Skip to main content

How the Combinatorics of Neutral Spaces Leads Genetic Programming to Discover Simple Solutions

  • Chapter
  • First Online:
Genetic Programming Theory and Practice XX

Part of the book series: Genetic and Evolutionary Computation ((GEVO))

Abstract

For various evolutionary systems it was found that the abundance of phenotypes in a search space, defined as the size of their respective neutral networks, is key to understanding the trajectory an evolutionary process takes from an initial to a target solution. In this chapter we use a Linear Genetic Programming system to demonstrate that the abundance of phenotypes is determined by the combinatorics offered in its neutral components. This translates into the size of the neutral space available to a phenotype and also can explain the beautiful and rather curious observation that the abundance of phenotypes is dependent on their complexity in a negative exponential fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An alternative is to divide phenotypes into a static (structural) and a dynamic (behavioral) part.

References

  1. Banzhaf, W.: Genotype-phenotype-mapping and neutral variation—a case study in genetic programming. In: International Conference on Parallel Problem Solving from Nature, pp. 322–332. Springer (1994)

    Google Scholar 

  2. Banzhaf, W., Leier, A.: Evolution on neutral networks in genetic programming. In: Genetic Programming—Theory and Practice III, pp. 207–221. Springer (2006)

    Google Scholar 

  3. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.: Genetic Programming—An Introduction. Morgan Kaufmann, Morgan Kaufmann Publishers 340 Pine Street, 6th Floor San Francisco, CA 94104 USA (1998)

    Google Scholar 

  4. Brameier, M., Banzhaf, W.: Linear Genetic Programming. Springer (2007)

    Google Scholar 

  5. Dingle, K., Camargo, C., Louis, A.: Input-output maps are strongly biased towards simple outputs. Nat. Commun. 9, 761 (2018)

    Article  Google Scholar 

  6. Dingle, K., Valle Perez, G., Louis, A.: Generic predictions of output probability based on complexities of inputs and outputs. Sci. Rep. 10, 4415 (2020)

    Article  Google Scholar 

  7. Hu, T., Banzhaf, W.: Neutrality and variability: two sides of evolvability in linear genetic programming. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 963–970 (2009)

    Google Scholar 

  8. Hu, T., Banzhaf, W., Moore, J.H.: The effect of recombination on phenotypic exploration and robustness in evolution. Artif. Life 20(4), 457–470 (2014)

    Article  Google Scholar 

  9. Hu, T., Ochoa, G., Banzhaf, W.: Phenotype search trajectory networks for linear genetic programming. In: Genetic Programming: 26th European Conference, EuroGP 2023, Held as Part of EvoStar 2023, Brno, Czech Republic, April 12–14, 2023, Proceedings, pp. 52–67. Springer (2023)

    Google Scholar 

  10. Hu, T., Payne, J.L., Banzhaf, W., Moore, J.H.: Robustness, evolvability, and accessibility in linear genetic programming. In: European Conference on Genetic Programming, pp. 13–24. Springer (2011)

    Google Scholar 

  11. Hu, T., Payne, J.L., Banzhaf, W., Moore, J.H.: Evolutionary dynamics on multiple scales: a quantitative analysis of the interplay between genotype, phenotype, and fitness in linear genetic programming. Gen. Program. Evol. Mach. 13, 305–337 (2012)

    Article  Google Scholar 

  12. Kimura, M.: The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge, UK (1983)

    Book  Google Scholar 

  13. Koza, J.R.: Genetic Programming. MIT Press, 12th floor of One Broadway, in Cambridge, MA 02142 (1992)

    Google Scholar 

  14. Langdon, W.B., Poli, R.: Foundations of genetic programming. Springer (2002)

    Google Scholar 

  15. Lehman, J., et al.: The surprising creativity of digital evolution: a collection of anecdotes from the evolutionary computation and artificial life research communities. Artif. Life 26, 274–306 (2020)

    Article  Google Scholar 

  16. Miller, J.F.: Cartesian genetic programming: its status and future. Gen. Program. Evol. Mach. 21, 129–168 (2020)

    Article  Google Scholar 

  17. Ochoa, G., Malan, K.M., Blum, C.: Search trajectory networks of population-based algorithms in continuous spaces. In: European Conference on Applications of Evolutionary Computation. EvoApps, pp. 70–85. Springer International Publishing, Cham (2020)

    Google Scholar 

  18. Ochoa, G., Malan, K.M., Blum, C.: Search trajectory networks: a tool for analysing and visualising the behaviour of metaheuristics. Appl. Soft Comput. 109, 107,492 (2021)

    Google Scholar 

  19. Reidys, C., Stadler, P., Schuster, P.: Generic properties of combinatory maps: neutral networks of RNA secondary structures. Bull. Math. Biol. 59, 339–397 (1997)

    Article  Google Scholar 

  20. Sarti, S., Adair, J., Ochoa, G.: Neuroevolution trajectory networks of the behaviour space. In: European Conference on Applications of Evolutionary Computation, EvoApps, Lecture Notes in Computer Science, vol. 13224, pp. 685–703. Springer (2022). 10.1007/978-3-031-02462-7_43

    Google Scholar 

  21. Sarti, S., Adair, J., Ochoa, G.: Neuroevolution trajectory networks of the behaviour space. In: European Conference on Applications of Evolutionary Computation, EvoApps, Lecture Notes in Computer Science, vol. 13224, pp. 685–703. Springer (2022)

    Google Scholar 

  22. Schuster, P., Fontana, W., Stadler, P.F., Hofacker, I.L.: From sequences to shapes and back: a case study in RNA secondary structures. In: Proceedings of the Royal Society of London. Series B: Biological Sciences, vol. 255(1344), pp. 279–284 (1994)

    Google Scholar 

  23. Vanneschi, L., Pirola, Y., Mauri, G., Tomassini, M., Collard, P., Verel, S.: A study of the neutrality of boolean function landscapes in genetic programming. Theor. Comput. Sci. 425, 34–57 (2012)

    Article  MathSciNet  Google Scholar 

  24. Wigner, E.P.: The unreasonable effectiveness of mathematics in the natural sciences. Commun. Pure Appl. Math. 13, 1–14 (1960)

    Article  Google Scholar 

  25. Wright, A.H., Laue, C.L.: Evolvability and complexity properties of the digital circuit genotype-phenotype map. In: Proceedings of the Genetic and Evolutionary Computation Conference—GECCO 2021, pp. 840–848. ACM Press (2021)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the reviewers’ insightful comments which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Banzhaf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banzhaf, W., Hu, T., Ochoa, G. (2024). How the Combinatorics of Neutral Spaces Leads Genetic Programming to Discover Simple Solutions. In: Winkler, S., Trujillo, L., Ofria, C., Hu, T. (eds) Genetic Programming Theory and Practice XX. Genetic and Evolutionary Computation. Springer, Singapore. https://doi.org/10.1007/978-981-99-8413-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8413-8_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8412-1

  • Online ISBN: 978-981-99-8413-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics