
International Journal of Computer Applications (0975 – 8887)

Volume 168 – No.1, June 2017

37

Genetic Programming Feature Extraction with Different

Robust Classifiers for Network Intrusion Detection

Khaled Badran

Military Technical College
Cairo

Alaa Rohim

Military Technical College
Cairo

ABSTRACT

In this paper, we compare the performance of three traditional

robust classifiers (Neural Networks, Support Vector

Machines, and Decision Trees) with and without utilizing

multi-objective genetic programming in the feature extraction

phase. This work argues that effective feature extraction can

significantly enhance the performance of these classifiers. We

have applied these three classifiers stand alone to real world

five datasets from the UCI machine learning database and also

to network intrusion “KDD-99 cup” dataset. Then, the

experiments were repeated by adding the feature extraction

phase. The results of the two approaches are compared and

conclude that the effective method is to evolve optimal feature

extractors that transform input pattern space into a decision

space in which the performance of traditional robust

classifiers can be enhanced.

General Terms

Pattern Recognition, Classification, Network Intrusion.

Keywords

Genetic Programming, Feature Extraction, Neural Network,

Support Vector Machines, Decision Tress.

1. INTRODUCTION
In machine learning classification applications feature

extraction phase starts from an initial set of measured data

with the aim to derive a new values (features) that enhance

learning and generalization steps while building the classifier,

and in some cases leads to better human interpretations. While

feature selection is to choose the optimum features with the

aim to reduce the redundant and irrelevant information to the

output classes from the complex input data [1].

Feature extraction and selection both can reduce the

dimensionality of the data, simplify the learned model in

which it can increase the performance of the classifier and

generalize better on unseen data. The difference between the

two stages is that selection occurs among the original features

while extraction occurs after mapping the input space into

new decisions space using the derived mapped features. Thus

the feature extraction can be regarded as finding an optimal

sequence of operations subject to some criterion.

Feature extraction is a challenging issue as it is considered as

a search problem. Where the search space is the possible

feature compositions and subsets. However, this search needs

to be domain independent without utilizing a prior domain

expert knowledge. A variety of search techniques have been

applied to feature selection, such as complete search, greedy

search, heuristic search, and random search [2]-[5] However,

these methods still suffer from high complexity and to get

trapped in local minimum.

Recently, evolutionary computation (EC) as a global heuristic

search techniques and in specific genetic programming been

employed in feature extraction process Genetic Programming

employs complex pattern representations such as trees to

automatically generate a reasonably small yet effective

number of features by combining the basic building blocks

which are typically used to construct features, and evaluating

their fitness automatically. The application of GP to

classification offers some interesting advantages, the main one

being its flexibility, which allows the technique to be adapted

to the needs of each particular problem. For example, any

kind of suitable operation or function can be used inside that

representation

Genetic programming is an evolutionary technique used to

create computer programs that represent approximate or exact

solutions to a problem [6]. Based on the Evolution Theory of

Darwin [7], in which, from an initial population with

randomly individuals, after subsequent generations, new

individuals are produced from old ones by means of

crossover, selection and mutation operations, based on natural

selection, the good individual will have more chances of

survival to become part of the next generation. Thus, after

successive generations, obtains the best-so-far individual

corresponding to the final solution of the problem.

Similar, GP is based on the evolution of a randomly created

initial population of individual computer programs composed

of the available functions and terminals. Each individual

program in the population is executed and assigned fitness

according to the problem’s fitness measure. With a probability

based on fitness one or more individual from the population is

selected to participate in the genetic operations like crossover

and mutation in order to generate the new population where

its individuals’ fitness’s are evaluated. The GP encoding for

the solutions is tree-shaped, so the user must specify the

following parameters

1- The set of terminals (leaves of the tree) which

consists of the independent variables of the

problem, and random constants

2- The set of primitive functions (nodes of the tree)

these functions can be ,

3- The fitness measure measuring the fitness of

individuals in the population),

4- The replacement strategy which decide a whole new

population is generated, or elitism is applied to save

the fittest individuals from replacement,

5- The stopping criteria that when is reached the whole

evolutionary process stops.

