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C/ Jordi Girona1-3, 08034 Barcelona, Spain
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An application of Genetic Programming (an evolutionary computational tool) without and with standardization data is presented
with the aim of modeling the behavior of the water temperature in a river in terms of meteorological variables that are easily
measured, to explore their explanatory power and to emphasize the utility of the standardization of variables in order to reduce
the effect of those with large variance. Recorded data corresponding to the water temperature behavior at the Ebro River, Spain, are
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water temperature in 2004, in order to provide evidence about their applicability to forecasting purposes.
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1. Introduction

Evolutionary computing has been widely used in hydraulics
and hydrology, for example, the studies ofSavic et al. [1],
Madsen et al. [2], and Dorado et al. [3], related to rainfall-
runoff processes, modeling of an urban aquifer as was
discussed by Hong and Rosen [4], or the modifications
of genetic programming algorithms attempting to get an
agreement with the problem dimension in natural and
compounded channels as applied by Keijzer and Babovic [5],
Harris et al. [6], and Keijzer et al. [7]. On the other hand,
water temperature is an important parameter to consider
because of the changes it can experience due to human activ-
ities. In the last three decades diverse studies about weather
changes have been made, related to the increase of extreme
events such as floods and droughts (e.g., Lehner et al. [8]) the
increasing air and water temperatures (e.g., Seguı́ [9]; Webb
and Nobilis [10]), ice melting, and greenhouse effect (e.g.,
Greve [11]), with all their consequences in the surrounding
ecosystems (e.g., Schindler[12], Álvarez Cobelas et al. [13]).

The motivation to work with models that allow the
representation of water temperature behavior year after year
is because each time a possible abnormal increase in this
parameter occurs, the consequences and implications for
the physical and chemical properties of water with their
corresponding effects in aquatic life are numerous. Some
models have been applied to maximum water temperatures
by means of nonlinear relationships between air temperature
and water temperature (Caissie et al. [14]), but there are
other important variables involved in water temperature
variation during a given period of time. In order to
preserve the ecological balance it is very important to have
a continuous inspection of water quality in that portion
of the river. Freshwater organisms are mostly ectotherms
and are therefore largely influenced by water temperature.
Some of the expected consequences of a water temperature
increase are life-cycle changes (Hellawell [15]; Winfield and
Nelson [16]), shifts in the distribution of species with the
arrival of allochthonous species (Walther et al. [17]), and
the expansion of epidemic diseases (Harvell et al. [18]) as
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Figure 1: Station locations at the Ebro River, Spain.

a possible result. Also, aquatic flora and fauna depend on
dissolved oxygen to survive, and this water quality parameter
is a function of water temperature as well.

2. Study Site

The field data used in this study were taken from the lower
Ebro River, Spain. This river has a basin of 85 000 km2 and
an average year inflow of 17 000 hm3 in natural regime.
Three dams are located along the river (Figure 1) which
change the water temperature regime (Val [19]): Mequinenza
(1534 hm3), Ribarroja (210 hm3), and Flix (11 hm3). Five
kilometers downstream the Flix dam, the water is taken from
the river with cooling purposes in the Nuclear Central Ascó.
Water is returned to the river with a higher temperature
and flows downstream to Miravet. In this zone several
meteorological gauge stations were installed, including some
measuring water temperature (Figure 1). These data were
applied in studies made by Val [19] and Prats et al. [20].
Besides, an important effort has been recently made to
obtain equations to predict water temperature associated to
meteorological variables that are easily measured, centered at
the Ribarroja station (Arganis et al. [21, 22]).

3. Methodology

3.1. Evolutionary Algorithms. Evolutionary algorithms, also
known as Evolutionary Computation (EC), the optimization
tool used in this work, use computational models of
evolutionary processes in the design and implementation of
computer-based problem solving. A general definition and
classification of these evolutionary techniques is given in
Bäck [23]. He defines an EA as a search and optimization
algorithm, inspired by the process of natural evolution,
which maintains a population of structures that evolve
according to the rules of selection and other operators such
as recombination and mutation. Here, the structure of all
evolution-based algorithms is shown in Algorithm 1.

