Skip to main content

Optimizing Convolutional Neural Networks for Embedded Systems by Means of Neuroevolution

  • Conference paper
  • First Online:
Theory and Practice of Natural Computing (TPNC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11934))

Included in the following conference series:

Abstract

Automated design methods for convolutional neural networks (CNNs) have recently been developed in order to increase the design productivity. We propose a neuroevolution method capable of evolving and optimizing CNNs with respect to the classification error and CNN complexity (expressed as the number of tunable CNN parameters), in which the inference phase can partly be executed using fixed point operations to further reduce power consumption. Experimental results are obtained with TinyDNN framework and presented using two common image classification benchmark problems – MNIST and CIFAR-10.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dong, J.-D., Cheng, A.-C., Juan, D.-C., Wei, W., Sun, M.: DPP-Net: device-aware progressive search for pareto-optimal neural architectures. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 540–555. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_32

    Chapter  Google Scholar 

  2. Hashemi, S., Anthony, N., Tann, H., Bahar, R.I., Reda, S.: Understanding the impact of precision quantization on the accuracy and energy of neural networks. In: DATE, pp. 1478–1483. EDAA (2017)

    Google Scholar 

  3. Hsu, C., et al.: MONAS: multi-objective neural architecture search using reinforcement learning. CoRR abs/1806.10332 (2018). http://arxiv.org/abs/1806.10332

  4. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc. (2012)

    Google Scholar 

  5. Miikkulainen, R., et al.: Evolving deep neural networks. CoRR abs/1703.00548 (2017). http://arxiv.org/abs/1703.00548

  6. Nomi, T.: TinyDNN. https://github.com/tiny-dnn/tiny-dnn (2016)

  7. Panda, P., et al.: Invited - cross-layer approximations for neuromorphic computing: from devices to circuits and systems. In: 53rd Design Automation Conference, pp. 1–6. IEEE (2016). https://doi.org/10.1145/2897937.2905009

  8. Real, E., et al.: Large-scale evolution of image classifiers. arXiv e-prints arXiv:1703.01041 (2017)

  9. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)

    Article  Google Scholar 

  10. Suganuma, M., Shirakawa, S., Nagao, T.: A genetic programming approach to designing convolutional neural network architectures. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 497–504. ACM (2017)

    Google Scholar 

  11. Sze, V., Chen, Y., Yang, T., Emer, J.S.: Efficient processing of deep neural networks: a tutorial and survey. Proc. IEEE 105(12), 2295–2329 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Youth and Sports, under the INTER-COST project LTC 18053, NPU II project IT4Innovations excellence in science LQ1602 and by Large Infrastructures for Research, Experimental Development and Innovations project “IT4Innovations National Supercomputing Center – LM2015070”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Sekanina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Badan, F., Sekanina, L. (2019). Optimizing Convolutional Neural Networks for Embedded Systems by Means of Neuroevolution. In: Martín-Vide, C., Pond, G., Vega-Rodríguez, M. (eds) Theory and Practice of Natural Computing. TPNC 2019. Lecture Notes in Computer Science(), vol 11934. Springer, Cham. https://doi.org/10.1007/978-3-030-34500-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34500-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34499-3

  • Online ISBN: 978-3-030-34500-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics