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ABSTRACT 

In this paper, we compare the performance of three traditional 

robust classifiers (Neural Networks, Support Vector 

Machines, and Decision Trees) with and without utilizing 

multi-objective genetic programming in the feature extraction 

phase.  This work argues that effective feature extraction can 

significantly enhance the performance of these classifiers. We 

have applied these three classifiers stand alone to real world 

five datasets from the UCI machine learning database and also 

to network intrusion “KDD-99 cup” dataset. Then, the 

experiments were repeated by adding the feature extraction 

phase. The results of the two approaches are compared and 

conclude that the effective method is to evolve optimal feature 

extractors that transform input pattern space into a decision 

space in which the performance of traditional robust 

classifiers can be enhanced. 
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1. INTRODUCTION 
In machine learning classification applications feature 

extraction phase starts from an initial set of measured data 

with the aim to derive a new values (features) that enhance 

learning and generalization steps while building the classifier, 

and in some cases leads to better human interpretations. While 

feature selection is to choose the optimum features with the 

aim to reduce the redundant and irrelevant information to the 

output classes from the complex input data [1]. 

Feature extraction and selection both can reduce the 

dimensionality of the data, simplify the learned model in 

which it can increase the performance of the classifier and 

generalize better on unseen data. The difference between the 

two stages is that selection occurs among the original features 

while extraction occurs after mapping the input space into 

new decisions space using the derived mapped features. Thus 

the feature extraction can be regarded as finding an optimal 

sequence of operations subject to some criterion. 

Feature extraction is a challenging issue as it is considered as 

a search problem. Where the search space is the possible 

feature compositions and subsets. However, this search needs 

to be domain independent without utilizing a prior domain 

expert knowledge. A variety of search techniques have been 

applied to feature selection, such as complete search, greedy 

search, heuristic search, and random search [2]-[5] However, 

these methods still suffer from high complexity and to get 

trapped in local minimum.  

Recently, evolutionary computation (EC) as a global heuristic 

search techniques and in specific genetic programming been 

employed in feature extraction process Genetic Programming 

employs complex pattern representations such as trees to 

automatically generate a reasonably small yet effective 

number of features by combining the basic building blocks 

which are typically used to construct features, and evaluating 

their fitness automatically. The application of GP to 

classification offers some interesting advantages, the main one 

being its flexibility, which allows the technique to be adapted 

to the needs of each particular problem. For example, any 

kind of suitable operation or function can be used inside that 

representation  

Genetic programming is an evolutionary technique used to 

create computer programs that represent approximate or exact 

solutions to a problem [6]. Based on the Evolution Theory of 

Darwin [7], in which, from an initial population with 

randomly individuals, after subsequent generations, new 

individuals are produced from old ones by means of 

crossover, selection and mutation operations, based on natural 

selection, the good individual will have more chances of 

survival to become part of the next generation. Thus, after 

successive generations, obtains the best-so-far individual 

corresponding to the final solution of the problem.  

Similar, GP is based on the evolution of a randomly created   

initial population of individual computer programs composed 

of the available functions and terminals. Each individual 

program in the population is executed and assigned fitness 

according to the problem’s fitness measure. With a probability 

based on fitness one or more individual from the population is 

selected to participate in the genetic operations like crossover 

and mutation in order to generate the new population where 

its individuals’ fitness’s are evaluated. The GP encoding for 

the solutions is tree-shaped, so the user must specify the 

following parameters  

1- The set of terminals (leaves of the tree) which 

consists of the independent variables of the 

problem, and random constants 

2- The set of primitive functions ( nodes of the tree)  

these functions can be , 

3- The fitness measure measuring the fitness of 

individuals in the population), 

4- The replacement strategy which decide a whole new 

population is generated, or  elitism is applied to save 

the fittest individuals from replacement, 

5- The stopping criteria that when is reached the whole 

evolutionary process stops. 

 

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Feature_(machine_learning)
http://www.sciencedirect.com.sheffield.idm.oclc.org/science/article/pii/S0957417411003253#b0040
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During the evolutionary process of genetic programming 

individuals increase in tree size and depth without a 

corresponding increase in fitness [8]. This problem is due to 

the use of variable-length trees as selective bias towards 

fitness seems to unavoidably lead the search towards 

programs with a large size. This phenomenon, called GP 

bloat. GP bloat slows the evolutionary search process, 

consumes memory. Also, more complex individuals always 

suffer from over-fitting over the training data. Furthermore 

bloat makes these evolved programs even more difficult to 

comprehend [9] 

The most common approach to dealing with bloat in tree-

based genetic programming individuals is set an upper bound 

to the complexity of individuals in the population. An 

alternative to depth limiting is to introduce an explicit fitness 

penalty in some way based on excess size [10]. Another 

approach to control tree bloat is to apply genetic operators 

designed to target redundant code or the bias against offspring 

size increases [11].  

.In this paper we focus on the parsimony pressure approach 

[1]. It use a multi-objective method in which two objectives 

are used, problem-specific error and tree size. Multi-objective 

GP (MOGP) has a number of advantages: As well as 

controlling bloat very effectively, it does not require a pre-

determined depth-limit parameter and the tree depth is free to 

adjust to suit the problem at hand.  

This paper is organized as follows: We present related work 

of using genetic programming in feature extraction in section 

2. Section 3 describes the proposed methodology to 

incorporate MOGP with robust classifiers. In section 4 

experimental results are shown. Conclusion is given on 

section 5. 

2. RELATED WORK 

2.1 GP and Feature Extraction 
In this paper we use GP feature extraction uses the classifier 

output is the Evaluation Criteria: For feature extraction. This 

approach which is called Wrapper approach  has been used 

with most of the classification algorithms such as decision 

tree (DT), support vector machines (SVMs), Naïve Bayes 

(NB), K-nearest neighbor (KNN), artificial neural networks 

(ANNs), and linear discriminant analysis (LDA), have been 

applied to wrappers for feature selection [13], [14], [15]. 

Raymer, Punch, Goodman, and Kuhn [16] applied GP to 

improve KNN classifier performance by, they evolving a tree 

for each attribute. While Bot [17] has used GP to evolve new 

features one-at-a-time to a KNN classifier. In the other hand  

Kotani, Nakai, and Akazawa [18] used GP to evolve the 

polynomial combination of raw features to fed into a KNN 

classifier. Also, Firpi, Goodman, and Echauz [19] developed 

artificial features applied KNN classifier for predicting 

epileptic seizures.  

Tackett [20] developed a processing tree derived from GP for 

the classification of features extracted from images. Sherrah 

[21] applied evolutionary computation to create multi-trees 

GP each tree encoding one feature. Krawiec [22] constructed 

a fixed-length decision vector using GP proposing an 

extended method to protect ‘useful’ blocks during the 

evolution. 

Recently [23] applied GP feature extraction on a malware 

detection to improve the accuracy while finding a proper 

balance between the three basic requirements for malware 

detection algorithms: the training time on large datasets, the 

false positive rate, and the detection rate  

2.2 GP and Network Intrusion 
Song et al. [24] applied page-based linear genetic 

programming for intrusion detection as a binary classifier 

between normal actions and attacks. Only the basic features of 

connections were employed. The half a million records of the 

10 % KDD-99 were used and, in each generation, a target 

number of cases from the dataset were selected randomly for 

fitness evaluation, preferring cases that were difficult to learn 

or cases that had not been selected for several generations. 

 Grosan [25] used multi-expression programming (MEP) to 

detect intrusions in computer networks. An MEP variable-

length chromosome encodes several expressions instead of 

just the one expression in standard GP.  The fitness of the 

entire individual is supplied by the fitness of the best sub-

expression encoded in that chromosome.  

Lu  and Traore [26] used  GP to evolve new rules from 

initially created rules that cover already-known attacks. New 

rules are generated by four operators including: Mutation, 

reproduction, crossover and a dropping condition operator. 

The fitness of each rule is evaluated by incorporating the 

support and the confidence factor of the rule in one function.  

Faroun [27] employed a genetic programming feature 

extraction technique to evolve a non-linear mapping from the 

KDD-99 dataset’s 41 features into a one-dimensional decision 

space where he used a dynamic threshold classifier to separate 

the five classes in the dataset.  

Badran and Rockett [28] used multi-objective genetic 

programming to evolve a feature extraction stage for multiple-

class classifiers by mappings the input space into single 

decision space. They used Bayesian classifier to incorporate 

changing priors and/or costs associated with mislabeling 

without retraining. They applied this approach to the KDD-99 

intrusion detection dataset and obtained results which are 

highly competitive with the KDD-99 Cup winner but with a 

significantly simpler classification framework. 