In a similar way to that of natural evolution and heredity,
these algorithms work on a population of N individuals

Program
t = 0
Create Initial Population P(t)
Evaluate Initial Population P(t)
While (not termination criterion) do

t = t + 1
Select Individuals for Reproduction P(t) from P(t − 1)
Alter P(t)
Evaluate New Population P(t)

end

Algorithm 1: Evolution-based algorithm.

P(t) = {xt1, . . . , xtN}, representing search points in the space
of potential solutions of a given problem. How well each
individual xti adapts each generation t to the problem under
investigation is provided by a quality measure called the
“fitness”. The population evolves, generation by generation,
towards better regions of the search space by means of genetic
processes, such as selection, recombination, and mutation.
The selection process uses the fitness measure to choose
individuals of the previous generation (P(t−1)) to be repro-
duced, favoring those of higher quality. The recombination
operation promotes the exchange of genetic information
between parent individuals, thereby producing descendants.
The mutation operation alters the genetic information
by introducing some changes into the population. The
evaluation process is repeated until a predefined termination
criterion is met, or alternatively, until a maximum number
of generation (iterations) is reached. This artificial evolution
process is the foundation of the evolution-based algorithms
used in this work, genetic programming.

3.2. Genetic Programming Algorithm. A typical genetic pro-
gramming algorithm consists of a set of functions, which can
involve arithmetic operators (+,−,∗, /, . . .), transcendental
functions (sin, cos, tan,. . . , ln, exp,. . . ), even relational oper-
ators (>,<,=) or conditional operators (IF), and a terminal
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its parse tree.
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Figure 3: Water temperature values and residuals, experiment
without standardization (hourly average values).

set with variables and constants (x1, x2, x3, . . . xn). An initial
population is randomly created with a number of parse-
tree individuals composed of nodes (operators plus variables,
and constants) previously defined according to the problem
domain (an example of GP individual is given in Figure 2).
An objective function must be defined to evaluate the fitness
of each individual (in this case each individual will be a
resultant model or program of the random combination
of nodes). Selection, crossover, and mutation operators are
then applied to the best individuals, and a new population
is created. The whole process is repeated until the given
generation number is reached (Cramer [24], Koza [25]).

3.3. Brief Description of the Physical Phenomena and Their
Related Variables. The water from a river is in a constant
heat exchange with its surroundings: the atmosphere and
the river bed. This process may reach equilibrium so that
the heat lost by the water equals that which is absorbed.
Normally, the water temperature increases throughout the
river in a natural state as the altitude decreases. To this spatial
variation a double temporal variation is superimposed. In a
river reach temperature varies following both a daily and an
annual cycle.

In the study performed by Val [19], an analysis of five
kilometers of the Ebro River was performed, in a section
downstream of the Flix hydroelectric center; in this reach,
hourly temperature measurement data are available for

different sections. It was observed that during the summer
a 9◦C difference may exist between the Flix Central site and
the temperature before the dams. Additionally, downstream
of Flix Central, the water temperature recovers, trying to
reach thermal equilibrium with its surroundings. To estimate
the heat that is absorbed by the river water as it progresses
naturally through a certain reach, and its corresponding
temperature variation, an energy balance is established
between the caloric energy received and the caloric energy
emitted by the water along that reach. This can be done based
on the thermic balance presented by Edinger et al. [26]. This
balance can be expressed as

A = Hsn +Han −Hb −He −Hc + S, (1)

where A is the total caloric power absorbed by water as it
moves along a river reach, by square meter of free surface,
measured in W/m2. This is the result of the balance of
the different heat inputs and outputs for water as it moves
along the reach. Hsn is the net (incident minus reflected)
total shortwave solar radiation (direct plus diffused) that
is absorbed by the water by square meter of free surface,
measured in W/m2. This is a function of the incident solar
radiation rs and the reflected rr , which is proportional
to rs, and this proportionality is given by the constant α
which is also known as the albedo. Han is the net longwave
atmospheric radiation (incident minus reflected) absorbed
by water by free surface square meter, measured in W/m2.
Hb is the longwave radiation emitted by water by free surface
square meter, measured in W/m2, determined as a function
of average surface water temperature, Tw. He is the heat lost
through evaporation by free surface square meter, measured
in W/m2, determined as a function of the wind velocity,
vv, the vapor pressure of saturation, and the air’s vapor
pressure. Relative humidity hr is also a variable that affects
the water-atmosphere heat exchange. Hc is the sensitive heat
interchanged by conduction between the atmosphere and
water by free surface square meter, measured in W/m2,
dependent upon the air temperature Ta and that of the water
Tw. S is the heat exchanged with the substrate (river bed) by
square meter of river reach.

