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1.  INTRODUCTION

Analysis of network motifs has recently become of
interest with respect to transcriptional regulation
networks. Methods are mainly based on searching for
connexion patterns among small numbers of nodes.
Here we shall introduce a class of artificial regulatory
networks which can be used to compare results
obtained through the same methods as have been
applied to natural regulatory networks of Escherichia
coli and Saccharomyces cerevisiae. We shall see that
the high frequency of certain network motifs detected in
natural systems can be found in artificial systems as
well, provided they are generated by a gene duplication
and divergence process. This leads us to believe that the
actual frequency distribution of motifs (“motif fingerprint”)
in natural regulatory networks is as much if not more a
consequence of the process of network generation than
of subsequent evolutionary selection.

The artificial regulatory network model presented
here has previously been shown to generate networks
which exhibit scale-free and small world network
topologies [12]. Specifically, if the network generation
process is one of duplication and divergence (similar to
that presented in [17], though working on an actual
genome level) we can show such global connectivity
statistics. In this paper, we extend those observations to
network motifs and demonstrate that certain motifs
frequent in natural regulatory systems also occur
repeatedly in this model.

It has also been shown in the past that the
regulatory network model is able to reproduce dynamic
phenomena found in natural genetic regulatory
networks, for instance shifts in onset and offset of gene
expression (heterochrony) based on single bit-flip
mutations [3]. As such, this model can relate changes in

time and intensity to tiny pattern changes on bit strings,
which could possibly provide the algorithmic “missing
link” between genotypes subject to constant evolutionary
changes and the remarkably stable phenotypes found in
the real world.

2.  BACKGROUND

2.1  Regulatory networks

Regulatory networks are an important new research
area in biology [6, 8]. With the realization that in higher
organisms only a tiny fraction of DNA is translated into
proteins, the question of determining the function of the
remaining DNA becomes all the more pertinent. A
reasonable answer for the function of this remaining
unexpressed DNA appears to be regulation. According
to Neidhardt et al. [16], 88% of the genome of the
bacterium E. coli is expressed with 11% suspected to
contain regulatory information (also see Thomas [20]).
Given the selective pressures on bacterial genomes, this
would point to a very prominent rôle for regulation in
general.

In addition, it has been recognized that under-
standing the differences between species and thus the
key to evolution lies in the DNA information controlling
gene expression [11]. Since many evolutionary effects can
be traced back to their regulatory causes, regulatory
networks mediate between development and evolution
and thus serve to help unfold the patterns and shapes of
organism morphology and behaviour [10, 2].

Studying models of regulatory networks can help
us to understand some of these mechanisms by
providing lessons for both natural and artificial systems
under evolution.

2.2 Network motifs

There has recently been significant interest in
studying static network motifs as a tool for under-
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standing regulatory networks [15, 14, 18, 24]. Complex
networks have previously been classified by global
characteristics such as scale-free [1, 4, 5, 9, 23] and
small world network connexion topologies [21, 22]. In
order to investigate networks further beyond their
global features requires an understanding of the
potential basic structural elements that make up
complex networks.

It has been proposed that studying so-called
“network motifs” can lead towards such an
understanding [13, 15, 18]. Network motifs may be
defined as the structural elements (subgraphs) which
form the basic elements of more complex networks.
Whereas an edge usually connects two nodes, network
motif analysis starts with three nodes and their
corresponding connexions.

Interestingly, certain network motifs occur with
significantly higher probability in natural regulatory
networks than in random networks [15]. It has also been
shown that network motifs may be conserved over
evolutionary time, for instance in the yeast protein
interaction network [24].

In order to detect all n-node network motifs, we
have implemented an algorithm similar to one devised
by Milo et al. [15]. The algorithm scans all rows of the
adjacency matrix M of connexions between nodes
searching for non-zero elements (i, j) which represent a

Figure 1. The interaction between proteins and the genome.

connexion from node i to node j. The algorithm then
recursively traverses the neighbouring vertices
connecting vertex i and j until a specific n-node motif is
detected. The constituent vertices and edges of a motif
are then compared to previously found motifs in order
to ensure that none have been overcounted. It must also
be noted that the total number of motifs of a given type
is counted and possible isomorphisms are considered to
be  the same motif type. Table 1 in the Appendix lists all
3-node connexion patterns in directed graphs, including
auto-connexions, up to isomorphism. We shall later
refer to particular motifs with their motif ID (given in
the table) only.