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Feature_(machine_learning)
http://www.sciencedirect.com.sheffield.idm.oclc.org/science/article/pii/S0957417411003253#b0040

International Journal of Computer Applications (0975 – 8887)

Volume 168 – No.1, June 2017

38

During the evolutionary process of genetic programming

individuals increase in tree size and depth without a

corresponding increase in fitness [8]. This problem is due to

the use of variable-length trees as selective bias towards

fitness seems to unavoidably lead the search towards

programs with a large size. This phenomenon, called GP

bloat. GP bloat slows the evolutionary search process,

consumes memory. Also, more complex individuals always

suffer from over-fitting over the training data. Furthermore

bloat makes these evolved programs even more difficult to

comprehend [9]

The most common approach to dealing with bloat in tree-

based genetic programming individuals is set an upper bound

to the complexity of individuals in the population. An

alternative to depth limiting is to introduce an explicit fitness

penalty in some way based on excess size [10]. Another

approach to control tree bloat is to apply genetic operators

designed to target redundant code or the bias against offspring

size increases [11].

.In this paper we focus on the parsimony pressure approach

[1]. It use a multi-objective method in which two objectives

are used, problem-specific error and tree size. Multi-objective

GP (MOGP) has a number of advantages: As well as

controlling bloat very effectively, it does not require a pre-

determined depth-limit parameter and the tree depth is free to

adjust to suit the problem at hand.

This paper is organized as follows: We present related work

of using genetic programming in feature extraction in section

2. Section 3 describes the proposed methodology to

incorporate MOGP with robust classifiers. In section 4

experimental results are shown. Conclusion is given on

section 5.

2. RELATED WORK

2.1 GP and Feature Extraction
In this paper we use GP feature extraction uses the classifier

output is the Evaluation Criteria: For feature extraction. This

approach which is called Wrapper approach has been used

with most of the classification algorithms such as decision

tree (DT), support vector machines (SVMs), Naïve Bayes

(NB), K-nearest neighbor (KNN), artificial neural networks

(ANNs), and linear discriminant analysis (LDA), have been

applied to wrappers for feature selection [13], [14], [15].

Raymer, Punch, Goodman, and Kuhn [16] applied GP to

improve KNN classifier performance by, they evolving a tree

for each attribute. While Bot [17] has used GP to evolve new

features one-at-a-time to a KNN classifier. In the other hand

Kotani, Nakai, and Akazawa [18] used GP to evolve the

polynomial combination of raw features to fed into a KNN

classifier. Also, Firpi, Goodman, and Echauz [19] developed

artificial features applied KNN classifier for predicting

epileptic seizures.

Tackett [20] developed a processing tree derived from GP for

the classification of features extracted from images. Sherrah

[21] applied evolutionary computation to create multi-trees

GP each tree encoding one feature. Krawiec [22] constructed

a fixed-length decision vector using GP proposing an

extended method to protect ‘useful’ blocks during the

evolution.

Recently [23] applied GP feature extraction on a malware

detection to improve the accuracy while finding a proper

balance between the three basic requirements for malware

detection algorithms: the training time on large datasets, the

false positive rate, and the detection rate

2.2 GP and Network Intrusion
Song et al. [24] applied page-based linear genetic

programming for intrusion detection as a binary classifier

between normal actions and attacks. Only the basic features of

connections were employed. The half a million records of the

10 % KDD-99 were used and, in each generation, a target

number of cases from the dataset were selected randomly for

fitness evaluation, preferring cases that were difficult to learn

or cases that had not been selected for several generations.

 Grosan [25] used multi-expression programming (MEP) to

detect intrusions in computer networks. An MEP variable-

length chromosome encodes several expressions instead of

just the one expression in standard GP. The fitness of the

entire individual is supplied by the fitness of the best sub-

expression encoded in that chromosome.

Lu and Traore [26] used GP to evolve new rules from

initially created rules that cover already-known attacks. New

rules are generated by four operators including: Mutation,

reproduction, crossover and a dropping condition operator.

The fitness of each rule is evaluated by incorporating the

support and the confidence factor of the rule in one function.