The heat stored by a water mass as it moves along
a river stretch of longitude L is estimated by A =
4187(ΔTQCeρ/LB), where A is the caloric power absorbed
by water, in (W/m2), ΔT is the water temperature increment,
in (◦C), Q is the circulating flow, in (m3/s), Ce is the specific
heat of water in (Kcal/◦CKg), ρ is the density of water, in
(Kg/m3), L is the longitude of the studied reach, in (m), and
Bw is the effective width of the river, in (m).

On the other hand, through an analysis of the historical
behavior of the time variation of water temperature during
consecutive years, similar results were observed, both in the
cyclical variation and in the tendency to increase or decrease.
This leads to an expectation of a correlation between the
temperature variation in year i and the temperature of
previous years.

This background described led to the choice of the
measured variables which were used in the prediction model.

Additionally, when physical variables are used to be fitted
by means of genetic programming, several questions about
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Table 1: GP parameter settings.

Parameter Value

Number of individuals 250

Maximum number of nodes 30

Maximum number of generations 3000

Cross probability 0.9

Mutation probability 0.09

Node mutation probability 0.03

Table 2: Mean square error values.

Equation MSE, ◦C

(6) 9.4336

(8) 6.4763

Table 3: Statistics of residuals.

Equation μr (◦C) σr (◦C)

(6) −0.0004 3.0716

(8) 0.0230 2.5449

the dimensionality of the problem could be made. But this
problem can be solved considering the possible existence of
dimension in the obtained constants of the calculated model.
New physical interpretations of the related variables can be
done by analyzing the model terms.

In this document, for simplicity, only four arithmetic
operators were considered: FS = {+,−,∗, /}.

Twelve independent variables, one dependent variable,
and a vector of real constants were selected. Thus, in the
nonstandardized case the terminal set is

TS = {hr98,Ta98, vv98, rs98,hr99,Ta99, vv99, rs99,hr2000,Ta2000,

vv2000, rs2000,Tw2000, b},
(2)

where hr98,hr99, and hr2000 are the hourly average relative
humidity values recorded in the years 1998 to 2000, in
decimals, Ta98,Ta99, and Ta2000 are average air temperature
values from years 1998, 1999, and 2000, in ◦C, vv98, vv99, and
vv2000 are the average wind speeds from years 1998, 1999, and
2000, in m/s, rs98, rs99, and rs2000 are average solar radiations
from years 1998, 1999, and 2000, in W/m2, Tw2000 is the
hourly average water temperature measured from year 2000,
in ◦C, and b is a real constant vector.

Tests were made with one hour, daily and weekly
averaged water temperatures.

In the standardized case all the last variables are dimen-
sionless.

3.4. Objective Function. The objective function considered in
this problem was defined as the minimization of the mean
square error between calculated and measured data:

FO = Min

⎡
⎣

n∑

i=1

(
Twi − Tw1i

)2

n

⎤
⎦, (3)
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Figure 4: Water temperature values and residuals, experiment with
standardization (hourly average values).
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Figure 5: Comparison between measured and estimated data (6),
correlation coefficient rTw,Tw1 = 0.82.

where Tw measured data, Tw1i calculated data, and i counter
from 1 to data number n.

The genetic programming algorithm was implemented in
MATLAB (The MathWorks [27]).

3.5. Standardization. The variables were standardized by
subtracting the mean and dividing by the standard deviation:

Z = Tw − Tw

σTw
, (4)

where Z is the standardized variable, dimensionless; Tw is the
variable before standardization; Tw is the mean value of Tw,
with the same units as Tw (the arithmetic average was used);
σTw is the standard deviation of Tw, with the same units as
Tw.

Variables with large variances tend to have a larger effect
on the resulting model than those with small variances that
can be also relevant. Standardized variables can then be
advantageous in that their means are zero and their second
moments (variances) are one.

3.6. Input Data. Meteorological and water temperature
data were taken in gauging stations installed in the Ebro
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Figure 6: Comparison between measured and estimated data (8),
correlation coefficient rTw,Tw1 = 0.88.
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Figure 7: Water temperature values and residuals, experiment
without standardization (daily average values).

