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ALTERNATIVE MODELS IN

PRECIPITATION ANALYSIS

Alina Barbulescu and Elena Bautu

Abstract

Precipitation time series intrinsically contain important information

concerning climate variability and change. Well-fit models of such time

series can shed light upon past weather related phenomena and can

help to explain future events. The objective of this study is to investi-

gate the application of some conceptually different methods to construct

models for large hydrological time series. We perform a thorough sta-

tistical analysis of the time series, which covers the identification of the

change points in the time series. Then, the subseries delimited by the

change points are modeled with classical Box-Jenkins methods to con-

struct ARIMA models and with a computational intelligence technique,

gene expression programming, which produces non-linear symbolic mod-

els of the series. The combination of statistical techniques with compu-

tational intelligence methods, such as gene expression programming, for

modeling time series, offers increased accuracy of the models obtained.

This affirmation is illustrated with examples.

1 Introduction

Time series analysis and prediction is a problem of high importance in almost
all fields of modern science. Regardless of their nature (e.g. temperature
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records, series of stock prices etc.) time series that monitor real world phe-
nomena are hard to summarize and more importantly, difficult to predict.
Precipitation time series contain information that may help to detect and ex-
plain issues concerning climate variability and change. Well fit models of such
time series are used to analyze past weather related phenomena and can shed
light upon future events.

We study the series of mean annual precipitation records and mean monthly
precipitation records registered in the period 1965 - 2005 at Medgidia meteo-
rological station, situated in Dobrudja region, in the South - East of Romania.
Such series are gathered from dynamic environments, therefore are influenced
by many factors. The process describing the data may undergo changes during
its evolution that trigger the appearance of points in the time series where the
behavior of the series gathered changes [9].

In this study, we consider the problem of modeling time series by splitting
it into blocks that belong to the same process, and constructing models for
these blocks with classical and heuristic approaches. The goal is to find a good
combination of the number of change points and models to fit the segments.
Time series analysis is performed in a three steps methodology. First, the
change point problem is addressed. Then, the models are derived, using both
classical and modern methods. ARIMA models are constructed for the time
series and the subseries delimited by the change points. An adaptive variant
of the Gene Expression Programming (GEP) algorithm is also used for this
purpose. Since the statistical methods used for change point detection gave
contrasting results, we present the models obtained on the subseries delimited
by change points, as well as for the entire time series. We also report some
results obtained by combining an autoregressive model with GEP.

2 Related Work

Time series analysis methods may be broadly classified as classical and heuris-
tic methods [14]. Classical methods include exponential smoothing, autore-
gressive or threshold methods [17], while heuristic approaches use mostly neu-
ral networks or evolutionary computation [14]. In usual approaches, the main
assumption is that the process that generated the data is constant, therefore
once a model that fits a given time series is obtained, it is used to analyze
and predict it. Many time series that deal with real-world environments are
affected by the permanently changing conditions, more or less abrupt, in the
environment. The location where the data generating process of a time series
changes is generally referred to as change point. In weather related time series,
such shifts are known to occur [9].

Change point detection has been the focus of many studies in the statis-
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tical literature. The works of Pettitt [15] and Buishard [4] are seminal in the
literature. They propose statistical tests to find of a change point in the mean
of a non-stationary time series, that leads to the time series being divided into
two stationary time series. The disadvantage is that they test whether there is
only one change point in the series. A common approach is to use sequential
detection methods, coupled with piecewise regression analysis of the series. Lai
[13] reviews sequential change point detection procedures. Hubert proposes a
procedure that builds on the works of Klemes and Potter and optimally yields
a partition of the series in many subseries [9]. Heuristic approaches for change
point detection have also been reported. Jann [10] uses a genetic algorithm to
identify multiple shifts in the course of a time series.