3.  ARTIFICIAL REGULATORY NETWORK MODEL

The artificial regulatory network (ARN) model
presented here is based on work by one of the authors
[3, 2]. The ARN consists of a bit string representing a
genome with direction (i.e. 5′→ 3′ in DNA) and mobile
“proteins” which interact with the genome through their
constituent bit patterns. In this model, proteins are able
to interact with the genome most notably at “regulatory”
sites located upstream from genes, see Figure 1.
Attachment to these sites produces either inhibition or
activation of the corresponding protein. It can thus be
interpreted as a regulatory network with proteins acting
like transcription factors.

The genome itself can be created through a series
of duplication/divergence events. First, a random 32 bit
string is generated. This string is then used in a series of
length duplications followed by mutations in order to
generate a genome of length LG. A “promoter” bit
sequence of 8 bits was then arbitrarily selected to signal
the start of a gene on the genetic string analogous to an
open reading frame (ORF) on DNA. The actual gene
length is set to a fixed length of lg= 5  32-bit integers
which results in an expressed bit pattern of 160 bits per
gene. Therefore, genes can be created by complete

duplications of previously created genes, mutation, and/
or combinations of the end and starting sequences of the
genome during duplication.

Immediately upstream from the promoter sites
exist two additional 32 bit segments which represent the
enhancer and inhibitor sites. As previously mentioned,
attachment of proteins (transcription factors) to these
sites results in changes to protein production for the
corresponding genes (regulation). In this model, we
assume only one regulatory site for the increase of
expression and one site for the decrease of expression



Network motifs    Wolfgang Banzhaf and P. Dwight Kuo    87______________________________________________________________________________________________________

JBPC (2004)

of proteins. This is a radical simplification since natural
genomes may have 5–10 regulatory sites that may even
be occupied by complexes of proteins [2].

Processes such as transcription, and elements such
as introns, RNA-like mobile elements and translation
procedures resulting in a different alphabet for proteins
are neglected in this model. This last mechanism is
replaced as follows: each protein is a 32 bit sequence
constructed by a many-to-one mapping of its cor-
responding gene which contains five 32 bit integers.
The protein sequence is created by performing the
majority rule on each bit position of these five integers
so as to arrive at a 32 bit protein. Ties (not possible with
an odd number for lg) for a given bit position are
resolved by chance.

Proteins may then be examined to see how they
may “match” with the genome. This comparison is
implemented by using the XOR operation which returns
a “1” if bits on both patterns are complementary. In this
scheme, the degree of match between the genome and
the protein bit patterns is specified by the number of bits
set to “1” during an XOR operation. In general it can be
expected that a Gaussian distribution results from
measuring the match between proteins and bit sequences
in the random genome [2].

By making the simplifying assumption that the
occupation of both of a gene’s regulatory sites
modulates the expression of its corresponding protein,
we may deduce a gene-protein interaction network
comprising the different genes and proteins which can
be parametrized by strength of match.

By examining the interaction networks at different
matching strengths (we call them thresholds) we may
obtain different network topologies for the same connected

network components. An example is shown in Figs 2
and 3. Each node in the diagram represents a gene found
in the genome along with its corresponding protein
forming a gene-protein pair. Edges in the diagram represent
some form of influence of one gene’s protein on another
gene. For the diagrams presented, a random genome
was created by the previously mentioned duplication
and mutation procedure with the network interaction
diagrams being created at threshold levels of 21 and 22.
Here and later we do not discern between enhancer and
inhibitor sites, although such an analysis would be
necessary to understand the actual function of motifs.

It must be stressed that although the actual genome
has not changed, by simply changing the threshold
parameter we can obtain different network topologies.
It may be noted by the more astute reader that the
diagrams in Figs. 2 and 3 possess different numbers of
genes and proteins. This is due to the fact that only
connected gene–protein pairs are displayed in the diagrams.
Should a change in the parametrized threshold lead to
the creation of an isolated node, it is deleted from the
diagram. Also note that only the largest network of
interactions is displayed here.

