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ABSTRACT

The present work treats the data classification task by means
of evolutionary computation techniques using three ingredi-
ents: genetic programming, competitive coevolution, and
context-free grammar.

The robustness and symbolic/interpretative qualities of
the genetic programming are employed to construct classifi-
cation trees via Darwinian evolution. The flexible formal
structure of the context-free grammar replaces the stan-
dard genetic programming representation and describes a
language which encodes trees of varying complexity. Finally,
competitive coevolution is used to promote competitions be-
tween data samples and classification trees in order to create
and sustain an evolutionary arms-race for improved solu-
tions.

Categories and Subject Descriptors

1.5.2 [Pattern Recognition]: [Design Methodology, Clas-
sifier Design and Evaluation]; H.2.8 [Database Manage-
ment]: [Database Applications, Data mining]

General Terms

Design, Algorithms, Experimentation

Keywords

Genetic Programming, Data Classification, Context-Free
Grammar, Competitive Coevolution

1. INTRODUCTION

To classify means to group things based on similarities,
giving them a class label. In data classification, a data sam-
ple is described by a set of attributes, so the similarity de-
gree among data samples is taken in some way from their
attributes. The goal of the data classification task is to ex-
tract useful information from a training data set so that it
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is possible to: (1) accurately and automatically classify un-
seen but related data samples; (2) obtain a concise and rich
human-readable knowledge about the data set.

This work presents an approach based on evolutionary
computation that aims to achieve the stated goals of the data
classification task, although it concentrates on the aspect of
accurate and automatic data classification. The approach
consists in the integration of a grammatically-based genetic
programming with a competitive coevolution. The genetic
programming provides the basic structure of this work, and
it establishes the learning method, which is inspired by bi-
ological evolution. A context-free grammar representation
is used as a formal instrument to specify the language—
possibly having complex constraints—of the candidate solu-
tions (classifiers). Finally, the coevolutionary scheme pro-
motes competition between data samples and classifiers in
order to boost the evolutionary process.

This paper is organized as follows. Section 2 describes the
canonical genetic programming. In Section 3 the standard
genetic representation and some of the main alternatives are
briefly discussed; also, the formal definition of context-free
grammar is shown and then the grammatically-based genetic
programming is presented. Section 4 discusses the coevolu-
tion of data samples and classifiers and how it integrates
with the grammatically-based genetic programming. Some
experiments in data classification are performed in Section 5
in order to show the potential of the technique proposed
here. Finally, Section 6 outlines some conclusions and direc-
tions of future work.

2. GENETIC PROGRAMMING

Genetic programming (GP) [9], is a specialization of the
genetic algorithm (GA) [7, 3] designed to evolve computer
programs in an arbitrary language—commonly in a sym-
bolic, human-readable language. As a genetic algorithm,
GP is based on the Darwinian principle of reproduction and
survival of the fittest individuals; the evolutionary dynamics
and some genetic operations found in nature, such as recom-
bination (crossover) and mutation, are simulated in genetic
programming.

Unlike the canonical binary representation of a GA, GP
uses a more suitable manner to represent an individual that
encodes a computer program. The data structure known as
tree is typically employed in GP for the representation of
the individuals, not only because of its power to express the
dynamics of a program, but also because of its simplicity.

The initial population is composed of individuals each one



containing a random tree, that is, a program. Each node in
a tree is randomly chosen and it contains either an operator
(function) or an operand (terminal)'. What a program can
do depends on the domain of application. More precisely,
it depends on the language chosen for the problem being
solved. For example, in a data classification domain, the
language could have conditional statements (e.g. if-then-
else), logical operators (e.g. or, and, not), and so forth.

The original concept of language in GP, as developed by
Koza, was trivial, and it was rudimentary. In the canonical
GP, there are two sets that may be freely combined: the
function set (IF) and the terminal set (T). When combined,
these sets define the language of the problem. The set F
is responsible for providing the functions (operators), such
as arithmetic operators (4, —, X, =, ...), trigonometric
functions (sin, cos, ...), and conditionals. By contrast, the
set T provides the operands (functions that do not require
arguments), e.g., constants, variables, and attributes.

