Skip to main content
Log in

Solution of matrix Riccati differential equation for nonlinear singular system using genetic programming

  • Original Paper
  • Published:
Genetic Programming and Evolvable Machines Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel approach to find the solution of the matrix Riccati differential equation (MRDE) for nonlinear singular systems using genetic programming (GP). The goal is to provide optimal control with reduced calculation effort by comparing the solutions of the MRDE obtained from the well known traditional Runge Kutta (RK) method to those obtained from the GP method. We show that the GP approach to the problem is qualitatively better in terms of accuracy. Numerical examples are provided to illustrate the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P. Balasubramaniam, J. Abdul Samath, N. Kumaresan, A. Vincent Antony Kumar, Solution of matrix Riccati differential equation for the linear quadratic singular system using neural networks. Appl. Math. Comput. 2, 1832–1839 (2006)

    Article  Google Scholar 

  2. P. Balasubramaniam, J. Abdul Samath, N. Kumaresan, Neuro approach for solving matrix Riccati differential equations. Neural Parallel Sci. Comput. 15(2), 125–135 (2007)

    MATH  MathSciNet  Google Scholar 

  3. S.P. Banks, K.J. Mhana, Optimal control and stabilization for nonlinear systems. IMA J. Math. Control Inform. 9, 179–196 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. S.P. Banks, Exact boundary controllability and optimal control for a generalized Korteweg de Vries equation. Nonlinear Anal. 47, 5537–5546 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. K.E. Brenan, S.L. Campbell, L.R. Petzold, Numerical Solution of Initial Value Problems in Differential-Algebraic Equations (Elsevier, New York, 1989)

    MATH  Google Scholar 

  6. G. Burgess, Finding Approximate Analytical Solutions to Differential Equations Using Genetic Programming, Surveillance System Division, Electronics and Surveillance Research Laboratory, Department of Defense, Australia, 1999

  7. H. Cao, L. Kang, Y. Chen, J. Yu, Evolutionary modeling on system of ordinary differential equation with genetic programming. Genet. Program Evolvable Mach. 1, 309–337 (2000)

    Article  MATH  Google Scholar 

  8. S. L. Campbell, Singular Systems of Differential Equations (Pitman, Marshfield, MA, 1980)

    MATH  Google Scholar 

  9. S.L. Campbell, Singular Systems of Differential Equations II (Pitman, Marshfield, MA, 1982)

    MATH  Google Scholar 

  10. S.L. Campbell, E. Griepentrog, Solvability of general differential-algebraic equations. SIAM J. Sci. Comput. 16, 257–270 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. C.H. Choi, A survey of numerical methods for solving matrix Riccati differential equations. Proc. IEEE Conf. Southeaston 1, 696–700 (1999)

    Google Scholar 

  12. T. Cimen, S.P. Banks, Nonlinear optimal tracking control with application to super-tankers for autopilot design. Automatica. 40, 1845–1863 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. G. Da Prato, A. Ichikawa, Quadratic control for linear periodic systems. Appl. Math. Optim. 18, 39–66 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Jamshidi, An overview on the solutions of the algebraic matrix Riccati equation and related problems. J. Large Scale Sys. 1, 167–192 (1980)

    MATH  MathSciNet  Google Scholar 

  15. L. Jodar, E. Navarro, Closed analytical solution of Riccati type matrix differential equations. Indian J. Pure Appl. Math. 23 , 185–187 (1992)

    MATH  MathSciNet  Google Scholar 

  16. J.D. Lambert, Numerical methods for Ordinary Differential System: The initial value problem (Wiley, Chichester, England, 1991)

    MATH  Google Scholar 

  17. I. E. Lagaris, A. Likas, D. I. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 9, 987–1000 (1998)

    Article  Google Scholar 

  18. N. Lovren, M. Tomic, Analytic solution of the Riccati equation for the homing missile linear quadratic control problem. J. Guid. Control Dyn. 17, 619–621 (1994)