Once the change points are identified, the problem of identification of a
suitable model is split into the determination of models that describe the sub-
series delimited by the change points. At this step, both classical and modern
time series modeling methods may be used. Piecewise linear approximation
(PLA) algorithms are highly used in the literature. In [19] authors report good
results obtained in conjunction with a symbolic representation. PLA is used
to model segments between feature points in [20]. Its major disadvantage is
the approximation of the subseries by linear models. The work presented by
Davis et. al in [5] is a hybrid approach, that combines metaheuristics with
classical statistical methods, namely the autoregressive model (AR). They use
a genetic algorithm for change point detection followed by autoregressive mod-
eling of the segments determined. Sato et. al. [16] use wavelet expansions to
find locally stationary autoregressive models. De Falco et al. constructed a
genetic programming based system for forecasting time series and utilized it
to perform predictions concerning El Nino forecast [7]. A different approach
based also on genetic programming was used in [1], with an emphasis on the
accuracy of the predictive solutions discovered by the algorithm.

3 Statistical analysis of the data

In the following, we shortly present the procedures and statistical tests used
for analysis of the time series data.

A time series model for the observed data (xt) is a specification of the joint
distributions of a sequence of random variables (Xt) of which (xt) is postulated
to be a realization.

A. We study the normality of the time series by means of Q–Q plot diagrams

and the Jarque - Bera test [18].
In Q–Q plot diagrams the data are plotted against a theoretical normal

distribution in such a way that the points should form an approximate straight
line. Departures from this straight line indicate departures from normality.
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The null hypothesis of the Jarque - Bera test [17] is:

H0: The process is normally distributed.

The test statistic JB is defined as

JB =
n

6

(

S2 +
(K − 3)2

4

)

,

where:

• n is the number of observations (or degrees of freedom in general);

• S is the sample skewness,

• K is the sample kurtosis.

The statistic JB has an asymptotic chi - square distribution with two degrees
of freedom. If at a significance level α, JB > χ2(2), then the hypothesis that
the series is normally distributed is rejected.

B. The correlation of the time series is investigated analyzing the autocor-

relation function.
The autocorrelation function at lag h, (h ∈ N∗), associated to a time series

(Xt) [6] is defined by:

ρ(h) =
γ(h)

γ(0)
, (1)

where γ(h) = Cov(Xt,Xt+h), h ∈ N∗ is the autocovariance function of (Xt)
at lag h.

If x1, x2, . . . , xn are realizations of (Xt), by a formula analogous with (1),
the empirical autocorrelation function, denoted by ACF, is obtained.

C. For the existence of change points, our investigation involves several
statistical methods. For the Pettitt test and and the Buishard test, the null
hypothesis is:

H0: There is no change in the time series.

The Buishard test [4] works in the hypothesis that the series is normal. Since
this is not always true for a real-world time series, we also use the Pettitt test
[15], which is a nonparametric test and can be used even if the time series
distribution is unknown.

As mentioned in previous section, classical statistical test, like the one de-
scribed above, assume that only one change point exists in the data, which is
a rather hard constraint. For this reason, in this study we also use CUSUM
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charts [11] and the Hubert segmentation procedure [9] to detect whether mul-
tiple breaks in time series and the moments of their apparition. CUSUM
charts are built by calculating and plotting the cumulative sum of differences
between the values and the average. This tool reveals changes in the mean of
the process generating the time series.

D. Finally, the homoscedasticity [17] is investigated with Barlett’s test.
Bartlett’s test is used to test homogeneity of variances between k groups. The
null hypothesis is:

H0: σ1 = σ2 = · · · = σk

and the alternative hypotheses is

H1: σi 6= σj for at least one pair (i, j).

The test statistic is

T =
(n − k) ln s2

p −
∑k

i=1(ni − 1) ln s2
i

1 + 1
3(k−1)

(

∑k

i=1
1

ni−1 − 1
n−k

)

where

• n is the sample volume,

• k is the number of groups in which the sample is divided,

• ni is the sample size of ith group,

• si is the variance of the ith group,

and

s2
p =

∑k

i=1(ni − 1)s2
i

n − k
.