After the creation of the initial population, each individual
is evaluated and its fitness is stored. For data classification
this means that an individual’s fitness will be proportional
to its prediction accuracy, and possibly to another measure
like “solution complexity”. If the termination criterion is not
satisfied—for example, a certain classification accuracy—,
then the iterative evolutionary process begins: the fittest in-
dividuals are selected for recombination/mutation, and their
offspring are inserted in the next generation according to a
given policy. The evolutionary loop is repeated until a good
solution is found, or until it reaches a maximum number of
iterations.

3. GRAMMATICALLY-BASED GP
3.1 Genetic Representation in GP

To ensure that a program will remain feasible through-
out the evolutionary process, Koza introduced a requirement
called closure. It states that all constants, variables, function
arguments, and return values must be of the same data type,
so that the genetic operations (e.g. crossover and mutation)
can take place at any site of a tree structure. The closure
requirement is a simple and uniform concept; however, it cre-
ates two main problems: (1) since every function/terminal
can be combined to one another—and many of such combi-
nations do not make sense in conceptual terms—, there is
an unnecessary and undesirable [4, 5] increase in the size of
the search space; (2) the closure is hard or even impossible
to be satisfied for those problems that require different data
types.

Some attempts were developed in order to overcome the
issues created by the closure requirement of the canonical
GP. Three important approaches will be briefly discussed
here.

3.1.1 Constrained Syntactic Structures — CSS

CSS was developed by Koza [9] as an attempt to cope with
the closure issue. Basically, problem dependent rules are es-
tablished to limit which functions and terminals are allowed
to stand as argument of another function. The genetic oper-
ations (initialization, crossover, and mutation) are modified

!The process stops when all leaf nodes have a terminal (func-
tions that don’t require arguments), so the tree is left feasi-
ble.
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to ensure that the specified rules are not violated during the
evolution, so that every program structure remains valid.
Even though the CSS approach provides a mechanism to
avoid the serious problems of the closure requirement, it
requires a set of rules to be created for each problem; more-
over, instead of the declarative form, CSS requires the rules
to be specified in textual form, that is, in human language.

3.1.2  Strongly Typed Genetic Programming — STGP

Montana [10] proposed a generalization of Koza’s CSS. His
target was the concept of type, so that the function speci-
fies exactly the type for each argument and for the value it
returns.

In STGP, a variable or constant has an assigned type. For
example, the 7 constant is float, whereas the variable x is
integer. In the same way, a function declares types for both
the arguments and the return value.

However, the major contribution of STGP over CSS was
the extension of the concept of types, including the generic
function and the generic data type.

A generic function is a function that takes arguments of
any type. As a result, a unique function is enough to deal
with different argument types. Because the generic function
needs to be instantiated during the tree creation process,
it requires that the return type can be precisely deduced
by specifying the argument types. Once instantiated, the
generic function acts like a standard strongly typed function.

A generic data can hold arbitrary types. Montana reports
that generic data types reduce the size of the search space
and also allow the evolutionary process to evolve generic
functions.

One of the weakness of STGP is that there is no direct way
to create deep structural relationships, i.e., conceptual con-
straints. In STGP, a function or terminal is constrained only
by its type. But occasionally, even though two functions or
terminals have the same type, they have different concepts or
requirements; therefore, they should not be mixed together.

3.1.3 Grammatical Evolution — GE

Ryan, O’Neill et al. [11] proposed a genetic algorithm
called grammatical evolution where the representation mech-
anism is based on context-free grammar? (CFG). In doing
so, GE can theoretically evolve programs in any language
described by a CFG.

A GE’s individual uses a variable-length encoding scheme
where each gene holds an integer value that will be mapped
to previously labeled production rules of a given CFG by
the decoding process. For example, consider the grammar
shown in Figure 1, which defines a language of mathematical
expressions, including sin, cos, arithmetic operations, and
the variable z.

Also consider the genome in Figure 2, which has 10 genes
with values ranging from 0 to 255 (8-bit number). Since
an 8-bit integer is far more than the number of production
rules, the modulus operation is needed to decode the genes
properly.