    Article  Google Scholar 

  19. F.L. Lewis, A Survey of Linear Singular Systems. Circuits Syst. Signal Process. 5(1), 3–36 (1986)

    Article  MATH  Google Scholar 

  20. D.E. Goldberg, Genetic algorithms in search, Optimization and Machine Learning (Addision Wesley, 1989)

  21. G.J. Gray, D.J Murray-smith, Y. Li, K.C. Sharman, T. Weinbrenner, Nonlinear model structure identification using genetic programming. Control Eng. Pract. 6, 1341–1352 (1998)

    Article  Google Scholar 

  22. J.R. Koza, F.H. Bennett D. Andre, M.A. Keane, Genetic Programming III: Darwinian Invention and Problem Solving (Morgan Kaufmann, 1999)

  23. J.R. Koza, Genetic Programming: On the Programming of Computer by Means of Natural Selection (MIT Press: Cambridge, MA, 1992)

    Google Scholar 

  24. B. Mckay, M. Wills, G. Barton, Steady-state modelling of chemical process systems using genetic programming. Computers Chem. Eng. 29(1), 981–996 (1997)

    Article  Google Scholar 

  25. N.H. McClamroch, Feedback stabilization of control systems described by a class of nonlinear differential algebraic equations. Syst. Control Lett. 15, 53–60 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  26. D. Mccaffrey, S.P. Banks, Lagrangian manifolds and asymptotically optimal stabilizing feedback control. Syst. Control Lett. 43, 219–224 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. D.J. Monana, S. Czerwinski, Evolving Control Laws for a Network of Traffic Signals’ Genetic Programming, in Proceedings of the First International Conference (Stanford University, California, 1996), pp. 333–338

  28. M. O’Neill, C. Ryan, Grammatical evolution. IEEE Trans. Evolut. Comput. 5, 349–358 (2001)

    Article  Google Scholar 

  29. M. O’Neill, C. Ryan Grammatical Evolution: Evolutionary Automatic Programming in an Arbitaty Language, Volume 4 of Genetic Programming (Kluwer Academic Publishers, 2003)

  30. E. Polak, Optimisation-algorithms and consistent approximations (Springer, New York, 1997)

    Google Scholar 

  31. M. Razzaghi, Solution of the matrix Riccati equation in optimal control. Inform. Sci. 16, 61–73 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  32. M. Razzaghi, A computational solution for a matrix Riccati differential equation. Numer. Math. 32, 271–279 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  33. M. Razzaghi, A Schur method for the solution of the matrix Riccati equation. Int. J. Math. Sci. 20, 335–338 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  34. K.C Sharman, A.I. Esparcia Alcazar, Y.Li, Evolving Signal Processing Algorithms by Genetic Programming, IEEE Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications (Sheffield, UK, 1995), pp. 473–480

  35. D. Searson, M. Wills, G.Montague, Chemical Process Controller Design Using Genetic Programming, in Proceedings of the Third Annual Conference (Wisconsin, USA, 1998), pp. 359–364

  36. I.G.Tsoulos, I.E.Lagaris, Solving differential equations with genetic programming. Genet. Program Evolvable Mach. 7, 33–54 (2006)

    Article  Google Scholar 

  37. D.R. Vaughu, A negative exponential solution for the matrix Riccati equation. IEEE Trans. Automat. Control. 14, 72–75 (1969)

    Article  Google Scholar 

  38. A. Vincent Antony Kumar, P. Balasubramaniam, Optimal control for linear singular system using genetic programming. Appl. Math. Comput. 192(1), 78-89 (2007)

    Article  MathSciNet  Google Scholar 

  39. A. Vincent Antony Kumar, P. Balasubramaniam, Optimal control for linear system using genetic programming. Optim. Control Appl. Methods (in press)

  40. K. Zhou, Khargonekar, An algebraic Riccati equation approach to H optimization. Systems Control Lett. 11, 85–91 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very much thankful for the referees for the valuable comments and suggestions for improving the manuscript in this format. The work of the authors was supported by the DST Project Grant No. SR/S4/MS:485/07 New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vincent Antony Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balasubramaniam, P., Vincent Antony Kumar, A. Solution of matrix Riccati differential equation for nonlinear singular system using genetic programming. Genet Program Evolvable Mach 10, 71–89 (2009). https://doi.org/10.1007/s10710-008-9072-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10710-008-9072-z

Keywords

AMS (MOS) Subject Classifications

Navigation