The null hypotheses is rejected if T > χ2
α,k−1, where χ2

α,k−1 is the upper
critical value of the chi-square distribution with k − 1 degrees of freedom at
the significance level of α.

Since this test is sensitive to departures from normality, it was applied
after the transformation of the series that were not normal into normal series.

4 Time series modeling methods

The problem of modeling time series (or the segments bounded by the change
points) is tackled with a classical approach using autoregressive processes and
with a heuristic approach, based on gene expression programming and an
adaptive variant of this algorithm. The methods used are briefly described in
the following sections.
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4.1 ARIMA models

For a detailed description of the Box-Jenkins methodology, we recommend [6].
In the following, a brief enumeration of the notions used later on in the paper
is given.

Let (Xt) be a discrete process in time and let us consider the operators
defined by:

B(Xt) = Xt−1,

Φ(B) = 1 − φ1B − · · · − φpB
p, φp 6= 0,

Θ(B) = 1 − θ1B − · · · − θqB
q, θq 6= 0,

∆d(Xt) = (1 − B)dXt.

B is called a backshift operator.
(Xt) is said to be an ARIMA(p, d, q) process if Φ(B)∆d(Xt) = Θ(B)ǫt,

where the absolute values of the roots of Φ and Θ are greater than 1 and (ǫt)
is a white noise. Particular cases are:

ARMA(p, q) = ARIMA(p, 0, q),

AR(p) = ARIMA(p, 0, 0),

MA(q) = ARIMA(0, 0, q).

4.2 Evolutionary approach

The computational intelligence technique used to discover time series models
pertains to the broad class of evolutionary computation techniques. One of
the main research areas in the field of evolutionary computation is the Genetic
Programming (GP) paradigm developed in early ’90s by John Koza following
the ideas of developing self programming computers [12]. Similar to other evo-
lutionary techniques (GA, evolutionary programming, evolutionary strategies
etc.), GP uses a computational model of Darwin’s natural selection based on
the survival of the fittest. According to Darwin, the individuals best adapted
to their environments have the highest chances of sharing their genes into the
next generations.

Koza used LISP expressions to encode computer programs as individuals
which the GP algorithm evolved. The sizes and shapes on the parse trees
are independent on the problem tackled, and they are constrained only by
the capabilities of the computing system used to run the algorithm. Based
on Koza’s ideas, many other types of chromosome representations have been
proposed in the literature (stack-based GP, machine code GP, etc). In order
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to cope with various degrees of solution complexity, most of these alternative
representations use variable-length chromosomes (same as Koza’s algorithm).

Cândida Ferreira introduced Gene Expression Programming [8], a GP vari-
ant that uses chromosomes of a GA-like structure. The new representation
uses fixed-length chromosomes, represented by strings of symbols, like in the
classical genetic algorithms, that encode parse trees of computer programs or
mathematical expressions. Although the length of the chromosome is fixed,
the sizes and shapes of the expressions parse trees can vary, same as in GP.
The expressions can include different mathematical symbols: functions, vari-
ables, and constants, which are used to define computational models of real
life processes. The symbols set that the algorithm can use in chromosomes is
a parameter of the algorithm.

Each GEP chromosome is composed of one or more genes. The number of
genes is constant during the evolution process and is equal in all individuals.
Genes are also divided into two sections: head and tail. The head section can
contain any symbols from the symbols set: functions, constants and variables.
The head size is a parameter of the algorithm and is fixed during the evolution
process. The tail section contains only terminal symbols—0-arity symbols,
usually constants and variables. Its size is computed based on the head size
and the maximum arity of the symbols in the symbols set, such that the tail
contains enough symbols to complete the parse tree defined by the head. This
way, each GEP gene decodes into a correct parse expression tree, and therefore
a correct mathematical function. The expression encoded by a chromosome is
obtained by linking the expressions obtained from the genes.

The fitness is measured by mean squared error of the models encoded by
chromosomes with respect to the observed data. In experiments, we report
the prediction error of the models

error =

√

√

√

√

1

n − 1

n
∑

i=1

(xi − x̂i)2,

where

• xi is the value in the original data series at moment i,

• x̂i is the value at moment i predicted by the model.

We also report the ratio of the prediction error over the standard deviation of
the series in order to assess the quality of the predictions.

The genetic operators in GEP are very similar to the operators in the
classical bit-string genetic algorithm, due to the linear structure of the chro-
mosome. All operators are constrained to leave the structure of the genes



52 ALINA BARBULESCU and ELENA BAUTU

unchanged: only terminals may go in the tail. Basically, mutation acts by
randomly choosing a symbol and replacing it with a new one, while recombi-
nation randomly chooses a cut point and constructs offspring by exchanging
parts between the parents.

Apart from the GA-like mutation and recombination, a new type of oper-
ators is defined in GEP – transposition. The main idea behind transposition
is that it duplicates portions of code within a chromosome. For a detailed
description of the GEP paradigm and a thorough analysis of its behavior, we
refer the reader to [8].

Figure 1: Standard GEP chromosome and the parse tree of the expression it
encodes.

As all algorithms in the field of evolutionary computation, GEP has a lot
of parameters that need to be set prior to running the algorithm. A crucial
parameter that controls the size and implicitly the complexity of the evolved
solutions is the number of genes in a chromosome (all chromosomes in a pop-
ulation have the same number of genes). Empirical results suggested that
modifying the number of genes had a major impact on the solution obtained
by the algorithm [8]. A very large number of genes may lead very well to
over-fitting, while a too small number of genes may severly affect the chances
to find a well fit model.

Taking this into account and given the complex nature of the problem
we tackle, we decided to use the Adaptive Gene Expression Programming
algorithm [3]. AdaGEP is a hybrid algorithm that couples a genetic algorithm
to GEP in order to automatically identify the appropriate number of genes.
Each AdaGEP chromosome is enhanced with a bit string, called “genemap”.
Each bit in the genemap corresponds to a gene in the GEP chromosome: if
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the bit is set, the respective gene will be decoded and will be a part of the
expression decoded from the chromosome, else the gene is ignored (inactive).
A gene that is inactive in a chromosome may become active if its bit is flipped
in a genetic operation.

Since every GEP chromosome in the population of the algorithm has a
genemap attached, we obtain a population of genemaps that regulates the de-
codification of the chromosomes into mathematical expressions. The genemaps
are evolved with a genetic algorithm. Practically, for each GEP generation, a
GA iteration is performed. There is a slight difference from the classic GA:
the individuals are not evaluated, but they receive as fitness values the fitness
of the GEP chromosomes they are attached to. Therefore, the GA iteration
involves only performing genetic operations: mutation and crossover.

Figure 2: AdaGEP chromosome. The second bit in the genemap is 0, therefore
the second gene is inactive and does not participate in the encoded expression.

The two populations coevolve and receive feedback from one another: GEP
influences the GA by setting the fitness values, while GA influences GEP by
deactivating genes, which further reflects upon the mathematical expressions
obtained. In [3] there is a detailed description and analysis of AdaGEP.

4.2.1 Experimental setup

We used our AdaGEP extension [3] implemented for the gep package of the
framework ECJ for the experiments described in this work. The parameters of

ECJ is an open-source evolutionary computation research system developed in Java
at George Mason University’s Evolutionary Computation Laboratory and available at
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the algorithm are described in the following. The maximum number of genes in
the GEP chromosomes was set to 6. Therefore, each AdaGEP chromosomes
has associated a genemap of 6 bits. The size of the head of a gene was 5
symbols, the population size 1000, as termination criterion for the algorithm
we used a maximum number of generations of 200. The operator rates were left
at the default values provided by the framework. The function set included the
arithmetic operators {+,−, ∗, /} and also trigonometric functions {sin, cos}.

The selection scheme used was fitness proportionate selection, enhanced
with elitist survival of the best 10% of the individuals in each generation
onto the next. The algorithm is driven by the feedback it receives from the
population by means of the fitness values of the individuals; individuals with
smaller errors are favored. The genetic algorithm that evolves the genemaps
used a mutation rate of 0.001 and a crossover rate of 0.65.

A very important parameter for algorithms for time series analysis is the
number of historical values upon which they base the prediction. It is usually
referred to as window size, and the values are usually sampled contiguously
from past data. Finding the appropriate window size for a model is an opti-
mization problem itself, and few attempts to tackle it are encountered in the
literature. Given enough past values, the gene expression programming algo-
rithm should discover by evolution the important variables and include them
in the model. Nevertheless, in this study we take on a brute-force approach,
relying on information regarding the nature of the series we study. This way,
we perform experiments for all window sizes in the interval [1, 12] and report
here the best models encountered. Evidently, for each window size, 50 runs
are performed.

5 Experimental Results

The time series studied are represented in Figures 3 and 4 and are denoted
respectively by S 1 and S 2. They are the series of mean annual and mean
monthly precipitation registered in the period 1965 - 2005 at Medgidia meteo-
rological station, situated in Dobrudja region, in the South - East of Romania.

These two series were chosen in order to test the limits of the methods
since they are different: S 2 is much longer than S 1 and it presents a seasonal
behavior, discussed in the following.

Statistical analysis on the time series is performed applying the tests and
procedures described earlier. The results are presented in the following.

• For S 1:

http://cs.gmu.edu/ eclab/projects/ecj/
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Figure 3: S 1: The mean annual precipitation (January 1965 - December
2005).

Figure 4: S 2: The mean monthly precipitation (January 1965 - December
2005).
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The series is normally distributed, independent and homoscedastic [2].
Therefore, further statistical analysis of this series in unnecessary.

• For S 2:

First, it must be noted that the precipitation levels recorded in May
1972 and June 1990 are outliers and were eliminated from the series.

A. The series does not have a normal distribution. The Q-Q plot diagram
(Fig. 5) shows that the observed values are not distributed along the straight
line that represents the theoretical normal distribution.

Figure 5: Q - Q plot of S 2.

A new series, denoted by S 2 T, was constructed by applying a Box-Cox

transformation Zt =
Xλ

t
−1

λ
, with λ = 0.39.

The Jarque - Bera test applied to this series leads us to accept the hypoth-
esis that the series is normally distributed. Also, the histogram associated
to S 2 T confirms the normality (the curve represents the chart of theoretical
standard Gaussian distribution) (Fig. 6).

B. S 2 and S 2 T are correlated, since there are values of ACF outside the
confidence interval, at the confidence level of 95% (Figs. 7 and 8).

C. Change point analysis gave different results. The application of the
Pettitt test to S 2 and S 2 T (Fig. 9) lead us to accept the hypothesis that
there is no break in the time series, at a confidence level of 95%.

The same conclusion is obtained by the Buishard test. To confirm this, we
include the Bois ellipse associated to this test.
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Figure 6: Histogram of S 2 T.

Figure 7: Autocorrelogram of S 2.

Figure 8: Autocorrelogram of S 2 T.
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Figure 9: Pettitt test for S 2.

Figure 10: Bois’ ellipse.
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Since the previous tests are applicable only in the case of a single break
in the time series, we further applied Hubert’s segmentation procedure to test
whether there exist multiple change points in the series. The null hypothesis
is rejected for both S 2 and S 2 T. Two break points were determined: in
April 1971 and July 1991. This leads to the partition of series S 2 into three
subseries, denoted respectively by:

• S 21 - the subseries up to the first break point,

• S 22 - the subseries consisting of the values between the two break points,

• S 23 - the subseries between the second break point and the end of the
S 2.

