Skip to main content

Application of Genetic Programming for Uniaxial and Multiaxial Modeling of Concrete

  • Chapter
Book cover Handbook of Genetic Programming Applications
  • 2336 Accesses

Abstract

In current chapter, an overview of recently established genetic programming based techniques for strength modeling of concrete has been presented. The comprehensive uniaxial and multiaxial strengths modeling of hardened concrete have been concentrated in this chapter as one of the main area of interests in concrete modeling for structural engineers. For this engineering case the literature has been reviewed and the most applied numerical/analytical/experimental models and national building codes have been introduced. After reviewing the artificial intelligence/machine learning based models, genetic programming based models are presented, with accent on the applicability and efficiency of each model and its suitability. The advantages and weaknesses of the aforementioned models are summarized and compared with existing numerical/analytical/experimental models and national building codes, and a few illustrative examples briefly are presented. The genetic programming based techniques are remarkably straightforward and have enabled reliable, stable, and robust tools for pre-design and design applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aho A, Sethi R, Ullman JD (1986) Compilers: Principles, Techniques and Tools. Reading (MA): Addison Wesley.

    MATH  Google Scholar 

  • Alavi AH, Gandomi AH (2011) A robust data mining approach for formulation of geotechnical engineering systems. Eng Comput 28(3): 242–274

    Article  MATH  Google Scholar 

  • Alavi AH, Gandomi AH, Heshmati AAR (2010b) Discussion on soft computing approach for real-time estimation of missing wave heights. Ocean Eng 37(13):1239–1240

    Article  Google Scholar 

  • Alavi AH, Gandomi AH, Mollahasani A, Bolouri J (2013) Linear and Tree-Based Genetic Programming for Solving Geotechnical Engineering Problems. In: Yang XS et al. (eds) Metaheuristics in Water Resources, Geotechnical and Transportation Engineering, Elsevier, Chapter 12, p 289–310

    Google Scholar 

  • Alavi AH, Gandomi AH, Mollahasani A, Heshmati AAR, Rashed A (2010a) Modeling of Maximum Dry Density and Optimum Moisture Content of Stabilized Soil Using Artificial Neural Networks. J Plant Nutr Soil Sc 173(3): 368–379

    Article  Google Scholar 

  • Ansari F, Li Q (1998) High-Strength Concrete Subjected to Triaxial Compression. ACI Mater J 95(6): 747–55

    Google Scholar 

  • Arιoglu N, Girgin ZC, Arιoglu E (2006) Evaluation of Ratio between Splitting Tensile Strength and Compressive Strength for Concretes up to 120 MPa and its Application in Strength Criterion. ACI Mater J 103(1):18–24

    Google Scholar 

  • Attard MM, Setunge S (1996) Stress–strain Relationship of Confined and Unconfined Concrete. ACI Mater J 93(5): 1–11

    Google Scholar 

  • Avram C, Facadaru RE, Filimon I, Mîrşu O, Tertea I (1981) Concrete strength and strains. Elsevier Scientific, Amsterdam, The Netherland:156–178

    Google Scholar 

  • Babanajad SK, Gandomim AH, Mohammadzadeh DS, Alavi AH (submitted) Comprehensive Strength Modeling of Concrete under True-Triaxial Stress States.

    Google Scholar 

  • Babanajad SK, Farnam Y, Shekarchi M (2012) Failure Criteria and Triaxial Behaviour of HPFRC Containing High Reactivity Metakaolin and Silica Fume. Cnstr Bld Mater 29: 215–229

    Article  Google Scholar 

  • Babanajad SK, Gandomi AH, Mohammadzadeh DS, Alavi AH (2013) Numerical Modeling of Concrete Strength under Multiaxial Confinement Pressures Using LGP. Autom Cnstr 36: 136–144

    Article  Google Scholar 

  • Balmer GG (1949) Shearing Strength of Concrete under High Triaxial Stress—Computation of Mohr’s Envelope as a Curve. Structural Research Laboratory, Report SP-23, U.S. Bureau of Reclamation, Denver, USA 1949