The decoding process reads the first gene, 204. There
are three productions pointed to by the start symbol <exp>
(group I), so the selected one is the production labeled 0
(204 mod 3 = 0), that is, <exp> — <exp> <op> <exp>. Next,
the second gene is read and its value (143), after the mod-

2A formal introduction to context-free grammar can be
found in Section 3.2.1.



N = {<exp>, <op>, <preop>, <var>}
Y= {xv Sin7 cos, +, —, (7 )}
S = <exp>
P= I <exp> —  <exp> <op> <exp> (0)
| <preop> (<exp>) (1)
| <var> (2)
II  <op> -+ (0)
- (1)
IIT  <preop> — sin (0)
| cos (1)
IV, <var> - (0)

Figure 1: Grammar describing the functions sin, cos,
+, and — over z.

ulus operation (143 mod 3), results in 2; therefore, the pro-
duction <exp> — <var> is picked up. Since there is only
one production rule headed by <var> (group IV), the ac-
tual selected production is <exp> — <var> — z, or just
<exp> — z. So far the decoded expression is * <op> <exp>.
The next steps will sequentially produce the expressions
z+ <exp>, x+ <preop> (<exp>), x + cos (<exp>), x + cos
(<preop> (<exp>)), x + cos (sin (<exp>)), and finally at
the 8th gene, the full decoded expression z + cos(sin(z)).

An important advantage of the grammatical evolution rep-
resentation is that it uses a linear genome; as a result, GE
can directly use all standard genetic algorithm operators.
Furthermore, because of the simplicity of the linear repre-
sentation, computer implementations of GE are relatively
easy.

A curious fact about the previous example is that the
decoding process terminated without translating all genes.
This occurs because in GE the genetic operations do not
know about the semantics of a genome until it is decoded, so
the decoding process frequently ends up with a complete ex-
pression (final) without traversing the entire genome. These
non-translated genes are common in nature, and such a seg-
ment is known as intron; nevertheless, in genetic algorithm
the presence of intron seems undesirable because it might
slow down the evolutionary process [1, 15]. In an attempt
to overcome this problem, Ryan et al. introduced an ex-
tra genetic operator to prune the redundant genes with a
certain probability. However, the prune operator just alle-
viates the problem; the introns will still appear during the
evolutionary process.

A more serious problem with GE is the opposite situation
of having redundant genes. During the decoding process, it
may happen that a genome does not have sufficient genes
to generate a complete expression (sentence), i.e., there are
still non-terminals remaining. In this case, there are at least
three choices: (1) eliminate that individual; (2) insert ran-
dom genes at the end; (3) reuse its own genes by wrapping.
The first and second option degrade the evolutionary pro-
cess since either genetic material is lost or random genes are
introduced (a kind of aggressive mutation). The third al-
ternative seems to be the best one, but it might lead to an
illegal expression—caused by unlimited growth—depending
on the sequence of values in the genome; for example, using

[204] 143] 56 [ 223] 15 |7 |76 [ 101] 233[ 1 |

Figure 2: A GE individual’s genome.
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the grammar described in Table 1, the genome 202, 145,
55 will always generate an infinite expression.

3.2 Grammatically-based GP

Being a formal tool to describe deep conceptual relation-
ships, a grammatically-based representation is able to over-
come the main flaws found in the canonical GP, CSS, and
STGP representation. Even though GE employs a grammar—
and thus can express deep constraints—, its linear genotype
introduces some significant collateral issues.

This work adopts as representation scheme the proposal
developed by Whigham [17, 18] to integrate a class of gram-
mar, namely a context-free grammar, with genetic program-
ming. But unlike GE, the tree structure is used to avoid the
limitations of the linear encoding.

A formal description of a context-free grammar and its
integration with GP are presented in the following.

3.2.1 Context-free Grammar — CFG

Formally, a grammar is a device for generating sentences—
a string of words satisfying certain grammatical rules—e.g.,
a computer program or an arithmetic expression. The po-
tentially infinite set of all such sentences defines the gram-
mar’s language. A CFG is described by a quadruple G =
(N,X%, S, P), where:

e N is the (finite) alphabet of non-terminal symbols;

¥ is the (finite) alphabet of terminals®, such that
NNY =0 and NUX = V, where V is the set of
symbols of the language;

S is the start symbol, S € N;

P is the set of production rules in the form a — 3,
where @ € N and 8 € V*. V* denotes the set of all
sentences composed of elements from V. Productions
like { — B, @ — ~} can also be written as {a — S|v}.

The non-terminal symbols are those that express concepts,
and eventually they will be replaced by terminal symbols
in order to become functional. In English grammar the
noun verb is a non-terminal that expresses a class of words
(terminals) sharing the concept of verbs; in the same way,
the non-terminal <numerical> in a CFG could denote a
class relating to numbers, such as numerical constants, vari-
ables/attributes, and so forth. Moreover, a non-terminal
can express another non-terminal; for example, the non-
terminal <numerical> could have subclasses like <integer>
or <real>.

On the other hand, the terminal symbols denote a con-
crete meaning; for instance, in a certain grammar the num-
ber 7 and the function sin (which returns a numerical value)
could be terminal symbols pertaining to the non-terminal
<numerical>.

The production rules define how non-terminals relate to
terminals and other non-terminals. The first rule is actually
given by the start symbol, which specifies how the sentence

3The meaning of the word terminal used here differs from
its meaning in genetic programming. In the canonical GP,
a terminal means a constant, variable, or a function that
doesn’t require arguments—i.e., a leaf node in the program
tree. But in a grammar, a terminal is a more general term,
and it can be not only a leaf node but also functions that
require arguments (inner node).



must begin. The power of a CFG relies on its production
rules, and such power is achieved when the production rules
are combined together in order to form arbitrary sentences.
The rules can be freely combined provided that a head of a
rule (the non-terminal o) matches some non-terminal sym-
bol in the body of another rule.

An example of a CFG grammar is shown in Figure 1.
That grammar defines a language of unary and binary ex-
pressions for some arithmetic (+, —) and trigonometric (sin,
cos) functions over the variable z.

Derivation Steps

A derivation step is the process of obtaining a sequence of
symbols—also known as word or string—through the appli-
cation of a production to a non-terminal symbol of the string
undergoing the derivation.

The derivation begins through the application of a com-
patible production (head symbol matching the target non-
terminal) to the start symbol S. If the resulting string
has at least one non-terminal symbol, then the process of
derivation continues applying production rules to replace
each non-terminal symbol until a sentence is achieved?, that
is, a string without non-terminal symbols.

One interesting thing about the derivation is that a se-
quence of derivations can be expressed in a form of a tree.
This makes the integration of a CFG with genetic program-
ming very natural. In fact, a grammatically-based genome
is a complete sequence of derivation steps represented by a
tree—called syntactic or derivation tree.

3.2.2 Integration with GP

Grammar for the problem

The definition of a grammar is the first task in solving a
problem. In a typical GP application, a CFG defines the
functions, constants, variables, and also the relationships
and constraints between them. A good grammar should
have sufficient power (flexibility) to express the theoretical
solution of the problem, while it should be parsimonious as
much as possible to avoid unnecessary increase in the size of
the search space.

A usual data classification problem, for instance, will nor-
mally include production rules to deal with conditionals (e.g.
if-then-else), logicals (e.g. or, and, not), relationals (e.g.
<, >, =), and sometimes arithmetic functions to process
numerical data.

Creation of the Individuals

Each individual’s genome contains a complete derivation
tree (sentence), including the non-terminal symbols of the
derivation®. In the initial population the trees are randomly
created, i.e., during the derivation process any production
rule—compatible with the current non-terminal—may be
picked up at random.

Fitness Evaluation

The introduction of the CFG does not change the method
of fitness evaluation of the canonical GP. In data classifi-

4At each stage in the derivation the leftmost non-terminal
is replaced.

5The non-terminal symbols are stored together in order to
guarantee the genome feasibility under the application of the
genetic operators.
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cation, each individual is evaluated against a training set;
the classifier is executed in every data training, and its fit-
ness is proportional to the number of correct classifications
(accuracy).

Although the non-terminal symbols are part of the pro-
gram tree, they are not required at the execution time; they
just ensure the structural integrity of the genome across the
genetic operations.

