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Abstract Predictive algorithms are powerful tools to support infection surveil-
lance plans based on the monitoring of vectors abundance. In this article, we
explore the use of genetic programming (GP) to build a predictive model of
mosquitoes abundance based on environmental and climatic variables. We claim,
in fact, that the heterogeneity and complexity of this kind of dataset demand for
algorithms capable of discovering complex relationships among variables. For this
reason, we benchmark GP performance with the state of art of machine learning
predictive algorithms. In order to provide a real exploitable model of mosquitoes
abundance, we train GP and the other algorithms on mosquitoes collections from
2002 to 2005 and we test the predictive ability on 2006 collections. Results re-
veal that, among the studied methods, GP has the best performance in terms of
accuracy and generalization ability. Moreover, the intrinsic feature selection and
readability of the solution provided by GP offer the possibility of a biological in-
terpretation of the model which highlights known or new behaviours responsible
of mosquitoes abundance. GP reveals therefore to be a promising tool in the field
of ecological modelling, opening the way to the use of vector based GP approach
(VE-GP) which may be more appropriate and beneficial for the problems in anal-
ysis.
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1 Introduction

West Nile Virus (WNV) is an infectious disease, transmitted to people by the
bite of an infected mosquito called the vector of the disease [9]. The virus causes
neurological illnesses and death and no human vaccine is available [19]. It is com-
monly found in Africa, Middle East, North America and also in Europe. The first
outbreak in Italy dates back to 1998, when 14 horses located in Tuscany were con-
firmed for WNV infection by laboratory analyses [17]. Later, in 2008, besides the
largest outbreak, the first human case of WNV neuro-invasive infection in Italy
was observed [12]. Since then, a constant circulation of the virus has been high-
lighted, and a national surveillance plan was established [5]. The aim of the plan
is to quantify vector abundance in order to predict the emergence and the am-
plification of the virus. Therefore, understanding the relationship between vector
dynamics and environmental and climatic variables facilitates by far the adapta-
tion of control or eradication strategies. Predictive models of vector spread and
abundance are valuable tools to fulfil this goal.

A Generalized Linear Mixed Model (GLMM) was used in [8] to predict Cx.
pipiens amount, the species most responsible of WNV circulation in Europe [21],
in Eastern Piedmont region in Italy. Additionally to the creation of a vector dis-
tribution map that identifies high risk area of the region, the model highlighted
the most informative environmental determinants of the high abundance of Cx.
pipiens mosquitoes. Modelling mosquitoes abundance is, however, a hot topic in
the whole field of ecological research. In [7] a GLMM was used to evaluate the
effect of climatic and ecological factors on the spatio-temporal dynamics of two
main species vectors of West African Rift Valley Fever in Senegal. Other methods
were used to predict mosquitoes population, including a Poisson regression model
in [29] to examine the effect of off-season factors on East Coast vectors species
and mathematical matrix models [6] to simulate the abundance of two vectors
of the Yellow Fever Virus in Ivory Coast. These approaches undoubtedly showed
good performance, providing information that can contribute to the development
of more efficient surveillance plans. Nonetheless, they all a priori fix the structure
of the relationship among ecological variables and mosquitoes abundance which is
likely to be more complex due to the heterogeneous and complex data involved.
In fact, data regarding mosquitoes abundance, and more in general data in the
ecological domain, come from different sources and have different structures (time
series, spatial data). This inherent complexity demands for more sophisticated
techniques that can provide more realistic distribution models.

In such a framework, Genetic Programming (GP) [14] could potentially rep-
resent a promising approach to predict mosquitoes abundance, and deserves to
be explored. There are few articles that exploit GP in ecology, specifically marine
ecology, and their results look very promising. In [26] GP is used to identify which
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environmental variables determine zooplankton abundance, while in [10] a similar
approach is used to detect the drivers of planktonic population. As these articles
claim, GP has the great capability of generating functions that estimate the tar-
get without any assumption on the function structure and on the dependencies
among predictors. Although this methodology is different from the classical statis-
tical methods, it still has the advantages of readability and interpretability of the
resulting models. These features are of great importance in order to better align
the modeling to the decision making process. For this reason, further investigation
of GP is recommended in highly non linear problems coming from the ecological
field.