    Google Scholar 

  • Banzhaf W, Nordin P, Keller R, Francone F (1998) Genetic programming - an introduction. In: on the automatic evolution of computer programs and its application, Heidelberg/San Francisco: dpunkt/Morgan Kaufmann 1998

    Google Scholar 

  • Billings S, Korenberg M, Chen S (1988) Identification of nonlinear outputaffine systems using an orthogonal least-squares algorithm. Int J Syst Sci 19(8): 1559–1568

    Article  MathSciNet  MATH  Google Scholar 

  • Bohwan O, Myung-Ho L, Sang-John P (2007) Experimental Study of 60 MPa Concrete Under Triaxial Stress. Structural Engineers World Congress, Bangalore, India 2007

    Google Scholar 

  • Boukhatem B, Kenai S, Tagnit-Hamou A, Ghrici M (2011) Application of new information technology on concrete: an overview. J Civ Eng Manage 17 (2): 248–258

    Article  Google Scholar 

  • Brameier M, Banzhaf W (2001) A comparison of linear genetic programming and neural networks in medical data mining. IEEE Tran Evol Comput 5(1): 17–26

    Article  MATH  Google Scholar 

  • Brameier M, Banzhaf W (2007) Linear Genetic Programming. Springer Science + Business Media, NY, USA, 2007

    MATH  Google Scholar 

  • Bresler B, Pister KS (1958) Strength of concrete under combined stresses. ACI J 55: 321–46

    Google Scholar 

  • Candappa DC, Setunge S, Sanjayan JG (1999) Stress versus strain relationship of high strength concrete under high lateral confinement. Cem Concr Res 29: 1977–82

    Article  Google Scholar 

  • Candappa DC, Sanjayan JG, Setunge S (2001) Complete Triaxial Stress Strain Curves of High-Strength Concrete. J Mater Civ Eng 13(3): 209–15

    Article  Google Scholar 

  • Chen L (2003) A study of applying macroevolutionary genetic programming to concrete strength estimation. J Comput Civ Eng 17(4): 290–294

    Article  Google Scholar 

  • Chen S, Billings S, Luo W (1989) Orthogonal least squares methods and their application to non-linear system identification. Int J Ctrl 50(5): 1873–1896

    MathSciNet  MATH  Google Scholar 

  • Chen L, Wang TS (2010) Modeling Strength of High-Performance Concrete Using an Improved Grammatical Evolution Combined with Macrogenetic Algorithm. J Comput Civ Eng 24(3): 281–8

    Article  Google Scholar 

  • Cheng MY, Chou JS, Roy AFV, Wu YW (2012) High performance concrete compressive strength prediction using time-weighted evolutionary fuzzy support vector machines inference model. Autom Cnstr 28: 106–115

    Article  Google Scholar 

  • Cheng MY, Firdausi PM, Prayogo D (2014) High performance concrete compressive strength prediction Genetic Weighted Pyramid Operation Tree (GWPOT). Eng Appl Art Intel 29: 104–113

    Article  Google Scholar 

  • Chern JC, Yang HJ, Chen HW (1992) Behavior of Steel Fiber Reinforced Concrete in Multiaxial Loading. ACI Mater J 89(1): 32–40

    Google Scholar 

  • Chinn J, Zimmerman RM (1965) Behavior of plain concrete under various high triaxial compression loading conditions. Technical Rep. No. WL TR 64–163, University of Colorado, Denver

    Google Scholar 

  • Chou JS, Chiu CK, Farfoura M; Al-Taharwa I (2011) Optimizing the Prediction Accuracy of Concrete Compressive Strength Based on a Comparison of Data-Mining Techniques. J Comput Civ Eng 25(3); 242–253

    Article  Google Scholar 

  • Chou JS, Tsai CF (2012) Concrete compressive strength analysis using a combined classification and regression technique. Autom Cnstr 24: 52–60

    Article  Google Scholar 

  • Cordon WA, Gillespie HA (1963) Variables in concrete aggregates and Portland cement paste which influence the strength of concrete. ACI Struct J 60(8): 1029–1050