River. Data consist of 10-minute averages of measurements
taken every minute. Water temperatures were measured just
downstream of the hydroelectric power plant of Flix. The
meteorological variables were measured at the measuring
station located on the Ribarroja Dam. The hourly average
was calculated for all the variables and taken as input data:
relative humidity (hr), air temperature (Ta), wind speed (vv),
and solar radiation (rs) as independent variables and water
temperature (Tw) as the dependent variable.

The first experiment was carried out with the original
data, and the second one with the standardized ones. GP
parameter settings for both experiments are shown in Table 1

3.7. Model Linearity. In order to validate the applicability
of the method, the correlation coefficient between measured
and calculated data was obtained:

rTwTw1 =
Cov(Tw,Tw1)

σTwσTw1

,

Cov(Tw,Tw1) = 1
n

n∑

i=1

(
Twi − Tw

)(
Tw1i − Tw1

)
,

(5)

Table 4: Mean square error values. Daily average data.

Equation MSE, ◦C

(11) 8.279

(13) 4.978

Table 5: Statistics of residuals. Daily average data.

Equation μr (◦C) σr (◦C)

(11) 0.0762 2.8802

(13) 0.0213 2.2342

where Cov(Tw,Tw1) is the covariance between the variables
Tw and Tw1; σTw , σTw1 are the standard deviation of Tw and
Tw1, respectively.

4. Results and Discussion

4.1. One-Hour Average Data. The genetic programming
algorithm tendency is to produce relatively simple models.
The equations produced in both experiments were

Tw12000 = Ta99hr99 +
2
hr99

+
vv98 + vv2000

Ta99 + hr2000 + 0.6776
+ 1.3445,

(6)

Tw12000z
= 0.4732Ta98 + 0.6409Ta99 + 0.0321hr98

+ 0.2316hr99 − 0.2366rs98,
(7)

respectively, where Tw12000 is the hourly average water temper-
ature value estimated in 2000, in ◦C, and the prefix z indicates
a standardized variable.

In order to get Tw2000 values, an inverse standardization
process should be performed:

Tw12000z
= σ̃w2000

(
0.4732Ta98 + 0.6409Ta99 + 0.0321h r98

+0.2316hr99 − 0.2366rs98) + T̃w2000.
(8)

For forecasting purposes, mean and standard deviations
were estimated as follows:

T̃w2000 =
(
Tw98 + Tw99

2

)
, (9)

σ̃w2000 =
(
σw98 + σw99

2

)
, (10)

where T̃w2000 is the estimator of mean water temperature
in 2000, in ◦C; Tw98 is the water temperature in 1998, in
◦C; Tw99 is the water temperature in 1999, in ◦C; σ̃w2000 is
the estimator of standard deviation of water temperature
in 2000, in ◦C; σw98 is the standard deviation of water
temperature in 1998, in ◦C; σw99 represents the standard
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deviation of water temperature in 1999, in ◦C. Table 2
shows the mean square error (MSE) obtained with both
models.

The mean (μr) and the standard deviation (σr) of the
residuals, calculated as the difference between measured
and calculated water temperatures, appear in Table 3. The
measured and calculated data, including their differences for
both experiments, are shown in Figures 3 and 4.

In Figures 5 and 6, the measured and calculated data
with (6) and (8) are plotted against the identity function
to obtain the correlation coefficient (rTw,Tw1), checking the
linearity in the fitting. Results given by Figures 3–6 show
an improvement in calculated data when standardization is
applied; residuals are slightly reduced, fluctuations become
softer, and this is verified by the correlation coefficient. The
mean square error is reduced in about 30%, and there is
less data dispersion (standard deviation of residuals decreases
17%).

4.2. Daily Average Data. In this case, the equations obtained
without and with standardization were as follows:

Tw12000 = Ta98 +
Ta2000

Ta98

+
rs98

(Ta2000 − 2rs98)hr98Ta2000/vv2000
2Ta98

,

(11)

Tw12000z
= 0.5018Ta98z + 0.4982Ta99z − 0.2108rs98z

− 0.1195vv99z + 0.1195vv2000z − 0.1195hr2000z ,
(12)

where Tw12000 is the daily average water temperature value
estimated in 2000, in ◦C; hr98, is the daily average relative
humidity values recorded in 1998, in decimals; Ta98 and Ta99

are the daily average air temperatures of 1998 and 1999 in
◦C; rs98 is the daily average solar radiation of 1998, in ◦C; the
prefix z indicates a standardized variable.