In this article, we explore the application of GP in predicting mosquitoes
abundance in Piedmont region based on climatic and environmental factors fol-
lowing [8]. A first investigation of GP on the described ecological problem was
conducted in [22]. As in [22], also here GP results are compared with those ob-
tained in [8], fitting again the GLMM model since we reprocess some data. The
main novelty here is the benchmark of GP with respect to three popular state of
art machine learning algorithms on regression problems, namely Random Forest
(RF), Extreme Gradient Boosting (XGBoost), and Multilayer Perceptron (MLP).
These techniques have already been used in the ecological field [24,32,15] or are
recognized as highly effective [30] and, as GP, they have the potential of discov-
ering complex relationships. The comparison has the advantage of highlighting
the pros and cons of GP with respect to common machine learning algorithms.
Another important element of novelty provided in this paper is the exploration of
GP as a concrete device to develop prediction maps. To explain the reason beyond
this assertion, we have to define some terms. To create a model, three subsets of
the dataset are always adopted: the training set that is used to fit a model, the
validation set that is used to evaluate a fitted model and the test set used to assess
the performance of a specific fitted model. In [22] the selected GP model used to
predict future abundance (test set) was actually the best performing on future
abundance among all the executed runs. In real world applications, this approach
is not supposed to be used, since we do not have access to future data. Thus, in
this work, the model is selected using the performance on validation, while the
test set remains untouched during learning.

The paper is structured as follows: in Section 2 we explain the problem in
analysis and we introduce the used dataset. In Section 3 we briefly describe all the
studied techniques; the comparison between GP and the other methods, as well as
the analysis of the best model found by GP, are reported in Section 4. Questions
and issues that arise from these results are discussed in Section 5. Finally, Section 6
concludes the paper with suggestions for further research.

2 The dataset

We use the dataset produced by the Casale Monferrato Agreement for mosquitoes
control from 2002 to 2006 in the context of the surveillance Piedmont region pro-
gram. The study area covers the eastern part of Piedmont region, called Casale
Monferrato, which offers a suitable environment for the proliferation of the local
Cx. pipiens species. Mosquitoes were weekly collected from 36 CO2-baited traps
from May to September with a total of 20 collections per year for each trap. We
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consider the same predictive variables of [8], selected as the most informative about
the abundance of mosquitoes. The variable TWEEK is the average Land Surface
Temperature (LST) from 8 to 15 days prior to the trapping day derived from
the Moderate Resolution Imaging Spectro radiometer (MODIS) satellite (National
Aeronautics and Space Administration, NASA [33]). RAIN represents the cumula-
tive rainfall from 10 to 17 days prior to trapping, registered by the nearest weather
station to the trap [1]. Both these variables catch the effect of climatic conditions
on mosquitoes population abundance during a precise window of time. Vegetation
changes deemed influential on mosquitoes dynamics are captured by the Normal-
ized Difference Vegetation Index (NDVI ), derived again from MODIS [33] as a 16
days average. While these variables change in each day of collection, some others
are constant and inform about the environment surrounding the trap. DISTU,
DISTR, and DISTW estimate the distance of sampling locations to the nearest
urban center, rice field and woodland respectively. The area covered by rice field is
registered in the variable RICEA. To spot the impact of altitude, the elevation of
the trap location (ELEV ) is included among predictors. The last variable involved
is SIN, a sinusoidal curve with a phase of 1 year. It is an artificial informer of the
seasonality of mosquitoes, reflecting the shape of mosquitoes abundances across
the year. Its value, thus, has a peak in the first week of August where experts know
there is a peak in mosquitoes abundance. The complete dataset used in this work
is thus composed of 3600 observations, each one corresponding to a collection of
mosquitoes in a precise day and trap. Every observation contains the values of the
9 predictors (TWEEK, RAIN, NDVI,DISTU, DISTR, DISTW, RICEA, ELEV
and SIN ) and the value of the dependent variable, or target, which is the number
of mosquitoes collected.