    Google Scholar 

  • Desai CS, Somasundaram S, Frantziskonis G (1986) A hierarchical approach for constitutive modelling of geologic materials. Int J Numer Analyt Meth Geomech 10(3): 225–257

    Article  MATH  Google Scholar 

  • Erdal HI, Karakurt O, Namli E (2013) High performance concrete compressive strength forecasting using ensemble models based on discrete wavelet transform. Eng Appl Art Intel 26: 1246–1254

    Article  Google Scholar 

  • Farnam Y, Moosavi M, Shekarchi M, Babanajad SK, Bagherzadeh A (2010) Behaviour of Slurry In filtrated Fibre Concrete (SIFCON) under triaxial compression. Cem Concr Res 40(11): 1571–1581

    Article  Google Scholar 

  • Fazel Zarandi MH, Turksen IB, Sobhani J, Ramezanianpour AA (2008) Fuzzy polynomial neural networks for approximation of the compressive strength of concrete. Appl Soft Comput 8: 488–498

    Article  Google Scholar 

  • Ferreira C (2001) Gene expression programming: a new adaptive algorithm for solving problems. Cmplx Sys 13(2): 87–129

    MATH  MathSciNet  Google Scholar 

  • Ferreira C (2006) Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence. Springer-Verlag Publication, 2nd Edition, Germany

    Google Scholar 

  • Frank IE, Todeschini R (1994) The data analysis handbook. Elsevier, Amsterdam, the Netherland

    Google Scholar 

  • Gandomi AH, Alavi AH (2013) Hybridizing Genetic Programming with Orthogonal Least Squares for Modeling of Soil Liquefaction. In: Computational Collective Intelligence and Hybrid Systems Concepts and Applications. IGI Global Publishing, in press

    Google Scholar 

  • Gandomi AH, Alavi AH (2011) Applications of Computational Intelligence in Behavior Simulation of Concrete Materials. In: Yang XS, Koziel S (eds) Computational Optimization & Applications, Springer-Verlag Berlin Heidelberg, SCI 359, p 221–243

    Google Scholar 

  • Gandomi AH, Alavi AH, Arjmandi P, Aghaeifar A, Seyednoor M (2010c) Genetic Programming and Orthogonal Least Squares: A Hybrid Approach to Modeling the Compressive Strength of CFRP-Confined Concrete Cylinders. J Mech Mater Struct 5(5), Mathematical Sciences, UC Berkeley: 735–753

    Google Scholar 

  • Gandomi AH, Alavi AH, Kazemi S, Gandomi M (2014a) Formulation of shear strength of slender RC beams using gene expression programming, part I:Without shear reinforcement. Automa Cnstr 42:112–121

    Article  Google Scholar 

  • Gandomi AH, Alavi AH, Mirzahosseini MR, Nejad FM (2011c) Nonlinear genetic-based models for prediction of flow number of asphalt mixtures. J Mater Civil Eng 23(3): 248–263

    Article  Google Scholar 

  • Gandomi AH, Alavi AH, Sahab MG (2010a) New formulation for compressive strength of CFRP confined concrete cylinders using linear genetic programming. Mater Struct 43(7): 963–983

    Article  Google Scholar 

  • Gandomi AH, Alavi AH, Sahab MG, Arjmandi P (2010b) Formulation of Elastic Modulus of Concrete Using Linear Genetic Programming. J Mech Sci Tech 24(6): 1273–8

    Article  Google Scholar 

  • Gandomi AH, Alavi AH, Ting TO, Yang XS (2013c) Intelligent Modeling and Prediction of Elastic Modulus of Concrete Strength via Gene Expression Programming. Advances in Swarm Intelligence, Lecture Notes in Computer Science 7928: 564–571

    Article  Google Scholar 

  • Gandomi AH, Alavi AH, Yun GJ (2011b) Nonlinear Modeling of Shear Strength of SFRC Beams Using Linear Genetic Programming. Struct Eng Mech, Techno Press 38(1): 1–25

