
556       all_fitness = 0;
557       for(int j=0;j<procreation.size();j

++){
558        Ark_no = procreation[j];
559        if((!any(secondary_parents,

Ark_no))&&Ark_no!=primary_parents.back()){ //Skips 
already chosen secodanry parents and the primary 
parent that was last chosen

560         all_fitness += Ark[Ark_no]
.get_fitness();

561        }
562       }
563       if(all_fitness!=0){
564        num_fit = random_float(.000001

,all_fitness);
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565        selection_q = 0; 
566        while(num_fit>0){
567         Ark_no = procreation

[selection_q];
568         if((!any(secondary_parents

,Ark_no))&&Ark_no!=primary_parents.back()){ //Skips 
already chosen secodanry parents and the primary 
parent that was last chosen

569          num_fit -= Ark[Ark_no]
.get_fitness();

570         }
571         selection_q++;
572        }
573        secondary_parents.push_back

(Ark_no);
574        //cout<<Ark[Ark_no].get_fcall

()<<" with fitness "<<Ark[Ark_no].get_fitness()<<" was
 selected as secondary parent for selection loop "<<i<
<endl;   

575       }
576       else{
577        //cout<<"Zero fitness loop for

 secondary parent in selection loop "<<i<<endl;
578        low_int = 0;
579        high_int = procreation.size()-

1;
580        vector<int> exclude;
581        //I want to exclude the 

primary parent that was just chosen
582        exclude.push_back(num_int);
583        for(int i=0;i<procreation.size

();i++){
584         if(any(secondary_parents,

procreation[i])){
585          exclude.push_back(i);
586         }
587        }
588        num_int = random_int(low_int,

high_int,exclude);
589        Ark_no = procreation[num_int];
590        secondary_parents.push_back

(Ark_no);  
591        //cout<<Ark[Ark_no].get_fcall

()<<" has been randomly selection for secondary parent
 with "<<Ark[Ark_no].get_fitness()<<" (zero) fitness."
<<endl;

592       }        
    

593      }
594      //Check to make sure an equal number 

of primary and seconday parents were chosen
595      if(primary_parents.size()!= 
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secondary_parents.size()){
596       cout<<"An equal number of primary 

and seconday parents were chosen"<<endl;
597       return 0;
598      }
599      //Place primary parent, secondary 

parent, and mutation method into mutation info
600      for(int j=0;j<secondary_parents.size()

;j++){
601       junk_ints.push_back

(primary_parents[j]);
602       junk_ints.push_back

(secondary_parents[j]);
603       junk_ints.push_back(i);
604       mutation_info.push_back(junk_ints)

;  
605       newly_made++;
606       junk_ints.clear();
607      }
608      primary_parents.clear();
609      secondary_parents.clear();
610     }
611    }
612   }
613   //------------------------------------------------

-----------------------
614
615   //------------------------------------------------

---------------------------------
616
617   MPI::COMM_WORLD.Bcast(&newly_made,1,MPI::INT,hub);
618
619   //----------------------Sends genomes to be 

mutated----------------------------------
620
621   for(int i=0;i<newly_made;i++){      
622    dest = mutationID[i%(mutationID.size())]; //

See page 20 Vol. 2 for logic       
623    if(processID == hub){
624     Ark_no = mutation_info[i][0];   

 
625     genome_size = Ark[Ark_no].

get_genome_length();
626     data_pack2[0] = Ark_no;
627     data_pack2[1] = mutation_info[i][2];
628     data_pack2[2] = genome_size;
629     for(int j=0;j<genome_size;j++){
630      temp_genome.push_back(Ark[Ark_no].

get_genome(j));
631     }
632     MPI::COMM_WORLD.Send(&data_pack2,3,MPI::

INT,dest,tag);
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633     MPI::COMM_WORLD.Send(&temp_genome[0],
genome_size,MPI::INT,dest,tag);   

634     temp_genome.clear(); //Empties for next 
time

635     //This sends another genome selected for a
 mutation    

636     Ark_no = mutation_info[i][1];
637     genome_size = Ark[Ark_no].

get_genome_length();    
638     data_pack[0] = Ark_no;
639     data_pack[1] = genome_size;
640     for(int j=0;j<genome_size;j++){
641      temp_genome.push_back(Ark[Ark_no].

get_genome(j));
642     }
643     MPI::COMM_WORLD.Send(&data_pack,2,MPI::INT

,dest,tag);
644     MPI::COMM_WORLD.Send(&temp_genome[0],

genome_size,MPI::INT,dest,tag);   
645     temp_genome.clear(); //Empties for next 

time
646    }
647    if(processID == dest){
648     MPI::COMM_WORLD.Recv(&data_pack2[0],3,MPI:

:INT,hub,tag); 
649     Ark_no = data_pack2[0];
650     mutation_method = data_pack2[1];   
651     genome_size = data_pack2[2];   
652     temp_genome.resize(genome_size);   
653     MPI::COMM_WORLD.Recv(&temp_genome[0],

genome_size,MPI::INT,hub,tag);
654     MPI::COMM_WORLD.Recv(&data_pack[0],2,MPI::

INT,hub,tag);    
655     Ark_no2 = data_pack[0];
656     genome_size = data_pack[1];
657     temp_genome2.resize(genome_size);   
658     MPI::COMM_WORLD.Recv(&temp_genome2[0],

genome_size,MPI::INT,hub,tag);
659     mu_point_mutation = mu_ratio[0];
660     mu_conjugation = mu_ratio[1];
661     mu_recopy = mu_ratio[2];
662     mu_deletion = mu_ratio[3];
663     mu_translocation = mu_ratio[4];
664     mutator(temp_genome,temp_genome2,mu,

mu_point_mutation,mu_conjugation,mu_recopy,mu_deletion
,mu_translocation);

665     junk_ints.push_back(Ark_no);
666     junk_ints.push_back(Ark_no2);
667     junk_ints.push_back(mutation_method);
668     mutation_info.push_back(junk_ints);  

  
669     mutation_Ark.push_back(temp_genome);

103



19C:\Documents and Settings\...\Evolve_omega4.cpp

670     junk_ints.clear();
671     temp_genome.clear();
672     temp_genome2.clear();
673    } 
674   }
675         
676   //Satallites send the new genomes back to the hub
677   if(any(mutationID,processID)){
678    back_size = mutation_Ark.size();
679    MPI::COMM_WORLD.Send(&back_size,1,MPI::INT,hub

,tag);
680    for(int j=0;j<back_size;j++){
681     data_pack2[0] = mutation_info[j][0];
682     data_pack2[1] = mutation_info[j][1];
683     data_pack2[2] = mutation_info[j][2];
684     MPI::COMM_WORLD.Send(&data_pack2,3,MPI::

INT,hub,tag);
685     genome_size = mutation_Ark[j].size();
686     MPI::COMM_WORLD.Send(&genome_size,1,MPI::

INT,hub,tag);
687     MPI::COMM_WORLD.Send(&mutation_Ark[j][0],

genome_size,MPI::INT,hub,tag); 
688    }
689    mutation_info.clear();
690    mutation_Ark.clear();
691   }
692
693   if(processID == hub){
694    //Collects and places new individuals into the

 Ark
695    mutation_info.clear();
696    mutation_Ark.clear();
697    for(int i=0;i<mutationID.size();i++){
698     src = mutationID[i];
699     MPI::COMM_WORLD.Recv(&back_size,1,MPI::INT

,src,tag);
700     for(int j=0;j<back_size;j++){
701      MPI::COMM_WORLD.Recv(&data_pack2[0],3,

MPI::INT,src,tag);
702      Ark_no = data_pack2[0];
703      Ark_no2 = data_pack2[1];
704      mutation_method = data_pack2[2];
705      junk_ints.push_back(Ark_no);
706      junk_ints.push_back(Ark_no2);
707      junk_ints.push_back(mutation_method);
708      mutation_info.push_back(junk_ints); 

 
709      junk_ints.clear();
710      MPI::COMM_WORLD.Recv(&genome_size,1,

MPI::INT,src,tag);
711      temp_genome.resize(genome_size);
712      MPI::COMM_WORLD.Recv(&temp_genome[0],
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genome_size,MPI::INT,src,tag);
713      mutation_Ark.push_back(temp_genome);
714      temp_genome.clear();
715     }
716    }
717    for(int i=0;i<mutation_Ark.size();i++){
718     Ark_no = mutation_info[i][0];
719     Ark_no2 = mutation_info[i][1];
720     generate_offspring(Ark,mutation_Ark[i],

Ark_no,Ark_no2,(generation+1));
721     Ark_Load(Ark[Ark.size()-1]);
722     unmade.push_back(Ark.size()-1);
723     //cout<<Ark[Ark.size()-1].get_fcall()<<" 

is unmade."<<endl;
724     alive.push_back(Ark.size()-1);
725     //cout<<Ark[Ark.size()-1].get_fcall()<<" 

is alive (2)."<<endl;
726    }
727    mutation_info.clear();
728    mutation_Ark.clear();
729   }  
730
731  }  //----------End of generation loop----------------

----
732
733  //  -------  This echoes the Final results
734  if(processID==hub){
735   cout<<"-----------FINAL RESULTS-------------"<

<endl;
736   time (&end);
737   dif_t = int(difftime(end,start));
738   int hr,min,sec;  
739   hr = int(dif_t/3600);
740   min = int((dif_t%3600)/60);
741   sec = dif_t%60;
742   cout<<"Evolution took "<<hr<<" hours, "<<min<<" 

minutes and "<<sec<<" seconds."<<endl;
743
744   //Echo back certain results for debugging
745   /*
746   for(int i=0;i<Ark.size();i++)
747   cout<<Ark[i].get_fcall()<<" "<<Ark[i].get_fitness

()<<endl;    
748   for(int i=0;i<unmade.size();i++)
749   cout<<unmade[i]<<" ";
750   cout<<endl;
751   for(int i=0;i<alive.size();i++)
752   cout<<alive[i]<<" ";
753   cout<<endl;
754   */
755   
756   Record_Gen(Ark,still_alive,unmade,generation); //
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Saves final state
757  }
758  MPI::Finalize();
759  return 0;
760 }
761
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1 using namespace std;
2
3 //------------------Classes for Neural Nets---------------

-------------------------
4 class connection
5 {private:
6 float weight;
7 int node_from;
8 int node_to;
9 float Heb_rate;

10 float random_rate;
11 public:
12  connection()
13  {}
14  void operator = (const connection& right){
15   if (this != &right){
16    weight = right.weight;
17    node_from = right.node_from; 
18    node_to = right.node_to;
19    Heb_rate = right.Heb_rate;
20    random_rate = right.random_rate;
21   }
22  }
23
24  void make_connection_private(int n_from,int n_to,float

 w,float h, float r)//Used with make_connection 
function

25  {
26  weight = w;
27  node_from = n_from;
28  node_to = n_to;
29  Heb_rate = h;
30  random_rate = r;
31  }
32  float get_weight(){
33   return(weight);
34  }
35  void set_weight_private(float x){
36   weight = x;
37  }
38  int get_node_from(){
39   return(node_from);
40  }
41  int get_node_to(){
42   return(node_to);
43  }
44  float get_Hebbian_rate(){
45   return(Heb_rate);
46  }
47  float get_random_rate(){
48   return(random_rate);
49  }

107



2C:\Documents and Settings\...\node_lib_omega4.h

50 };
51
52 class node
53 {private:  
54 float bias;
55 float slope;
56 char layer; //Denote whether a node is an input (I), 

hidden (H), or an output(O)  Don't confuse with type 1
57 int type1; //Denotes the type of node.  Integer corralates

 to A - H
58 int type2; //Also denotes numerical order of the node
59 int type3;
60 int nodes_made; //Records the number of new nodes a node 

has made
61 float activation; //Tells us the activation level of a 

node
62 public:
63  node()
64  { }
65  //It works, but I get an warning evrytime it's compiled
66  void operator = (const node& right){
67   if (this != &right){
68    bias = right.bias;
69    slope = right.slope; 
70    layer = right.layer;
71    type1 = right.type1;
72    type2 = right.type2;
73    type3 = right.type3;
74    nodes_made = right.nodes_made;
75    activation = right.activation;
76   }
77  }
78
79  void make_node_private(char l,int t1,int t2,int t3,

float s,float b){//Used with make_node function 
80   layer = l;
81   type1 = t1;
82   bias = b;
83   slope = s;
84   type2 = t2;
85   type3 = t3;
86   nodes_made = 0; 
87   activation = 0.0;
88  }
89  char get_layer(){
90   return(layer);
91  }
92  int get_nodes_made(){
93   return(nodes_made);
94  }  
95  void inc_nodes_made(){
96   nodes_made++;
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97  } 
98  float get_bias(){
99   return(bias);

100  }
101  float get_slope(){
102   return(slope);
103  } 
104  int get_type1(){
105   return(type1);
106  }
107  int get_type2(){
108   return(type2);
109  }
110  int get_type3(){
111   return(type3);
112  }
113  float get_activation_private(){
114   return(activation);
115  }
116  void set_activation_private(float x){
117   activation = x;
118  } 
119 };
120
121 class neural_net
122 {private:  
123 vector<connection> connections;
124 vector<node> nodes;
125 float reinforcement;
126 public:
127  neural_net()
128  { }
129  //It works, but I get an warning everytime it's 

compiled
130  void operator= (const neural_net& right){
131   if (this != &right){
132    connections = right.connections;
133    nodes = right.nodes;   
134   }
135  }
136  void clear_ANN(){
137   connections.clear();
138   nodes.clear();
139  }
140  int get_ANN_size(){
141   return(nodes.size());
142  }
143  node get_node(int n){
144   return(nodes[n]);
145  }
146  float get_activation(int n){
147   return(nodes[n].get_activation_private());
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148  }
149  void set_activation(int n, float x){
150   nodes[n].set_activation_private(x);
151  } 
152  void make_node(int p_node,char l,int t1,float s,float 

b){
153   int t2,t3;
154   int counter = 0;
155   node new_node;
156   t2 = nodes[p_node].get_nodes_made();
157   for(int i=0;i<nodes.size();i++){
158    if((nodes[i].get_type1()== t1)&&(nodes[i].

get_type2()== t2)){
159     counter++;
160    }
161   } 
162   t3 = counter%100;
163   new_node.make_node_private(l,t1,t2,t3,s,b);  
164   nodes.push_back(new_node);
165   nodes[p_node].inc_nodes_made();
166  }
167  void make_input(int t1){
168   int t2,t3;
169   int counter = 0;
170   node new_node;
171   t2 = 0;
172   for(int i=0;i<nodes.size();i++){
173    if(nodes[i].get_type1()== t1 ){
174     counter++;
175    }
176   } 
177   t3 = counter%100;
178   new_node.make_node_private('I',t1,t2,t3,0,0); 

 
179   nodes.push_back(new_node);
180  }
181  void make_output(int p_node,int t1,float s,float b){
182   int t2,t3;
183   int counter = 0;
184   node new_node;
185   t2 = nodes[p_node].get_nodes_made();
186   for(int i=0;i<nodes.size();i++){
187    if((nodes[i].get_type1()== t1)&&(nodes[i].

get_type2()== t2)){
188     counter++;
189    }
190   } 
191   t3 = counter%100;
192   new_node.make_node_private('O',t1,t2,t3,s,b); 

 
193   nodes.push_back(new_node);
194   nodes[p_node].inc_nodes_made();
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195  }
196  int get_total_connections(){
197   return(connections.size());
198  }
199  connection get_connection(int n){
200   return(connections[n]);
201  }
202  void set_weight(int n,float x){
203   connections[n].set_weight_private(x);
204  }
205  void make_connection(int n_from,int n_to,float w,float

 h,float r){
206   connection new_connection;
207   new_connection.make_connection_private(n_from,n_to

,w,h,r);
208   connections.push_back(new_connection);
209  }
210  int get_total_inputs(){
211   int count = 0;
212   node temp_node;
213   for(int i=0;i<nodes.size();i++){
214    temp_node = nodes[i];
215    if(temp_node.get_layer()=='I'){
216     count++;
217    }
218   }
219   return(count);
220  }
221  int get_total_outputs(){
222   int count = 0;
223   node temp_node;
224   for(int i=0;i<nodes.size();i++){
225    temp_node = nodes[i];
226    if(temp_node.get_layer()=='O'){
227     count++;
228    }
229   }
230   return(count);
231  }
232  float get_reinforcement(){
233   return(reinforcement);
234  }
235  void set_reinforcement(float x){
236   reinforcement = x;
237  }
238  int get_inputs_to(int n){
239   int ins = 0;
240   for(int i=0;i<connections.size();i++){
241    if(connections[i].get_node_to()==n){
242     ins++;
243    }
244   }
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245   return(ins);
246  }
247  int get_outputs_from(int n){
248   int outs = 0;
249   for(int i=0;i<connections.size();i++){
250    if(connections[i].get_node_from()==n){
251     outs++;
252    }
253   }
254   return(outs);
255  } 
256  float sum_inputs_to(int n){
257   float ins = 0;
258   for(int i=0;i<connections.size();i++){
259    if(connections[i].get_node_to()==n){
260     ins = ins + connections[i].get_weight();
261    }
262   }
263   return(ins);
264  } 
265  float sum_outputs_from(int n){
266   float outs = 0;
267   for(int i=0;i<connections.size();i++){
268    if(connections[i].get_node_from()==n){
269     outs = outs + connections[i].get_weight();
270    }
271   }
272   return(outs);
273  }
274  float get_connection_weight(int i,int j){
275   //float w = 0;
276   float w = -100; //Changed to this so it will 

return a non-working answer if there is no connection
277   for(int i=0;i<connections.size();i++){
278    if((connections[i].get_node_from()==i)&&