The values of some descriptive statistics of these series are given in Table 1.

Table 1: Descriptive statistics
Series S 2 S 21 S 22 S 23
min 0.4 0.9 0.4 0.7
max 165.4 156.4 135.4 154.5
mean 37.49 40.8 34.12 41.29

median 29.6 32.4 28.35 30.35
variance 950.77 1153.11 685.38 1045.77
std.dev. 30.83 33.96 26.18 32.34

The CUSUM chart reveals a change point in S 2 (Fig. 11) and also in
S 2 T.

Figure 11: CUSUM of S 2.

D. Since Bartlett test is sensitive to deviances from normality, it was ap-
plied to S 2 T. The value of the associate statistic was:

T = 1.1166 < 5.99 = χ2
0.05,2.
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Therefore the homoscedasticity hypothesis can be accepted at a significance
level of 5%.

6 Models

Models obtained with the Box-Jenkins methods are presented next, as well as
the symbolic models obtained in AdaGEP experiments.

The models resulted from the evolutionary approach were obtained in ex-
periments of 50 independent runs each, with the same parameters for all runs.
All models obtained with GEP presented here were chosen from among the
best models (in terms of prediction error) that have independent, normally
distributed and homoscedastic residuals.

For the monthly data, the best models were found for the window size of
5, while for the annual data the best model reported was encountered in a run
with a window size of 4.

6.1 Models for S 1

We saw that S 1 is Gaussian, independent, uncorrelated and homoscedastic,
thus it is a Gaussian noise. Therefore, it is not the case to look for a good
model of ARIMA type.

Using AdaGEP, the best solution had the prediction error of 64.17 and the
ratio of the prediction error over standard deviation is 0.69.

Combining an AdaGEP model with a backshift operator, results are im-
proved. For example, starting with a model for which the prediction error was
111.874, the final model had the prediction error 45.94 (Fig. 12).

Figure 12: Combined model for S 1.
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6.2 Models for S 2

Since S 2 T is Gaussian, the following solutions are proposed:

1. After the mean extraction, a model of ARMA(2,2) type was determined
(Fig.11). Its equation is:

Zt = 0.9577Zt−1 − 0.9915Zt−2 + ǫt − 0.929ǫt−1 + 0.9914ǫt−2

where (ǫt) is a white noise with the variance 0.9517;

Figure 13: ARMA(2, 2) model for S 2 T.

2. After the elimination of seasonal factors (Table 2) from S 2 T, the new
series is Gaussian noise, therefore it is not necessary to determine a
better model of ARIMA type.

Table 2: Seasonal factors.
Month Seasonal Factor (%)
January 79.7
February 82.6
March 83.9
April 97.6
May 111.9
June 130.1
July 126.6

August 106.5
September 96.4
October 90.2

November 97.6
December 96.9
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The best solution obtained with AdaGEP for S 2 T was not satisfactory
(Fig.14); it did not follow the trend of the series at any point and the amplitude
of the model was much smaller than that of the real data.

Figure 14: AdaGEP model for S 2 T.

These poor results may be due to the length of the time series (we recall
it consists in monthly mean values over 40 years) and the fact that its overall
properties describe it as hard to model as a whole, given that it consists
of different processes. Also, another possible cause is the large variation of
precipitation recorded over some months, which is a characteristic of the entire
region.

In order to obtain a better fit, the seasonal factors were eliminated and the
resulted series was further modeled with AdaGEP. The model obtained this
time for a window size of 12, better fit the data than the previous one (Fig.
15), but it remains worse than the ARMA(2,2) model in terms of prediction
error. Its prediction error is 10.05, and the ratio between prediction error and
standard deviation is only 0.41.