    Article  Google Scholar 

  • Gandomi AH, Babanajad SK, Alavi AH, Farnam Y (2012) A Novel Approach to Strength Modeling of Concrete under Triaxial Compression. J Mater Civ Eng 24(9): 1132–43

    Article  Google Scholar 

  • Gandomi AH, Mohammadzadeh SD, Pérez-Ordóñez JL, Alavi AH (2014b) Linear genetic programming for shear strength prediction of reinforced concrete beams without stirrups. Appl Soft Comput 19: 112–120

    Article  Google Scholar 

  • Gandomi AH, Roke DA (2013) Intelligent formulation of structural engineering systems. Seventh M.I.T. Conference on Computational Fluid and Solid Mechanics — Focus: Multiphysics & Multiscale, Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  • Gandomi AH, Roke DA, Sett K (2013b) Genetic programming for moment capacity modeling of ferrocement members. Eng Struct 57: 169–176

    Article  Google Scholar 

  • Gandomi AH, Tabatabaei SM, Moradian MH, Radfar A, Alavi AH (2011a) A new prediction model for the load capacity of castellated steel beams. J Cnstr Steel Res 67(7): 1096–1105

    Article  Google Scholar 

  • Gandomi AH, Yun GJ, Alavi AH (2013a) An evolutionary approach for modeling of shear strength of RC deep beams. Mater Struct 46: 2109–2119

    Article  Google Scholar 

  • Girgin ZC, Anoglu N, Anoglu E (2007) Evaluation of Strength Criteria for Very-High-Strength Concretes under Triaxial Compression. ACI Mater J 104(3): 278–84

    Google Scholar 

  • Golbraikh A, Tropsha A (2002) Beware of q2. J Molecular Graphics M 20: 269–276

    Article  Google Scholar 

  • Gupta R, Kewalramani MA, Goel A (2006) Prediction of concrete strength using neural-expert system. J Mater Civil Eng 18(3): 462–466

    Article  Google Scholar 

  • Guven A, Aytek A (2009) New approach for stage–discharge relationship: Gene-expression programming. J Hydrol Eng 14(8): 812–820

    Article  Google Scholar 

  • Hampel T, Speck K, Scheerer S, Ritter R, Curbach M (2009) High-Performance concrete under biaxial and triaxial loads. J Eng Mech 135(11): 1274–1280

    Article  Google Scholar 

  • He Z, Song Y (2010) Triaxial strength and failure criterion of plain high-strength and high-performance concrete before and after high temperatures. Cem Concr Res 40: 171–178

    Article  Google Scholar 

  • Heshmati AAR, Salehzade H, Alavi AH, Gandomi AH, Mohammad Abadi M (2010) A Multi Expression Programming Application to High Performance Concrete. World Appl Sci J 11(11): 1458–66

    Google Scholar 

  • Hinchberger SD (2009) Simple Single-Surface Failure Criterion for Concrete. J Eng Mech 135(7): 729–32

    Article  Google Scholar 

  • Hoek E, Brown ET (1980) Underground excavations in rock. Institution of Mining and Metallurgy Press, London, 1980

    Google Scholar 

  • Hsieh SS, Ting EC, Chen WF (1982) Plasticity-fracture model for concrete. Int J Solids Struct 18(3): 577–93

    Article  Google Scholar 

  • Ilc A, Turk G, Kavčič F, Trtnik G (2009) New numerical procedure for the prediction of temperature development in early age concrete structures. Autom Cnstr 18(6): 849–855

    Article  Google Scholar 

  • Imran I, Pantazopoulou SJ (1996) Experimental Study of Plain Concrete under Triaxial Stress. ACI Mater J 93(6): 589–601

    Google Scholar 

  • Javadi AA, Rezania M (2009) Applications of artificial intelligence and data mining techniques in soil modeling. Geomech Eng 1(1): 53–74

    Article  Google Scholar 

  • Johnston IW (1985) Strength of Intact Geomechanical Materials. J Geotech Eng 111(6): 730–748

    Article  Google Scholar 

  • Kewalramani MA, Gupta R (2006) Concrete compressive strength prediction using ultrasonic pulse velocity through artificial neural networks. Autom Cnstr 15(3): 374–379

    Article  Google Scholar 

  • Khan IM (2012) Predicting properties of high performance concrete containing composite cementitious materials using artificial neural networks. Autom Cnstr 22: 516–524

    Article  Google Scholar 

  • Koza JR (1992) Genetic programming: On the programming of computers by means of natural selection. Cambridge (MA), MIT Press.