To perform the experiments, we split the dataset into learning and test set,
following the natural order of the years. Collections from 2002 to 2005 are used as
the learning set to tune and train the algorithms, while collections of 2006 form
the test set, therefore they represent unseen data, used to test the generalization
performance of the predictive models. This approach is naturally determined by
the real problem at hand: developing predictive models for mosquitoes abundance.
Thus, we use data from the past (2002-2005) to train models and we assess their
generalization ability by evaluating them on future predictions (2006).

3 GP and the other techniques involved

We use different tools and softwares to run the chosen algorithms, namely MAT-
LAB R2018A, GPLab [28] and R. We do not provide a description of all the
parameters, especially for the ones kept at the default value of the respective im-
plementations. We remind that the goal of the paper is to explore GP applicability
in ecological modelling giving standard benchmarks (ML techniques) to its results.
Only some parameters that need to be manually inserted are tuned according to
the following strategy: we propose a value for the parameter and we estimate the
performance of the algorithm by running it 60 times on 60 different split of the
learning set; in each run the algorithm is trained on 75% of the learning set and
validated on the remaining 25%; the median result over the 60 runs on the 25%
measures the performance of the algorithm using that particular value of the pa-
rameter. In the end, we use the configuration that allowed us to obtain the best
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performance. In the following description, we specify which software is used and
which parameters are tuned in each case.

3.1 Genetic Programming

We use a tree-based GP [14], where each tree is built combining a set of functions F
with a set of terminal symbols T. In our case, T consists of the predictors described
in Section 2, plus random constants r between 0 and 1 generated in runtime when
building trees. Therefore T = {TWEEK,RAIN,NDVI,DISTU,DISTR,
DISTW,RICEA,ELEV,SIN, r}. The functions set F includes the usual binary
addition, subtraction and multiplication operators, plus a protected version of the
division, known as kozadivide, that returns 1 when the denominator is equal to
zero. Thus the set is F = {plus, minus, times, kozadivide}. Fitness is measured
as the Root Mean Squared Error (RMSE) between the predicted values and the
real mosquitoes abundances.

The computational tool used for GP experiments is GPLab [28], a public do-
main GP system implemented in MATLAB. The parameter setting consider is
reported in the upper part of Table 1, and it corresponds to the default values
provided by GPLab.

3.2 Generalized linear mixed model

The GLMM was the first modelling technique designed to approach our prob-
lem [8]. A GLMM is a statistical model that combines the characteristics of Gen-
eralized Linear Models (GLM) and mixed models [34]. Therefore, the target is
allowed to follow any kind of distribution as a GLM, and fixed and random effects
join the predictors to introduce population-average effects and subject-specific ef-
fects. We considered the same GLMM as the one selected in [8]. The process
of selection consisted in the following steps. Firstly, in [8] a full model was out-
lined by selecting the environmental variables deemed as the most informative
about mosquitoes abundance (TWEEK, RAIN, NDVI, DISTU, DISTR, DISTW,
RICEA, ELEV, SIN ), and defining two random effects: RNDtrap, which repre-
sented the spatial difference between traps (the subjects) and SRNDtrap, which
represented the effect of space location on each trap. The authors then tested 169
GLMMs built with all the variables involved in the previous full model. The best
one was chosen by the Deviance Information Criterion (DIC), an approximate
model selection method which tries to explicitly balance model complexity with
fit to the data [11]. The chosen model was used as the final GLMM model to be
trained in order to predict mosquitoes abundance. The resulting expression is:

y = I +β1∗RAIN +β2∗TWEEK +β3∗SIN +β4∗ELEV +β5∗DISTU +RNDtrap

where I is the intercept representing the fixed effect and y is the abundance of
mosquitoes. All the analysis are performed using the R software package [2].
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3.3 Random forest