6.2.1 Models for S 21

Since Hubert segmentation procedure indicated the existence of three different
segments for series S 2, we model each subseries independently with classical
ARIMA and with the adaptive gene expression programming algorithm.

First, in order to model S 21, the ACF and the Partial ACF were studied.
Some of their values lie outside the confidence limits at the level of confidence
of 95%.

After a Box-Cox transformation, with λ = 0.39, the normality of S 21 was
reached. The form of ACF associated to the new series, S 21 T, was of damped
sine and the values of PACF were inside the confidence level, excepting the
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Figure 15: AdaGEP model for S 2 T without seasonality. The picture in the
right is a detail of a portion of the time series. It can be noted that the model
follows the trend in the original time series, although the amplitude of the
values predicted by the model is lower than the real amplitude.

fourth. Thus, the chosen model was of moving average type.

Using Akaike’s criterion for the model selection, the best model was:

Zt = ǫt − 0.2242ǫt−4, t ∈ 5, 76,

with (ǫt)t∈5,76 a white noise.

In Fig.16 it can be observed that the model is very good, since the data
and the estimated values are practically superimposed in the majority of cases.
The charts of the best models obtained for S 21 T using AdaGEP, respectively
AdaGEP followed by the application of a backshift operator are presented in
Figs. 17 and 18. Their corresponding prediction errors were respectively 27
and 26.238. The ratio between the prediction error and the standard devi-
ation for the AdaGEP solution is 0.86. A slight decrease in the error was
accomplished by using the backshift operator.

6.2.2 Models for S 22

A satisfactory model of ARIMA type wasn’t found for this subseries. In Fig.
19 we present the chart of the best model obtained using AdaGEP. It has the
prediction error of 26.13 and the ratio of prediction error over the standard
deviation of 1.01.
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Figure 16: MA(4) model for S 21 T.

Figure 17: AdaGEP Model for S 21 T.

Figure 18: Combined model for S 21 T.
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Figure 19: AdaGEP model for S 22.

6.2.3 Models for S 23

The model determined using Box-Jenkins methods was an MA(11):

Xt = ǫt − 0.6399ǫt−11, t ≥ 12,

where (ǫt)t≥1 is a white noise.
Models obtained with AdaGEP performed similarly, in terms of prediction

error, with the moving average model. Still, as expected, an improvement of
the calculation error was observed after the application of a backshift operator
to the AdaGEP model (Fig. 20).

Figure 20: Combined model for S 23.

7 Conclusions

We presented two distinct approaches to time series analysis. The overall
methodology included a thorough statistical analysis of the data and classi-
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cal and heuristic methods to model the time series. The study shows the
suitability of this hybrid approach that combines classical statistical methods
to detect changes in the time series with computational intelligence modeling
methods. The gene expression programming algorithm is confirmed as a fair
competitor for classical ARMA models. While the classical approach adopted
in this paper leads to ARMA models that are fairly simple in comparison to
the complex expressions evolved by gene expression programming, it lacks the
robustness of the evolutionary approach by means of GEP. GEP may be used
regardless of the statistical properties of the time series and it may lead to
complex non-linear models that fit well the data.

An empirical observation on the heuristic approach is that is seems to work
better on smaller time series. This may lead to overfitting, therefore future
investigations will be conducted in this direction. Still, a possible explana-
tion for this behavior may be that long precipitation time series cover a long
horizon of time, so it is highly possible that some important events appear in
the environment of the time series that cause it to shift and change its model.
This is in accordance to the methodology we used, where an important step
is detecting changes in the time series prior to fitting the models. Also, inter-
esting results were obtained combining the models obtained by the heuristic
approach with backshift operators. This is also o direction for future inves-
tigations. Future research will deal with evolving teams of predictors using
adaptive gene expression programming in order to improve the robustness of
the predictions and also extending the adaptive behavior of the algorithm in
order to automatically find the best settings for more of its parameters (e.g.
population size, operator rates).
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