    MATH  Google Scholar 

  • Kraslawski A, Pedrycz W, Nyström L (1999) Fuzzy Neural Network as Instance Generator for Case-Based Reasoning System An Example of Selection of Heat Exchange Equipment in Mixing. Neural Comput Appl 8: 106–113

    Article  Google Scholar 

  • Kuo YL, Jaksa MB, Lyamin AV, Kaggwa WS (2009) ANN-based model for predicting the bearing capacity of strip footing on multi-layered cohesive soil. Comput Geotech 36: 503–516

    Article  Google Scholar 

  • Lahlou K, Aitcin PC, Chaallal O (1992) Behavior of high strength concrete under confined stresses. Cem Concr Compos 14: 185–193

    Article  Google Scholar 

  • Lan S, Guo Z (1997) Experimental investigation of multiaxial compressive strength of concrete under different stress paths. ACI Mater J 94(5): 427–433

    Google Scholar 

  • Légeron F, Paultre P (2003) Uniaxial Confinement for Normal- and High-Strength Concrete Columns. J Struct Eng 129(2): 241–252

    Article  Google Scholar 

  • Li Q, Ansari F (1999) Mechanics of Damage and Constitutive Relationships for High-Strength Concrete in Triaxial Compression. J Eng Mech 125(1): 1–10

    Article  Google Scholar 

  • Li Q, Ansari F (2000) High-Strength Concrete in Triaxial Compression by Different Sizes of Specimens. ACI Mater J 97(6): 684–9

    Google Scholar 

  • Liu HY, Song YP (2010) Experimental study of lightweight aggregate concrete under multiaxial stresses. J Zhejiang Uni-Science A (Applied Physics & Engineering) 11(8): 545–554

    Article  Google Scholar 

  • Lu X, Hsu CTT (2006) Behavior of high strength concrete with and without steel fiber reinforcement in triaxial compression. Cem Concr Res 36: 1679–85

    Article  Google Scholar 

  • Lu X, Hsu CTT (2007) Stress–strain relations of high strength concrete under triaxial compression. J Mater Civ Eng 19(3): 261–268

    Article  Google Scholar 

  • Madár J, Abonyi J, Szeifert F (2005) Genetic Programming for the Identification of Nonlinear Input–output Models. Ind Eng Chem Res 44(9): 3178–3186

    Article  Google Scholar 

  • Marin J, Sole RV (1999) Macroevolutionary algorithms A new optimization method on fitness landscapes. IEEE Trans Evol Comput, Piscataway, NJ, 3(4), pp 272–285

    Article  Google Scholar 

  • Martinez S, Nilson AH, Slate FO (1984) Spirally Reinforced High-Strength Concrete Columns. ACI J 81(5): 431–442

    Google Scholar 

  • Mei H, Kiousis PD, Ehsani MR, Saadatmanesh H (2001) Confinement effects on high strength concrete. ACI Struct J 98(4): 548–553

    Google Scholar 

  • Milani G, Benasciutti D (2010) Homogenized limit analysis of masonry structures with random input properties Polynomial response surface approximation and Monte Carlo simulations. Struct Eng Mech 34(4): 417–445

    Article  Google Scholar 

  • Mills LL, Zimmerman RM (1970) Compressive strength of plain concrete under multiaxial loading conditions. ACI J 67(10):802–807

    Google Scholar 

  • Mohammadi Bayazidi A, Wang GG, Bolandi H, Alavi AH, Gandomi AH (2014) Multigene Genetic Programming for Estimation of Elastic Modulus of Concrete. Mathematical Problems in Engineering. Hindawi Publishing Corporation, NY, USA