Faroun [27] employed a genetic programming feature

extraction technique to evolve a non-linear mapping from the

KDD-99 dataset’s 41 features into a one-dimensional decision

space where he used a dynamic threshold classifier to separate

the five classes in the dataset.

Badran and Rockett [28] used multi-objective genetic

programming to evolve a feature extraction stage for multiple-

class classifiers by mappings the input space into single

decision space. They used Bayesian classifier to incorporate

changing priors and/or costs associated with mislabeling

without retraining. They applied this approach to the KDD-99

intrusion detection dataset and obtained results which are

highly competitive with the KDD-99 Cup winner but with a

significantly simpler classification framework.

Thi Anh Le [29], we propose a method by using Genetic

Programming for detecting malwares. The experiments were

conducted with the malwares collected from an updated

malware database on the Internet and the results show that

Genetic Programming, compared to some other well-known

machine learning methods, can produce the best results on

both balanced and imbalanced datasets

Jorge Blasco et al. [30] guided the GP search by means of a

fitness function based on recent advances on IDS evaluation.

They applied their approach to KDD-99. Results clearly show

that an intelligent use of GP achieves systems that are to top

state-of-the-art proposals in terms of effectiveness, improving

them in efficiency and simplicity.

3. PROPOSED METHODDOLGY
As shown in figure 1, multi-objective genetic programming

based feature extraction system applied in addition to the

traditional three classifiers implementation. Each individual

in GP represents a set of new features, which represents

mapping of the original features into decision space to be

passed to classifier. These features are calculated through

special nodes in the tree denoted by Ai. The number of these

nodes are dynamically changing according to the evolution

operations. The classification accuracy of the classifier is

evaluated and it’s considered as one element of fitness vector

International Journal of Computer Applications (0975 – 8887)

Volume 168 – No.1, June 2017

39

for this individual that needs to be minimized. The second

element of the fitness vector is the tree complexity that is

represented by the node count which needs to be minimized in

order to control the GP tree bloat. The huge trees could

produce an extremely small error over the training set but a

very poor performance estimated over an independent

validation set.

Figure 1 MOGP Incorporated with Robust Classifier

MOGP was implemented in Python with the following

parameters in Table 1. While, the other traditional classifiers

were used by calling Scikit-learn API 2013 [31] . Scikit-learn

integrates a wide range of state-of-the-art machine learning

algorithms for medium-scale supervised and unsupervised

problems

Table 1. MOGP Implementation Parameters

Parameter Method / Value

Terminal set
Select randomly from the input features or

select random constants [0..1]

Function set + , - , / , * , A (feature output)

Initial

population

100 individual , with max depth of 5 ,

with random number of output nodes

[1..10]

Replacement

Strategy

Used an elitist, steady-state strategy. In

each generation, only two individuals are

generated and added to the population to

replace the worst two individuals

MO Fitness

Vector

Classifier Accuracy (max)

Tree node count (min)

Selection

Roulette wheel section was employed to

select randomly two individuals for

crossover the raw fitnesses to decide

which should be chosen.

crossover

To select the crossover point in the sub

tree We have used a depth-dependent as a

sub tree is selected in chosen depth with a

higher probability to small trees in the

same depth

mutation
Mutation was always applied to the results

of the crossover operation in mutation

Stopping 1000 generation

Table 2 shows the used Scikit-learn classes for Neural

Networks, Support Vector Machines, and the Decision Trees.

While Tables 3-5 show the used parameters for calling these

classes APIs. For the three classifiers, the method fit is used

to build the classifier from the training set. While the method

score returns the mean accuracy on the given test data and

labels. These classifiers are first built using the original

features in the datasets. Then, they were used during the

feature extraction evolution as they return classifier accuracy

which is considered as one element of the fitness vector for

each MOGP individual

. Table 2. Scikit-learn Classifiers Classes

Classifier Used scikit-learn class

NN sklearn.neural_network.MLPClassifier

SVM sklearn.svm.SVC

DT sklearn.tree.DecisionTreeClassifier

Table3. Scikit-learn NN API parameters

Parameter Value

Algorithm MLP

hidden_layer_sizes 1

activation ‘relu’

batch_size 200

alpha 0.001

learning_rate_init 0.001

momentum 0.9

max_iter 100

Table 4. Scikit-learn SVM parameters

Parameter Value

Kernal rbf

Degree
Degree of the polynomial kernel

function = 3

Gama Kernel coefficient = 1/ features

shrinking True

max_iter 200

tol 1e-3

Table 5. Scikit-learn DT API parameters

Parameter Value

Algorithm C4.5

criterion “entropy” : information gain.