Genetic Operators

The two main genetic operators in GP are crossover and
mutation. The former recombines successful genetic mate-
rial in order to hopefully create better individuals; the latter
introduces new genetic material (increases the diversity) by
introducing small random changes in some individuals. In
their standard form, the crossover swaps random subtrees
of two individuals (parents) while the mutation replaces a
random subtree of an individual by an entirely new one.

To preserve the feasibility of the individuals it is necessary
that each genetic operator respects the production rules of
the grammar. In other words, all genetic operators must
respect the constraints imposed by the non-terminals of the
derivation tree. Therefore, for crossover and mutation the
subtrees being swapped/replaced must have the same non-
terminal root node (topmost node).

Figure 3 illustrates the crossover between the individual A
and B. First, a random non-terminal node is selected in the
tree A, namely <class>. Also, in the tree B a non-terminal
having the same label is randomly selected. Finally, the two
subtrees rooted by <class> are swapped, so creating two
new individuals, A’ and B’.

<if-then-else>) <if-then-else>

o,
3, <class> 2
g

o 1T
%

o
E,'<class> &

Figure 3: Grammatically-based Crossover

<if-then-else>

VR AN

The mutation operator is exemplified in Figure 4. Again, a
random non-terminal is selected in A, for example <class>.
Then, the subtree rooted by that non-terminal is replaced
by an entirely new subtree whose root node is also <class>.
Note that the selected non-terminal was actually the start
symbol used in the derivation process to create the new sub-
tree.



Figure 4: Grammatically-based Mutation

4. COEVOLUTION OF DATA SAMPLES AND

CLASSIFIERS

Coevolution is the evolution acting upon two or more pop-
ulations that interact closely with each another. It guides
the evolutionary process towards a series of reciprocal changes
in order to keep each population adapted with one another.
There are different types of coevolution, ranging from mu-
tual cooperation to competition; this section presents com-
petitive coevolution in which a population of classifiers (clas-
sification trees) compete with a population of data samples
(training data set).

4.1 Competitive Coevolution

To compete means that if an individual’s fitness is in-
creased then the competitor’s fitness is decreased, and vice
versa. In a data classification context, this means that if a
classifier correctly classifies a data sample then its fitness is
increased and the data sample’s fitness is decreased; on the
other hand, if a data sample induces the classifier to make
a wrong classification then the data sample’s fitness is in-
creased but the classifier’s fitness is decreased. According
to Hillis [6], a competitive coevolutionary approach has two
important properties: (1) it reduces the chance of getting
stuck at local optima; and (2) increases the efficiency of the
fitness evaluation because it makes the evolutionary process
to focus on difficult data samples, i.e., those not easily clas-
sifiable.

Paredis [13], develops an interesting coevolutionary ap-
proach using genetic algorithm for data classification, in
which a population of neural networks classifiers competi-
tively coevolve with a population of input patterns; more-
over, he proposed a limited-memory fitness evaluation scheme
called life-time fitness evaluation.

The present paper brings Paredis’s approach into a gramma-

tically-based genetic programming context, where classifica-
tion trees coevolve with training data samples. This coevo-
lutionary process works as explained below.

In an iterative cycle, a pair of competitors are selected
based on their fitness: one individual from the population

of classifiers and the other one from the population of data
samples. A classifier is declared the winner when it is able
to correctly classify its opponent; in an analogous manner, a
data sample defeats a classifier when it causes an incorrect
classification. In both cases the winner’s fitness is increased
whereas the loser’s fitness is decreased.

Note that only the population of classifiers undergoes the
genetic operations since it does not make sense to change
the data set. Although the data samples are not subject to
the genetic changes, they impose contrary pressure on the
population of classifiers on proportion that the most difficult
samples—Dbetter fitness—are those that have more chance
to compete, that is, those that are more frequently selected.
But in the same way the best classifiers are those more often
selected to compete. This arena of increasing bidirectional
tension is the coevolutionary pressure; basically, the more
an individual succeeds the more it must prove its skill.