    Google Scholar 

  • Mousavi SM, Aminian P, Gandomi AH, Alavi AH, Bolandi H (2012) A new predictive model for compressive strength of HPC using gene expression programming. Adv Eng SW 45: 105–114

    Article  Google Scholar 

  • Mousavi SM, Gandomi AH, Alavi AH, Vesalimahmood M (2010) Modeling of compressive strength of HPC mixes using a combined algorithm of genetic programming and orthogonal least squares. Struc Eng Mech 36(2): 225–241

    Article  Google Scholar 

  • Mullar KF (1973) Dissertation Technische Universitat Munchen Germany

    Google Scholar 

  • Nielsen CV (1998) Triaxial behavior of high-strength concrete and mortar. ACI Mater J 95(2): 144–51

    Google Scholar 

  • Oltean M, Dumitrescu D (2002) Multi expression programming. Technical report UBB-01-2002, Babes-Bolyai University

    Google Scholar 

  • Oltean M, Grosşan CA (2003a) Comparison of several linear genetic programming techniques. Adv Cmplx Sys 14(4): 1–29

    MathSciNet  Google Scholar 

  • Oltean M, Grossan CA (2003b) Evolving evolutionary algorithms using multi expression programming. In: Banzhaf W et al. (eds). 7th European conference on artificial life. Dortmund, LNAI, pp 651–658

    Google Scholar 

  • Ottosen NS (1977) A failure criterion for concrete. J Eng Mech Div 103(4): 527–535

    Google Scholar 

  • Pearson (2003) Selecting nonlinear model structures for computer control. J Process Contr 13(1): 1–26

    Google Scholar 

  • Peng CH, Yeh IC, Lien LC (2010) Building strength models for high-performance concrete at different ages using genetic operation trees, nonlinear regression, and neural networks. Eng Comput 26: 61–73

    Article  Google Scholar 

  • Rajasekaran S, Amalraj R (2002) Predictions of design parameters in civil engineering problems using SLNN with a single hidden RBF neuron. Comput Struct 80 (31): 2495–2505

    Article  Google Scholar 

  • Ramezanianpour AA, Sobhani M, Sobhani J (2004) Application of network based neuro-fuzzy system for prediction of the strength of high strength concrete. AKU J Sci Technol 15(59-C): 78–93

    Google Scholar 

  • Richart E, Brandtzaeg A, Brown RL (1929) Failure of Plain and Spirally Reinforced Concrete in Compression. Bulletin 190, University of Illinois Engineering Experimental Station, Champaign, Illinois

    Google Scholar 

  • Roy PP, Roy K (2008) On Some Aspects of Variable Selection for Partial Least Squares Regression Models. QSAR Comb Sci 27(3): 302–313

    Article  Google Scholar 

  • Ryan TP (1997) Modern regression methods. Wiley, New York

    MATH  Google Scholar 

  • Ryan C, Collins JJ, O’Neill M (1998) Grammatical Evolution: Evolving Programs for an Arbitrary Language. In: Banzhaf W, Poli R., Schoenauer M, Fogarty TC (eds), First European Workshop on Genetic Programming, Springer-Verlag, Berlin

    Google Scholar 

  • Ryan C, O’Neill M (1998) Grammatical Evolution: A Steady State Approach. In: Koza JR (ed) Late Breaking Papers Genetic Programming, University of Wisconsin, Madison, Wisconsin

    Google Scholar 

  • Saatcioglu M, Razvi SR (1992) Strength and Ductility of Confined Concrete. J Struct Eng 118(6): 1590–1607

    Article  Google Scholar 

  • Samaan M, Mirmiran A, Shahawy M (1998) Model of Concrete Confined by Fiber Composites. J Struct Eng 124(9): 1025–1031

    Article  Google Scholar 

  • Seow PEC, Swaddiwudhipong S (2005) Failure Surface for Concrete under Multiaxial Load— a Unified Approach. J Mater Civ Eng 17(2): 219–228

    Article  Google Scholar 

  • Setunge S, Attard MM, Darvall PL (1993) Ultimate Strength of Confined Very High-Strength Concretes. ACI Struct J 90(6): 632–41