max_depth 7

min_samples_split 2

min_impurity_split 1e-7

min_samples_leaf 1

http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier.fit
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier.score
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.neural_network
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.svm
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.tree

International Journal of Computer Applications (0975 – 8887)

Volume 168 – No.1, June 2017

40

4. DATA SETS

4.1 UCI Datasets
In order to evaluate the performance of the proposed method

on a small datasets, a range of benchmark datasets from the

UCI Machine Learning database [32] are used. A variety of

datasets was chosen where the number of input features varies

from 4 to 21, the number of output classes from 3 to 10, and

the number of patterns in the dataset from 150 to 10991. Each

dataset was repeatedly split into two folds, one used for

training and the other used for testing.

Table 6. UCI datasets

Name Features Size Classes

IRIS 4 150 3

Pen digits (PEN) 16 10991 10

Image segmentation (SEG) 19 2310 7

Thyroid Gland (TGD) 5 215 3

Wine recognition (WIN) 13 179 3

Teaching Assistant Evaluation

(TAE)
5 151 3

Thyroid (THY) 21 7200 3

GLASS 9 214 6

4.2 KDD-99 Cup Dataset
Our principal interest is in using multi-objective genetic

programming as a feature extractor and selector to perform

data mining on this very large intrusion detection dataset []

The KDD-99 benchmark consists of three datasets: The whole

dataset that is 5 million records, the 10% that is composed of

about half a million records, and the corrected KDD-99. In

this paper we are concerned with the 10% KDD-99 as a

training dataset and the corrected KDD -99 to test our

methodology and to compare with published results on this

dataset. KDD dataset covers four major categories of attacks:

Probing attacks (information gathering attacks), Denial of-

Service (DoS) attacks (deny legitimate requests to a system),

user-to-root (U2R) attacks (unauthorized access to local

super-user or root), and remote-to-local (R2L) attacks

(unauthorized local access from a remote machine). KDD

dataset is divided into labeled and unlabeled records. Each

labeled record consisted of 41 attributes (features) and one

target value. Target value indicated the attack category name.

The KDD-99 dataset exhibits four main challenges for

machine learning algorithms as it is a cost-sensitive, multi-

objective, a large dataset, and contains mixed types of data.

Table 7. KDD-99 dataset features

Features

Categories
Continuous Discrete Total

Basic

Features
5 4 9

Content

features
8 5 13

Time-based

features
9 0 9

Host-based

features
10 0 10

Total 32 9 41

5. Results

5.1 UCI Datasets
The proposed models (MOGP with robust classifiers) are

implemented and worked successfully with the UCI dataset.

In table 8, table 9 the comparative of mean misclassification

errors between three classifiers over eight UCI datasets is

shown. The most result shows that the performance of the

three classifiers is enhanced by adding the layer of MOGP

feature extraction. NN classifier has best results over six

datasets, and SVM classifier give better result in two datasets.