(connections[i].get_node_to()==j)){
279     w = connections[i].get_weight();
280    }
281   }
282   return(w);
283  }
284  void print_net(){
285   cout<<"Node:\tLayer\tType:\tBias:\tSlope:\n";
286   for(int i=0;i<nodes.size();i++){
287    cout<<i<<"\t"<<nodes[i].get_layer()<<"\t"<

<nodes[i].get_type1()<<nodes[i].get_type2();
288    cout<<"\t"<<nodes[i].get_bias()<<"\t"<<nodes

[i].get_slope()<<endl;
289   }
290   cout<<"Conn:\tFrom\tTo:\tWeight:\tHeb:\tRand:\n";
291   for(int i=0;i<connections.size();i++){
292    cout<<i<<"\t"<<connections[i].get_node_from()<
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<"\t"<<connections[i].get_node_to();
293    cout<<"\t"<<connections[i].get_weight()<<"\t"<

<connections[i].get_Hebbian_rate();
294    cout<<"\t"<<connections[i].get_random_rate()<

<endl;
295   }
296  }
297  void write_net(string& filename){
298   ofstream ANNfile(&filename[0]);
299   ANNfile<<nodes.size()<<endl;
300   for(int i=0;i<nodes.size();i++){
301    ANNfile<<i<<" "<<nodes[i].get_layer()<<" "<

<nodes[i].get_type1()<<" "<<nodes[i].get_type2()<<" "<
<nodes[i].get_type3();

302    ANNfile<<" "<<nodes[i].get_bias()<<" "<<nodes
[i].get_slope()<<" "<<nodes[i].get_nodes_made()<<endl;

303   }
304   ANNfile<<connections.size()<<endl;
305   for(int i=0;i<connections.size();i++){
306    ANNfile<<i<<"\t"<<connections[i].get_node_from

()<<"\t"<<connections[i].get_node_to();
307    ANNfile<<"\t"<<connections[i].get_weight()<<"\

t"<<connections[i].get_Hebbian_rate();
308    ANNfile<<"\t"<<connections[i].get_random_rate

()<<endl;
309   }
310  }
311  void read_net(string& filename){
312   ifstream ANNfile(&filename[0]);
313   int number_of_nodes,nodes_made,

number_of_connections;
314   int junk_int,type1,type2,type3,node_from,node_to;
315   char layer;
316   float bias,slope,weight,Heb,rand;
317   node temp_node;
318   connection temp_conn;
319   ANNfile>>number_of_nodes;  
320   for(int i=0;i<number_of_nodes;i++){
321    ANNfile>>junk_int;
322    ANNfile>>layer;
323    ANNfile>>type1;
324    ANNfile>>type2;
325    ANNfile>>type3;
326    ANNfile>>bias;
327    ANNfile>>slope;
328    ANNfile>>nodes_made;
329    temp_node.make_node_private(layer,type1,type2,

type3,slope,bias);
330    nodes.push_back(temp_node);
331    for(int j=0;j<nodes_made;j++){
332     nodes[i].inc_nodes_made();
333    }
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334   }
335   ANNfile>>number_of_connections;
336   for(int i=0;i<number_of_connections;i++){
337    ANNfile>>junk_int;
338    ANNfile>>node_from;
339    ANNfile>>node_to;
340    ANNfile>>weight;
341    ANNfile>>Heb;
342    ANNfile>>rand;
343    temp_conn.make_connection_private(node_from,

node_to,weight,Heb,rand);
344    connections.push_back(temp_conn);
345   }
346  }
347 };
348 //---------------------------End of Neural Net Classes----

----------------------------
349
350 //--------------Functions for making and using ANN 

Matricies------------------
351
352 bool make_node_check(neural_net ANN,int n,int max_outs){
353  node temp_node = ANN.get_node(n);
354  int outs = ANN.get_total_outputs();
355  bool verdict = false;
356  if((temp_node.get_nodes_made()<7) &&(outs < max_outs))

{
357   verdict = true;
358  }
359  return(verdict);
360 }  
361
362 bool make_connection_check(neural_net ANN,int n_from,int 

n_to,int max_conns){
363  bool verdict = true;
364  connection temp_conn;
365  node from_node = ANN.get_node(n_from);
366  node to_node = ANN.get_node(n_to);
367  int from_counter = 0;
368  int to_counter = 0; 
369  for(int i=0;i<ANN.get_total_connections();i++){
370   temp_conn = ANN.get_connection(i);
371   if(temp_conn.get_node_from() == n_from){
372    from_counter++;
373   }
374   if(temp_conn.get_node_to() == n_to){
375    to_counter++;
376   }
377   if((temp_conn.get_node_from() == n_from)&&

(temp_conn.get_node_to() == n_to)){
378    verdict = false;
379   }
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380  }
381  if(n_to <= n_from){
382   verdict = false;
383  }
384  if(from_node.get_layer() == 'O'){
385   verdict = false;
386  }
387  if(to_node.get_layer() == 'I'){
388   verdict = false;
389  }
390  if((from_counter>=max_conns)|(to_counter>=max_conns)){
391   verdict = false;
392  }
393  return(verdict);
394 }  
395
396 //--------------------------------------------------------

----------------------
397
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1 // This is the library that contains functions necessary 
for manipulating individuals thoughout evolution

2 // It should follow chimera_lib.h and node_lib.h when 
being called

3
4
5 using namespace std;
6
7 //--------------------------------Individual Class-------

-----------------
8 class individual
9 {private:

10 int genome_length; 
11 vector<int> genome; //The actual genetic string
12 vector<int> ruleset; //Rules within the genome that make 

the ANN
13 string fcall; //Records the name of the .cpp file that 

has the subject's protiens  
14 float fitness; //The fitness of an individual. Can become

 an array
15 int genesis[3]; //An array to tell ["gen made" "Parent 1"

 "Parent 2"]
16 char method; /*Tells how the individual was created
17     P - Point Mutation
18     D - Duplication/Deletion of codon(s)
19     C - Crossover
20     R - Randomly Generated
21     I - Intellegently Designed 
22     S - Say Again */        
23 int death; //Tells the last generation in which an 

individual appeared, thus a -1 means it is still 
alive

24 neural_net ANN; //The individual's neural net
25 vector< vector<float> > ANN_weights; //The individual's 

neural net weight in matrix form
26 vector<float> ANN_biases; //The individual's neural net 

biases in vector form
27 vector<float> ANN_slopes; //The individual's neural net 

slopes in vector form
28 public:
29  individual(){} //Default Constructor
30
31  individual(int sega[3],vector<int> genes){ //

Constructor - given creation info and genome
32   genome_length = genes.size();
33   genome = genes;
34   fcall = "Subject-1.cpp";
35   fitness = -1;
36   genesis[0] = sega[0];  
37   genesis[1] = sega[1];
38   genesis[2] = sega[2];
39   method = 'I';
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40   death = -1;
41  }
42  void operator= (const individual& right){
43   if (this != &right){
44    genome = right.genome;
45    ruleset = right.ruleset;
46    fcall = right.fcall;
47    fitness = right.fitness;
48    genesis[0] = right.genesis[0];
49    genesis[1] = right.genesis[1];
50    genesis[2] = right.genesis[2];
51    method = right.method;
52    death = right.death;
53    ANN = right.ANN;
54    ANN_weights.resize(0); ANN_weights.assign

(right.ANN_weights.begin(),right.ANN_weights.end());
55    ANN_biases.resize(0); ANN_biases.assign(right

.ANN_biases.begin(),right.ANN_biases.end());
56    ANN_slopes.resize(0); ANN_slopes.assign(right

.ANN_slopes.begin(),right.ANN_slopes.end());  
 

57   }
58  }
59
60  int get_genome(int n){
61   return(genome[n]);
62  } 
63  int get_genome_length(){    
64   return(genome_length);
65  }
66  int get_nucleotide(int n){
67   return(genome[n]);
68  } 
69  void save_rule(int rule){
70   ruleset.push_back(rule);
71  }
72  int get_rule(int n){
73   return(ruleset[n]);
74  } 
75  int get_rules_length(){    
76   return(ruleset.size());
77  }
78  string get_fcall(){
79   return(fcall);
80  }
81  float get_fitness(){
82   return(fitness);
83  }
84  void make_fitness(float x){
85   fitness = x;
86  }
87  void inc_fitness(float x){
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88   fitness = fitness + x;
89  }
90  void mult_fitness(float x){
91   fitness = fitness*x;
92  }
93  void dec_fitness(float x){
94   fitness = fitness - x;
95  }
96  int get_genesis(int n){
97   return(genesis[n]);
98  }
99  char get_method(){

100   return(method);
101  }
102  int get_death(){
103   return(death);
104  }
105  void kill(int gen){
106   death = gen;
107  }
108  bool alive(){
109   if(death == -1)
110    return(true);
111   else
112    return(false);
113  }
114  void generate_random_private(int l,int gen,int sub){ 

 //Will generate a random genome of length l
115   int lowest=1, highest=100; 
116   int range=(highest-lowest)+1;  
117   int temp;    
118   for(int i=0; i<l; i++){ 
119    temp = lowest+int(range*(rand()/(RAND_MAX + 1

.0)));
120    genome.push_back(temp);
121   }
122   genome_length = l;
123   string num = int2string(sub);
124   fcall = "Subject" + num + ".cpp";
125   fitness = -1;
126   genesis[0] = gen;
127   genesis[1] = 0;
128   genesis[2] = 0;
129   method = 'R';
130   death = -1;
131  }
132  void generate_designed_private(int arr[],int gen,int 

sub){  //Will generate an individual with the given 
genome

133   int find_array_length(int[]);
134   int l = find_array_length(arr);
135   for(int i=0; i<l; i++){ 
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136    genome.push_back(arr[i]);
137   }  
138   genome_length = l;    
139   string num = int2string(sub);
140   fcall = "Subject" + num + ".cpp";
141   fitness = -1;
142   genesis[0] = gen;
143   genesis[1] = 0;
144   genesis[2] = 0;
145   method = 'I';
146   death = -1;
147  }
148  void generate_designed_private(vector<int> arr,int 

gen,int sub){  //Will generate an individual with the
 given genome

149   int l = arr.size();
150   for(int i=0; i<l; i++){ 
151    genome.push_back(arr[i]);
152   }  
153   genome_length = l;
154   string num = int2string(sub);
155   fcall = "Subject" + num + ".cpp";
156   fitness = -1;
157   genesis[0] = gen;
158   genesis[1] = 0;
159   genesis[2] = 0;
160   method = 'I';
161   death = -1;
162  }
163
164  void generate_reduced_private(vector<int> arr,int gen

,int sub,int parent){  //Will generate an individual 
with the given genome

165   int l = arr.size();
166   for(int i=0; i<l; i++){
167    if((arr[i]>=1)&&(arr[i]<=100)){
168     genome.push_back(arr[i]);
169    }
170    else{
171     int temp_int;
172     temp_int = random_int(1,100);
173     genome.push_back(temp_int);
174     cout<<"The invalid nucleotide "<<arr[i]<

<" was replaced with "<<temp_int<<endl;
175    }
176   }  
177   genome_length = l;
178   string num = int2string(sub);
179   fcall = "Subject" + num + ".cpp";
180   fitness = -1;
181   genesis[0] = gen;
182   genesis[1] = parent;
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183   genesis[2] = parent;
184   method = 'S';
185   death = -1;
186  }
187
188  void generate_offspring_private(vector<int> arr,int 

gen,int sub,int indy1,int indy2){  //Will generate an
 individual with the given genome

189   int l = arr.size();
190   for(int i=0; i<l; i++){ 
191    genome.push_back(arr[i]);
192   }  
193   genome_length = l;
194   string num = int2string(sub);
195   fcall = "Subject" + num + ".cpp";
196   fitness = -1;
197   genesis[0] = gen;
198   genesis[1] = indy1;
199   genesis[2] = indy2;
200   method = 'O';
201   death = -1;
202  } 
203  void Say_Again_private(int sega[],char meth,vector

<int> arr){
204   int l = arr.size();
205   for(int i=0; i<l; i++)
206    genome.push_back(arr[i]);
207   genome_length = genome.size();
208   fcall = "Subject-1.cpp";
209   fitness = -1;
210   genesis[0] = sega[0];
211   genesis[1] = sega[1];
212   genesis[2] = sega[2];
213   method = meth;
214   death = -1;
215  }     
216
217  void show_genome(){ //The following prints out the 

genomes
218   for(int i=0; i<genome.size(); i++)
219    cout << genome[i] << " ";
220   cout << endl;
221  }
222
223  void show_rules(){ //The following prints frames as 

they are used
224   for(int i=0; i<ruleset.size(); i++){      
225    if(ruleset[i]!=-1){
226     cout<<ruleset[i]<<' ';
227     for(int j=0;j<6;j++)
228      cout<<genome[ruleset[i]+j]<<' ';
229     cout<<endl;
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230    }
231    else
232     cout <<endl;
233   }
234  }
235
236  void reduce_rules(vector< vector <int> >& 

reduced_protein_table){  
237   //This will show which frame numbers made the 

individual
238   reduced_protein_table.clear();
239   if(ruleset.size()==0){
240    return;
241   }
242   vector< vector<int> >used_proteins_table;
243   vector< vector<int> >sorted_used_proteins_table;
244   vector <int> test_protein;
245   int lowest_rule = 100000;
246   int lowest_rule_size = 100000;
247   int lowest_rule_index = -1;
248   vector <int> used_indexes;
249   for(int i=0;i<ruleset.size();i++){
250    if(ruleset[i]!= -1){
251     test_protein.push_back(ruleset[i]);
252    }
253    else{
254     if(!any(test_protein,

used_proteins_table)){
255      used_proteins_table.push_back

(test_protein);
256     }
257     test_protein.clear();
258    }
259   }
260   //print_matrix(used_proteins_table);
261   while(sorted_used_proteins_table.size() < 

used_proteins_table.size()){
262    for(int i=0;i<used_proteins_table.size();i++)

{
263     if((used_proteins_table[i][0]

<lowest_rule)&&(!any(i,used_indexes))){
264      lowest_rule = used_proteins_table[i]

[0];
265      lowest_rule_size = 

used_proteins_table[i].size();  
266      lowest_rule_index = i;   
267     }
268     else if((used_proteins_table[i][0]==

lowest_rule)&&(used_proteins_table[i].size()
<lowest_rule_size)&&(!any(i,used_indexes))){

269      lowest_rule = used_proteins_table[i]
[0];
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270      lowest_rule_size = 
used_proteins_table[i].size();

271      lowest_rule_index = i;
272     }
273     else if((used_proteins_table[i][0]==

lowest_rule)&&(used_proteins_table[i].size()==
lowest_rule_size)&&(!any(i,used_indexes))){

274      for(int j=i;j<used_proteins_table[i].
size();j++){

275       if(used_proteins_table[i][j]
<used_proteins_table[lowest_rule_index][j]){

276        lowest_rule = 
used_proteins_table[i][0];

277        lowest_rule_size = 
used_proteins_table[i].size();

278        lowest_rule_index = i;
279       }
280      }
281     }
282    }
283    sorted_used_proteins_table.push_back

(used_proteins_table[lowest_rule_index]);
284    used_indexes.push_back(lowest_rule_index);
285    lowest_rule = 100000;
286    lowest_rule_size = 100000;
287   }  
288   //print_matrix(sorted_used_proteins_table);
289   for(int i=0;i<(sorted_used_proteins_table.size()-

1);i++){
290    if(sorted_used_proteins_table[i].size()== 

sorted_used_proteins_table[i+1].size()){
291     reduced_protein_table.push_back

(sorted_used_proteins_table[i]);
292    }
293    else{
294     for(int j=0;j<sorted_used_proteins_table

[i].size();j++){
295      if(sorted_used_proteins_table[i][j]!=

sorted_used_proteins_table[i+1][j]){
296       reduced_protein_table.push_back

(sorted_used_proteins_table[i]);
297       break;
298      }
299     }
300    }
301   }
302   reduced_protein_table.push_back

(sorted_used_proteins_table[
(sorted_used_proteins_table.size()-1)]);

303   //print_matrix(reduced_protein_table);
304  }
305
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306  void reduce_rules(){
307   vector< vector <int> > reduced_protein_table;
308   //This will show which frame numbers made the 

individual  
309   if(ruleset.size()==0){
310    return;
311   }
312   vector< vector<int> >used_proteins_table;
313   vector< vector<int> >sorted_used_proteins_table;
314   vector <int> test_protein;
315   int lowest_rule = 100000;
316   int lowest_rule_size = 100000;
317   int lowest_rule_index = -1;
318   vector <int> used_indexes;
319   for(int i=0;i<ruleset.size();i++){
320    if(ruleset[i]!= -1){
321     test_protein.push_back(ruleset[i]);
322    }
323    else{
324     if(!any(test_protein,

used_proteins_table)){
325      used_proteins_table.push_back

(test_protein);
326     }
327     test_protein.clear();
328    }
329   }
330   //print_matrix(used_proteins_table);
331   while(sorted_used_proteins_table.size() < 

used_proteins_table.size()){
332    for(int i=0;i<used_proteins_table.size();i++)