The competition between classifiers and data samples is
illustrated in Figure 5. The circles on the left represent the
population of classifiers while the circles on the right rep-
resent the population of data samples; the best individuals
of both populations are on the top. The lines symbolize
the history of confrontation where the bolder ones indicate
a greater number of encounters. An interesting fact is that
the coevolutionary process smartly focuses on the harder
data samples rather than wasting unnecessary resources on
the easier ones. As a result, the overall evaluation process is
more efficient than the traditional method where each clas-
sifier is always evaluated against every data sample.

Q
v
4
- 00000

Figure 5: Illustration of competitions between clas-
sifiers and data samples.

4.2 Life-Time Fitness Evaluation — LTFE

Instead of assigning a fixed number to indicate the fitness
of an individual after its evaluation, Paredis proposed an
accumulative scheme inspired by the concept of “energy”,
in which the adaptive degree of an individual —and so its
reproduction success— is measured by the quantity of energy
accumulated during its existence. This scheme is named
life-time fitness evaluation (LTFE) [12].

In genetic programming the LTFE works as follows. A fi-
nite and discrete number determines the “memory” capacity,
i.e., the number of competition results that will be stored for
an individual as its fitness. The most recent results replace



the oldest ones in order to keep the size of the history con-
stant. For each confront it is stored win (1) if an individual
has defeated the opponent or not win (0) otherwise. Thus,
the difference between the number of victories and the num-
ber of defeats defines an individual’s fitness.

An important property of the LTFE is its ability to deal
with noise. In the coevolutionary scheme, a noisy data sam-
ple could easily degrade the evolutionary process since much
effort would be wasted in order to dominate such a “diffi-
cult” sample®. However, a finite memory, which forgets the
older encounters, reduces the distance between the difficult
individuals and the easy ones, thus reducing the —possibly
excessive— degree of focusing on the hardest data samples.

4.3 Coevolution of Data Samples and Classi-
fiers

The kernel of Paredis’s coevolutionary process adjusted
for data classification is given in Algorithm 1, which is re-
peated until a termination criterion—such as “solution found”
or “time limit”—is reached. It is assumed that both popu-
lations, classifiers and data samples, are already initialized
and their individuals evaluated. The first evaluation of a
recently created classifier is done simply by putting it to
compete against a specified number of random data sam-
ples”; at the same time, the fitness of each data sample is
also updated. Whenever a competition happens, its result
is inserted into the fitness history of both individuals, and
the oldest record is discarded in order to keep constant the
history lenght —first in first out (FIFO).

Algorithm 1 Coevolutionary cycle with LTFE.

while cycle is incomplete do
Competitor A < select a promising classifier.
Competitor B « select a promising data sample.
Promote the competition between A and B.
if A classifies B then
Insert victory into A’s fitness history.
Insert defeat into B’s fitness history.
else
Insert defeat into A’s fitness history.
Insert victory into B’s fitness history.
end if
end while
Select two classification trees, X; and X», for mating.
Recombine X1 with X5 to create the children X| and X5.
Apply other operators (e.g. mutation) on X] and Xj.
Evaluate X1 and X3, and insert them into the population.

Formation of the Populations

While the initial population of classifiers consists of random
derivation trees of a certain language defined by a context-
free grammar, the population of data samples is composed
by the (immutable) training samples of the problem’s data
set.

5Since a noisy data sample is usually far away from the
nature/essence of the data set, it is certainly very difficult
to classify.

"The number of data samples, which defines the “length” of
the cycle, is a parameter that may vary depending on the
problem. Paredis suggests 20 competitions per cycle.
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Fitness Calculation

Being a set of historical results rather than a single value,
the fitness must be transformed to be used by the selection
process; basically, the number of wins is summed and then
normalized. For a data sample individual, its resulting fit-
ness fsample is defined as follows:

Meycle

H;

fsample =

Necycle im1

where ncyere is the size of the cycle (normally 20) and H;
is the i-th value of the history of encounters—O0 if it was
correctly classified; 1 otherwise.