These models succeeded in transforming the input features

into the decision space where the classifiers performance were

enhanced. Considering statistical significance to be two

standard errors shows NN classifier has significantly superior

to most others classifiers as shown in table 10

Table 8 Mean Error Using Traditional Classifiers Only

dataset NN SVM DT

win 0 0.001 0.03

TGD 0.011 0.012 0.021

TAE 0.434 0.445 0.455

PEN 0.020 0.13 0.052

SEG 0.043 0.081 0.331

Glass 0.335 0.413 0.41

THY 0.009 0.01 0.063

IRIS 0 0 0

Table 9 Mean Error Using MOGP with Traditional

Classifiers

dataset NN SVM DT

win 0 0.001 0.002

TGD 0.009 0.009 0.020

TAE 0.312 0.352 0.372

PEN 0.015 0.09 0.031

SEG 0.032 0.051 0.131

Glass 0.280 0.402 0.314

THY 0.009 0.008 0.020

IRIS 0 0 0

Table 10 F-statistic comparisons of classifiers on each

dataset Error

dataset NN-SVM NN-DT SVM-DT

win 2.362 1.713 4.321

TGD 5.248 7.375 6.872

TAE 7.654 9.461 6.121

PEN 4.698 4.365 4.921

SEG 8.023 6.658 7.32

Glass 6.632 5.624 2.214

THY 1.255 6.152 4.468

IRIS 3.998 1.954 0.478

International Journal of Computer Applications (0975 – 8887)

Volume 168 – No.1, June 2017

41

5.2 KDD-99 Cup Dataset
 Generally this MOGP approach with robust classifiers

worked successfully with the large dataset. It did not require

any pre-processing or sampling; neither did it need any prior

knowledge or assume any specific distribution of the classes

in the dataset in the input space. It works directly on the data

in its original form. The results obtained by applying the

traditional classifiers without the MOGP feature extraction

phase are shown in table 11.

Table 12 shows the results after applying the MOGP feature

extraction phase. It is clear that the performance of the three

classifiers were enhanced by adding the MOGP feature

extraction. The NN Classifier shows better result in the

context as it achieved the Accuracy value 0.93112 and

Detection Rate 0.91359. It gives quite near to best result of a

mean cost per example which is 0.23618.

The SVM Classifier gives a best enhancement in the results of

false positive Rate which is 0.00720 and it better result in of

mean cost per example which achieved 0.23252. The

confusion matrix of three models has shown in tables 13-15.

Table 11 KDD dataset Results

Classifier

Evaluation
DT SVM NN

Accuracy 0.88125 0.89599 0.9021

Detection Rate 0.90010 0.88121 0.90147

False positive Rate 0.02038 0.01115 0.02178

MCPE 0.25101 0.24245 0.24716

Table 12 KDD dataset Results after MOGP feature

Extraction

Classifier

Evaluation
DT SVM NN

Accuracy 0.92591 0.93999 0.93112

Detection Rate 0.90859 0.91081 0.91359

False positive Rate 0.01966 0.00720 0.00988

MCPE 0.24811 0.23252 0.23618

Table 13 Confusion matrix of Decision Tree

Normal Prob DOS U2R R2l

Normal 59419 1044 103 22 5

Prob 820 3021 322 3 0

Dos 5692 128 223464 569 0

U2R 93 8 118 5 4

R2l 15361 2 24 2 800

Table 14 Confusion matrix of SVM

Normal Prob DOS U2R R2l

Normal 60160 295 58 4 76

Prob 668 3059 164 0 275

Dos 5956 776 223112 0 9

U2R 38 149 2 28 11

R2l 13995 540 1 2 1651

 Table 15 Confusion matrix of Neural Networks

Normal Prob DOS U2R R2l

Normal 60061 200 310 4 18

Prob 272 3599 292 0 1

Dos 5180 523 224125 0 25

U2R 72 104 5 30 17

R2l 15150 7 20 1 1011

The final results obtained in the experiments conducted in

addition to the results of the three winning entries in the

KDD-99 contest are shown in table 11. All the experiments

give similar results which show the ability of the multi-

classification multi-objective genetic programming feature

extraction approach to extract the most discriminant features.

Also the complexity of the solutions presented is very low

compared to those of the first winning KDD-99 entry where

500 decision trees were used, and also to the second winning

KDD-99 entry which used 755 decision trees.