{
333     if((used_proteins_table[i][0]

<lowest_rule)&&(!any(i,used_indexes))){
334      lowest_rule = used_proteins_table[i]

[0];
335      lowest_rule_size = 

used_proteins_table[i].size();  
336      lowest_rule_index = i;   
337     }
338     else if((used_proteins_table[i][0]==

lowest_rule)&&(used_proteins_table[i].size()
<lowest_rule_size)&&(!any(i,used_indexes))){

339      lowest_rule = used_proteins_table[i]
[0];

340      lowest_rule_size = 
used_proteins_table[i].size();

341      lowest_rule_index = i;
342     }
343     else if((used_proteins_table[i][0]==

lowest_rule)&&(used_proteins_table[i].size()==
lowest_rule_size)&&(!any(i,used_indexes))){
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344      for(int j=i;j<used_proteins_table[i].
size();j++){

345       if(used_proteins_table[i][j]
<used_proteins_table[lowest_rule_index][j]){

346        lowest_rule = 
used_proteins_table[i][0];

347        lowest_rule_size = 
used_proteins_table[i].size();

348        lowest_rule_index = i;
349       }
350      }
351     }
352    }
353    sorted_used_proteins_table.push_back

(used_proteins_table[lowest_rule_index]);
354    used_indexes.push_back(lowest_rule_index);
355    lowest_rule = 100000;
356    lowest_rule_size = 100000;
357   }  
358   //print_matrix(sorted_used_proteins_table);
359   for(int i=0;i<(sorted_used_proteins_table.size()-

1);i++){
360    if(sorted_used_proteins_table[i].size()== 

sorted_used_proteins_table[i+1].size()){
361     reduced_protein_table.push_back

(sorted_used_proteins_table[i]);
362    }
363    else{
364     for(int j=0;j<sorted_used_proteins_table

[i].size();j++){
365      if(sorted_used_proteins_table[i][j]!=

sorted_used_proteins_table[i+1][j]){
366       reduced_protein_table.push_back

(sorted_used_proteins_table[i]);
367       break;
368      }
369     }
370    }
371   }
372   reduced_protein_table.push_back

(sorted_used_proteins_table[
(sorted_used_proteins_table.size()-1)]);

373   print_matrix(reduced_protein_table);
374  }
375
376  //---------------------------------------------------

--------------------------------------------
377  //----------------------------------------ANN 

COMMANDS-------------------------------------------
378  //---------------------------------------------------

--------------------------------------------
379
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380  neural_net get_neural_net(){
381   return(ANN);
382  } 
383
384  void make_ANN(int rank_no){
385   ANN.clear_ANN();
386   string pcall = "/scratch/subject"+int2string

(rank_no)+".exe";
387   string pmake = "g++ -o " + pcall + " /scratch/"+

fcall;
388   string ANNfilename = "/scratch/ANN"+int2string

(rank_no)+".dat";
389   string Rulecall = "/scratch/Rules"+int2string

(rank_no)+".dat";
390   char *syscall;
391   syscall = &pmake[0];
392   system(syscall);
393   syscall = &pcall[0];
394   system(syscall);
395   ANN.read_net(ANNfilename);
396   ANN_weights.resize(0);
397   ANN_biases.resize(0);
398   ANN_slopes.resize(0);
399   ruleset.resize(0);
400   vector<float> w_fill(ANN.get_ANN_size(),0);
401   node temp_node;
402   connection temp_conn;
403   float temp_slopes,temp_biases,temp_w;
404   int node_to,node_from;
405
406   for(int i=0;i<ANN.get_ANN_size();i++){
407    ANN_weights.push_back(w_fill);
408    temp_node = ANN.get_node(i);   
409    ANN_biases.push_back(temp_node.get_bias());
410    ANN_slopes.push_back(temp_node.get_slope());
411   }
412   for(int i=0;i<ANN.get_total_connections();i++){
413    temp_conn = ANN.get_connection(i);
414    node_to = temp_conn.get_node_to();
415    node_from = temp_conn.get_node_from();
416    temp_w = temp_conn.get_weight();
417    ANN_weights[node_from][node_to] = temp_w; 

 
418   }
419   ifstream infile2(&Rulecall[0]);
420   int temprule;
421   while(!infile2.eof()){
422    infile2 >> temprule;
423    ruleset.push_back(temprule);
424   }
425   ruleset.pop_back(); //For some reason, it always 

saves an extra -1
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426  } 
427
428  void make_ANN_matrix(){
429   ANN_weights.resize(0);
430   ANN_biases.resize(0);
431   ANN_slopes.resize(0);
432   vector<float> w_fill(ANN.get_ANN_size(),0);
433   node temp_node;
434   connection temp_conn;
435   float temp_slopes,temp_biases,temp_w;
436   int node_to,node_from;
437
438   for(int i=0;i<ANN.get_ANN_size();i++){
439    ANN_weights.push_back(w_fill);
440    temp_node = ANN.get_node(i);   
441    ANN_biases.push_back(temp_node.get_bias());
442    ANN_slopes.push_back(temp_node.get_slope());
443   }
444   for(int i=0;i<ANN.get_total_connections();i++){
445    temp_conn = ANN.get_connection(i);
446    node_to = temp_conn.get_node_to();
447    node_from = temp_conn.get_node_from();
448    temp_w = temp_conn.get_weight();
449    ANN_weights[node_from][node_to] = temp_w; 

 
450   }
451  }
452
453  void show_ANN_matrix(){
454   int type1;
455   for(int i=0;i<ANN.get_ANN_size();i++){
456    node temp_node = ANN.get_node(i);
457    for(int j=0;j<ANN.get_ANN_size();j++){
458     cout<<ANN_weights[i][j]<<"  \t";
459    }
460    cout<<"  \t"<<ANN_biases[i];
461    //cout<<"  \t"<<ANN_slopes[i];
462    type1 = temp_node.get_type1();
463    cout<<" \t";
464    if(type1 == 0)
465     cout<<"A";
466    else if (type1 == 1)
467     cout<<"B";
468    else if (type1 == 2)
469     cout<<"C";
470    else if (type1 == 3)
471     cout<<"D";
472    else if (type1 == 4)
473     cout<<"E";
474    else if (type1 == 5)
475     cout<<"F";
476    else if (type1 == 6)

126



12C:\Documents and Settings\...\evo_lib_omega4.h

477     cout<<"G";
478    else if (type1 == 7)
479     cout<<"H";
480    cout<<temp_node.get_type2()<<"-"<<temp_node.

get_type3()<<endl;
481   }
482  }
483  void break_node_off(int n){
484   ANN_biases[n] = 1000;
485  }
486  void break_node_on(int n){
487   ANN_biases[n] = -1000;
488  }
489  void break_connection(int i, int j){
490   ANN_weights[i][j] = 0;
491  }
492  float get_ANN_weight(int i, int j){
493   return(ANN_weights[i][j]);
494  }
495  float get_ANN_bias(int i){
496   return(ANN_biases[i]);
497  }
498  float get_ANN_slope(int i){
499   return(ANN_slopes[i]);
500  }
501  void Matlab_ANN(){
502   //This puts the matrix weights, biases, and 

slopes into a Matlab script
503   //Rearanges the Matrix so inputs are first, 

outputs are last, and hidden nodes are in between
504   float Matlab_weights[ANN.get_ANN_size()][ANN.

get_ANN_size()];
505   float Matlab_biases[ANN.get_ANN_size()];
506   float Matlab_slopes[ANN.get_ANN_size()];
507   vector< vector <int> > translation;  //Holds the 

old node number [0] and the new one [1] The [0] entry
 is just the index and isn't necessary, but it makes 
it easier to decipher

508   node temp_node;
509   int temp_int;
510   float temp_float;
511   vector< int > temp_vect;
512   for(int i=0;i<ANN.get_ANN_size();i++){
513    temp_node = ANN.get_node(i);
514    if(temp_node.get_layer()== 'I'){
515     temp_int = translation.size();
516     temp_vect.push_back(temp_int);
517     temp_vect.push_back(i);
518     translation.push_back(temp_vect);
519     temp_vect.clear();
520    }
521   }
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522   for(int i=0;i<ANN.get_ANN_size();i++){
523    temp_node = ANN.get_node(i);
524    if(temp_node.get_layer()== 'H'){
525     temp_int = translation.size();
526     temp_vect.push_back(temp_int);
527     temp_vect.push_back(i);
528     translation.push_back(temp_vect);
529     temp_vect.clear();
530    }
531   }
532   for(int i=0;i<ANN.get_ANN_size();i++){
533    temp_node = ANN.get_node(i);
534    if(temp_node.get_layer()== 'O'){
535     temp_int = translation.size();
536     temp_vect.push_back(temp_int);
537     temp_vect.push_back(i);
538     translation.push_back(temp_vect);
539     temp_vect.clear();
540    }
541   }
542   if(translation.size()!= ANN.get_ANN_size()){
543    cout<<"ERROR: The nodes were not recorded 

properly"<<endl;
544   }
545   for(int i=0;i<translation.size();i++){
546    Matlab_biases[i] = ANN_biases[translation[i]

[1]];
547    Matlab_slopes[i] = ANN_slopes[translation[i]

[1]];
548    for(int j=0;j<translation.size();j++){
549     Matlab_weights[i][j] = ANN_weights

[translation[i][1]][translation[j][1]];
550    }
551   } 
552
553   ofstream ANNfile("ANN.m");
554   ANNfile<<"W=[";    
555   for(int i=0;i<translation.size();i++){
556    for(int j=0;j<translation.size();j++){
557     ANNfile<<Matlab_weights[i][j]<<" ";
558    }
559    ANNfile<<";";
560   }
561   ANNfile<<"]\n";
562   ANNfile<<"B=[";
563   for(int i=0;i<translation.size();i++){
564    ANNfile<<Matlab_biases[i]<<"; ";
565   }
566   ANNfile<<"]\n";
567   ANNfile<<"S=[";
568   for(int i=0;i<translation.size();i++){
569    ANNfile<<Matlab_slopes[i]<<"; ";
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570   }
571   ANNfile<<"]\n";
572  }
573
574  void Matlab_ANN_growth(){
575   //This records the order and type of rules used 

so the growth of the ANN can be seen
576
577   vector<float> Matlab_rules;
578   int action_nucleotide,action_value_nucleotide,

action_type,nodes_made,outputs_made,max_outputs;
579   float action_value;
580   int make_connection[] = {1,20};
581   int do_nothing[] = {21,35};
582   int end_turn[] = {36,50}; 
583   int make_node[] = {51,100};
584   int make_nodeH[] = {86,100};
585   nodes_made = 0;
586   outputs_made = 0;
587   max_outputs = 0;
588   node temp_node;
589
590   for(int i=0;i<ANN.get_ANN_size();i++){
591    temp_node = ANN.get_node(i);
592    if(temp_node.get_layer()== 'I'){
593     nodes_made++;
594    }  
595    else if(temp_node.get_layer()== 'O'){
596     max_outputs++;
597    }
598   }
599
600   ofstream ANNfile("ANN_growth.m");
601   ANNfile<<"rules = [";
602   for(int i = 0; i<ruleset.size(); i++){
603    if(ruleset[i]!=-1){
604     if(ruleset[i+1]==-1){
605      action_nucleotide = genome[ruleset[i]

+4];
606      action_value_nucleotide = genome

[ruleset[i]+5];  
607      if ((make_node[0]<=action_nucleotide)

&&(make_node[1]>=action_nucleotide)&&(outputs_made
<max_outputs)){

608       action_type = 0;    
 

609       nodes_made++;
610       if ((make_nodeH[0]<=

action_nucleotide)&&(make_nodeH[1]>=
action_nucleotide)){

611        action_value = 2;
612        outputs_made++;
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613       }
614       else {
615        action_value = 1;
616       }
617      }
618      else if ((make_connection[0]<=

action_nucleotide)&&(make_connection[1]>=
action_nucleotide)){

619       action_type = 1;
620       if(action_value_nucleotide >= 51)

{
621        action_value = float

(action_value_nucleotide-50.0)/50.0;
622       }
623       else{
624        action_value = float

(action_value_nucleotide-51.0)/50.0;
625       }     
626      }
627      else if ((do_nothing[0]<=

action_nucleotide)&&(do_nothing[1]>=
action_nucleotide)){

628       //Do nothing     
629      }
630      else {
631       action_type = 2;
632       action_value = random_int(1,

nodes_made);
633      }
634      ANNfile<<action_type<<" "<

<action_value<<";"; 
635     }
636    }
637   }
638   ANNfile<<"];\n";
639  }
640
641  void show_ANN_states(){
642   node temp_node;
643   for(int i=0;i<ANN.get_ANN_size();i++){
644    cout<<ANN.get_activation(i)<<" ";
645   }
646   cout<<endl;
647  }
648  void update_ANN(vector<float> input,bool learning,

float r_signal){
649   float unbounded_next,bias,slope,h_rate,r_rate,

old_weight,del_weight;
650   int node_to,node_from,activated_inputs;
651   int ANN_size = ANN.get_ANN_size();
652   int total_inputs = ANN.get_total_inputs();
653   vector<float> node_activation_levels(ANN_size,0.
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0);
654   vector<float> new_activation_levels(ANN_size,0.0)

;
655   node temp_node;
656   connection temp_connection;
657   for(int i=0;i<ANN_size;i++){
658    node_activation_levels[i] = ANN.

get_activation(i);
659   }
660   activated_inputs = 0;
661   for(int i=0;i<ANN_size;i++){
662    assert(activated_inputs<=ANN.get_total_inputs

());
663    unbounded_next = 0;
664    temp_node = ANN.get_node(i); 
665    bias = ANN_biases[i];
666    slope = ANN_slopes[i];
667    for(int j=0;j<ANN_size;j++){
668     unbounded_next = unbounded_next + 

ANN_weights[j][i]*node_activation_levels[j];
669    }
670    if(temp_node.get_layer() == 'I'){//An input 

stays unbounded
671     new_activation_levels[i] = unbounded_next

 + input[activated_inputs] - bias;
672     activated_inputs++;    
673    }
674    else{
675     //new_activation_levels[i] = tanh(

(unbounded_next-bias)/(2*slope)); //For a range of -1
 to 1    

676     //For digital nodes ranged 0 - 1
677     if(unbounded_next>bias){
678      new_activation_levels[i] = 1;
679     }
680     else{
681      new_activation_levels[i] = 0;
682     }
683    }
684   }
685   for(int i=0;i<ANN_size;i++){
686    ANN.set_activation(i,new_activation_levels

[i]);
687   }
688   if(!learning){
689    return; //Stops here so weights don't change
690   }
691   for(int i=0;i<ANN.get_total_connections();i++){ 
692    temp_connection = ANN.get_connection(i);
693    node_to = temp_connection.get_node_to();
694    node_from = temp_connection.get_node_from();
695    h_rate = temp_connection.get_Hebbian_rate();
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696    r_rate = temp_connection.get_random_rate();
697    old_weight = temp_connection.get_weight();
698    ANN.set_reinforcement(r_signal);
699    del_weight = 0;
700    //Hebbian Learning
701    del_weight = (1-r_signal)*h_rate*fabs

(old_weight)*ANN.get_activation(node_from)*ANN.
get_activation(node_to);

702    //Random Reinforcement
703    del_weight = del_weight + (1-r_signal)*(1-

r_signal)*r_rate*fabs(old_weight)*random_float(-1,1);
704    ANN.set_weight(i,(old_weight-del_weight)); 
705   }
706   make_ANN_matrix();
707   //temp_connection = ANN.get_connection(0);
708   //cout<<"To: "<<temp_connection.get_node_to()<<" 

From: "<<temp_connection.get_node_from();
709   //cout<<" Weight: "<<temp_connection.get_weight()

<<" H Rate: "<<temp_connection.get_Hebbian_rate()<
<endl;

710  }
711  void eval_XOR_logic(){
712   int no_of_inputs = 2;
713   float desired_no_of_outputs = 1;  
714   float exponent = -1;
715   vector<int> connected_outputs;
716   connection test_conn;
717   node test_node;
718   vector<float> test_input(no_of_inputs,0);
719   bool learning = false;
720   float r_signal = 0;
721   int desired_answer;
722   //Tier 1 - check for number of outputs
723   if(ANN.get_total_outputs() == 0){
724    fitness = 0;
725    return;
726   }
727   exponent += ANN.get_total_outputs()/

desired_no_of_outputs;
728   if(exponent < 0){
729    fitness = pow(2.0,exponent);
730    return;
731   }
732   //Tier 2 - outputs with connections
733   for(int i=0;i<ANN.get_total_connections();i++){
734    test_conn = ANN.get_connection(i);
735    test_node = ANN.get_node(test_conn.

get_node_to());
736    if((test_node.get_layer()=='O')&&(!any

(connected_outputs,test_conn.get_node_to()))){
737     connected_outputs.push_back(test_conn.

get_node_to());
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738    }
739   }
740   exponent += connected_outputs.size()/

desired_no_of_outputs;
741   if(exponent < 1){
742    fitness = pow(2.0,exponent);
743    return;
744   }
745   // Tier 3 - Logic test
746   for(int test_no = 0;test_no<pow(2.0,no_of_inputs)

