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Abstract: In this paper we present a case study: the application of some conceptually different approaches to the 
problem of identifying a model for a hydrological time series. The problem is particularly challenging, due to the size 
of the time series and more importantly, to the many complex phenomena that influence such time series and that 
reflect in the characteristics of the data. We use well established statistical methods to detect change points in the time 
series, and we model the subseries obtained by ARIMA, GEP and the adaptive variant and a combination of the two. 
The models obtained state the efficiency of combining pure statistical tests and methods with heuristic approaches. 
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1   Introduction 
Time series are ubiquitous in the real world. They are 
usually generated by dynamical systems and can be 
encountered in any field of science (e.g. periodic records 
of the unemployment rate, series of exchange rates, daily 
temperatures, number of failures of equipment per unit 
of time, etc.). The problem of modeling time series has 
been the subject of many research reported in the meteo-
hydrological literature [1], [7], [8]. Hydrological records 
hold important information with respect to the study of 
weather phenomena or the environment. The importance 
of finding a well fit model for a hydrological time series 
cannot be denied, since the main revenue obtained by a 
successful approach would be a model that explains the 
past very well and provides informed insight into what 
will happen in the future. 
     The methods used for time series modeling can be 
grouped into two broad classes: classical and modern 
heuristic methods. Classical approaches include 
exponential smoothing, autoregressive or threshold 
methods [16]. The majority of heuristic approaches to 
the problem use neural networks or evolutionary 
computation [16]. Many algorithms rely on the 
assumption of a constant data generating process, which 
implies that once a model that fits a given set of data (a 
time series of a given size), the problem is solved, and 
the model may be used to characterize the future. This 
kind of approach is flawed, since in the real world, the 
conditions are permanently changing, and the changes in 
the environment that produces the given time series 
trigger changes in the gathered data. 

     In statistics, the point where a change occurs in the 
data generating process is called a change point. The 
problem of identifying such points in a time series is 
referred to as the change point problem.  
     In this paper, we follow the three step methodology 
implied by treating the time series from a change point 
perspective. Therefore, we try to identify the number of 
change points (if there exist any), their location, and then 
to model the distribution of the subseries defined.  

Then we use both a classical approach – the ARIMA 
method, and a heuristic one – using standard GEP and 
the adaptive Gene Expression Programming variant 
AdaGEP [4], to model the subseries.  

We choose use GEP since it is known that 
evolutionary computation techniques, in particular 
genetic programming and its variants, have been used 
with very good results on real world time series [16].  

Since the break tests gave contrasting results, we 
report the models obtained on the entire time series as 
well using the two modeling techniques mentioned 
(ARIMA and GEP). We also report some results 
obtained by combining an autoregressive model with 
GEP.  
 
1.1 Related Work 
     Numerous attempts to solve the change point problem 
are reported. The works of Pettitt [14] and Buishand [6] 
are seminal in the literature. They propose tests that 
permit to find of a change point in the mean of a non-
stationary time series. Then the time series may be 
divided into two stationary time series. The assumption 
that there is only one change point is an important 
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shortcoming, so Hubert proposes a procedure that builds 
on the works of Klemes and Potter and optimally yields 
a partition of the series in many subseries [11]. 
     Once the change points are identified, the problem of 
identification of a suitable model is split into the 
determination of models that describe the subseries 
delimited by the change points. At this step, both 
classical and modern time series modeling methods may 
be used.  
     Piecewise linear approximation (PLA) algorithms are 
highly used. In [12] authors report good results obtained 
in conjunction with a symbolic representation. PLA is 
used to model segments between feature points in [17]. 
Its major disadvantage is the approximation of the 
subseries by linear models. The work presented in [9] is 
a hybrid approach, that combines metaheuristics with 
classical statistical methods, namely the autoregressive 
model (AR). Davis uses a genetic algorithm for change 
point detection followed by autoregressive modeling of 
the segments determined.  
 
 
2   Time series modeling 
A time series model for the observed data  is a 
specification of the joint distributions of a sequence of 
random variables  of which  is postulated to be 
a realization. 

)( tx

)( tX )( tx

In what follows we shall denote by n use the 
selection volume. 

 
 

2.1 ARIMA models 
For a description of Box-Jenkins methodology, we 
recommend [5]. We resume ourselves to only list here 
the notions used later on in the paper.  
     Let us consider the operators defined by: 
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     The process (Xt) is said to be an ARIMA(p, d, q) 
process if , where the absolute 
values of the roots of  and Θ  are greater than 1 and 

 is a white noise.  
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     Particular cases are: ARMA(p, q)=ARIMA(p, 0, q), 
AR(p) = ARIMA(p, 0, 0), MA(q) = ARIMA(0, d, 0).  
 
 
2.2 Heuristic approach 

Apart from the statistical treatment by means of 
ARIMA models, we use a heuristic approach based on 

GEP [10], [4], [3] to discover fit models for the time 
series.  

The method used by us dynamically adapts the size 
of GEP chromosomes by adjusting actually the number 
of genes that actively participate in the decodification 
process of GEP chromosomes. In standard GEP the size 
of the individuals is fixed and all genes participate in the 
decodification process.  