By applying an inverse standardization process,

Tw12000 = σTw2000Tw12000z + μTw2000
. (13)

In (13), data from 2000 are estimated according to (9)
and (10), but considering daily measurements. The mean
square errors (MSEs) obtained by using (11) and (13)
are detailed on Table 4. The mean (μr) and the standard
deviation of residuals (σr) of this experiment appear in
Table 5.

Water temperature variations against time and the
obtained differences are plotted on Figures 7 and 8. Figures 9
and 10 show a comparison between measured and calculated
daily average water temperatures with respect to the identity
function. Results for daily analyses report a reduction
of nearly 40% in mean square error with the equation
obtained using standardized data. In this case the standard
deviation of residuals is also smaller (12% lower than using
nonstandardization). Figure 11 shows an example of the
performance of the best individual in each generation when
the genetic programming algorithm was applied.
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Figure 8: Water temperature values and residuals, experiment with
standardization (daily average values).
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Figure 9: Comparison between measured and estimated data (11),
correlation coefficient rTw,Tw1 = 0.8939.

4.3. Weekly Average Data. In this last experiment, the
equations obtained without and with standardization were

Tw12000

= 2hr98 − vv99 − 1.4558vv2000 + Ta98

+
(Ta2000/(Ta99 − vv98 − vv99 − vv2000 + hr2000)) + vv98

vv2000
,

(14)

Tw12000z

= 0.2962Ta98 + 0.6819Ta99 + 0.6397Ta2000

− 0.2668rs98 − 0.3215rs99 − 0.3852rs98Ta2000

+ 0.3852rs98rs99 − 0.0928,

(15)

respectively, where Tw12000 is the weekly average water tem-
perature value estimated in 2000, in ◦C; hr98 and hr2000 are
the weekly average relative humidity values recorded in 1998
and 2000, in decimals; Ta98,Ta99, and Ta2000 are the weekly
average air temperatures of 1998, 1999, and 2000, in ◦C;
vv98, vv99, and vv2000 are the weekly average wind speeds from
years 1998, 1999, and 2000, in m/s; rs98 and rs99, are the
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Figure 10: Comparison between measured and estimated data (13),
correlation coefficient rTw,Tw1 = 0.9091.
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Figure 11: Convergence of a genetic programming run.

weekly average solar radiation values of 1998 and 1999, in
W/m2; the prefix z indicates standardized variable.

Equation (15) must be nonstandardized to get the
average weekly temperature approach:

Tw12000 = σTw2000Tw12000z + μTw2000
. (16)

Mean square errors and statistics of residuals appear in
Tables 6 and 7. Figures 12, 13, 14 and 15 show the behavior
of water temperature in this weekly analysis.

The results obtained for the weekly analysis show a
reduction of 52% in the mean square error when data are
previously standardized, and of about 31% reduction in the
standard deviation of residuals. The correlation coefficient is
also close to one.

5. Getting the Daily Water Temperature for
the Year 2004

The climatic daily data measured from 2002 to 2003 in
Flix and Miravet stations were taken to estimate water
temperature in the year 2004, in order to check the accuracy
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Figure 12: Water temperature values and residuals, experiment
without standardization (weekly average values).
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Figure 13: Water temperature values and residuals, experiment
with standardization (weekly average values).

Table 6: Mean square error values. Weekly average data.

Equation MSE, ◦C

(14) 4.538

(16) 2.176

Table 7: Statistics of the residuals. Weekly average data.

Equation μr (◦C) σr (◦C)

(14) 0.0186 2.1509

(16) 0.0239 1.4892

of models given by (11), (12), and (13). The climatic data for
2004 needed by the models were assumed as the average of
the years 2002 and 2003. The average water temperature for
2004 was assumed 15◦C with a standard deviation of 5◦C.

A mean square error of 49.549 and a correlation coeffi-
cient of 0.6744 were obtained by applying (11) as it is shown
in Figures 16 and 17, with an important variation in the
residuals; by contrast, with (13) that demands standardized
data, a mean square error of 13.027 and a correlation
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Figure 14: Comparison between measured and estimated data (14),
correlation coefficient rTw,Tw1 = 0.9241.
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Figure 15: Comparison between measured and estimated data (16),
correlation coefficient rTw,Tw1 = 0.9612.

0 30 60 90 120 150 180 210 240 270 300 330 360

t (days)
−10

−5

0

5

10

15

20

25

30

T
w

(◦
C

)

Measured 2004
Calculated (11)
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model without standardization (daily average values).

coefficient of 0.7445 were obtained; the residuals took
values between −7◦C and almost 8◦C (Figures 18 and 19).
Therefore, this last model had a better performance in daily
data, in this year.

With both equations very big residuals for water temper-
ature were obtained for some days of the estimated year.
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Figure 17: Comparison between measured and estimated data (11),
correlation coefficient rTw,Tw1 = 0.6744.

0 50 100 150 200 250 300 350 400

t (days)
−10

−5

0

5

10

15

20

25

30

T
w

(◦
C

)

Measured 2004
Calculated (13)

Figure 18: Measured and predicted water temperature for 2004,
model with standardization (daily average values).
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Figure 19: Comparison between measured and estimated data (13),
correlation coefficient rTw,Tw1 = 0.7445.

6. Conclusions

Different models which allow the estimation of water
temperature in the Ebro River in a given year were obtained,
taking into account climatic variables measured in the same
year, but also considering their variability in two previous
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years, in an attempt to explain the possible evolution of the
water temperature behavior.

The GP algorithm considered as input hourly, daily, and
weekly average measured data without and with standard-
ization, in order to analyze the resulting equations when the
shape of the input data varies from one form to another.

Intrinsically, measured data of water temperature and
climatic variables have more oscillations in hourly average
data than in daily or weekly average data. Particularly, in the
experiment using hourly data, the GP algorithm amplifies
the water temperature oscillations, probably because in
the actual physical process, the oscillations of the climatic
variables are filtered. Nevertheless, by using standardized
data, mean square errors were lower than those without
standardization, and a lower dispersion in data could be
obtained. Similar situations occurred in the case of daily data.

According to the mean square errors, the standard
deviation of residuals, and the correlation coefficient, when
weekly data were considered, GP algorithms produced mod-
els more capable to follow the behavior of water temperature.
This was particularly true for those models obtained with
standardized data.

Therefore equations such as those obtained herein can
be used as a first approximation to predict changes in water
temperature when changes occur in climatic variables such
as air temperature, wind speed, relative humidity, and solar
radiation, all of which affect the water temperature as well
as the physical and chemical water conditions, including the
flora and fauna of a river.

When the models for daily data were applied in another
year, lower correlations between measured and predicted
data were obtained, particularly with the model that does not
take into account standardized variables.

According to these results, it is feasible to obtain some
improvements in generating water temperature models by
means of genetic programming, when the standardization
process is incorporated.

Results also show limits on the models developed herein;
the models produced oscillations in the water temperatures
that do not correspond to the measured data; the results
of forecasting from 2004 are only fair. That is probably
due to the fact that some variables included in the physical
phenomena are eliminated, and the filtering that occurs
in nature is not reproduced; nevertheless, these results are
considered useful as a first-order explanation of a complex
process. However future work is suggested to compare the
proposed method with physically based ones.
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[23] T. Bäck, Evolutionary Algorithms in Theory and Practice,
Oxford University Press, Oxford, UK, 1996.

[24] N. L. Cramer, “A representation for the adaptive generation
of simple sequential programs,” in Proceedings of the Interna-
tional Conference on Genetic Algorithms and the Applications, J.
J. Grefenstette, Ed., pp. 183–187, 1985.

[25] J. R. Koza, “Hierarchical genetic algorithms operating on
populations of computer programs,” in Proceeding of the 11th
International Joint Conference on Artificial Intelligence, vol. 1,
pp. 768–774, Morgan Kaufmann, 1989.

[26] J. E. Edinger, D. K. Brady, and J. C. Geyer, “Heat exchange and
transport in the environment,” Tech. Rep. 14, Electric Power
Research Institute, Palo Alto, Calif, USA, 1974.

[27] The MathWorks, “MATLAB Reference Guide,” The Math-
Works, Inc., 1992.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