It is possible to have multiple clusters of gene-
protein interactions that are not interconnected. This is
likely to occur as the threshold level is increased. As
connexions between gene-protein pairs are lost due to
the threshold, each cluster of gene-protein pairs begins
to become isolated from the others. This often occurs
abruptly indicating a phase transition between sparse
and full network connectivity.

The end result of this process would be firstly
isolated pairs of nodes, then nodes without connexions,
which would disappear from the network completely.

Figure 2. Sample of a gene-protein interaction network for a duplication/divergence genome at a threshold of 21 bits.
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4.  RESULTS

The network motif finding algorithm was applied
to 800 instances of the artificial regulatory model
generated by the duplication/divergence process. As a
control, it was additionally applied to 800 networks whose
genomes were generated randomly (by choosing the full
number of bits at random). Results of motif counting are
shown in Figs 4 and 5. For both methods of network
generation, the genome length was set at 131072 (12
duplication events in the case of duplication/divergence).
For networks generated by duplication/divergence the
mutation rate was set at 1%. In both cases the threshold
had to be determined. We observed that the ratio of the
number of edges to the number of vertices for the two
natural regulatory networks was approximately 2 to 1.
Therefore, in our artificial regulatory network framework,
the threshold was chosen by iteratively raising the
threshold until the network generated had a ratio that
was equal to or less than 2 to 1.

This was then compared to the results of applying
the algorithm to the transcriptional networks of
Escherichia coli [18, 19] and Saccharomyces cerevisiae
[7], see Figs 6 and 7. Milo et al. defined network motifs
as n-node subgraphs which occur significantly more
than at random [15]. We prefer a more general
definition here, and speak instead of a characteristic
motif fingerprint if talking about the count with regard to
a particular network. It can be seen in Figs 4–7 that the
most frequent natural motifs (ID 22 and ID 12) are both
well represented in duplication/divergence type artifical
networks whereas only one of them can be detected in
fully random networks.

Table 2 in the Appendix lists all regulatory
networks looked at for this paper, and lists the
distribution of all motifs. Note that for artificial
networks we have chosen average numbers of counts,
whereas there is only one example each for the natural
regulatory systems.

Figure 3. The same gene-protein interaction network at a threshold of 22 bits.

Figure 4. Average of frequency of occurrence of network
motifs in 800 instances of the artificial network model
generated by a duplication/divergence procedure.

Figure 5. Average of frequency of occurrence of network
motifs in 800 randomly generated instances of the artificial
network model.
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In pondering the generation process for networks, it
might be pointed out that from the simplest elements of a
network, two nodes connected by a link (or one node
connected by a link to itself), an arbitrary number of
patterns can be generated by duplication and divergence
events. The Bi-Fan motif (4 node) found in abundance in
natural regulatory networks can be easily generated
from the above element by simple duplication. In the
same vein, the feed forward loop consisting of 3 nodes
(ID 14) can be generated from a 2 node motif with an
autoconnexion by a partial duplication and two mutations
effecting a loss of the autoconnexions.

So far we have not examined the case of enhancing
and inhibiting connexions, a fact that further
complicates motif analysis. It remains to be seen
whether dividing networks into their smallest
components will teach us something useful about the
overall structure of regulatory networks.
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5.  CONCLUSIONS

A look at the table might convince us that there is a
clear relation between the natural distribution of motifs
and the distribution in artificial networks generated by a
duplication and divergence process. No evolutionary
selection pressure has been applied in artificial systems,
though. Thus it can be stated that the distribution outcome
is more a reflexion of the mechanism of its generation
than a result of evolutionary pressures (although
evolutionary pressures are certainly responsible for fine
tuning of distributions). The duplication/divergence events
might interweave in a complex and history-dependent
way with selective pressure for function. Unless this
pressure favours the absolute minimal network to achieve
a certain function, the relationship between motif
structure and motif function is not so straightforward as
has been suggested in the literature [14].
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Table 1: Network motifs and their identification ( ID).

APPENDIX
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Table 2. Network motifs and their distribution. D/D: Duplication/Divergence genomes; Rand: Random genomes. AlonIDs
shown as A are autoconnected nodes without a code in Alon’s system.