The resulting fitness of a classifier is obtained in an anal-
ogous manner, but it also includes a measure of complex-
ity, which is expressed in terms of number of nodes and at-
tributes used, in order to penalize complex trees; therefore,

the feiassy is given by:

(1-a)
where node and nodemaq, are respectively the number of
nodes of the tree and the maximum number of nodes so
far; similarly, attributes and attributesmq. are the number
of attributes of the tree and the maximum number of at-
tributes available in the data set. The a parameter controls
the level of penalization.

Meycle

>

=1

o nodes attributes

2

fclassf =

nodesSmar  attributesmaz

Selection Scheme

In the competition stage a rank-based selection is used for
(both populations); however, a tournament selection is used
in the recombination stage for the population of classifiers).

Reproduction Method

As in Paredis’s work, the steady-state reproduction is adopted
here, so each time an individual is created it is immediately
inserted into the current population. In order to keep the
size of the population constant, the worst individuals are
removed.

S. EXPERIMENTS

This section presents some data classification experiments
(from the machine learning repository of the University of
California [2]) in order to observe the performance of the
proposed technique.

5.1 Methodology

When not fixed by the problem, the original data set was
divided into two subsets: the training set, with 2/3 of the
records, and the test set, with 1/3 of the records. Thirty
independent runs were performed for each experiment; this
means different seeds and random data distribution for the
training and test sets for each execution. Each table of re-
sults summarizes the averages of the accuracy on the train-
ing and test sets, tree size, and evaluations®.

Some parameters remained constant throughout the ex-
periments, namely, probability of crossover (90%), probabil-
ity of mutation (5%), size of tournament (2 individuals),
and size of the Paredis’s cycle (20).

8The number of evaluations is taken at the generation where
the best individual is found.



The algorithm was implemented in C++ language on an
AMD 2.2GHz machine with 2GB RAM running GNU/Linux.

Grammar

All problems were carried out upon a rather generic context-
free grammar—maybe even redundant regarding the current
experiments. The language defined by such grammar in-
cludes the conditional if-then-else, relationals (=, #, <, <,
>, and >), logicals (or, and, and not), arithmetics (+, —,
x, and =), and ephemeral constants. Also, this grammar
allowed for inter-attribute comparison and arithmetic oper-
ations upon them.

5.2 Congressional Voting Records Data Set

This data set includes votes for each of the U.S. House of
Representatives Congressmen on the 16 key votes identified
by the Congressional Quarterly Almanac. There are three
(there were originally nine) different types of votes: yes,
no, and unknown. The goal of this problem is, based on
the votes on those 16 points (attributes), to identify which
political party (democrat or republican) would make such
votes. The data set has a total of 435 records.

The first experiment was performed with the following pa-
rameters: population of 300 individuals, maximum of 1000
generations, and o = 0.15 (coefficient of complexity). Ta-
ble 1 summarizes the result.

most of the learning algorithms. The training set consists of
124 records.

The settings for this experiment were: population of 500
individuals, maximum of 100 generations, and o = 0.2. Ta-
ble 3 shows that in fact the problem is somewhat easy; all
runs found the perfect solution. However, as reported in
[16], only 9 out of 25 learning algorithms could reach 100%
of accuracy.

Accuracy Tree Size | Evals (x10°)
Train. Set | 1.000 +0.000 | 14.0+5.6 | 1.42+1.02
Test Set | 1.000 & 0.000
Average execution time: 13 sec.
Table 3: Monk’s problem I
Monk’s Problem I1

This second data set, on the other hand, is similar to parity
problems, and it combines the attributes in a certain way
that makes it hard to describe relying on the given attributes
only [9, 8]. The training set has 169 records.

The parameters of this experiment were chosen regarding
the complicated nature of this problem: population of 500
individuals, maximum of 5000 generations, and a relaxed
a = 0.05. The result is presented in Table 4.

Accuracy Tree Size | Evals (x10°) Accuracy Tree Size Evals (x10")
Train. Set | 0.984 £0.013 | 74.3 +41.0 5.22 +3.17 Train. Set | 0.999 £ 0.002 | 195.1 £214.3 1.90 £0.52
Test Set | 0.975 £ 0.019 Test Set | 0.970 £ 0.019

Average execution time: 11 min.
Table 1: Congressional Voting Records I

The proposed approach was able to produce very accurate
results; for comparison, C4.5 [14], also using 1/3 records for
the test set, achieved 94.5% on the test set (98.3% on the
training set). However, C4.5 produced trees with average
size of 25.9 nodes. So, in order to reduce the size of the
solutions, the coefficient of penalization o was increased to
0.2. The result can be visualized in Table 2, in which smaller
trees (mean = 26.4) were created without significant loss in
accuracy.

Accuracy Tree Size | Evals (x10°)
Train. Set | 0.975+0.011 | 26.4+6.1 | 3.91+£2.07
Test Set | 0.971 +£0.013

Average execution time: 5 min.

Table 2: Congressional Voting Records 11

5.3 Monk’s Problems Data Set

The Monk’s problem is a collection of three artificially
generated data sets created by Thrun et al. [16] in order to
evaluate the performance of different learning algorithms.
The data sets contain 432 records, 7 attributes, and 2 classes.
Each problem has a specific purpose (level of difficulty) and
each one defines its own training set. The test set is always
the whole 432 samples.

Monk’s Problem I

Monks I is generated in standard disjunctive normal form
and the problem is supposed to be easily accomplished by
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Average execution time: 42 min.
Table 4: Monk’s problem II

According to [16], only 4 (out of 25) algorithms were able
to achieve 100% of classification accuracy; moreover, only
one of them produces symbolic solutions’. The best accu-

racy of the other 21 algorithms was 93.1%.

Monk’s Problem II1

Finally, like Monks I, Monk’s problem III is also created in
standard disjunctive normal form, however, its training set
has 5% of misclassifications; moreover, there are only 122
training data samples. The purpose of this data set is to
evaluate the capacity of generalization of an algorithm.
This experiment used a population of 500 individuals,
maximum 500 generations, and a = 0.15. Table 5 sum-
marizes the results, and one can see that the accuracy in
the training set is lower than that of the test set. This is
due to the fact that the training set contains misclassified
data, and a good generalizer tends to ignore noisy data.

Accuracy Tree Size | Evals (x10°)
Train. Set | 0.961 £0.032 | 37.1 £29.8 | 3.40 £ 3.25
Test Set | 0.995 4+ 0.015

Average execution time: 5 min.
Table 5: Monk’s problem III

Although the proposed algorithm could not produce a per-
fect score, it has performed very well, showing a great ca-
pacity of generalization. In the report provided by Thrun et

9Tt was the AQ17-DCI algorithm, which can directly deal
with attributes, and so derives new ones when necessary.




al. [16], only 5 algorithms were able to reach 100% of accu-
racy. The best result for the other 20 algorithms was 97.2%.

6. CONCLUSIONS

This work was built upon three pillars, namely, genetic
programming, grammatically-based representation, and com-
petitive coevolution. These techniques were combined to-
gether in order to perform the data classification task.

Genetic programming provided a robust framework in which

a population of symbolic classification trees evolves through
Darwinian principle of natural selection. A formal context-
free grammar structure replaced the canonical GP represen-
tation; as a result, the classifiers were able to be described in
an arbitrary language, possibly consisting of deep conceptual
relationships. Finally, a coevolutionary scheme promoting
competition between classifiers and data samples was intro-
duced in order to improve the process by focusing on the
difficult data samples.

Some experiments were made and the results, when com-
pared with other algorithms found in the literature, were
very encouraging. The first experiment showed that, though
C4.5 is faster, the proposed algorithm produced better clas-
sification accuracy. The second experiment, which is a col-
lection of three problems, revealed the ability of the pro-
posed algorithm to deal with a known difficult problem (par-
ity problem) and with the presence of noises (generaliza-
tion).

Future work includes: (1) studying the possibility of evolv-
ing the production rules of the grammar simultaneously with
the standard evolutionary process, so that the rules be-
come more optimized to the current problem; (2) evaluat-
ing the proposed algorithm on other data sets in order to
find out its strengths and also its weaknesses; (3) investi-
gating the coevolutionary process to detect—and to try to
solve—whether there are occurrences of cycles of alternating
strategies, that is, pattern of solutions that are rediscovered
repeatedly and do not produce continuous increase of com-
plexity (classification accuracy) during the process.
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