Thi Anh Le [29], we propose a method by using Genetic 

Programming for detecting malwares. The experiments were 

conducted with the malwares collected from an updated 

malware database on the Internet and the results show that 

Genetic Programming, compared to some other well-known 

machine learning methods, can produce the best results on 

both balanced and imbalanced datasets 

Jorge Blasco et al. [30] guided the GP search by means of a 

fitness function based on recent advances on IDS evaluation. 

They applied their approach to KDD-99. Results clearly show 

that an intelligent use of GP achieves systems that are to top 

state-of-the-art proposals in terms of effectiveness, improving 

them in efficiency and simplicity. 

3. PROPOSED METHODDOLGY 
As shown in figure 1, multi-objective genetic programming 

based feature extraction system applied in addition to the 

traditional three classifiers implementation.  Each individual 

in GP represents a set of new features, which represents 

mapping of the original features into decision space to be 

passed to classifier. These features are calculated through 

special nodes in the tree denoted by Ai. The number of these 

nodes are dynamically changing according to the evolution 

operations. The classification accuracy of the classifier is 

evaluated and it’s considered as one element of fitness vector 
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for this individual that needs to be minimized. The second 

element of the fitness vector is the tree complexity that is 

represented by the node count which needs to be minimized in 

order to control the GP tree bloat. The huge trees could 

produce an extremely small error over the training set but a 

very poor performance estimated over an independent 

validation set.                        

 

Figure 1 MOGP Incorporated with Robust Classifier 

MOGP was implemented in Python with the following 

parameters in Table 1. While, the other traditional classifiers 

were used by calling Scikit-learn API 2013 [31] . Scikit-learn 

integrates a wide range of state-of-the-art machine learning 

algorithms for medium-scale supervised and unsupervised 

problems  

Table 1. MOGP Implementation Parameters 

Parameter Method / Value 

Terminal set 
Select randomly from the input features or 

select random constants [0..1] 

Function set  + , - , / , *  ,  A ( feature output ) 

Initial 

population 

100 individual , with max depth of 5 , 

with random number of output nodes 

[1..10] 

Replacement 

Strategy 

Used an elitist, steady-state strategy. In 

each generation, only two individuals are 

generated and added to the population to 

replace the worst two individuals 

MO Fitness 

Vector 

Classifier Accuracy ( max) 

Tree node count  (min) 

Selection 

Roulette wheel section was employed to 

select randomly two individuals for 

crossover the raw fitnesses to decide 

which should be chosen. 

crossover 

To select the crossover point in the sub 

tree We have used a depth-dependent as a 

sub tree is selected in chosen depth with a 

higher probability to small trees in the 

same depth  

mutation 
Mutation was always applied to the results 

of the crossover operation in mutation 

Stopping 1000 generation 

Table 2 shows the used Scikit-learn classes for Neural 

Networks, Support Vector Machines, and the Decision Trees. 

While Tables 3-5 show the used parameters for calling these 

classes APIs.  For the three classifiers, the method fit is used 

to build the classifier from the training set. While the method 

score returns the mean accuracy on the given test data and 

labels. These classifiers are first built using the original 

features in the datasets. Then, they were used during the 

feature extraction evolution as they return classifier accuracy 

which is considered as one element of the fitness vector for 

each MOGP individual  

. Table 2. Scikit-learn Classifiers Classes 

Classifier Used scikit-learn  class 

NN sklearn.neural_network.MLPClassifier 

SVM sklearn.svm.SVC 

DT sklearn.tree.DecisionTreeClassifier 

 

Table3. Scikit-learn NN API parameters 

Parameter Value 

Algorithm MLP 

hidden_layer_sizes 1 

activation ‘relu’ 

batch_size 200 

alpha 0.001 

learning_rate_init 0.001 

momentum 0.9 

max_iter 100 

 

Table 4. Scikit-learn SVM parameters 

Parameter Value 

Kernal rbf 

Degree 
Degree of the polynomial kernel 

function = 3 

Gama Kernel coefficient = 1/ features 

shrinking True 

max_iter 200 

tol 1e-3 

 

Table 5. Scikit-learn DT API parameters 

Parameter Value 

Algorithm C4.5 

criterion “entropy” : information gain. 

max_depth  7 

min_samples_split 2 

min_impurity_split  1e-7 

min_samples_leaf  1 

 

http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier.fit
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier.score
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.neural_network
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.svm
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.tree
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4. DATA SETS 

4.1 UCI Datasets 
In order to evaluate the performance of the proposed method 

on a small datasets, a range of benchmark datasets from the 

UCI Machine Learning database [32] are used.   A variety of 

datasets was chosen where the number of input features varies 

from 4 to 21, the number of output classes from 3 to 10, and 

the number of patterns in the dataset from 150 to 10991. Each 

dataset was repeatedly split into two folds, one used for 

training and the other used for testing. 