;test_no++){
747    int2binary(test_no,test_input);
748    desired_answer = 0;
749    for(int i=0;i<test_input.size();i++){
750     if(test_input[i] == 1){
751      desired_answer++;
752     }
753    }
754    desired_answer = desired_answer%2;   
755    for(float t=0;t<1;t+=0.01){
756     update_ANN(test_input,learning,r_signal);
757    }
758    for(int i=0;i<ANN.get_ANN_size();i++){
759     test_node = ANN.get_node(i);
760     if(test_node.get_layer()=='O'){
761      if(within_range(0.01,ANN.

get_activation(i),desired_answer)){
762       exponent++;      
763      }
764      break;
765     }
766    }
767   }
768   fitness = pow(2.0,exponent);
769  }
770
771  void eval_robustness(){
772   //Tier 4 test - remove nodes until logic fails
773   int no_of_inputs = 2; 
774   int no_of_outputs = 1;
775   node test_node;
776   float exponent;
777   float tier_4_exponent = 1 + pow(2.0,no_of_inputs)

; 
778   if(fitness < pow(2.0,tier_4_exponent)){
779    return;
780   }
781   int node_break;
782   vector<int> broken_nodes;  
783   broken_nodes.clear();
784   bool keep_breaking_nodes = true;
785   vector<float> test_input(no_of_inputs,0);
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786   int desired_answer;
787   bool learning = false;
788   float r_signal = 0;
789
790   for(int i=0;i<ANN.get_ANN_size();i++){
791    node test_node = ANN.get_node(i);
792    if((test_node.get_layer()=='I')|(test_node.

get_layer()=='O')){
793     broken_nodes.push_back(i);
794    }
795   } 
796
797   while((keep_breaking_nodes)&&(broken_nodes.size()

<ANN.get_ANN_size())){  
798    node_break = random_int(0,ANN.get_ANN_size()-

1,broken_nodes);
799    break_node_off(node_break);
800    broken_nodes.push_back(node_break);
801    //print_vector(broken_nodes);
802    //Logic retested
803    for(int test_no = 0;test_no<pow(2.0,

no_of_inputs);test_no++){
804     int2binary(test_no,test_input);
805     desired_answer = 0;
806     for(int i=0;i<test_input.size();i++){
807      if(test_input[i] == 1){
808       desired_answer++;
809      }
810     }
811     desired_answer = desired_answer%2;  

 
812     for(float t=0;t<1;t+=0.01){
813      update_ANN(test_input,learning,

r_signal);
814     } 
815     for(int i=0;i<ANN.get_ANN_size();i++){
816      test_node = ANN.get_node(i);
817      if(test_node.get_layer()=='O'){
818       if(!within_range(0.01,ANN.

get_activation(i),desired_answer)){
819        keep_breaking_nodes = false;
820        broken_nodes.pop_back();
821       }
822       break;
823      }
824     }
825    }
826   }
827
828   make_ANN_matrix(); //Rebuilds ANN
829   //print_vector(broken_nodes);
830   //cout<<"ANN size ="<<ANN.get_ANN_size()<<endl;
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831   //indy.show_ANN_matrix();
832   exponent = float(broken_nodes.size()-

(no_of_inputs+no_of_outputs))/ANN.get_ANN_size();
833   //cout<<"exponent = "<<exponent<<endl;
834   fitness = pow(2.0,(tier_4_exponent + 2*exponent))

;
835   if(fitness > pow(2.0,(tier_4_exponent + 2))){ //

Sometimes, a bug makes the fitness go to infinity. 
This is a fix

836    fitness = 0;
837   }
838  }
839  //---------------------------------------------------

------------------------   
840 };
841
842 //-------------------------End of Individual class-------

---------------------
843
844
845 //-------------------------GENERATE_NEW_INDIVIDUALS------

---------------------
846 void generate_random(vector<individual>& Ark,int l, int 

gen)
847 {
848  int Ark_size = Ark.size();
849  Ark.push_back(individual());
850  int subject = Ark_size;
851  Ark[Ark_size].generate_random_private(l,gen,subject);
852 }
853
854 void generate_designed(vector<individual>& Ark,int arr[],

 int gen)
855 {
856  int Ark_size = Ark.size();
857  Ark.push_back(individual());
858  int subject = Ark_size;
859  Ark[Ark_size].generate_designed_private(arr,gen,

subject);   
860 }
861
862 void generate_designed(vector<individual>& Ark,vector

<int> arr, int gen)
863 {
864  int Ark_size = Ark.size();
865  Ark.push_back(individual());
866  int subject = Ark_size;
867  Ark[Ark_size].generate_designed_private(arr,gen,

subject);   
868 }
869
870 void generate_satellite(vector<individual>& Ark,int arr[]
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,int gen,int subject)
871 {
872  int Ark_size = Ark.size();
873  Ark.push_back(individual());
874  Ark[Ark_size].generate_designed_private(arr,gen,

subject);   
875 }
876
877 void generate_satellite(vector<individual>& Ark,vector

<int> arr,int gen,int subject)
878 {
879  int Ark_size = Ark.size();
880  Ark.push_back(individual());
881  Ark[Ark_size].generate_designed_private(arr,gen,

subject);   
882 }
883
884 void generate_reduced(vector<individual>& Ark,vector<int>

 arr,int gen,int parent)
885 {
886  int Ark_size = Ark.size();
887  Ark.push_back(individual());
888  int subject = Ark_size;
889  Ark[Ark_size].generate_reduced_private(arr,gen,

subject,parent);   
890 }
891
892 void mutator(vector<int>& genome, vector<int> genome2, 

float mu, float p_mu, float c_mu, float r_mu, float 
d_mu, float t_mu)

893 {
894  vector<int> proto_genome;
895  vector<int> codon;
896  int skip_to_codon = 0;
897  vector< vector<int> > translocated_codons;
898  vector<int> translocation_codon_numbers;
899  float x,y;
900  int start,stop,temp_int;  //Start and stop FRAME 

numbers
901  float mu_point_mutation, mu_recopy, mu_deletion, 

mu_conjugation, mu_translocation;
902
903  //If there is a mutation within the codon, odds of 

that mutation being of this given type
904  mu_point_mutation = p_mu;  //Make sure
905  mu_conjugation = c_mu;     //these add
906  mu_recopy = r_mu;          //up to 1.0   
907  mu_deletion = d_mu;         
908  mu_translocation = t_mu;
909  for(int i=0;i<genome.size();i+=6){
910   for(int j=0;j<6;j++){
911    if((i+j)<genome.size()){
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912     codon.push_back(genome[i+j]);
913    }
914    else{ //Fills genome with dummy nucleotides 

if genome is too short
915     codon.push_back(100);
916    }
917   }
918   x = rand();
919   y = x/RAND_MAX;
920   if(i<(skip_to_codon*6)){
921    codon.clear();
922   }
923   else if(y > mu){     
924    for(int j=0;j<6;j++){
925     proto_genome.push_back(codon[j]);
926    }
927    codon.clear();
928   }
929   else{  //Perform a mutation
930    y = y/mu; // y is now a random number between

 0 and 1
931    if( y <= mu_point_mutation){
932     //This will change exactly one nucleotide

 within the reading frame
933     vector<int> old_nuc;
934     int change_nuc;
935     change_nuc = random_int(0,5);
936     old_nuc.push_back(codon[change_nuc]);
937     codon[change_nuc] = random_int(1,100,

old_nuc);
938     for(int j=0;j<6;j++){
939      proto_genome.push_back(codon[j]);
940     }
941     codon.clear();
942    }
943    else if(y < (mu_point_mutation+

mu_conjugation)){
944     //This will insert a section from the 

secondary parent
945     int lowest, highest;
946     lowest = 0;
947     highest = int((genome2.size())/6); 
948     start = random_int(lowest,highest);
949     stop = random_int(start,highest);
950     for(int j=(start*6);j<(stop*6);j++){
951      proto_genome.push_back(genome2[j]);
952     }
953     for(int j=0;j<6;j++){
954      proto_genome.push_back(codon[j]);
955     }
956     codon.clear();
957    }
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958    else if(y < (mu_point_mutation+mu_conjugation
+mu_recopy)){

959     //This will duplicate a section of the 
genome

960     start = i/6;
961     stop = random_int(start,int(genome.size()

/6));
962     for(int j=(start*6);j<(stop*6);j++){
963      proto_genome.push_back(genome[j]);
964     }
965     for(int j=0;j<6;j++){
966      proto_genome.push_back(codon[j]);
967     }
968     codon.clear();
969    }
970    else if(y < (mu_point_mutation+mu_conjugation

+mu_recopy+mu_deletion)){
971     //This will delete a section of the 

genome
972     start = i/6;
973     skip_to_codon = random_int(start,int

(genome.size()/6));
974     codon.clear();
975    }
976    else if(y <= (mu_point_mutation+

mu_conjugation+mu_recopy+mu_deletion+
mu_translocation)){

977     //This will delete a section of the 
genome and save for later insertion

978     start = i/6;
979     skip_to_codon = random_int(start,int

(genome.size()/6));
980     for(int j=((start+1)*6);j<(skip_to_codon*

6);j++){
981      codon.push_back(genome[j]);
982     }
983     translocated_codons.push_back(codon);
984     codon.clear();
985    }
986   }
987  }
988  genome.clear();
989  int counter = 0;
990  while((counter<translocated_codons.size())&&

(translocation_codon_numbers.size()<=int(proto_genome
.size()/6))){  

991   temp_int = random_int(0,int(proto_genome.size()/
6),translocation_codon_numbers);

992   translocation_codon_numbers.push_back(temp_int);
993   counter++;
994  }
995  //If the genome is too short, this check will delete 

138



24C:\Documents and Settings\...\evo_lib_omega4.h

extra translocations
996  if(translocation_codon_numbers.size()

<translocated_codons.size()){
997   translocated_codons.resize

(translocation_codon_numbers.size());
998  }
999  for(int i=0;i<proto_genome.size();i++){

1000   if((i%6 == 0)&&any(translocation_codon_numbers,
int(i/6))){   

1001    for(int j=0;j<translocation_codon_numbers.
size();j++){

1002     if((i/6) == translocation_codon_numbers
[j]){

1003      temp_int = j;
1004     }
1005    }
1006    for(int j=0;j<translocated_codons[temp_int].

size();j++){
1007     genome.push_back(translocated_codons

[temp_int][j]);
1008    }
1009   }
1010   genome.push_back(proto_genome[i]);
1011  }
1012  for(int i=0;i<translocation_codon_numbers.size();i++)

{
1013   //Inserts translocations
1014   if(translocation_codon_numbers[i] == int

(proto_genome.size()/6)){
1015    for(int j=0;j<translocated_codons[i].size();j

++){
1016     genome.push_back(translocated_codons[i]

[j]);
1017    }
1018   }
1019  }
1020  if(genome.size()<6){
1021   for(int i=genome.size(); i<6; i++){
1022    genome.push_back(100);
1023   }
1024  }
1025  if (genome.size()>600)
1026   genome.resize(300);
1027  /*
1028  for(int i = 0;i<genome.size();i++)
1029  cout<<genome[i]<<" ";
1030  cout<<endl;
1031  */
1032 }
1033
1034 void focused_mutator(vector<int>& genome, vector<int> 

genome2, float mu, float p_mu, float c_mu, float r_mu
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, float d_mu, float t_mu)
1035 {
1036  vector<int> proto_genome;
1037  vector<int> codon;
1038  int skip_to_codon = 0;
1039  vector< vector<int> > translocated_codons;
1040  vector<int> translocation_codon_numbers;
1041  float x,y;
1042  int start,stop,temp_int;  //Start and stop FRAME 

numbers
1043  float mu_point_mutation, mu_recopy, mu_deletion, 

mu_conjugation, mu_translocation;
1044  bool connection_codon;
1045  int make_connection[] = {1,25};
1046  int action_nucleotide;
1047  //If there is a mutation within the codon, odds of 

that mutation being of this given type
1048  mu_point_mutation = p_mu;  //Make sure
1049  mu_conjugation = c_mu;     //these add
1050  mu_recopy = r_mu;          //up to 1.0   
1051  mu_deletion = d_mu;         
1052  mu_translocation = t_mu;
1053  for(int i=0;i<genome.size();i+=6){
1054   for(int j=0;j<6;j++){
1055    if((i+j)<genome.size()){
1056     codon.push_back(genome[i+j]);
1057    }
1058    else{ //Fills genome with dummy nucleotides 

if genome is too short
1059     codon.push_back(100);
1060    }
1061    if(j==5){
1062     action_nucleotide = genome[i+j];
1063    }
1064   }
1065   connection_codon = false;
1066   if((make_connection[0]<=action_nucleotide)&&

(make_connection[1]>=action_nucleotide)){
1067    connection_codon = true;
1068   }
1069   x = rand();
1070   y = x/RAND_MAX;
1071   if(i<(skip_to_codon*6)){
1072    codon.clear();
1073   }
1074   else if(y > mu){     
1075    for(int j=0;j<6;j++){
1076     proto_genome.push_back(codon[j]);
1077    }
1078    codon.clear();
1079   }
1080   else{  //Perform a mutation
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1081
1082    //The following will always mutate a 

connection weight
1083    if(connection_codon){
1084     codon[5] = random_int(1,100);
1085    }
1086
1087    y = y/mu; // y is now a random number between

 0 and 1
1088    if( y <= mu_point_mutation){
1089     //This will change exactly one nucleotide

 within the reading frame
1090     vector<int> old_nuc;
1091     int change_nuc;
1092     change_nuc = random_int(0,5);
1093     old_nuc.push_back(codon[change_nuc]);
1094     codon[change_nuc] = random_int(1,100,

old_nuc);
1095     for(int j=0;j<6;j++){
1096      proto_genome.push_back(codon[j]);
1097     }
1098     codon.clear();
1099    }
1100    else if(y < (mu_point_mutation+

mu_conjugation)){
1101     //This will insert a section from the 

secondary parent
1102     int lowest, highest;
1103     lowest = 0;
1104     highest = int((genome2.size())/6); 
1105     start = random_int(lowest,highest);
1106     stop = random_int(start,highest);
1107     for(int j=(start*6);j<(stop*6);j++){
1108      proto_genome.push_back(genome2[j]);
1109     }
1110     for(int j=0;j<6;j++){
1111      proto_genome.push_back(codon[j]);
1112     }
1113     codon.clear();
1114    }
1115    else if(y < (mu_point_mutation+mu_conjugation

+mu_recopy)){
1116     //This will duplicate a section of the 

genome
1117     start = i/6;
1118     stop = random_int(start,int(genome.size()

/6));
1119     for(int j=(start*6);j<(stop*6);j++){
1120      proto_genome.push_back(genome[j]);
1121     }
1122     for(int j=0;j<6;j++){
1123      proto_genome.push_back(codon[j]);
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1124     }
1125     codon.clear();
1126    }
1127    else if(y < (mu_point_mutation+mu_conjugation

+mu_recopy+mu_deletion)){
1128     //This will delete a section of the 

genome
1129     start = i/6;
1130     skip_to_codon = random_int(start,int

(genome.size()/6));
1131     codon.clear();
1132    }
1133    else if(y <= (mu_point_mutation+

mu_conjugation+mu_recopy+mu_deletion+
mu_translocation)){

1134     //This will delete a section of the 
genome and save for later insertion

1135     start = i/6;
1136     skip_to_codon = random_int(start,int

(genome.size()/6));
1137     for(int j=((start+1)*6);j<(skip_to_codon*

6);j++){
1138      codon.push_back(genome[j]);
1139     }
1140     translocated_codons.push_back(codon);
1141     codon.clear();
1142    }
1143   }
1144  }
1145  genome.clear();
1146  int counter = 0;
1147  while((counter<translocated_codons.size())&&

(translocation_codon_numbers.size()<=int(proto_genome
.size()/6))){  

1148   temp_int = random_int(0,int(proto_genome.size()/
6),translocation_codon_numbers);

1149   translocation_codon_numbers.push_back(temp_int);
1150   counter++;
1151  }
1152  //If the genome is too short, this check will delete 

extra translocations
1153  if(translocation_codon_numbers.size()

<translocated_codons.size()){
1154   translocated_codons.resize

(translocation_codon_numbers.size());
1155  }
1156  for(int i=0;i<proto_genome.size();i++){
1157   if((i%6 == 0)&&any(translocation_codon_numbers,

int(i/6))){   
1158    for(int j=0;j<translocation_codon_numbers.

size();j++){
1159     if((i/6) == translocation_codon_numbers
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[j]){
1160      temp_int = j;
1161     }
1162    }
1163    for(int j=0;j<translocated_codons[temp_int].

size();j++){
1164     genome.push_back(translocated_codons

[temp_int][j]);
1165    }
1166   }
1167   genome.push_back(proto_genome[i]);
1168  }
1169  for(int i=0;i<translocation_codon_numbers.size();i++)

{
1170   //Inserts translocations
1171   if(translocation_codon_numbers[i] == int

(proto_genome.size()/6)){
1172    for(int j=0;j<translocated_codons[i].size();j

++){
1173     genome.push_back(translocated_codons[i]