    Google Scholar 

  • Sfer D, Carol I, Gettu R, Etse G (2002) Study of the Behavior of Concrete under Triaxial Compression. J Eng Mech 128(2): 156–63

    Article  Google Scholar 

  • Shahin MA, Jaksa MB, Maier HR (2009) Recent advances and future challenges for artificial neural systems in geotechnical engineering applications. Adv Artif Neur Syst, Hindawi, Article ID 308239

    Google Scholar 

  • Smith GN (1986) Probability and statistics in civil engineering. Collins, London

    Google Scholar 

  • Sobhani J, Najimi M, Pourkhorshidi AR, Parhizkar T (2010) Prediction of the compressive strength of no-slump concrete a comparative study of regression, neural network and ANFIS models. Cnstr Bld Mater 24 (5): 709–718

    Article  Google Scholar 

  • Tang CW (2010) Radial Basis Function Neural Network Models for Peak Stress and Strain in Plain Concrete under Triaxial Stress Technical Notes. J Mater Civ Eng 22(9): 923–934

    Article  Google Scholar 

  • Topcu IB, Sarıdemir M (2008) Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic. Comput Mater Sci 41: 305–311

    Article  Google Scholar 

  • Wang CZ, Guo ZH, Zhang XW (1987) Experimental Investigation of Biaxial and Triaxial Compressive Concrete Strength. ACI Mater J: 92–100

    Google Scholar 

  • Willam K, Warnke E (1975) Constitutive model for triaxial behavior of concrete. In: Seminar on Concrete Structure Subjected to Triaxial Stresses, International Association for Bridge and Structural Engineering, Bergamo, Italy, 17–19 May 1974, pp 1–30

    Google Scholar 

  • Xie J, Elwi AE, Mac Gregor JG (1995) Mechanical properties of three high-strength concretes containing silica fume. ACI Mater J 92(2): 1–11

    Google Scholar 

  • Yeh IC (1998) Modeling concrete strength with augment-neuron networks. J Mater Civ Eng 10(4): 263–268

    Article  Google Scholar 

  • Yeh IC (2006a) Analysis of strength of concrete using design of experiments and neural networks. ASCE J Mater Civil Eng 18(4): 597–604

    Article  Google Scholar 

  • Yeh IC (2006b) Exploring concrete slump model using artificial neural networks. J Comput Civ Eng 20(3): 217–21

    Article  Google Scholar 

  • Yeh IC (2006c) Generalization of strength versus water-cementations ratio relationship to age. Cem Concr Res 36(10): 1865–1873

    Article  Google Scholar 

  • Yeh IC, Lien LC (2009) Knowledge discovery of concrete material using Genetic Operation Trees. Expert Sys Appl 36: 5807–5812

    Article  Google Scholar 

  • Yeh IC, Lien CH, Peng CH, Lien LC (2010) Modeling Concrete Strength Using Genetic Operation Tree. Proceedings of the Ninth International Conference on Machine Learning and Cybernetics, Qingdao, July 2010

    Google Scholar 

Download references

Acknowledgment

The author would like to appreciate Dr. Amir H. Gandomi, The University of Akron, for his great assistance throughout the preparation of the current book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed K. Babanajad .

Editor information

Editors and Affiliations

1 Electronic Supplementary material

Notation

Notation

\( {f}{'}_{{c}}=\mathrm{Compressive}\ \mathrm{Strength}\)

\( {f}{'}_{{t}}=\mathrm{Tensile}\ \mathrm{Strength} \)

\( {\upsigma}_1,\ {\upsigma}_2,{\upsigma}_3=\mathrm{Compressive}\ \mathrm{Strength} \)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Babanajad, S.K. (2015). Application of Genetic Programming for Uniaxial and Multiaxial Modeling of Concrete. In: Gandomi, A., Alavi, A., Ryan, C. (eds) Handbook of Genetic Programming Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-20883-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20883-1_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20882-4

  • Online ISBN: 978-3-319-20883-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics