
The effect of using evolutionary algorithms on

Ant Clustering Techniques.

Claus Aranha1 and Hitoshi Iba2

1 The University of Tokyo caranha@iba.k.u-tokyo.ac.jp
2 The University of Tokyo iba@iba.k.u-tokyo.ac.jp

Abstract. Ant-based clustering is a biologically inspired data cluster-
ing technique. In this technique, multiple agents carry the information
to be clustered, and make local comparisons. In this work we use genetic
algorithms to improve the implementation and use of ant-clustering tech-
niques.

1 Introduction

Ant colony based heuristics are currently a widely studied field of computer
science. The first works were on TSP problems [6], but now they are used on
many different fields, like routing algorithms and building philogenetic trees [3,
1].

An ant colony has many characteristics that are considered useful. It is com-
posed of many agents which, although simple individually, can perform rather
complex tasks as a group, without central coordination. Some examples are
building an ant nest, brood pits and cemeteries, hunting and foraging food [5, 2].
The coordination of an ant colony is of local nature, composed mainly of indirect
communication through pheromones (known as stigmergy), although direct in-
teraction communication from ant to ant, in the form of antennation, and direct
communication have also been observed [17].

The high number of individuals and the decentralized approach to task
coordination means that ant colonies show high degrees of parallelism, self-
organization and fault tolerance. All of which are desired characteristics in mod-
ern computer systems. Such ant systems can be easily implemented as cellular
automata.

Clustering is the classification of similar objects into different groups, or more
precisely, the partitioning of a data set into subsets (clusters), so that the data
in each subset share some common trait. Clustering is used as a data processing
technique in many different areas of application, such as bioinformatics, data
mining, image analysis, etc [14, 12].

In nature, the Messor Sancta species of real ants have been observed to
perform this clustering behavior, by grouping 1500 ant corpses into large piles
[7] over a period of 26 hours. Besides this patchwork sorting, the Leptothorax ant
has been observed to cluster its brood into concentric annular structures, with



eggs and micro-larvae in the center, and larger offsprings located in the outer
side of the structure [11].

Experiments like those serve as the inspiration for using an ant-based heuris-
tic approach to the clustering problem. Recent developments in the ant-based
clustering technique show that it is competitive when clustering datasets with
high dimensionality, or databases where the number of clusters is not previously
known.

However, there is a large number of parameters in the ant-clustering algo-
rithm, which exact effects in the performance of the technique are not yet very
well known. Small differences in the constants might result in large differences
in the results, so that hand-tuning is a daunting task. We propose the use of
Genetic algorithms to automatically choose the best parameters for a given task.

In the next session, we explain the Ant Clustering algorithm, defining its key
components, then talk about the main branches in its field of research, and its
perceived characteristics.

In section three, we describe our implementation of the LF algorithm, along
with the modifications we made, and then describe the application of the genetic
algorithm to the parameter optimization.

In section four, we present the experiments we did, and discuss the achieved
results, and in section five we draw some conclusions from our work and future
directions.

Fig. 1. Example of ant clustering algorithm. The first image to the left is the data
distribution on feature space (2 dimensions out of 4 total. The data is the IRIS set
of the ELENA clustering benchmarks). The next image is the random distribution of
that data on the workspace (data belonging to different classes are colored differently).
The last two images show later stages of the clustering process.

2 Ant Clustering

Ant-based clustering algorithms can be considered non-hierarchical, hard, ag-

glomerative clustering methods. Non-hierarchical means that there is no parent-
child relationship between the objects or the clusters formed by the technique.



Hard means that each object is assigned to only one cluster. Agglomerative
means that the clusters are formed bottom-up - in other words, isolated objects
are progressively put together to form bigger clusters.

While the first proposal of a clustering algorithm inspired by ant colonies
was made by Deneubourg [5], the canonical ant clustering algorithm follows the
formula described by Lumer and Fayette [13]. The basic idea of the ant cluster
algorithm is described as a cellular automata like field, where artificial ants can
pick and drop non-deterministically objects which represent the data objects
to be clustered. As the ants pick isolated objects, and drop them near similar
objects. This ’vanilla’ clustering algorithm, which we’ll call the LF algorithm,
can be described as follows.

One of main characteristic of ant clustering, is that the clustering operation
happens on a toroidal bi-dimensional grid unrelated to the n-dimensional space
which describes the properties of data relative to each other.

From the n-dimensional feature space we can obtain information like the
disparity between two different pieces of data. However, from the bi-dimensional
grid in the ant algorithm we cannot get such information directly. We will call
this bi-dimensional grid the workspace, and the n-dimensional space the feature

space. The workspace can be imagined as a 2 dimensional random projection of
the feature space. By randomly projecting the objects into this 2 dimensional
space, and performing local comparisons, we have a constant cost for clustering
objects of arbitrary dimensionality.

The first step in the ant-clustering system is to distribute the data (objects)
randomly into the workspace. Each object is projected onto one grid of the
workspace (see the second image from the left in figure 1). Then a number na

of ants is put on random positions of the workspace. Only one ant and only one
object can be put into one grid of the work space. Each ant is also able to carry
one data object with itself.

At each time step, each ant will, if loaded, try to unload its object onto its
current position or, if unloaded, try to pick an object in the same grid as itself.
The probability of picking or dropping an object is based on the disparity (or
distance in feature space) between that object and other objects in its neighbor-
hood. In other words, if we have a function d(i) which increases as the disparity
between an object i and its neighbors decreases, we can describe the pick and
drop probabilities as follows:

Ppick =

(

kp

kp + f(i)

)2

(1)

and:

Pdrop =

{

f(i)

kd + f(i)

)2

(2)

Equation 1 gives the probability of picking up an object. kp is a pick up threshold
parameter. Equation 2 gives the probability of dropping an object. kd is a drop
threshold parameter. According to these equations, the probability of dropping



an object in higher when near similar objects, and the probability of picking and
object is higher when that object is isolated, or near dissimilar objects.

After picking or dropping the object, the ant will move, following some de-
fined move policy (for instance, moving one step in a random direction). Since
the workspace is toroidal, ants walking off a border will surface on the opposite
border.

By following these rules, objects that are near each other in the feature space
will be likely to be dropped in neighboring positions in the work space. After an
initial period of random activity, a small tentative cluster of few similar objects
will form. This pre-cluster acts as a stigmergic beacon so that the probability
of dropping new, similar objects near it is greater than anywhere else on the
workspace. This leads to a positive feedback cycle which increases the size of the
cluster, until the clustering process is complete. This progress is illustrated in
figure 1.

2.1 Main Works

Ramos et al. [15]. applied ant-based clustering to the classification of stone im-
ages. In their works, they noticed that the normal LF algorithm would generate
a large quantity of small clusters, and that many actions were wasted when the
ants moved through empty space. To address this concerns they used pheromones
to guide the ant movement.

Also, they studied the performance of the algorithm on continuous clustering
(i.e. when new data is added over time during the execution of the algorithm)
[16], and showed that this improves clustering performance for the ant clustering
system.

Handl et al. [9] changed the ants’ movement policy so that the ants, after
dropping an object, would “teleport” to the next isolated object, and pick it
automatically. In this way, an ant would never give a step while not carrying
an object, which did not add anything to the clustering effort. They also added
limited local memory to each ant, which would give them “hints” to the best
place to drop the carried object.

Hartmann [11] proposes the use of Neural Networks to replace the pick
and drop functions. Among other works dealing with improvements to the ant-
clustering algorithm we find [4, 18].

3 Implementation

To enable us to study the possibility of optimizing Ant Clustering with genetic
algorithm, we implement the basic LF algorithm with some of the improvements
suggested in the literature, as described below.



3.1 Details of the Implementation

The system works over data objects that can be compared by the use of Euclidean
distance:

d(a, b) = ((a0 − b0)
2 + (a1 − b1)

2 + ... + (an − bn)2) (3)

Where ak, bk(k ∈ 1..n) are the values of the k-th feature of the n-dimensional
data objects a, b. With this similarity function d(a, b) we can define the neigh-
borhood disparity function f(i) for a data object i:

f(i) =

∑

Md − d(i, xs)

St

(4)

Where xs is an object within the neighborhood radius of i, Md is the maximum
distance between any two objects, and St is the total number of objects in the
neighborhood of i. The neighborhood of an object is given by all the objects
within Manhattan distance sight of the object (where sight is a configurable
parameter).

We then calculate the crowdedness factor, c(i) by equation below:

c(i) =
S2

t

S2
t + k2

crowd

(5)

1 < kcrowd < (2 ∗ sight)2 is an integer constant which tunes the behavior of
c(i). We multiply f(i) ∗ c(i) when dropping an object, and f(i) ∗ (1− c(i)) when
picking an object, to encourage the ants to pick isolated objects, and drop them
near early clustering of objects. This result is then used as the disparity value
for the pick and drop probabilities given by 1 and 2.