[j]);
1174    }
1175   }
1176  }
1177  if(genome.size()<6){
1178   for(int i=genome.size(); i<6; i++){
1179    genome.push_back(100);
1180   }
1181  }
1182  if (genome.size()>600)
1183   genome.resize(300);
1184  /*
1185  for(int i = 0;i<genome.size();i++)
1186  cout<<genome[i]<<" ";
1187  cout<<endl;
1188  */
1189 }
1190
1191 void reduce_genome(vector<int>& genome,vector< vector

<int> > rule_table){
1192  //This operation will reduce the genome into the 

rules that actually produced the ANN
1193  vector <int> new_genome;
1194  int reading_frame,temp_int;
1195  for(int i=0;i<rule_table.size();i++){
1196   for(int j=0;j<rule_table[i].size();j++){
1197    reading_frame = rule_table[i][j];
1198    for(int k=0;k<6;k++){
1199     if(k==0){
1200      new_genome.push_back(1); //

Homogenizes IF's
1201     }
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1202     else{
1203      new_genome.push_back(genome

[reading_frame+k]);
1204     }
1205    }
1206   }
1207   for(int k=0;k<6;k++){ //Ends Gene
1208    new_genome.push_back(100);
1209   }
1210  }
1211  genome.clear();
1212  genome = new_genome;
1213  if(genome.size()<6){
1214   for(int i=genome.size(); i<6; i++){
1215    genome.push_back(100);
1216   }
1217  }
1218  //print_vector(new_genome);
1219 }
1220
1221 void generate_offspring(vector<individual>& Ark,vector

<int> arr,int indy1,int indy2,int gen)
1222 {
1223  int Ark_size = Ark.size();
1224  Ark.push_back(individual());
1225  int subject = Ark_size;
1226  Ark[Ark_size].generate_offspring_private(arr,gen,

subject,indy1,indy2);   
1227 }
1228
1229
1230 //-------------------------------------------------------

-----------------
1231 //------------------------------MAKE_PROTEIN-------------

-----------------
1232 //-------------------------------------------------------

-----------------
1233 //The script that transform the genome into proteins/

programs 
1234 void make_protein(individual indy,int no_of_inputs,int 

outputs,int max_conns,int rank_no){
1235  int genome_length = indy.get_genome_length();
1236  int l,openifs,g;
1237  vector<int> genome;
1238  for(int i=0;i<genome_length;i++){
1239   g = indy.get_genome(i);
1240   genome.push_back(g);
1241  }
1242  string filename1= "/scratch/"+indy.get_fcall();
1243  char *filename2;
1244  filename2 = &filename1[0];
1245  ofstream file(filename2);
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1246  //--------------Protien Primer-----------------------
-----------

1247  file << "#include <iostream>\n";
1248  file << "#include <fstream>\n";
1249  file << "#include <vector>\n"; 
1250  file << "#include <string>\n";
1251  file << "#include <sstream>\n";
1252  file << "#include <ctime>\n";
1253  file << "#include <math.h>\n";
1254  file << "#include \"chimera_lib.h\"\n";
1255  file << "#include \"node_lib_omega4.h\"\n";   //WILL 

HAVE TO CHANGE THIS LINE TO MATCH VERSION
1256  file << "using namespace std;\n";
1257  file << "int main()\n{\n";  
1258  file << "neural_net ANN;\n";
1259  file << "string rules;\n";
1260  file << "int no_of_inputs = "<<no_of_inputs<<";\n";
1261  file << "int Max_Outputs = "<<outputs<<";\n";
1262  file << "int Max_Connections = "<<max_conns<<";\n";
1263  file << "int ANN_Size;\n";  
1264  file << "float bias,weight;\n";
1265  file << "int NodeA_type1,NodeA_type2,NodeA_type3,

NodeA_bias,NodeA_nodes_made,NodeA_inputs,
NodeA_outputs;\n";

1266  file << "int NodeB_type1,NodeB_type2,NodeB_type3,
NodeB_bias,NodeB_nodes_made,NodeB_inputs,
NodeB_outputs;\n";

1267  file << "int relAB_type1,relAB_type2,relAB_type3,
relAB_bias,relAB_nodes_made,relAB_inputs,
relAB_outputs,relAB_connection;\n"; 

1268  file << "int relBA_type1,relBA_type2,relBA_type3,
relBA_bias,relBA_nodes_made,relBA_inputs,
relBA_outputs,relBA_connection;\n";

1269  file << "bool keep_going=true;\n";
1270  file << "bool turn_over=false;\n";
1271  file << "int no_of_outputs = 0;\n";
1272  file << "int energy_units = 200;\n";
1273  // For looped input creation
1274  file << "for(int i=0;i<no_of_inputs;i++) \n" ;
1275  file << "ANN.make_input(0);\n";
1276  file << "while(keep_going && energy_units > 0){\n";
1277  file << "keep_going = false;\n";
1278  file << "ANN_Size = ANN.get_ANN_size();\n";
1279  file << "for(int i=0;i<ANN_Size;i++){\n";
1280  file << "turn_over = false;\n";
1281  file << "node NodeA = ANN.get_node(i);\n";
1282  file << "NodeA_type1 = NodeA.get_type1();\n";
1283  file << "NodeA_type2 = NodeA.get_type2();\n";
1284  file << "NodeA_type3 = NodeA.get_type3();\n";
1285  //Need to change bias into an integer
1286  file << "bias = NodeA.get_bias();\n"; 
1287  file << "if(bias>0){\n";
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1288  file << "NodeA_bias = int(50*bias+50+0.5);\n}\nelse{\
n";

1289  file << "NodeA_bias = int(50*bias+51+0.5);\n}\n";
1290  file << "NodeA_nodes_made = NodeA.get_nodes_made();\n

";
1291  file << "NodeA_inputs = ANN.get_inputs_to(i);\n";
1292  file << "NodeA_outputs = ANN.get_outputs_from(i);\n";
1293  file << "for(int j=0;j<ANN_Size;j++){\n";
1294  file << "node NodeB = ANN.get_node(j);\n";
1295  file << "if(turn_over)\n";
1296  file << "break;\n"; 
1297  file << "NodeB_type1 = NodeB.get_type1();\n";
1298  file << "NodeB_type2 = NodeB.get_type2();\n";
1299  file << "NodeB_type3 = NodeB.get_type3();\n";
1300  //Need to change bias into an integer
1301  file << "bias = NodeB.get_bias();\n"; 
1302  file << "if(bias>0){\n";
1303  file << "NodeB_bias = int(50*bias+50+0.5);\n}\nelse{\

n";
1304  file << "NodeB_bias = int(50*bias+51+0.5);\n}\n";
1305  file << "NodeB_nodes_made = NodeB.get_nodes_made();\n

";
1306  file << "NodeB_inputs = ANN.get_inputs_to(j);\n";
1307  file << "NodeB_outputs = ANN.get_outputs_from(j);\n";
1308  file << "relAB_type1 = NodeA_type1 - NodeB_type1;\n";
1309  file << "relAB_type2 = NodeA_type2 - NodeB_type2;\n";
1310  file << "relAB_type3 = NodeA_type3 - NodeB_type3;\n";
1311  file << "relAB_bias = NodeA_bias - NodeB_bias;\n";
1312  file << "relAB_nodes_made = NodeA_nodes_made - 

NodeB_nodes_made;\n";
1313  file << "relAB_inputs = NodeB_inputs - NodeA_inputs;\

n";
1314  file << "relAB_outputs = NodeB_outputs - 

NodeA_outputs;\n";
1315  file << "weight = ANN.get_connection_weight(i,j);\n";
1316  file << "if(weight>0){\n";
1317  file << "relAB_connection = int(50*weight+50+0.5);\n}

\nelse{\n";
1318  file << "relAB_connection = int(50*weight+51+0.5);\n}

\n";
1319  file << "relBA_type1 = NodeB_type1 - NodeA_type1;\n";
1320  file << "relBA_type2 = NodeB_type2 - NodeA_type2;\n";
1321  file << "relBA_type3 = NodeB_type3 - NodeA_type3;\n";
1322  file << "relBA_bias = NodeB_bias - NodeA_bias;\n";
1323  file << "relBA_nodes_made = NodeB_nodes_made - 

NodeA_nodes_made;\n";
1324  file << "relBA_inputs = NodeA_inputs - NodeB_inputs;\

n";
1325  file << "relBA_outputs = NodeA_outputs - 

NodeB_outputs;\n";
1326  file << "weight = ANN.get_connection_weight(j,i);\n";
1327  file << "if(weight>0){\n";
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1328  file << "relBA_connection = int(50*weight+50+0.5);\n}
\nelse{\n";

1329  file << "relBA_connection = int(50*weight+51+0.5);\n}
\n";

1330
1331  //---------------------------------------------------

-----------
1332  openifs = 0;
1333  int if_struct_nucleotide;
1334  int criterion_nucleotide; 
1335  int test_value_nucleotide;
1336  int test_range_nucleotide;
1337  int action_nucleotide;
1338  int action_value_nucleotide;
1339  vector<string> action_stack;
1340  vector<int> rule_stack;
1341  l = genome_length - (genome_length%6);
1342  bool action_commented;
1343  for(int i=0;i<l;i+=6){
1344   if_struct_nucleotide = genome[i];
1345   criterion_nucleotide = genome[i+1];  
1346   test_value_nucleotide = genome[i+2];
1347   test_range_nucleotide = genome[i+3];
1348   action_nucleotide = genome[i+4];
1349   action_value_nucleotide = genome[i+5];   
1350   //----------------IF STRUCTURE ALGORITHM---------

------------------    
1351
1352   int make_if[] = {1,38};
1353   int make_end_if[] = {39,54};
1354   int make_end_end_if[] = {55,70};
1355   int make_end[] = {71,80};
1356   int make_end_end[] = {81,90};
1357   int make_end_all[] = {91,100};
1358
1359   if ((make_if[0]<=if_struct_nucleotide)&&(make_if

[1]>=if_struct_nucleotide)){
1360    action_commented = false;
1361    file <<"if(";
1362    openifs++;     
1363   }
1364   else if ((make_end_if[0]<=if_struct_nucleotide)&&

(make_end_if[1]>=if_struct_nucleotide)){
1365    action_commented = false;
1366    if(openifs == 0){
1367     file <<" if(";
1368     openifs++; 
1369    }
1370    else{
1371     file << action_stack.back();
1372     file << "if(turn_over){\n";
1373     file << "rules = rules + \"";
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1374     for (int j=0;j<rule_stack.size();j++){
1375      file << int2string(rule_stack[j]) + "

 ";
1376     }
1377     file << "-1 \\n\";\n";
1378     file << "break;\n}\n"; 
1379     action_stack.pop_back();
1380     file<<"/*";
1381     for(int j=0;j<rule_stack.size();j++)
1382      file << rule_stack[j]<<" ";
1383     file<<"*/";
1384     rule_stack.pop_back(); 
1385     //file << "}//stack is "<<action_stack.

size()<<"\n if(";
1386     file << "}\n if(";
1387    }
1388   }
1389   else if((make_end_end_if[0]<=

if_struct_nucleotide)&&(make_end_end_if[1]>=
if_struct_nucleotide)){

1390    action_commented = false;
1391    if(openifs == 0){
1392     file <<" if(";
1393     openifs++;    
1394    }
1395    else if(openifs == 1){
1396     file << action_stack.back();
1397     file << "if(turn_over){\n";
1398     file << "rules = rules + \"";
1399     for (int j=0;j<rule_stack.size();j++){
1400      file << int2string(rule_stack[j]) + "

 ";
1401     }
1402     file << "-1 \\n\";\n";
1403     file << "break;\n}\n"; 
1404     action_stack.pop_back();
1405     file<<"/*";
1406     for(int j=0;j<rule_stack.size();j++)
1407      file << rule_stack[j]<<" ";
1408     file<<"*/";
1409     rule_stack.pop_back();
1410     //file << "}//stack is "<<action_stack.

size()<<"\n if(";
1411     file << "}\n if(";
1412    }
1413    else{
1414     file << action_stack.back();
1415     file << "if(turn_over){\n";
1416     file << "rules = rules + \"";
1417     for (int j=0;j<rule_stack.size();j++){
1418      file << int2string(rule_stack[j]) + "

 ";
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1419     }
1420     file << "-1 \\n\";\n";
1421     file << "break;\n}\n"; 
1422     action_stack.pop_back();
1423     file<<"/*";
1424     for(int j=0;j<rule_stack.size();j++)
1425      file << rule_stack[j]<<" ";
1426     file<<"*/";
1427     rule_stack.pop_back();
1428     //file << "}//stack is "<<action_stack.

size()<<"\n";
1429     file << "}\n";
1430     file << action_stack.back();
1431     file << "if(turn_over){\n";
1432     file << "rules = rules + \"";
1433     for (int j=0;j<rule_stack.size();j++){
1434      file << int2string(rule_stack[j]) + "

 ";
1435     }
1436     file << "-1 \\n\";\n";
1437     file << "break;\n}\n"; 
1438     action_stack.pop_back();
1439     file<<"/*";
1440     for(int j=0;j<rule_stack.size();j++)
1441      file << rule_stack[j]<<" ";
1442     file<<"*/";
1443     rule_stack.pop_back();
1444     //file << "}//stack is "<<action_stack.

size()<<"\n if(";
1445     file << "}\n if(";
1446     openifs--; 
1447    }
1448   }  
1449   else if((make_end_all[0]<=if_struct_nucleotide)&&

(make_end_all[1]>=if_struct_nucleotide)){
1450    action_commented = true;
1451    if(openifs == 0)
1452     file <<"//";        
1453    else{
1454     for(int j=0;j<openifs;j++){
1455      file << action_stack.back();
1456      file << "if(turn_over){\n";
1457      file << "rules = rules + \"";
1458      for (int k=0;k<rule_stack.size();k++)

{
1459       file << int2string(rule_stack[k])

 + " ";
1460      }
1461      file << "-1 \\n\";\n";
1462      file << "break;\n}\n";
1463      action_stack.pop_back();
1464      file<<"/*";
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1465      for(int k=0;k<rule_stack.size();k++)
1466       file << rule_stack[k]<<" ";
1467      file<<"*/";
1468      rule_stack.pop_back();
1469      //file << "}//stack is "<

<action_stack.size()<<"\n";
1470      file << "}\n";
1471     }
1472     file << "// FORCED END OF GENE stack size

 is "<<action_stack.size()<<"."; 
1473     openifs = 0;
1474    }
1475   }
1476
1477   else if((make_end[0]<=if_struct_nucleotide)&&

(make_end[1]>=if_struct_nucleotide)){            
1478    action_commented = true;
1479    if(openifs == 0)
1480     file <<"//";
1481    else {
1482     file << action_stack.back();
1483     file << "if(turn_over){\n";
1484     file << "rules = rules + \"";
1485     for (int j=0;j<rule_stack.size();j++){
1486      file << int2string(rule_stack[j]) + "

 ";
1487     }
1488     file << "-1 \\n\";\n";
1489     file << "break;\n}\n";  
1490     action_stack.pop_back();
1491     file<<"/*";
1492     for(int j=0;j<rule_stack.size();j++)
1493      file << rule_stack[j]<<" ";
1494     file<<"*/";
1495     rule_stack.pop_back();
1496     //file << "}//stack is "<<action_stack.

size()<<"\n //";
1497     file << "}\n //";
1498     openifs = openifs - 1;
1499    }
1500   }
1501   else if((make_end_end[0]<=if_struct_nucleotide)&&

(make_end_end[1]>=if_struct_nucleotide)){       
1502    action_commented = true;
1503    if(openifs == 0)
1504     file <<"//";
1505    else if(openifs == 1){
1506     file << action_stack.back();
1507     file << "if(turn_over){\n";
1508     file << "rules = rules + \"";
1509     for (int j=0;j<rule_stack.size();j++){
1510      file << int2string(rule_stack[j]) + "
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 ";
1511     }
1512     file << "-1 \\n\";\n";
1513     file << "break;\n}\n"; 
1514     action_stack.pop_back();
1515     file<<"/*";
1516     for(int j=0;j<rule_stack.size();j++)
1517      file << rule_stack[j]<<" ";
1518     file<<"*/";
1519     rule_stack.pop_back();
1520     //file << "}//stack is "<<action_stack.

size()<<"\n //";
1521     file << "}\n //";
1522     openifs = 0;
1523    }
1524    else{
1525     action_commented = true;
1526     file << action_stack.back();
1527     file << "if(turn_over){\n";
1528     file << "rules = rules + \"";
1529     for (int j=0;j<rule_stack.size();j++){
1530      file << int2string(rule_stack[j]) + "

 ";
1531     }
1532     file << "-1 \\n\";\n";
1533     file << "break;\n}\n"; 
1534     action_stack.pop_back();
1535     file<<"/*";
1536     for(int j=0;j<rule_stack.size();j++)
1537      file << rule_stack[j]<<" ";
1538     file<<"*/";
1539     rule_stack.pop_back();
1540     //file << "}//stack is "<<action_stack.

size()<<"\n";
1541     file << "}\n";
1542     file << action_stack.back();
1543     file << "if(turn_over){\n";
1544     file << "rules = rules + \"";
1545     for (int j=0;j<rule_stack.size();j++){
1546      file << int2string(rule_stack[j]) + "

 ";
1547     }
1548     file << "-1 \\n\";\n";
1549     file << "break;\n}\n"; 
1550     action_stack.pop_back();
1551     file<<"/*";
1552     for(int j=0;j<rule_stack.size();j++)
1553      file << rule_stack[j]<<" ";
1554     file<<"*/";
1555     rule_stack.pop_back(); 
1556     //file << "//stack is "<<action_stack.

size()<<"\n //"; 
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1557     file << "}\n //";
1558     openifs = openifs - 2; 
1559    }
1560   }
1561   else {
1562    cout<<indy.get_fcall()<<" ";
1563    cout<<"If structure did not use the following

 nucleotide: "<<if_struct_nucleotide<<endl;
1564   }
1565
1566   //cout<<if_struct_nucleotide<<"\t";
1567   //----------------------- TEST PRIMER -----------

-----------------
1568   file << "abs(";
1569
1570   //---------CRITERION AND VALUE SET UP ALGORITHM--

------------------
1571
1572   int NodeA_Type1[] = {1,5};
1573   int NodeA_Type2[] = {6,10};
1574   int NodeA_Type3[] = {11,14};
1575   int NodeA_Bias[] = {15,17};
1576   int NodeA_nodes_made[] = {18,20};
1577   int NodeA_inputs[] = {21,23};
1578   int NodeA_outputs[] = {24,26};
1579
1580
1581   int NodeB_Type1[] = {27,31};
1582   int NodeB_Type2[] = {32,36};
1583   int NodeB_Type3[] = {37,40};
1584   int NodeB_Bias[] = {41,43};
1585   int NodeB_nodes_made[] = {44,46};
1586   int NodeB_inputs[] = {47,49};
1587   int NodeB_outputs[] = {50,52};
1588
1589   int RelAB_Type1[] = {53,55};
1590   int RelAB_Type2[] = {56,58};
1591   int RelAB_Type3[] = {59,61};
1592   int RelAB_Bias[] = {62,64};
1593   int RelAB_nodes_made[] = {65,67};
1594   int RelAB_inputs[] = {68,70};
1595   int RelAB_outputs[] = {71,73};
1596   int RelAB_connection[] = {74,76};
1597
1598
1599   int RelBA_Type1[] = {77,79};
1600   int RelBA_Type2[] = {80,82};
1601   int RelBA_Type3[] = {83,85};
1602   int RelBA_Bias[] = {86,88};
1603   int RelBA_nodes_made[] = {89,91};
1604   int RelBA_inputs[] = {92,94};
1605   int RelBA_outputs[] = {95,97};
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1606   int RelBA_connection[] = {98,100};
1607
1608   string value_type;
1609   if((NodeA_Type1[0]<=criterion_nucleotide)&&

(NodeA_Type1[1]>=criterion_nucleotide)){     
1610    file<<"NodeA_type1 ";
1611    value_type = "Type1";
1612   }
1613   else if((NodeA_Type2[0]<=criterion_nucleotide)&&

(NodeA_Type2[1]>=criterion_nucleotide)){     
1614    file<<"NodeA_type2 ";
1615    value_type = "Type2";
1616   }
1617   else if((NodeA_Type3[0]<=criterion_nucleotide)&&

(NodeA_Type3[1]>=criterion_nucleotide)){     
1618    file<<"NodeA_type3 ";
1619    value_type = "Type3";
1620   }
1621   else if((NodeA_Bias[0]<=criterion_nucleotide)&&

(NodeA_Bias[1]>=criterion_nucleotide)){      
1622    file<<"NodeA_bias ";
1623    value_type = "Bias";
1624   }
1625   else if((NodeA_nodes_made[0]<=

criterion_nucleotide)&&(NodeA_nodes_made[1]>=
criterion_nucleotide)){      

1626    file<<"NodeA_nodes_made ";
1627    value_type = "nodes_made";
1628   }  
1629   else if((NodeA_inputs[0]<=criterion_nucleotide)&&

(NodeA_inputs[1]>=criterion_nucleotide)){      
1630    file<<"NodeA_inputs ";
1631    value_type = "connections";
1632   }
1633   else if((NodeA_outputs[0]<=criterion_nucleotide)&

&(NodeA_outputs[1]>=criterion_nucleotide)){      
1634    file<<"NodeA_outputs ";
1635    value_type = "connections";
1636   }
1637   else if((NodeB_Type1[0]<=criterion_nucleotide)&&

(NodeB_Type1[1]>=criterion_nucleotide)){  
1638    file<<"NodeB_type1 ";
1639    value_type = "Type1";
1640   }
1641   else if((NodeB_Type2[0]<=criterion_nucleotide)&&

(NodeB_Type2[1]>=criterion_nucleotide)){    
1642    file<<"NodeB_type2 ";
1643    value_type = "Type2";
1644   }
1645   else if((NodeB_Type3[0]<=criterion_nucleotide)&&

(NodeB_Type3[1]>=criterion_nucleotide)){    
1646    file<<"NodeB_type3 ";
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1647    value_type = "Type3";
1648   }
1649   else if((NodeB_Bias[0]<=criterion_nucleotide)&&

(NodeB_Bias[1]>=criterion_nucleotide)){
1650    file<<"NodeB_bias ";
1651    value_type = "Bias";
1652   }
1653   else if((NodeB_nodes_made[0]<=

criterion_nucleotide)&&(NodeB_nodes_made[1]>=
criterion_nucleotide)){

1654    file<<"NodeB_nodes_made ";
1655    value_type = "nodes_made";
1656   }
1657   else if((NodeB_inputs[0]<=criterion_nucleotide)&&

(NodeB_inputs[1]>=criterion_nucleotide)){      
1658    file<<"NodeB_inputs ";
1659    value_type = "connections";
1660   }
1661   else if((NodeB_outputs[0]<=criterion_nucleotide)&

&(NodeB_outputs[1]>=criterion_nucleotide)){      
1662    file<<"NodeB_outputs ";
1663    value_type = "connections";
1664   }
1665   else if((RelAB_Type1[0]<=criterion_nucleotide)&&

(RelAB_Type1[1]>=criterion_nucleotide)){
1666    file<<"relAB_type1 ";
1667    value_type = "Type1";
1668   }
1669   else if((RelAB_Type2[0]<=criterion_nucleotide)&&

(RelAB_Type2[1]>=criterion_nucleotide)){   
1670    file<<"relAB_type2 ";
1671    value_type = "Type2";
1672   }
1673   else if((RelAB_Type3[0]<=criterion_nucleotide)&&

(RelAB_Type3[1]>=criterion_nucleotide)){   
1674    file<<"relAB_type3 ";
1675    value_type = "Type3";
1676   }
1677   else if((RelAB_Bias[0]<=criterion_nucleotide)&&

(RelAB_Bias[1]>=criterion_nucleotide)){
1678    file<<"relAB_bias ";
1679    value_type = "Bias";
1680   }
1681   else if((RelAB_nodes_made[0]<=

criterion_nucleotide)&&(RelAB_nodes_made[1]>=
criterion_nucleotide)){

1682    file<<"relAB_nodes_made ";
1683    value_type = "nodes_made";
1684   }
1685   else if((RelAB_inputs[0]<=criterion_nucleotide)&&

(RelAB_inputs[1]>=criterion_nucleotide)){      
1686    file<<"relAB_inputs ";
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1687    value_type = "connections";
1688   }
1689   else if((RelAB_outputs[0]<=criterion_nucleotide)&

&(RelAB_outputs[1]>=criterion_nucleotide)){      
1690    file<<"relAB_outputs ";
1691    value_type = "connections";
1692   }
1693   else if((RelAB_connection[0]<=

criterion_nucleotide)&&(RelAB_connection[1]>=
criterion_nucleotide)){      

1694    file<<"relAB_connection ";
1695    value_type = "Bias";
1696   }
1697   else if((RelBA_Type1[0]<=criterion_nucleotide)&&

(RelBA_Type1[1]>=criterion_nucleotide)){    
1698    file<<"relBA_type1 ";
1699    value_type = "Type1";
1700   }
1701   else if((RelBA_Type2[0]<=criterion_nucleotide)&&

(RelBA_Type2[1]>=criterion_nucleotide)){  
1702    file<<"relBA_type2 ";
1703    value_type = "Type2";
1704   }
1705   else if((RelBA_Type3[0]<=criterion_nucleotide)&&

(RelBA_Type3[1]>=criterion_nucleotide)){  
1706    file<<"relBA_type3 ";
1707    value_type = "Type3";
1708   }
1709   else if((RelBA_Bias[0]<=criterion_nucleotide)&&

(RelBA_Bias[1]>=criterion_nucleotide)){  
1710    file<<"relBA_bias ";
1711    value_type = "Bias";
1712   }
1713   else if((RelBA_nodes_made[0]<=

criterion_nucleotide)&&(RelBA_nodes_made[1]>=
criterion_nucleotide)){  

1714    file<<"relBA_nodes_made ";
1715    value_type = "nodes_made";
1716   }
1717   else if((RelBA_inputs[0]<=criterion_nucleotide)&&

(RelBA_inputs[1]>=criterion_nucleotide)){      
1718    file<<"relBA_inputs ";
1719    value_type = "connections";
1720   }
1721   else if((RelBA_outputs[0]<=criterion_nucleotide)&

&(RelBA_outputs[1]>=criterion_nucleotide)){      
1722    file<<"relBA_outputs ";
1723    value_type = "connections";
1724   }
1725   else if((RelBA_connection[0]<=

criterion_nucleotide)&&(RelBA_connection[1]>=
criterion_nucleotide)){      
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1726    file<<"relBA_connection ";
1727    value_type = "Bias";
1728   }
1729   else {
1730    cout<<"Criterion did not use the following 

nucleotide: "<<criterion_nucleotide<<endl;
1731   }
1732   //cout<<criterion_nucleotide<<"\t";  
1733   //---------------------VALUE ALGORITHM-----------

---------------
1734   if((value_type == "Type1")||(value_type == 

"relType1")||(value_type == "Type2")||(value_type == 
"nodes_made")){

1735    int num;
1736    num = int((test_value_nucleotide-1)/12.5); 
1737    file<<"- "<<num<<")";
1738   }
1739   else if(value_type == "Bias"){
1740    int num;
1741    num = test_value_nucleotide; 
1742    file<<"- "<<num<<")";
1743   }
1744   else if((value_type == "Type3")||(value_type == 

"connections")){
1745    int num;
1746    num = test_value_nucleotide-1; 
1747    file<<"- "<<num<<")";
1748   }
1749   else{
1750    cout<<indy.get_fcall()<<" ";
1751    cout<<"Value type ("<<value_type<<") did not 

use the following nucleotide: "<
<test_value_nucleotide<<endl;   

1752   }
1753   //cout<<test_value_nucleotide<<"\t";
1754   //---------------------TEST RANGE ALGORITHM------

--------------------
1755   if((value_type == "Type1")||(value_type == 

"relType1")||(value_type == "Type2")||(value_type == 
"nodes_made")){

1756    int num;
1757    num = int((test_range_nucleotide-1)/12.5); 
1758    file<<" <= "<<num<<"){\n";
1759   }
1760   else if(value_type == "Bias"){
1761    int num;
1762    num = test_range_nucleotide; 
1763    file<<" <= "<<num<<"){\n";
1764   }
1765   else if((value_type == "Type3")||(value_type == 

"connections")){
1766    int num;
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1767    num = test_range_nucleotide-1; 
1768    file<<" <= "<<num<<"){\n";
1769   }
1770   else{
1771    cout<<indy.get_fcall()<<" ";
1772    cout<<"Value type ("<<value_type<<") did not 

use the following nucleotide: "<
<test_range_nucleotide<<endl;   

1773   }
1774   //cout<<test_nucleotide<<"\t"; 
1775   
1776   //----------------------ACTION ALGORITHM---------

-------------
1777   int make_connection[] = {1,20};
1778   int do_nothing[] = {21,35};
1779   int end_turn[] = {36,50};
1780   int make_node[] = {51,100};
1781   int make_nodeB[] = {51,55};
1782   int make_nodeC[] = {56,61};
1783   int make_nodeD[] = {62,67};
1784   int make_nodeE[] = {68,73};
1785   int make_nodeF[] = {74,79};
1786   int make_nodeG[] = {80,85};
1787   int make_nodeH[] = {86,100};
1788   if(!action_commented){ //Determined by 

if_structure codon to comment out rule   
1789    rule_stack.push_back(i);
1790   }
1791   string temp_stack = " ";    
1792   if ((make_connection[0]<=action_nucleotide)&&

(make_connection[1]>=action_nucleotide)){
1793    temp_stack += "if(make_connection_check(ANN,i

,j,Max_Connections)){\n";
1794    temp_stack += "ANN.make_connection(i,j,";
1795    float x,w,h;
1796    if(action_value_nucleotide >= 51){
1797     w = float(action_value_nucleotide-50.0)/

50.0;
1798    }
1799    else{
1800     w = float(action_value_nucleotide-51.0)/

50.0;
1801    }
1802    //w = fabs(w); //Makes evolution of XOR gate 

impossible
1803    x = float(action_nucleotide);
1804    h = x*0.1/64;
1805    temp_stack += float2string(w); //Base weight
1806    temp_stack += ",";
1807    temp_stack += float2string(h); //Hebbian rate
1808    temp_stack += ",";
1809    temp_stack += float2string(0.0); //Random 
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rate
1810    temp_stack += ");\nkeep_going = true;\

nturn_over = true;\nenergy_units--;\n}\n";
1811   }
1812   else if ((end_turn[0]<=action_nucleotide)&&

(end_turn[1]>=action_nucleotide)){
1813    temp_stack += "turn_over = true;\n";
1814   }
1815   else if ((make_node[0]<=action_nucleotide)&&

(make_node[1]>=action_nucleotide)){
1816    if ((make_nodeB[0]<=action_nucleotide)&&

(make_nodeB[1]>=action_nucleotide)){
1817     temp_stack += "if(make_node_check(ANN,i,

Max_Outputs)){\n";
1818     temp_stack += "ANN.make_node(i,'H',1,";
1819    }
1820    else if ((make_nodeC[0]<=action_nucleotide)&&

(make_nodeC[1]>=action_nucleotide)){ 
1821     temp_stack += "if(make_node_check(ANN,i,

Max_Outputs)){\n";
1822     temp_stack += "ANN.make_node(i,'H',2,";
1823    }
1824    else if ((make_nodeD[0]<=action_nucleotide)&&

(make_nodeD[1]>=action_nucleotide)){
1825     temp_stack += "if(make_node_check(ANN,i,

Max_Outputs)){\n";
1826     temp_stack += "ANN.make_node(i,'H',3,";
1827    }
1828    else if ((make_nodeE[0]<=action_nucleotide)&&

(make_nodeE[1]>=action_nucleotide)){
1829     temp_stack += "if(make_node_check(ANN,i,

Max_Outputs)){\n";
1830     temp_stack += "ANN.make_node(i,'H',4,";
1831    }
1832    else if ((make_nodeF[0]<=action_nucleotide)&&

(make_nodeF[1]>=action_nucleotide)){
1833     temp_stack += "if(make_node_check(ANN,i,

Max_Outputs)){\n";
1834     temp_stack += "ANN.make_node(i,'H',5,";
1835    }
1836    else if ((make_nodeG[0]<=action_nucleotide)&&

(make_nodeG[1]>=action_nucleotide)){
1837     temp_stack += "if(make_node_check(ANN,i,

Max_Outputs)){\n";
1838     temp_stack += "ANN.make_node(i,'H',6,";
1839    }
1840    else if ((make_nodeH[0]<=action_nucleotide)&&

(make_nodeH[1]>=action_nucleotide)){
1841     temp_stack += "if(make_node_check(ANN,i,

Max_Outputs)){\n";
1842     temp_stack += "ANN.make_output(i,7,";
1843    }
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1844    float s;
1845    s = pow(10.0,0.0);
1846    temp_stack += float2string(s);
1847    /*
1848    if(action_codon1[2] == 1){
1849    float s;
1850    s = pow(10.0,-2.0);
1851    temp_stack += float2string(s);
1852    }
1853    else if(action_codon1[2] == 2){
1854    float s;
1855    s = pow(10.0,-0.5);
1856    temp_stack += float2string(s);
1857    }
1858    else if(action_codon1[2] == 3){
1859    float s;
1860    s = pow(10.0,0.0);
1861    temp_stack += float2string(s);
1862    }
1863    else if(action_codon1[2] == 4){
1864    float s;
1865    s = pow(10.0,0.5);
1866    temp_stack += float2string(s);
1867    }
1868    else{
1869    cout<<indy.get_fcall()<<" ";
1870    cout<<"did not use the following slope 

nucleotide:"<<action_codon1[2]<<endl;
1871    }
1872    */
1873    temp_stack += ",";
1874    float b;
1875    if(action_value_nucleotide >= 51){
1876     b = float(action_value_nucleotide-50.0)/

50.0;
1877    }
1878    else{
1879     b = float(action_value_nucleotide-51.0)/

50.0;
1880    }
1881    temp_stack += float2string(b);  
1882    temp_stack += ");\nkeep_going = true;\

nturn_over = true;\nenergy_units--;\n}\n";   
1883   }
1884   else{// A 'Do nothing' is added to the stack. It 

does nothing      
1885    temp_stack += "//Do nothing \n";      
1886   }
1887   if(!action_commented){ //Determined by 

if_structure codon to comment out action
1888    action_stack.push_back(temp_stack);
1889   }
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1890   //cout<<action_nucleotide<<"\t" ;
1891   //cout<<action_value_nucleotide<<"\n" ;
1892  } 
1893
1894  //----------------------CLOSER-----------------------

------------
1895
1896  if(openifs != 0){
1897   for(int j=0;j<openifs;j++){
1898    for(int k=(action_stack.size()-1);k>=0;k--){
1899     file << action_stack[k];
1900     file << "if(turn_over){\n";
1901     file << "rules = rules + \"";
1902     for (int I=0;I<rule_stack.size();I++){
1903      file << int2string(rule_stack[I]) + "

 ";
1904     }
1905     file << "-1 \\n\";\n";
1906     file << "break;\n}\n";
1907    }
1908    action_stack.pop_back();
1909    file<<"/*";
1910    for(int j=0;j<rule_stack.size();j++)
1911     file << rule_stack[j]<<" ";
1912    file<<"*/";
1913    rule_stack.pop_back();
1914    file << "}\n";
1915   }
1916  }   
1917  file<<"}\n}\n}\n";
1918
1919  file<<"string ANNfilename = \"/scratch/ANN"+

int2string(rank_no)+".dat\";\n";
1920  file<<"ANN.write_net(ANNfilename);\n";
1921  string rulesfilename = "/scratch/Rules"+int2string

(rank_no)+".dat";
1922  file<<"ofstream outfile2(\""<<rulesfilename<<"\");\n"

;
1923  file<<"outfile2<<rules;\n";
1924  //file<<"ANN.print_net();\n"; \\Prints ANN to screen
1925  //file<<rules;\n"; \\Prints rules to screen
1926  file<<"return 0;\n}\n";
1927 }
1928 //-------------------------------------------------------

-------------------
1929 //----------------------END OF MAKE_PROTIEN--------------

-------------------
1930 //-------------------------------------------------------

-------------------
1931
1932 //-------------------------------------------------------

----------------------
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1933 //-----------------------DATA RECORDING FUNCTIONS--------
----------------------

1934 //-------------------------------------------------------
----------------------

1935
1936 //-------------------------RECORD_GEN--------------------

------------
1937 //This function will record the Ark_no and fitness of the

 population at each generation
1938
1939 void Record_Gen(vector<individual> Ark,vector<int> old,

vector<int> young, int gen){
1940  ofstream datafile;
1941  datafile.open("Chronograph.txt",ios_base::app);
1942  datafile<<gen<<endl;
1943  for(int i=0;i<old.size();i++){      
1944   datafile<<old[i]<<' ';      
1945   datafile<<Ark[old[i]].get_fitness()<<' ';      
1946   datafile<<endl;
1947  }
1948  for(int i=0;i<young.size();i++){      
1949   datafile<<young[i]<<' ';      
1950   datafile<<Ark[young[i]].get_fitness()<<' ';      
1951   datafile<<endl;
1952  }
1953  datafile.close();
1954 }
1955
1956 //-------------------------READ_LAST_GEN-----------------

---------------
1957 //This function will get the state of the last generation

 in Chronograph.txt
1958
1959 void Read_Last_Gen(int N,vector<int>& unmade, vector<int>

& alive,vector<int>& still_alive, int gen){
1960  ifstream datafile;
1961  int temp_gen,temp_sub;
1962  float temp_fit;
1963  datafile.open("Chronograph.txt");
1964  datafile>>temp_gen;
1965  while((temp_gen <= gen)&&(!datafile.eof())){
1966   if(temp_gen < gen){  //Don't save results
1967    for(int i=0;i<N;i++){      
1968     datafile>>temp_sub;      
1969     datafile>>temp_fit;      
1970    }
1971    datafile>>temp_gen;
1972   }
1973   else{  //Save results   
1974    for(int i=0;i<N;i++){      
1975     datafile>>temp_sub;        
1976     alive.push_back(temp_sub);
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1977     datafile>>temp_fit;
1978     if(temp_fit == -1)
1979      unmade.push_back(temp_sub);
1980     else
1981      still_alive.push_back(temp_sub);
1982    }
1983    temp_gen = gen+1; //This breaks the cycle    

       
1984   }
1985  }
1986  datafile.close();
1987 }
1988
1989 //------------------------ARK_LOAD-----------------------

----------------
1990 //This function will place new individuals into Ark.txt
1991
1992 void Ark_Load(individual indy){
1993  ofstream datafile;
1994  datafile.open("Ark.txt",ios_base::app);
1995  datafile<<indy.get_genesis(0)<<' ';
1996  datafile<<indy.get_genesis(1)<<' ';
1997  datafile<<indy.get_genesis(2)<<' ';
1998  datafile<<indy.get_method()<<' ';
1999  datafile<<indy.get_genome_length()<<' ';
2000  for(int j=0;j<indy.get_genome_length();j++)
2001   datafile<<indy.get_genome(j)<<' ';
2002  //datafile<<indy.get_rules_length()<<' ';
2003  //for(int j=0;j<indy.get_rules_length();j++)
2004  //datafile<<indy.get_rule(j)<<' ';
2005  datafile<<endl;
2006  datafile.close();
2007 }
2008
2009 //------------------------DOCK_LOAD----------------------

-----------------
2010 //This function will place a genome into Dock.txt, which 

will be read for continued evolution
2011 void Dock_Load(individual indy){
2012  ofstream datafile;
2013  datafile.open("Dock.txt",ios_base::app);
2014  datafile<<indy.get_genesis(0)<<' ';
2015  datafile<<indy.get_genesis(1)<<' ';
2016  datafile<<indy.get_genesis(2)<<' ';
2017  datafile<<indy.get_method()<<' ';
2018  datafile<<indy.get_genome_length()<<' ';
2019  for(int j=0;j<indy.get_genome_length();j++)
2020   datafile<<indy.get_genome(j)<<' ';
2021  //datafile<<indy.get_rules_length()<<' ';
2022  //for(int j=0;j<indy.get_rules_length();j++)
2023  //datafile<<indy.get_rule(j)<<' ';
2024  datafile<<endl;
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2025  datafile.close();
2026 }
2027
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1 using namespace std;
2
3 //------------------ Robot Classes -----------------------

---------
4 class signal_robot //A bot of 0 size that sends out a 

signal
5 {private:
6 float position[2];  //The [0] and [1] are x-y location.
7 public:
8  signal_robot(){ //Default Constructor
9   position[0] = 0;

10   position[1] = 0;
11  }
12  
13  signal_robot(float x,float y){ //Constructor - given 

starting position and error
14   position[0] = x;
15   position[1] = y;
16  }
17  float get_x(){
18   return(position[0]);
19  }
20  float get_y(){
21   return(position[1]);
22  }
23  void set_position(float x, float y){
24   position[0] = x;
25   position[1] = y;
26  } 
27 };
28
29 class laser_robot
30 {private:  
31 float dia; //The diameter of the robot in meters (m)
32 float max_vel; //Maximum magnitude of output velocity (m/

s)
33 float position[3]; //The [0] and [1] are x-y location. [2]

 is heading in degrees. 0 is right/east/x-positive
34 float left_wheel; //The output speed of left wheel
35 float right_wheel; //The output speed of right wheel
36 vector <float> goal_sensors; //Activation of goal input 

nodes
37 vector <float> lasers; //Activation of obstacle input 

nodes
38 bool goal_line_of_sight;
39 public:
40  laser_robot(){ //Default constructor
41   dia = 1;
42   max_vel = .5;
43   position[0] = 0;
44   position[1] = 0;
45   position[2] = 0;
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46   left_wheel = 0;
47   right_wheel = 0;
48   vector<float> default_lasers(8,0.0);  
49   lasers = default_lasers;
50   vector<float> default_goal_sensors(3,0.0);
51   goal_sensors = default_goal_sensors;
52   goal_line_of_sight = false;
53  } 
54  laser_robot(float start_x,float start_y,float 

start_ang){ //Constructor - given starting position
55   dia = 1;
56   max_vel = .5;
57   position[0] = start_x;
58   position[1] = start_y;
59   position[2] = start_ang;
60   left_wheel = 0;
61   right_wheel = 0;
62   vector<float> default_lasers(8,0.0);  
63   lasers = default_lasers;
64   vector<float> default_goal_sensors(3,0.0);
65   goal_sensors = default_goal_sensors;
66   goal_line_of_sight = false;
67  }
68  laser_robot(int l_s,float start_x,float start_y,float 

start_ang){ //Constructor - laser size given starting 
position

69   dia = 1;
70   max_vel = .5;
71   position[0] = start_x;
72   position[1] = start_y;
73   position[2] = start_ang;
74   left_wheel = 0;
75   right_wheel = 0;
76   vector<float> default_lasers(l_s,0.0);  
77   lasers = default_lasers;
78   vector<float> default_goal_sensors(3,0.0);
79   goal_sensors = default_goal_sensors;
80   goal_line_of_sight = false;
81  }
82  laser_robot(float d,float v,int l_s){ //Constructor - 

given diameter, max velocity and laser size
83   dia = d;
84   max_vel = v;
85   position[0] = 0;
86   position[1] = 0;
87   position[2] = 0;
88   left_wheel = 0;
89   right_wheel = 0;
90   vector<float> default_lasers(l_s,0.0);
91   lasers = default_lasers;
92   vector<float> default_goal_sensors(3,0.0);
93   goal_sensors = default_goal_sensors; 
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94   goal_line_of_sight = false;
95  }
96  laser_robot(float d,float v,int l_s,float start_x,

float start_y,float start_ang){ //Constructor - given 
diameter, max velocity, sensor info, and starting 
position

97   dia = d;
98   max_vel = v;
99   position[0] = start_x;

100   position[1] = start_y;
101   position[2] = start_ang;
102   left_wheel = 0;
103   right_wheel = 0;
104   vector<float> default_lasers(l_s,0.0);
105   lasers = default_lasers;
106   vector<float> default_goal_sensors(3,0.0);
107   goal_sensors = default_goal_sensors;
108   goal_line_of_sight = false;
109  }
110  laser_robot(float d,float v,int l_s,float start_x,

float start_y,float start_ang,float left_vel,float 
right_vel){ //Constructor - given diameter, max 
velocity, sensor info, starting position and velocity

111   dia = d;
112   max_vel = v;
113   position[0] = start_x;
114   position[1] = start_y;
115   position[2] = start_ang;
116   left_wheel = left_vel;
117   right_wheel = right_vel;
118   vector<float> default_lasers(l_s,0.0);
119   lasers = default_lasers;
120   vector<float> default_goal_sensors(3,0.0);
121   goal_sensors = default_goal_sensors;
122   goal_line_of_sight = false;
123  }
124  void operator= (const laser_robot& right){
125   if (this != &right){
126    dia = right.dia;
127    max_vel = right.max_vel;
128    position[0] = right.position[0];
129    position[1] = right.position[1];  
130    position[2] = right.position[2];    
131    left_wheel = right.left_wheel;
132    right_wheel = right.right_wheel;
133    lasers = right.lasers;
134    goal_sensors = right.goal_sensors;
135    goal_line_of_sight = right.goal_line_of_sight;
136   }
137  }
138
139  float get_diameter(){
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140   return(dia);
141  }
142  float get_max_velocity(){
143   return(max_vel);
144  }
145  float get_x(){
146   return(position[0]);
147  }
148  float get_y(){
149   return(position[1]);
150  } 
151  float get_heading(){
152   return(position[2]);
153  }
154  void set_position(float x, float y,float ang){
155   position[0] = x;
156   position[1] = y;
157   position[2] = ang;
158  } 
159  float get_left_wheel(){
160   return(left_wheel);
161  }    
162  void set_left_wheel(float x){
163   left_wheel = x;
164  }
165  float get_right_wheel(){
166   return(right_wheel);
167  }    
168  void set_right_wheel(float x){
169   right_wheel = x;
170  }
171  void get_goal_sensors(vector<float>& s){
172   s = goal_sensors;
173  }
174  void set_goal_sensors(vector<float> s){
175   goal_sensors = s;
176  }
177  int get_number_of_goal_sensors(){
178   int temp_int = goal_sensors.size();
179   return(temp_int);
180  }
181  void get_lasers(vector<float>& l){
182   l = lasers;
183  }
184  void set_lasers(vector<float> l){
185   lasers = l;
186  }
187  int get_number_of_lasers(){
188   int temp_int = lasers.size();
189   return(temp_int);
190  }
191  void set_goal_visible_on(){
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192   goal_line_of_sight = true;
193  }
194  void set_goal_visible_off(){
195   goal_line_of_sight = false;
196  }
197  bool get_goal_visible(){
198   return(goal_line_of_sight);
199  } 
200 };
201
202 //------------------ End of Robot Class ------------------

-----
203
204 //-------------------------------World Class--------------

--------------------
205 class simulation_world
206 {private: 
207 vector<vector<float> > obstacles;
208 vector<laser_robot> laserbots;
209 vector<signal_robot> sigbots;
210 public:
211  simulation_world(){  
212  }
213  simulation_world(vector<vector<float> > obs){ //

Constructor - given the obstacles
214   for(int i=0;i<obs.size();i++){
215    //Makes sure obstacles have an even number of 

coordinates and there are at least 3 of them
216    assert((obs[i].size()%2)==0);
217    assert(obs[i].size() >= 6);
218   }
219   obstacles = obs;
220   laserbots.clear();
221   sigbots.clear();
222  }
223  simulation_world(vector<float> obs){ //Constructor - 

given one obstacle
224   //Makes sure obstacle has an even number of 

coordinates and there are at least 3 of them
225   assert((obs.size()%2)==0);
226   assert(obs.size() >= 6);
227   obstacles.clear();
228   obstacles.push_back(obs);
229   laserbots.clear();
230   sigbots.clear();
231  }
232  simulation_world(vector<laser_robot> bots){ //

Constructor - given the laser robots
233   obstacles.clear();
234   laserbots = bots;
235   sigbots.clear();
236  }
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237  simulation_world(vector<signal_robot> bots){ //
Constructor - given the signal robots

238   obstacles.clear();
239   laserbots.clear();
240   sigbots = bots;
241  }
242  simulation_world(vector<laser_robot> lbots, vector

<signal_robot> sbots){ //Constructor - given the laser
 and signal robots

243   obstacles.clear();
244   laserbots = lbots;
245   sigbots = sbots;
246  }
247  simulation_world(vector<vector<float> > obs, vector

<laser_robot> lbots, vector<signal_robot> sbots){ //
Constructor - given the obstacles and robots

248   for(int i=0;i<obs.size();i++){
249    //Makes sure obstacles have an even number of 

coordinates and there are at least 3 of them
250    assert((obs[i].size()%2)==0);
251    assert(obs[i].size() >= 6);
252   }
253   obstacles = obs;
254   laserbots = lbots;
255   sigbots = sbots;
256  }
257  void operator= (const simulation_world& right){
258   if (this != &right){
259    obstacles = right.obstacles;
260    laserbots = right.laserbots;
261    sigbots = right.sigbots;
262   }
263  }
264  void build_obstacle(vector<float> obs){
265   //Makes sure obstacle has an even number of 

coordinates and there are at least 3 of them
266   assert((obs.size()%2)==0);
267   assert(obs.size() >= 6);  
268   obstacles.push_back(obs);
269  }
270  void build_obstacle(float obs[],int obs_size){
271   //Makes sure obstacle has an even number of 

coordinates and there are at least 3 of them
272   assert((obs_size%2)==0);
273   assert(obs_size >= 6);
274   vector<float> new_obstacle;
275   for(int i=0;i<obs_size;i++){
276    new_obstacle.push_back(obs[i]);
277   }
278   obstacles.push_back(new_obstacle);
279  }
280  void build_obstacle(const float obs[],int obs_size){
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281   //Makes sure obstacle has an even number of 
coordinates and there are at least 3 of them

282   assert((obs_size%2)==0);
283   assert(obs_size >= 6);
284   vector<float> new_obstacle;
285   for(int i=0;i<obs_size;i++){
286    new_obstacle.push_back(obs[i]);
287   }
288   obstacles.push_back(new_obstacle);
289  }
290  int no_of_obstacles(){
291   return(obstacles.size());
292  } 
293  void get_obstacle(int n,vector<float>& obs){
294   assert(n<obstacles.size());
295   obs.clear();
296   obs = obstacles[n];
297  }
298  void get_all_obstacles(vector< vector<float> >& obs){
299   obs = obstacles;
300  }
301  void clear_all_obstacles(){
302   obstacles.clear();
303  }
304  void clear_internal_obstacles(){
305   vector<float> border = obstacles[0];
306   obstacles.clear();
307   obstacles.push_back(border);
308  }
309  int get_no_of_laser_robots(){
310   return(laserbots.size());
311  }
312  void add_laser_robot(laser_robot new_bot){
313   laserbots.push_back(new_bot);
314  }
315  void add_signal_robot(signal_robot new_bot){
316   sigbots.push_back(new_bot);
317  }
318  void move_laser_robot(int n,float x,float y,float ang)

{
319   assert(n<laserbots.size());
320   laserbots[n].set_position(x,y,ang);
321  }
322  void update_laser_bot_actuators(int n,float x1,float 

x2){
323   assert(n<laserbots.size());
324   laserbots[n].set_left_wheel(x1);
325   laserbots[n].set_right_wheel(x2);
326  }
327  void move_signal_robot(int n,float x,float y){
328   assert(n<sigbots.size());
329   sigbots[n].set_position(x,y);
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330  }
331  laser_robot get_laser_robot(int n){
332   assert(n<laserbots.size());
333   return(laserbots[n]);
334  }
335  signal_robot get_signal_robot(int n){
336   assert(n<sigbots.size());
337   return(sigbots[n]);
338  }
339  void clear_all_laser_robots(){
340   laserbots.clear();
341  }
342  void clear_all_signal_robots(){
343   sigbots.clear();
344  }
345  void clear_all_robots(){
346   laserbots.clear();
347   sigbots.clear();
348  }
349  bool update_world(float dt){
350   //Gets actuator states and moves each bots, then 

updates sensor states for each bot.
351   laser_robot bot, bot_2;
352   vector<float> obs;
353   bool collision;
354   //The following vectors are labeled in Vol 4 pg 10

-13
355   float diameter,v1,v2,x,y,heading,r;  
356   float alpha,gamma,beta,theta; //Used for 

determining new states
357   float test_x,test_y,bot_2x,bot_2y;
358   //The following vectors are labeled in Vol 3 pg 98
359   float p0x,p0y,p1x,p1y,p2x,p2y,bx,by,ax,ay,A;
360   //The following vectors are labeled in Vol 3 pg 95

 & 100
361   float lx,ly,lpx,lpy,v1x,v1y,v2x,v2y,hx,hy,range,

test_range,phi;
362   //The following vectors are labeled in Vol 4 pg 

109
363   float nx,ny;
364   int ob_hit; //Used for debugging
365   int no_lasers;
366   vector<float> new_lasers;
367   int no_goal_sensors = bot.

get_number_of_goal_sensors();
368   assert(no_goal_sensors==3); //As of now, logic 

works ONLY if there are 3 sensors
369   vector<float> new_goal_sensors(no_goal_sensors,0.

0);
370   float sx,sy,sensor_angle,goal_dist,swarmx,swarmy;
371   bool swarm_sees_goal;
372   int no_of_swarm_sees_goal;
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373   for(int i=0;i<laserbots.size();i++){
374    collision = false;
375    //Getting actuator states
376    bot = laserbots[i];
377    diameter = bot.get_diameter();
378    r = diameter/2;
379    v1 = dt*bot.get_left_wheel();
380    v2 = dt*bot.get_right_wheel();
381    x = bot.get_x();y = bot.get_y();heading = bot.

get_heading();
382    //Finds new spot - logic on Vol 4 pg. 10 - 13
383    assert((1-((v1-v2)*(v1-v2))/(2*diameter))>=-1)

;
384    assert((1-((v1-v2)*(v1-v2))/(2*diameter))<=1);
385    alpha = acos(1-((v1-v2)*(v1-v2))/(2*diameter*

diameter));
386    //Accounts for CW or no rotations
387    if(v1==v2){
388     alpha = 0;
389    }else if(v1>v2){
390     alpha = -alpha;
391    }
392    gamma = atan2(-cos(heading),sin(heading));
393    beta = (pi()-fabs(alpha))/2;
394    if(v1 > v2){
395     theta = gamma + beta;
396    }
397    else{
398     theta = gamma + pi() - beta;
399    }
400    test_x = x + (v1*cos(theta) + v2*cos(theta))/2

; //New test position
401    test_y = y + (v1*sin(theta) + v2*sin(theta))/2

;
402    heading = heading + alpha; //New heading.  

Robot can always turn even if it hits an obstacle
403    //The follow ensure heading is within +/- pi
404    while(heading > pi()){
405     heading -=  2*pi();
406    }
407    while(heading <= -pi()){
408     heading +=  2*pi();
409    }
410    //Check to make sure new spot isn't within an 

obstacle
411    //Logic on Vol 3 pg 97-98   
412    p0x = test_x; p0y = test_y;
413    for(int j=0;j<obstacles.size();j++){
414     if(collision){
415      break;
416     }
417     obs = obstacles[j];
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418     for(int k=0;k<obs.size();k+=2){
419      if((k+3)<obs.size()){
420       p1x = obs[k];
421       p1y = obs[k+1];
422       p2x = obs[k+2];
423       p2y = obs[k+3];
424      }
425      else{
426       p1x = obs[k];
427       p1y = obs[k+1];
428       p2x = obs[0];
429       p2y = obs[1];
430      }
431      bx = p2x - p1x;
432      by = p2y - p1y;
433      gamma = ((bx*p0x+by*p0y)-(bx*p1x+by*

p1y))/(bx*bx+by*by);
434      if((0<gamma)&&(gamma<1)){
435       //Bot may hit the wall
436       ax = p1x + gamma*bx - p0x;
437       ay = p1y + gamma*by - p0y;
438       A = ax*ax + ay*ay;
439       if (A < (r*r)){
440        collision = true;
441        /*
442        cout<<"COLLISION!"<<endl;
443        cout<<"Robot "<<i<<" hit 

obstacle "<<j;
444        cout<<" wall with verticies 

defined at (";
445        cout<<p1x<<","<<p1y<<") and ("

<<p2x<<","<<p2y<<")"<<endl;
446        */
447       }
448      }
449      else{
450       //Bot may still hit a vertex
451       ax = p0x - p1x; ay = p0y - p1y;
452       A = ax*ax + ay*ay;
453       if (A < (r*r)){
454        collision = true;
455        /*
456        cout<<"COLLISION!"<<endl;
457        cout<<"Robot "<<i<<" hit 

obstacle "<<j;
458        cout<<" at vertex ("<<p1x<<","

<<p1y<<")"<<endl;
459        */
460       }      
461       ax = p0x - p2x; ay = p0y - p2y;
462       A = ax*ax + ay*ay;
463       if (A < (r*r)){
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464        collision = true;
465        /*
466        cout<<"COLLISION!"<<endl;
467        cout<<"Robot "<<i<<" hit 

obstacle "<<j;
468        cout<<" at vertex ("<<p2x<<","

<<p2y<<")"<<endl;
469        */
470       }
471      }    
472     }
473    }
474    //Checks to make sure it won't hit another 

robot
475    for(int j=0;j<laserbots.size();j++){
476     if(i!=j){
477      bot_2 = laserbots[j];
478      bot_2x = bot_2.get_x();bot_2y = bot_2.

get_y();
479      ax = test_x - bot_2x;
480      ay = test_y - bot_2y;
481      A = ax*ax + ay*ay;
482      if (A < (4*r*r)){
483       collision = true;
484       /*
485       cout<<"COLLISION!"<<endl;
486       cout<<"Robot "<<i<<" hit Robot "<

<j<<endl;
487       */
488      }
489     }
490    }
491    if(!collision){
492     x = test_x; y = test_y;
493    }
494    laserbots[i].set_position(x,y,heading);//

Updates the robot's position
495   }
496   //After each bot has moved, the sensors of each 

bot are updated 
497   for(int i=0;i<laserbots.size();i++){   

 
498    //Updates the robots lasers - Logic on Vol 3 

pg 95 & 100
499    //cout<<"Robot: "<<i<<endl;
500    bot = laserbots[i];
501    no_lasers = bot.get_number_of_lasers();
502    new_lasers.clear();
503    new_lasers.resize(no_lasers);
504    phi = pi()/(no_lasers+1);
505    p0x = bot.get_x(); p0y = bot.get_y();
506    heading = bot.get_heading();
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507    for(int j=0;j<no_lasers;j++){
508     theta = heading + pi()/2 - (j+1)*phi; 

   
509     lx = cos(theta); ly = sin(theta);
510     lpx = -sin(theta); lpy = cos(theta); 

   
511     range = RAND_MAX;
512     ob_hit = -1;
513     //Checks obstacles
514     for(int k=0;k<obstacles.size();k++){
515      obs = obstacles[k];     
516      for(int m=0;m<obs.size();m+=2){
517       if((m+3)<obs.size()){
518        p1x = obs[m];
519        p1y = obs[m+1];
520        p2x = obs[m+2];
521        p2y = obs[m+3];
522       }
523       else{
524        p1x = obs[m];
525        p1y = obs[m+1];
526        p2x = obs[0];
527        p2y = obs[1];
528       }     
529       v1x = p1x-p0x; v1y = p1y-p0y;
530       v2x = p2x-p0x; v2y = p2y-p0y; 

     
531       if(((lpx*v1x+lpy*v1y)*(lpx*v2x+lpy

*v2y))<=0){
532        if(((lpx*v1x+lpy*v1y)*(lpx*v2x

+lpy*v2y))==0){
533         if(((lpx*v1x+lpy*v1y)==0)&

&((lpx*v2x+lpy*v2y)==0)){
534          test_range = min((v1x*

v1x+v1y*v1y),(v2x*v2x+v2y*v2y));
535          if(range > pow

(test_range,0.5)){
536           range = pow

(test_range,0.5);
537           ob_hit = k;
538          }
539         }
540         else if ((lpx*v1x+lpy*v1y)

==0){
541          test_range = pow((v1x*

v1x+v1y*v1y),0.5);
542          if(range > test_range)

{
543           range = test_range

;
544           ob_hit = k;
545          }
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546         }
547         else if ((lpx*v2x+lpy*v2y)

==0){
548          test_range = pow((v2x*

v2x+v2y*v2y),0.5);
549          if(range > test_range)

{
550           range = test_range

;
551           ob_hit = k;
552          }
553         }
554        }
555        else{
556         hx = v2x-v1x; hy = v2y-v1y

;
557         test_range = (v1x*hy-v1y*

hx)/(lx*hy-ly*hx);       
558         if((range > test_range)&&

(test_range>0)){         
559          range = test_range;
560          ob_hit = k;
561         }
562        }
563       }
564      }
565     }
566     //Checks other robots
567     for(int k=0;k<laserbots.size();k++){
568      if(k!=i){
569       nx = laserbots[k].get_x();
570       ny = laserbots[k].get_y();
571       test_range = (lx*(nx-p0x)+ly*(ny-

p0y))/(lx*lx+ly+ly);
572       ax = nx - p0x - test_range*lx;
573       ay = ny - p0y - test_range*ly;
574       if(((ax*ax+ay*ay)<(r*r))&&(range>

test_range)&&(test_range>0)){
575        range = test_range;
576        ob_hit = k;
577       }
578      }
579     }
580
581     if (range == RAND_MAX){
582      cout<<"WARNING: Laser "<<j<<" did not 

detect any obstacles"<<endl;
583      new_lasers[j] = 0;
584     }
585     else{
586      new_lasers[j] = range;
587     }
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588     /*
589     cout<<"Laser "<<j<<": Range = "<<range<

<endl;
590     cout<<" obs = "<<ob_hit<<": l = ["<<range*

lx<<" "<<range*ly<<"]"<<endl;
591     */
592    }
593    laserbots[i].set_lasers(new_lasers);
594    //Goal sensors are updated
595    p1x = sigbots[0].get_x();
596    p1y = sigbots[0].get_y();
597    sx = p1x - p0x; sy = p1y - p0y;
598
599    goal_dist = pow((sx*sx+sy*sy),0.5);
600
601    //Finds if goal is within robot line of sight
602    theta = atan2(sy,sx);    
603    lx = cos(theta); ly = sin(theta);
604    lpx = -sin(theta); lpy = cos(theta);  

  
605    range = RAND_MAX;
606    ob_hit = -1;
607    for(int j=0;j<obstacles.size();j++){
608     obs = obstacles[j];     
609     for(int m=0;m<obs.size();m+=2){
610      if((m+3)<obs.size()){
611       p1x = obs[m];
612       p1y = obs[m+1];
613       p2x = obs[m+2];
614       p2y = obs[m+3];
615      }
616      else{
617       p1x = obs[m];
618       p1y = obs[m+1];
619       p2x = obs[0];
620       p2y = obs[1];
621      }     
622      v1x = p1x-p0x; v1y = p1y-p0y;
623      v2x = p2x-p0x; v2y = p2y-p0y;  

    
624      if(((lpx*v1x+lpy*v1y)*(lpx*v2x+lpy*

v2y))<=0){
625       if(((lpx*v1x+lpy*v1y)*(lpx*v2x+lpy

*v2y))==0){
626        if(((lpx*v1x+lpy*v1y)==0)&&(

(lpx*v2x+lpy*v2y)==0)){
627         test_range = min((v1x*v1x+

v1y*v1y),(v2x*v2x+v2y*v2y));
628         if(range > pow(test_range,

0.5)){
629          range = pow(test_range

,0.5);
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630          ob_hit = j;
631         }
632        }
633        else if ((lpx*v1x+lpy*v1y)==0)

{
634         test_range = pow((v1x*v1x+

v1y*v1y),0.5);
635         if(range > test_range){
636          range = test_range;
637          ob_hit = j;
638         }
639        }
640        else if ((lpx*v2x+lpy*v2y)==0)

{
641         test_range = pow((v2x*v2x+

v2y*v2y),0.5);
642         if(range > test_range){
643          range = test_range;
644          ob_hit = j;
645         }
646        }
647       }
648       else{
649        hx = v2x-v1x; hy = v2y-v1y;
650        test_range = (v1x*hy-v1y*hx)/

(lx*hy-ly*hx);       
651        if((range > test_range)&&

(test_range>0)){         
652         range = test_range;
653         ob_hit = j;
654        }
655       }
656      }
657     }
658    }
659    
660    if(range < goal_dist){
661     laserbots[i].set_goal_visible_off();
662    }
663    else{  
664     laserbots[i].set_goal_visible_on();
665    }
666   
667    if(laserbots[i].get_goal_visible()){//If it 

can see the goal, go to it  
668     sensor_angle = atan2(sy,sx) - heading;
669     //The follow ensure sensor_angle is within

 +/- pi
670     while(sensor_angle > pi()){
671      sensor_angle -=  2*pi();
672     }
673     while(sensor_angle <= -pi()){
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674      sensor_angle +=  2*pi();
675     }
676     //cout<<"sensor_angle = "<<(sensor_angle*

180/pi())<<endl;
677     if(fabs(sensor_angle)<=pi()/8){
678      new_goal_sensors[0] = 0;
679      new_goal_sensors[1] = 1;
680      new_goal_sensors[2] = 0;
681     }
682     else if(sensor_angle < 0){
683      assert(fabs(sensor_angle)>pi()/8);
684      new_goal_sensors[0] = 0;
685      new_goal_sensors[1] = 0;
686      new_goal_sensors[2] = 1;   

 
687     }
688     else if(sensor_angle > 0){
689      assert(fabs(sensor_angle)>pi()/8);
690      new_goal_sensors[0] = 1;
691      new_goal_sensors[1] = 0;
692      new_goal_sensors[2] = 0;
693     }
694    }
695    else{
696     swarm_sees_goal = false;
697     no_of_swarm_sees_goal = 0;
698     swarmx = 0;
699     swarmy = 0;
700     for(int j=0;j<laserbots.size();j++){//See 

if others see the goal...
701      if(laserbots[j].get_goal_visible()){
702       swarm_sees_goal = true;
703       no_of_swarm_sees_goal++;  

    
704       swarmx += laserbots[j].get_x();
705       swarmy += laserbots[j].get_y();
706      }
707     }
708     if(swarm_sees_goal){ //If so, go to center

 of others
709      assert(no_of_swarm_sees_goal != 0);
710      swarmx = swarmx/float

(no_of_swarm_sees_goal) - p0x; //Gives relative 
position

711      swarmy = swarmy/float
(no_of_swarm_sees_goal) - p0y; //Gives relative 
position

712      sensor_angle = atan2(swarmy,swarmx) - 
heading;

713      //The follow ensure sensor_angle is 
within +/- pi

714      while(sensor_angle > pi()){
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715       sensor_angle -=  2*pi();
716      }
717      while(sensor_angle <= -pi()){
718       sensor_angle +=  2*pi();
719      }  
720      //cout<<"swarmx = "<<swarmx<<endl;
721      //cout<<"swarmy = "<<swarmy<<endl;
722      //cout<<"sensor_angle = "<<

(sensor_angle*180/pi())<<endl;
723      if(fabs(sensor_angle)<=pi()/8){
724       new_goal_sensors[0] = 0;
725       new_goal_sensors[1] = 1;
726       new_goal_sensors[2] = 0;
727      }
728      else if(sensor_angle < 0){
729       assert(fabs(sensor_angle)>pi()/8);
730       new_goal_sensors[0] = 0;
731       new_goal_sensors[1] = 0;
732       new_goal_sensors[2] = 1;  

  
733      }
734      else if(sensor_angle > 0){
735       assert(fabs(sensor_angle)>pi()/8);
736       new_goal_sensors[0] = 1;
737       new_goal_sensors[1] = 0;
738       new_goal_sensors[2] = 0;
739      }
740     }
741     else{ //no one knows nothin'
742      new_goal_sensors[0] = 0;
743      new_goal_sensors[1] = 0;
744      new_goal_sensors[2] = 0;
745     }
746    }
747    //cout<<"goal sensors = ";
748    //print_vector(new_goal_sensors);
749    laserbots[i].set_goal_sensors

(new_goal_sensors);
750   }
751  return(collision);
752  }
753 };
754
755 //---------------------------End of World Class-----------

---------------------
756
757
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