A RF is an ensemble of regression trees that estimates the target by averaging
individual tree predictions, in order to regularize the outputs, thus improving the
generalization ability. In this work, we use a RF implemented in R [3], that follows
the Breiman bagging idea [18] of trees construction. Instead of splitting each node
of a tree using the best split among all variables, each node is split using the
best among a subset of predictors randomly chosen at that node. This strategy
prevents trees of the forest to be correlated since they do not select any more the
same strong predictors. The R implementation of RF requires the manual input
of the number of trees participating in the forests. Therefore, according to the
strategy described above, we tuned this parameter, investigating values from 100
to 700. The selected value was 700, as reported in Table 1.

3.4 Extreme gradient boosting

XGBoost is an implementation of gradient boosted (GB) decision trees, with a
difference in modelling details that generally allows XGBoost to obtain better
performance [30]. Boosting is a technique where new models (decision trees) are
added to correct the errors made by existing models. Specifically, gradient boosting
is an approach where new models are created to fit the residuals of prior models
and then added together to make the final model. The word ”gradient” refers to
the use of the gradient descent technique applied to minimize the loss when adding
new models. The implementation we choose is the one contained in R [4], which
requires the number of rounds (iterations) to be specified by the user. According
to the tuning technique described above, we investigate the best number of trees
to configure, called the number of rounds, from 1 up to 20. This value and other
main parameters of XGBoost in R are listed in Table 1.

3.5 Multilayer perceptron

A multilayer perceptron (MLP) is a multilayer feedforward neural network [27]. It
consists of a set of source nodes that constitute the input layer, one or more hidden
layers of computational nodes, and an output layer of computational nodes. The
input signal propagates through the network in forward direction, on a layer-by-
layer basis. The multiple layers are meant to capture more complex relationships
among input variables. We adopt the implementation included in the Matlab Neu-
ral Network toolbox [20]. Following the strategy previously described, we tuned
the number of hidden neurons considering a network with just one hidden layer.
We explored all the values between 1 and the number of input variables. All the
main parameters used are described in Table 1.
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Table 1: Parameters used in the experiments.

GP Parameters

population size 500

max number of generations 100

initialization Ramped Half and Half [23]

selection method Lexicographic parsimony pressure [25]

elitism best individual kept

crossover rate 0.9

mutation rate 0.1

max tree depth 17

RF Parameters

number of trees 700

XGBoost Parameters

η learning rate 0.3

max tree depth 6

number of rounds 7

MLP Parameters

learning algorithm Levemberg-Marquardt backpropagation [16]

hidden neurons 1

µ increase factor 0.1

µ decrease factor 10

epochs 1000

4 Experiments and results

4.1 Experiments setup

Our objective is to study GP’s ability in predicting mosquitoes abundance dur-
ing 2006, based on historical data collected from 2002 to 2005, and to show its
competitiveness by comparing it with other methods. After a tuning phase of
some parameters, RF, XGBoost, MLP and GLMM are trained on the learning set
(mosquitoes collections from 2002 to 2005) and then evaluated on the unseen col-
lections of 2006 (test set). Since GP is a population based and stochastic technique,
the training phase is conducted differently. We run the algorithm 60 times; in each
time the population is trained on a random sample of 75% instances of learning
dataset. In each run, the individual of the final population that better perform on
the remaining 25% of the learning dataset (called validation set) is selected as the
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best predictive model found by GP. The final 60 best models compose the sample
population of GP models. Each of the GP models is then evaluated on the test
set.

We measure the accuracy of prediction by comparing the RMSE between pre-
dicted and real collections on the test data. Statistical significance of the null
hypothesis of no difference in performance between GP and each of the other
method is based on one sample Wilcoxon signed rank test at α = 0.0125, after
Bonferroni correction. For further comparison, we measure the overfitting as the
difference between test and learning set RMSE.