 Table 16 COMPARISON BETWEEN OBTAINED

RESULTS AND WINING ENTRIES RESULTS

Evaluation

Method MCPE DR FPR Accuracy

First place in

KDD-99
0.2331 0.918 0.005 0.927

Second place in

KDD-99
0.2356 0.915 0.006 0.929

Third place in

KDD-99
0.2367 - - -

DT 0.248 0.9086 0.0197 0.92591

SVM 0.232 0.9108 0.0072 0.93999

NN 0.236 0.9136 0.0098 0.93112

The NN Classifier give a result in which is very near to the

winning entries in the KDD-99 contest especially in Accuracy

and Detection Rate but DT classifier has the highest rate in

mean cost per example. The SVM has good example which is

better than the best winning entry in the contest as it achieved

the value 0.232 for MCPE

International Journal of Computer Applications (0975 – 8887)

Volume 168 – No.1, June 2017

42

6. CONCLUSION
We have proposed the incorporation of MOGP that works as

feature selection and extraction with Robust Classifiers (NN,

SVM and DT). Those models are examined by UCI datasets

and KDD dataset. The results show that NN classifier has

better result over UCI datasets. In KDD dataset, the three

models worked successfully with the large dataset. And it

achieved better result in mean cost per example by SVM

classifier.

7. REFERENCES
[1] Y Zhang and P I Rockett “Domain-Independent

Approaches to Optimise Feature Extraction for

MultiClassification using Multi-Objective Genetic

Programming” Technical Report No. VIE 2007/001

Department of Electronic and Electrical Engineering

University of Sheffield

[2] Y. Liu, F. Tang, and Z. Zeng, “Feature selection based

on dependency margin,” IEEE Trans. Cybern., vol. 45,

no. 6, pp. 1209–1221, Jun. 2015.

[3] H. Liu and Z. Zhao, “Manipulating data and dimension

reduction methods: Feature selection,” in Encyclopedia

of Complexity and Systems Science. Berlin, Germany:

Springer, 2009, pp. 5348–5359.

[4] H. Liu, H. Motoda, R. Setiono, and Z. Zhao, “Feature

selection: An ever evolving frontier in data mining,” in

Proc. JMLR Feature Sel. Data Min., vol. 10. Hyderabad,

India, 2010, pp. 4–13.

[5] H. Liu and L. Yu, “Toward integrating feature selection

algorithms for classification and clustering,” IEEE Trans.

Knowl. Data Eng., vol. 17, no. 4, pp. 491–502, Apr.

2005.

[6] J. Koza “ Genetic programming: On the programming of

computers by means of natural selection MIT Press,

Cambridge, Massachusetts (1992)

[7] C. Darwin “ On the origin of species by means of natural

selection or the preservation of favoured races in the

struggle for life” Cambridge University Press,

Cambridge, UK (1864)

[8] Peter A. Whigham, and Grant Dick, “Implicitly

Controlling Bloat in Genetic Programming,” IEEE

Transaction on Evolutionary Computation, Vol. 14, No.

2, APRIL 2010, pp. 173-190.

[9] M. J. Streeter, “The root causes of code growth in

genetic programming,” in Proc. Genet. Programming

(EuroGP ’03), vol. 2610. Essex: SpringerVerlag, Apr.

14–16, 2003, pp. 443–454

[10] H. Stringer and A. Wu, “Bloat is unnatural: An analysis

of changes invariable chromosome length absent

selection pressure,” Univ. Central Florida, Tech. Rep.

CS-TR-04-01, 2004.

[11] C. Skinner, P. J. Riddle, and C. Triggs, “Mathematics

prevents bloat,” in Proc. 2005 IEEE Congr.

Evol.Comput., vol. 1. Edinburgh, U.K.: IEEE Press,

Sep.2–5, 2005, pp. 390–395

[12] Elsayed S, Sarker R, Essam D (2015) Survey of uses of

evolutionary computation algorithms and swarm

intelligence for network intrusion detection. International

Journal of Computational Intelligence and Applications

14(04):1550,025, D

[13] H. Liu and Z. Zhao, “Manipulating data and dimension

reduction methods: Feature selection,” in Encyclopedia

of Complexity and Systems Science. Berlin, Germany:

Springer, 2009, pp. 5348–5359.

[14] H. Liu, H. Motoda, R. Setiono, and Z. Zhao, “Feature

selection: An ever evolving frontier in data mining,” in

Proc. JMLR Feature Sel. DataMin., vol. 10. Hyderabad,

India, 2010, pp. 4–13.