The behavior of an ant during the clustering follows this behavior: If the
ant is not carrying any object, it tries to pick the available (not being carried)
objects, one at a time with probability given by eq. 1. Once it decides to pick
one object, the ant is moved into that position. It starts, then, a random walk
over the workspace, looking for a place with high local similarity to drop the
object. At each time step, the ant walk one random step to a neighborhood cell,
and try to drop its load once. If the ant tries to move to a cell where there is
another ant present, it stays in the same place.

3.2 Use of Genetic Algorithms

To improve the ant clustering algorithm, we’ll try to optimize its parameters
(presented in table 1) by using Genetic algorithms. In [18], it is commented that
the sensitivity of the many parameters in ant-clustering is a topic worthy of
study, in order to improve the system. [4] also says that the high number of
parameters is an encumbrance to the system.

In our evolutionary framework, each individual is represented by the set of
configuration parameters in table 1. For each generation, we run the program
once with each set of parameters, and take the fitness from each run.



Table 1. Parameters for the ant-clustering

Name Value

Pick constant(Kpick) (0..1.0)
Drop constant(Kdrop) (0..1.0)
Crowd constant(Kcrowd (1..(2 ∗ sight)2)
Sight range (sight) 1..10
Workspace size (wsize) (integer)
Number of ants (nants) (integer)

We use the Elite selection strategy for GA, where, for each generation, the
best elitesize individuals are directly copied into the next generation, and the
remaining individuals of the population are deleted and replaced by crossover
between this elite.

For the crossover operator, we randomly choose two parents from the elite,
and create a new individual by choosing one parameter value from each parent
(equal probability for both parents). After that we run the mutation operator
(with a probability equal to the mutation parameter for each individual). The
mutation operator can either change the value of one parameter by 10%, or
generate a new random value for that parameter.

The key in a successful application of GA to a problem is an appropriate
choice of the fitness function. One of the strong points of ant clustering is the
ability to auto-detect the number of clusters.

Fig. 2. Two clusters, according to the fitness definition

To extract the clusters from the workspace, we define a cluster as a group of
objects within 2 units of Manhattan distance from any member of the group. In
this way, in figure 2, we can see 2 such different clusters.

However, the number of clusters alone does not tell us how good the clustering
is, so we must also account for the quality of the clusters. We Average Local

Linkage, to measure the quality of one cluster. First, we take the neighborhood
disparity function (f(i) described in equation 4 to determine the local Linkage



of one object. From this value, we calculate the ALL for the cluster as:

ALL(C) =

∑

f(ci)

Csize

(6)

Where Csize is the number of objects in the cluster, and each ci ∈ C is an object
belonging to the cluster.

To calculate the fitness of one individual, then, we identify the clusters by
using the definition in figure 2, and then averaging ALL(C) for all clusters where
Csize > 1.

There is, however, one extra thing that must be taken care with when cal-
culating the fitness of ant clustering algorithms. As reported in [18], LF does
not reach an stable configuration - since the pick and drop probabilities are not
deterministic, the ants may pick some pieces from stabilished clusters, lowering
the fitness, just to put them back a few turns later. Therefore, if we just pick
any one time step, and measure the fitness at that moment, we can get a lucky
high or low unstable state (see figure 3).

Fig. 3. Number of clusters according to the progression of the algorithm for an individ-
ual. Notice that the number of clusters stabilizes around 200.000 steps, but the actual
number still varies after that.

In order to avoid that, after a given turn t, we start measuring the fitness for
the next tfit turns, and take the average fitness of this period as the individual’s
fitness.



4 Experiments

To test the influence of evolving the control parameters of the algorithm, we
tested it against a simple database of four clusters, linearly separated, each with
250 objects, each object with 2 variable values (figure 4). We wanted to use this
simple dataset as a preeliminar study of GA on the LF algorithm.

Fig. 4. Position of the data objects in feature space, forming 4 clusters

To tune the parameters, we used a genetic algorithm systems as described
in the previous session. The parameters of the genetic algorithm are shown in
table 2.

Table 2. Parameters for Genetic algorithm

Name Value

Population 40
Generations 100
Elite Size 10
Mutation rate 1%

Running the experiment, we found out that in fact the evolved solutions could
generate a smaller number of clusters with the passing of the generations. The



number of clusters generated by the best individual of the evolved population
compares favorably (figure 6) against the the fitness reached by running the
algorithm with the default parameters found in the literature (pick rate 0.2,
drop rate 0.5).

Fig. 5. Progress of the evolved solution on the 4 cluster problem at steps 0, 30.000 and
300.000

Furthermore, the population showed a strange behavior of losing average
fitness, while improving the best fitness. We tried to run the tests with different
fitness measures, finding similar results. This effect might be due to a faulty
evolutionary strategy (figure 7).

Fig. 6. Performance comparison between the default parameters, and the GA opti-
mized ones. The graph to the left compares the number of clusters, and the graph to
the right compares the average local linkage.

5 Conclusions

The GA was able to find a set of parameters with a somewhat better perfor-
mance when compared to hand-tuned parameters found in the literature. The



Fig. 7. Population performance based on the number of clusters. While the best indi-
vidual increased his performance quickly, the population average strangely went up

average fitness of the population as a whole was increasing, while the fitness of
the best individual was decreasing, which indicates that there might be other
particularities for ant clustering, besides those pointed out when describing the
fitness function, that need to be tended to.

Further improvement could be reached by having the parameters of the algo-
rithm evolve during the execution of the clustering. We have had some success
by dividing the clustering in two stages, one with loose kpick and sight values,
which will loosely group similar objects together, and the other with normal
values to form the tight cluster. This is our current focus.

References

1. Shin Ando and Hitoshi Iba. Ant algorithm for construction of evolutionary tree.
In Proceedings of GECCO 02. IEEE, 2002.

2. S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneydd, G. Theraulaz, and
E. Bonabeau. Self-Organization in Biological Systems. Princeton University Press,
2001.

3. G. Di Caro and M. Dorigo. Antnet: Distributed stigmergic control for communi-
cation networks. Journal of Artificial Intelligence, Vol. 9, pp. 317–365, 1998.

4. Ling Chen, Xiao hua Xu, and Yi-Xin Chen. An adaptive ant colony clustering algo-
rithm. In Proceedings of the Third International Conference on Machine Learning

and Cybernetics, pp. 1387–1392, Shangai, China, August 2004. IEEE.
5. J.L. Deneubourg, S. Gross, N. R. Franks, A. Sendova-Franks, C. Detrain, and

L. Chretien. The dynamics of collective sorting: Robot-like ants and ant-like robots.
Simulation of Adaptative Behavior: From Animals to Animats, pp. 356–363, 1991.

6. M. Dorigo. Optimization, Learning and Natural Algorithms. PhD thesis, Politec-
nico di Milano, Italy, 1992. in Italian.

7. Bonabeau E., M. Dorigo, and G. Tharaulaz. Swarm Intelligence: From Natural to

Artificial Systems. Oxford University Press, 1999.
8. J. Handl, J. Knowles, and M. Dorigo. On the performance of ant-based clustering.

Frontiers in Artificial Intelligence and Applications, Vol. 104, pp. 204–213, 2003.



9. J. Handl, J. Knowles, and M. Dorigo. Strategies for the increased robustness of
ant-based clustering. Lecture Notes in Computer Science, Vol. 2977, pp. 90–104,
2004.

10. Julia Handl, Joshua Knowles, and Marco Dorigo. Ant-based clustering and topo-
graphic mapping. Technical Report 2004-009, IRIDIA, Belgium, May 2004.

11. Vegard Hartmann. Evolving agent swarms for clustering and sorting. In Genetic

Evolutionary Computation Conference, GECCO, Vol. 1, pp. 217–224. ACM press,
2005.

12. A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM

Computing Surveys, Vol. 31, No. 3, pp. 264–323, 1999.
13. E.D. Lumer and B. Faieta. Diversity and adaptation in populations of cluster-

ing ants. In Proc. of the Third International Conference on The Simulation of

Adaptative Behavior: From Animals to Animats 3, pp. 449–508. Mit Press, 1994.
14. John Quackenbush. Computational analysis of microarray data. Nature Reviews,

Vol. 2, , June 2001.
15. V. Ramos, F. Muge, and P. Pina. Self-organized data and image retrieval as a

consequence of inter-dynamic synergistic relationships in artificial ant colonies. In
Ajuth Abraham Javier Ruiz-del Solar and Mario Koppen, editors, 2nd Inl. Conf.

On Hybrid Intelligent Systems, Vol. 87, pp. 500–509, Santiago, Chile, Dec 2002.
IOS Press.

16. Vitorino Ramos and Ajith Abraham. Swarms on continuous data. In CEC’03

Congress on Evolutionary Computation, pp. 1370–1375. IEEE Press, December
2003.

17. Vito Trianni, Thomas H. Labella, and Marco Dorigo. Evolution of direct commu-
nication for a swarm bot performing hole avoidance. In Ant Colony Optimization

and Swarm Intelligence. Springer, 2004.
18. A. Vizine, L.N. de Castro, E.R. Hruschka, and R.R. Gudwin. Towards improving

clustering ants: An adaptative clustering algorithm. Informatica Journal, Vol. 29,
, 2005.