4.2 Results

Table 2 summarizes the RMSE returned by each techniques on the test set. Re-
garding GP, we report the median RMSE over the 60 models, choosing the median
instead of the mean as a more robust descriptor of outliers, which are likely to be
found in stochastic methods. Table 3 presents the p-value of the Wilcoxon tests
comparing GP with the other methods.

Table 2: Statistics about the RMSE of the different techniques on the test set.

GP RF XGBoost MLP GLMM

83.8 (median) 83.0 87.9 83.7 85.5

Table 3: Statistical significance of the difference in performance between GP and
the other methods.

GP vs RF GP vs XGBoost GP vs MLP GP vs GLMM
p = 3.1 · 10−7 p = 1.7 · 10−11 p = 0.2 p = 1.2 · 10−10

According to the statistical tests, GP performance differs from all the other
methods except MLP. Boxplot in Figure 1 shows that GP is only outperformed
by RF. The results on GP performance immediately suggest that the relationship
among variables is more complex than the one previously designed with a GLMM
in [8]. However, at a first glance, GP does not seem to be the technique that
returns the best result. Nonetheless, the quality of predictions should also take into
account the quality of learning expressed by overfitting. As mentioned above, we
have decided to quantify overfitting by calculating the difference between learning
and test median RMSE. For RF and MLP, this measure returns 46.1 and 17.4
respectively. This indicates a severe overfitting for RF. Contrarily, the difference
between learning and test RMSE for GP is only 1.8. We hypothesize that RF, and,
even though in more reduced form, MLP are not learning the existing relationship
between the variables. The boxplot of Figure 1 shows that the same phenomenon
appears even more substantially in XGBoost, which is generally considered the top
machine learning method nowadays. A possible reason of this fact, strengthened
by the RF results, is that regression trees are not suitable for the problem at hand.



Title Suppressed Due to Excessive Length 9

4
0

5
0

6
0

7
0

8
0

GP RF XGBOOST MLP GLMM

F
it
n

e
s
s

Fig. 1 RMSE on both the learning and test set for the different algorithms. Test set results
are plotted in blue, while learning set results are plotted in green.

To corroborate the appropriateness of using GP, compared to the other studied
techniques for the problem at hand, we calculate the percentage of GP models in
the sample with lower RMSE compared to MLP and RF on the test set. Respec-
tively 22% and 43% of GP models outperform RF and MLP .

4.3 The model for mosquitoes dynamics

Another competitive advantage of GP compared to other machine learning meth-
ods, including the ones studied here, is the possibility of reading and interpreting
the model. Despite the fact that decision trees are representations easy to under-
stand in logical terms, the process of averaging the results coming from multiple
decision trees in a RF muddies the logic. Since model interpretability is a key
feature of ecological modelling, GP shows again its benefit in the field.

We select as the predictive model for mosquitoes abundance the best model on
its validation set among the 60 best models. The resulting RMSE on the test set
is equal to 83.4. Equation (1) represents its expression. The symbols used are the
ones classically associated with the primitive functions reported in Table 1; when
no symbol is found, a multiplication is occurring.
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#Mosquitoes =
DISTW · SIN3

DISTU
+

(TWEEK −DISTR+DISTW )SIN7

DISTR

+
DISTW ·RICEA · SIN5

TWEEK
+ 2SIN5 +

DISTW · SIN5

DISTU

−DISTR · SIN3 + (TWEEK −DISTR)SIN8

+
2SIN3(2SIN + 1)

DISTU
+
DISTU · SIN3

DISTR
+ 2DISTW · SIN3

− DISTW · SIN2

DISTR
−DISTR · SIN +DISTW

(1)

Since there are quite a lot of occurrences of kozadivision in the expression, we
check whether their result is frequently the constant 1 used to protect the division
when the denominator is zero. Luckily, on the test set, the protected version of
the division is not too much used, therefore the divisions involved are mainly true
division.

The general expression reported in Equation (1) may be hard to interpret, but
the analysis of the variables discarded and the general effect of the ones selected
may provide meaningful information. To investigate the role of each variable in the
prediction we firstly consider, as a subjective measurement, the number of times
each variable appears in the model. Table 4 shows these frequencies of occurrence
of the single variables in the model.

Table 4: Frequency of each variable in the best model.

Variable Frequency
TWEEK 3
RAIN 0
NDVI 0
DISTU 4
DISTR 7
DISTW 7
RICEA 1
ELEV 0
SIN 13

The implicit feature selection embedded in GP reveals that RAIN, NDVI and
ELEV are not informative about mosquitoes abundance. This assertion contrast
with the results of [8], where the GLMM included both RAIN and ELEV, as shown
in Section 3. Interestingly, the most frequent variable is SIN. The standardized
coefficients in GLMM give a measure of the change in the target (in standard
deviations) for every standard deviation change in the predictors. Since the higher
standardized coefficient is the one of SIN (βSIN = 0.02, βDISTU = −0.003, βELEV =
−0.007, βTWEEK = −0.005, βRAIN = 0.003), we can state that also when using the GLMM
this variable is considered as the most informative one. A similar analysis cannot be carried
on for the other techniques, since they are mainly black box methods.

Despite the fact that shorter models are often more appealing, GP provides a well per-
forming readable expression where the main effect of variables on the target can be captured.
Looking at the main appearance of variables at numerator or denominator, and at the sign,
we can make the following observations:
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– The LST of the week before trapping, TWEEK, has a general positive effect on the abun-
dance of collected mosquitoes. This outcome is in line with the knowledge about mosquitoes
development [31]; in fact, the warmer the temperature is, the faster the mosquito larvae
will grow and then spread.

– The distance from urban centre, DISTU, appears mainly at denominator with positive
sign, having a negative effect on the abundance of mosquitoes. This suggests that the
closer a place is to an urban area, the more numerous is the presence of mosquitoes. In
urban areas in fact there are many breeding sites for mosquitoes such as catch basins and
plant pot saucers.

– The distance from the nearest rice field, DISTR, has a negative effect too: the closer a
place is to a rice field, the more mosquitoes are collected. Moreover, since RICEA is at
numerator with positive sign, the larger the rice field the more mosquitoes are trapped.
The model therefore suggests that rice fields are a suitable habitat for mosquitoes.

– The distance from woodland, DISTW, appears as a standalone term, directly influencing
the abundance of mosquitoes and thus playing an important role in the prediction. More-
over, it has a general positive effect on the target, suggesting that woodlands, differently
from urban and rice fields areas, are not a convenient environment for mosquitoes. This is
probably due to the high abundance of various birds that prey this insects.

– SIN has a positive effect on the amount of mosquitoes. This is not so surprising, as far as
we introduce this variable to reflect peaks in mosquitoes abundance during the hot season.

From GP predictions, we derive the mosquitoes distribution maps during the seasonal peak
of abundance. We want in fact to highlight how the GP model can help in identifying high
risk area and thereby the planning of surveillance programs. Figure 2 shows the comparison
between the median number of mosquitoes collected from the end of June until the first week
of August 2006 in each trap and the median predicted values.

(a) Median number of mosquitoes predicted
by GP.

Mosquitoes
<25 
 100 - 200 
 25 - 50 
 50 - 100 
>200

(b) Median number of mosquitoes collected.

Fig. 2 Prediction maps for mosquitoes from the end of June until the first week of August
2006. Circles indicates the abundance in each trap. Darkness increase with the number of
mosquitoes.

The GP model is able to detect the highest risk area of Casale Monferrato in 2006, having
however smoother predictions in space. In fact, while in the real map we find very low abun-
dance traps among dark circles, in the GP map close traps have close abundance values. The
fact that nearby traps do not have similar count is suspicious, thus there may be a problem
with the data.