[15] B. Xue, M. Zhang, and W. N. Browne, “Particle swarm

optimization for feature selection in classification: A

multi-objective approach,” IEEETrans. Cybern., vol. 43,

no. 6, pp. 1656–1671, Dec. 2013.

[16] Raymer, M., Punch, W., Goodman, E., & Kuhn, L..

Genetic programming for improved data mining:

Application to the biochemistry of protein interactions.

In Proceedings of the first annual conference on genetic

programming (pp. 375–380). Cambridge, Massachusetts:

MIT Press. (1996)

[17] Bot, M., & Langdon, W. Application of genetic

programming to induction of linear classification trees.

In Genetic programming, proceedings of EuroGP’2000

(pp. 247–258). Berlin, Heidelberg: Springer-Verlag.

Chui, C. (1992). An introduction to wavelets. Boston:

Academic Press.

[18] Kotani, M., Nakai, M., & Akazawa, K. . Feature

extraction using evolutionary computation. In

Proceedings of the 1999 congress on evolutionary

computation, 1999. CEC 99 (Vol. 2, pp. 1230–1236).

[19] Raymer, M., Punch, W., Goodman, E., & Kuhn, L.

Genetic programming for improved data mining:

Application to the biochemistry of protein interactions.

In Proceedings of the first annual conference on genetic

programming (pp. 375–380). Cambridge, Massachusetts:

MIT Press.1996

[20] Tackett, W. Genetic programming for feature discovery

and image discrimination. In Proceedings of the fifth

international conference on genetic algorithms, ICGA-93

(pp. 303–309). 1993

[21] Sherrah, J. Automatic feature extraction for pattern

recognition. Ph.D. Thesis, The University of

Adelaide.1998

[22] Krawiec, K. Genetic programming-based construction of

features for machine learning and knowledge discovery

tasks. Genetic Programming and Evolvable Machines,

3(4), 329–343.2002

[23] Cristina Vatamanu, Dragos Gavrilut, Razvan Benchea,

Henri Luchian, "Feature Extraction Using Genetic

Programming with Applications in Malware Detection", ,

vol. 00, no. , pp. 224-231, 2015.

International Journal of Computer Applications (0975 – 8887)

Volume 168 – No.1, June 2017

43

[24] D. Song, M. Heywood and A. N. Zincir-Heywood, A

linear genetic programming approach to intrusion

detection, Genetic and Evolutionary Computation —

GECCO 2003 (2003) 2325–2336.

[25] A. Abraham, C. Grosan and C. Martin-Vide,

Evolutionary design of intrusion detection programs, Int.

J. Netw. Security 4 (2007) 328–339.

[26] W. Lu and I. Traore, Detecting new forms of network

intrusion using genetic programming, Comput.

Intell. 20 (2004) 475–494.

[27] A. Boukelif and K. M. Faraoun, Genetic programming

approach for multi-category pattern classification applied

to network intrusions detection, Int. J. Comput. Intell.

Appl. 6 (2006) 77–99

[28] K. Badran, P. Rockett, "Multi-class pattern classification

using single multi-dimensional feature-space feature

extraction evolved by multi-objective genetic

programming and its application to network intrusion

detection", Genetic Programming and Evolvable

Machines, vol. 13, no. 1, pp. 33-63, 2012.

[29] Thi Anh Le, Thi Huong Chu, Quang Uy Nguyen, Xuan

Hoai Nguyen, "Malware detection using genetic

programming", Computational Intelligence for Security

and Defense Applications (CISDA) 2014 Seventh IEEE

Symposium on, pp. 1-6, 2014.

[30] Jorge Blasco, Agustin Orfila, Arturo Ribagorda

“Improving Network Intrusion Detection by Means of

Domain-Aware Genetic Programming” DOI

10.1109/ARES.2010.53 in IEEE 2010.

[31] Buitinck et al., “API design for machine learning

software: experiences from the scikit-learn project”,

2013.

[32] KDD data set, 1999; http://kdd.ics.uci.edu/databases/-

kddcup99/kddcup99.html

IJCATM : www.ijcaonline.org

http://arxiv.org/abs/1309.0238
http://arxiv.org/abs/1309.0238