Table 6. UCI datasets 

Name Features Size Classes 

IRIS 4 150 3 

Pen digits (PEN) 16 10991 10 

Image segmentation (SEG) 19 2310 7 

Thyroid Gland (TGD) 5 215 3 

Wine recognition (WIN) 13 179 3 

Teaching Assistant Evaluation 

(TAE) 
5 151 3 

Thyroid (THY) 21 7200 3 

GLASS 9 214 6 

 

4.2 KDD-99 Cup Dataset 
Our principal interest is in using multi-objective genetic 

programming as a feature extractor and selector to perform 

data mining on this very large intrusion detection dataset [] 

The KDD-99 benchmark consists of three datasets: The whole 

dataset that is 5 million records, the 10% that is composed of 

about half a million records, and the corrected KDD-99. In 

this paper we are concerned with the 10% KDD-99 as a 

training dataset and the corrected KDD -99 to test our 

methodology and to compare with published results on this 

dataset. KDD dataset covers four major categories of attacks: 

Probing attacks (information gathering attacks), Denial of-

Service (DoS) attacks (deny legitimate requests to a system), 

user-to-root (U2R) attacks (unauthorized access to local 

super-user or root), and remote-to-local (R2L) attacks 

(unauthorized local access from a remote machine). KDD 

dataset is divided into labeled and unlabeled records. Each 

labeled record consisted of 41 attributes (features) and one 

target value. Target value indicated the attack category name. 

The KDD-99 dataset exhibits four main challenges for 

machine learning algorithms as it is a cost-sensitive, multi-

objective, a large dataset, and contains mixed types of data.  

 

Table 7. KDD-99 dataset features 

Features 

Categories 
Continuous Discrete Total 

Basic 

Features 
5 4 9 

Content 

features 
8 5 13 

Time-based 

features 
9 0 9 

Host-based 

features 
10 0 10 

Total 32 9 41 

 

5. Results 

5.1 UCI Datasets 
The proposed models (MOGP with robust classifiers) are 

implemented and worked successfully with the UCI dataset. 

In table 8, table 9 the comparative of mean misclassification 

errors between three classifiers over eight UCI datasets is 

shown. The most result shows that the performance of the 

three classifiers is enhanced by adding the layer of MOGP 

feature extraction.  NN classifier has best results over six 

datasets, and SVM classifier give better result in two datasets. 

These models succeeded in transforming the input features 

into the decision space where the classifiers performance were 

enhanced. Considering statistical significance to be two 

standard errors shows NN classifier has  significantly superior 

to most  others classifiers  as shown in table 10 

Table 8   Mean Error Using Traditional Classifiers Only 

dataset NN SVM DT 

win 0 0.001 0.03 

TGD 0.011 0.012 0.021 

TAE 0.434 0.445 0.455 

PEN 0.020 0.13 0.052 

SEG 0.043 0.081 0.331 

Glass 0.335 0.413 0.41 

THY 0.009 0.01 0.063 

IRIS 0 0 0 

 

Table 9   Mean Error Using MOGP with Traditional 

Classifiers 

dataset NN SVM DT 

win 0 0.001 0.002 

TGD 0.009 0.009 0.020 

TAE 0.312 0.352 0.372 

PEN 0.015 0.09 0.031 

SEG 0.032 0.051 0.131 

Glass 0.280 0.402 0.314 

THY 0.009 0.008 0.020 

IRIS 0 0 0 

 

Table 10 F-statistic comparisons of classifiers on each 

dataset Error  

dataset NN-SVM NN-DT SVM-DT 

win 2.362 1.713 4.321 

TGD 5.248 7.375 6.872 

TAE 7.654 9.461 6.121 

PEN 4.698 4.365 4.921 

SEG 8.023 6.658 7.32 

Glass 6.632 5.624 2.214 

THY 1.255 6.152 4.468 

IRIS 3.998 1.954 0.478 
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5.2 KDD-99 Cup Dataset 
 Generally this MOGP approach with robust classifiers 

worked successfully with the large dataset. It did not require 

any pre-processing or sampling; neither did it need any prior 

knowledge or assume any specific distribution of the classes 

in the dataset in the input space. It works directly on the data 

in its original form. The results obtained by applying the 

traditional classifiers without the MOGP feature extraction 

phase are shown in table 11.  

Table 12 shows the results after applying the MOGP feature 

extraction phase. It is clear that the performance of the three 

classifiers were enhanced by adding the MOGP feature 

extraction.  The NN Classifier shows better result   in the 

context as it achieved the Accuracy value 0.93112 and 

Detection Rate 0.91359. It gives quite near to best result of a 

mean cost per example which is 0.23618. 

The SVM Classifier gives a best enhancement in the results of 

false positive Rate which is 0.00720 and it better result in of 

mean cost per example which achieved 0.23252. The 

confusion matrix of three models has shown in tables 13-15. 

Table 11   KDD dataset Results 

Classifier 

Evaluation 
DT SVM NN 

Accuracy 0.88125 0.89599 0.9021 

Detection Rate 0.90010 0.88121 0.90147 

False positive Rate 0.02038 0.01115 0.02178 

MCPE 0.25101 0.24245 0.24716 

 

Table 12   KDD dataset Results after MOGP feature 

Extraction 

Classifier 

Evaluation 
DT SVM NN 

Accuracy 0.92591 0.93999 0.93112 

Detection Rate 0.90859 0.91081 0.91359 

False positive Rate 0.01966 0.00720 0.00988 

MCPE 0.24811 0.23252 0.23618 

 

Table 13   Confusion matrix of Decision Tree 

 

Normal Prob DOS U2R R2l 

Normal 59419 1044 103 22 5 

Prob 820 3021 322 3 0 

Dos 5692 128 223464 569 0 

U2R 93 8 118 5 4 

R2l 15361 2 24 2 800 

 

Table 14   Confusion matrix of SVM 

 

Normal Prob DOS U2R R2l 

Normal 60160 295 58 4 76 

Prob 668 3059 164 0 275 

Dos 5956 776 223112 0 9 

U2R 38 149 2 28 11 

R2l 13995 540 1 2 1651 

 

   Table 15   Confusion matrix of Neural Networks 

 

Normal Prob DOS U2R R2l 

Normal 60061 200 310 4 18 

Prob 272 3599 292 0 1 

Dos 5180 523 224125 0 25 

U2R 72 104 5 30 17 

R2l 15150 7 20 1 1011 

 

The final results obtained in the experiments conducted in 

addition to the results of the three winning entries in the 

KDD-99 contest are shown in table 11. All the experiments 

give similar results which show the ability of the multi-

classification multi-objective genetic programming feature 

extraction approach to extract the most discriminant features. 

Also the complexity of the solutions presented is very low 

compared to those of the first winning KDD-99 entry where 

500 decision trees were used, and also to the second winning 

KDD-99 entry which used 755 decision trees. 

   Table 16   COMPARISON BETWEEN OBTAINED 

RESULTS AND WINING ENTRIES RESULTS  

Evaluation 

Method MCPE DR FPR Accuracy 

First place in 

KDD-99 
0.2331 0.918 0.005 0.927 

Second place in 

KDD-99 
0.2356 0.915 0.006 0.929 

Third place in 

KDD-99 
0.2367 - - - 

DT 0.248 0.9086 0.0197 0.92591 

SVM 0.232 0.9108 0.0072 0.93999 

NN 0.236 0.9136 0.0098 0.93112 

 

The NN Classifier give a result in which is very near to the 

winning entries in the KDD-99 contest especially in Accuracy 

and Detection Rate but DT classifier has the highest rate in 

mean cost per example. The SVM has good example which is 

better than the best winning entry in the contest as it achieved 

the value 0.232 for MCPE   
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6. CONCLUSION 
We have proposed the incorporation of MOGP that works as 

feature selection and extraction with Robust Classifiers (NN, 

SVM and DT). Those models are examined by UCI datasets 

and KDD dataset. The results show that NN classifier has 

better result over UCI datasets. In KDD dataset, the three 

models worked successfully with the large dataset. And it 

achieved better result in mean cost per example by SVM 

classifier.  
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