5 Discussion

An issue that came out from the results presented so far deserves further attention. The vari-
able SIN is an artificial predictor included in the dataset to suggest the period of collection and
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therefore how high the abundance of mosquitoes is expected to be. Both GP and GLMM, the
first technique that was applied on the problem, strongly rely on this variable, which undoubt-
edly gives lots of information concerning mosquitoes abundance. However, this predictor is the
result of a prior knowledge about the problem and we would rather prefer the algorithms to
directly infer from data which combination of environmental and climatic variables determines
the fluctuations of mosquitoes abundance.

LST, NDVI and the rainfall are time series predictors whose flow is related to seasons, thus
they can be strong predictors of mosquitoes dynamics. Nonetheless, they are not recognized as
such by GP (and even GLMM) probably because they are not treated as time series. Time series
were managed as independent training cases by all the machine learning techniques studied
in this paper, including GP. This may cause a loss of information, which may deteriorate
the ability to predict mosquitoes abundance. In this regard, a vector based algorithm such as
Vectorial GP (VE-GP) [13] demands an exploration on the problem in analysis. VE-GP is a
vectorial approach of genetic programming in which vectors are allowed as terminals. To fully
exploit this new representation, VE-GP admits in the primitive functions set new operators
such as aggregate functions, parametric or not. Since vectors are appropriate to represent time
series, the mosquitoes abundance dataset can definitely be analysed by means of VE-GP. The
most informative time windows and aggregations of the predictive time series variable, LST,
NDVI and rainfall, may in this way be discovered during the evolutionary process, without
any a priori assumption. Thus, it may be possible to discard the artificial SIN variable.

6 Conclusions

In this paper, we have explored the use of Genetic Programming (GP) in the field of ecological
modelling. The problem in analysis was the prediction of mosquitoes abundance during a year
in the Italian Piedmont region, in order to control West Nile Virus spread since it is a virus
transmitted by mosquitoes. The problem had already been studied using statistical techniques,
but we believe that heterogeneous and complex datasets such as the one involved demand for
the use of algorithms that can catch more complex relationship among the involved variables.
We assess GP performance by means of an experimental comparison with other well known
Machine Learning techniques in the field and with Generalized Linear Mixed Model (GLMM),
that was the first method ever used to tackle this type of problem.

A first conclusion, based only on an analysis of the Root Mean Squared Error on the test
set (2006 abundances), reveals that GP is outperformed by Random Forest. This preliminary
result is however misleading since it does not take into account overfitting. It turned out, in fact,
that GP is the best approach among the studied ones according to both prediction accuracy
and generalization capability. Moreover GP is the only technique that combine to accuracy
the readability of the model, which leads to the discovery of patterns in data and provides
idea about the domain of investigation. These features are of key importance in ecological
modelling to improve the understanding of the problem in analysis. Based on this fact, we
investigated the best model provided by GP in order to highlight the more relevant variables
for the prediction and their effect on mosquitoes abundance.

A fact that needs to be pointed out is that GP (and also GLMM) gives a substantial
importance for the prediction to the artificial SIN variable, a sinusoidal curve with a phase
of 1 year that suggests mosquitoes abundance dynamics. This a priori knowledge is likely to
prevent the algorithm to infer the dynamics from other types of information, like the flow of
the Normalized Difference Vegetation Index, of the Land Surface Temperature and of rainfalls.
However, to avoid the use of SIN, the time series involved in the data need to be more effectively
exploited. For this reason, our current work is oriented towards the investigation of the problem
by means of a novel version of GP called Vectorial GP (VE-GP). The proper time series
representation, and the possibility of evolving aggregated values, should allow us to develop a
predictive model of the mosquitoes abundance that uses only ecological variables, without the
need of any a priori knowledge coming from domain experts.
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