The adaptive mechanism use by us resides on the 
feedback received from the algorithm by means of each 
individual’s fitness. The fitness is measured in terms of 
prediction error: 

( )∑
=

−
−

=
n

i
ii xx

n
error

1

2ˆ
1

1 . 

We report also the ratio of prediction error over 
standard deviation as a measure of the predictions’ 
quality in a model.  
  
2.2.1 Experimental setup 
AdaGEP extension implemented for the gep package of 
the framework ECJ1 has been utilized for this work The 
number of genes in the GEP chromosomes was set to 6. 
This means that each enhanced AdaGEP chromosomes 
has associated a genemap of 6 bits. The size of the head 
was 5 symbols, the population size 1000, the stopping 
criterion used a maximum number of generations of 200. 
The operator rates were left at the default values 
provided by the framework. The function set included 
the arithmetic operators , and also 
trigonometric functions 

/},*,,{ −+
{ }cossin, . The individuals are 

evaluated using the prediction error, such that the 
algorithm favors individuals with smaller prediction 
error. The selection scheme used was roulette wheel 
selection, enhanced with elitist survival of the best 10% 
of the individuals in each generation onto the next. The 
genetic algorithm that evolves the genemaps used a 
mutation rate of 0.001 and a crossover rate of 0.65. 
  
 
2.3 Data analysis  
In order to perform the data analysis the following 
procedures and statistical tests were used: 
1. Q-Q plot or Jarque – Bera test – to verify the 

normality hypothesis [15]; 
2. The autocorrelation function [5] – to test the 

hypothesis that the series is uncorrelated;  
3. Buishard [6] and Pettitt [14] tests and Hubert’s 

segmentation procedure [11], to determine the 
existence of change points (breaks);  

                                                           
1 ECJ is an open-source evolutionary computation research 
system developed in Java at George Mason University’s 
Evolutionary Computation Laboratory and available at 
http://cs.gmu.edu/˜eclab/projects/ecj/ 
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4. Bartlett test [2] for homoscedasticity. 
The series studied are represented in Figs. 1 and 2. 
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Fig. 1. S_1: The mean annual precipitation 

(January 1965 - December 2005) 
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Fig. 2. S_2: The mean monthly precipitation  
(January 1965 - December 2005) 

 
      The tests’ results were, respectively:  

• For S_1: 
The series is normally distributed, independent and 

homoscedastic [3] 
• For S_2:  
1. The series doesn’t have a normal distribution. 

 
Fig.3. Q - Q plot of S_2 

The Q-Q plot diagram (Fig. 3) shows that the observed 
values are not distributed along the straight line that 
represents the theoretical normal distribution.  

The test Jarque – Bera applied to the series obtained 
after a Box-Cox transformation, 

λ
−

=
λ 1t

t
XZ , 

with 39.0=λ , leads us to accept the hypothesis that the 
series is normally distributed. In addition, the associated 
histogram (Fig. 4) confirms the normality (the curve 
draws the chart of theoretical standard Gaussian 
distribution).  
 

 
Fig.4. Histogram of the transformed series, (Zt) 

 
2. The original data series and the transformed one 

are correlated, since there are values of autocorrelation 
function (ACF) outside the confidence interval at 95% 
confidence level. (Fig.5). 

 

 
Fig.5. Autocorrelogram of S_2 transformed 

 
3. The results obtained in the break tests are 

contradictory. 
Let the null hypothesis be: 

H0: The time series doesn’t have breaks. 
Bois’ ellipse, associated with Buishard’s test is 

represented in Fig.6. We conclude that H0 can be 
accepted at a confidence level of 95%. The Pettitt test 
leads us to the same conclusion (Fig.7). 

H0 is rejected after the application of Hubert’s 
segmentation procedure. Two break points were 
determined: in April 1971 and July 1991. The 
precipitation levels recorded in May 1972 and June 1990 
are outliers. 
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Fig.6. Bois’ ellipse 

 
 

 
Fig.7. Pettitt test  

 
Given these break-points, the original series S_2 will 

be split into three subseries, denoted respectively by: 
S_21 the subseries up to the first break point), S_22 (the 
subseries consisting of the values between the two break 
points), and S_23 (the subseries beginning with the 
second break point up to the end). 

The values of some descriptive statistics of these 
series are given in Table 1. 

 
Table 1. Descriptive statistics 

Series S_2 S_21 S_22 S_23 
min 0.4 0.9 0.4 0.7 
max 165.4 156.4 135.4 154.5 
mean 37.49 40.8 34.12 41.29 

median 29.6 32.4 28.35 30.35 
variance 950.77 1153.11 685.38 1045.773
std.dev. 30.83 33.96 26.18 32.34 
 
4. Bartlett test was applied dividing S_2 in S_21, 

S_22, S_23 and also the subseries with the selection 
volume 164. In both cases, the homoscedasticity 
hypothesis was rejected.  

The change point analysis, based on the cumulated 
sums, CUSUM, reveals a change point in S_2 (Fig.8) 
 

 
Fig.8. CUSUM of S_2 

 
 

4   Models 
In this section we shall present some models obtained 
using GEP and Box-Jenkins methods and a combination 
of these methods. The combination of the two is 
performed in a similar fashion to the technique of linear 
scaling employed in [13]. 
 
 
4.1. Models for S_1 
We saw that S_1 is Gaussian, independent uncorrelated 
and homoscedastic, thus it is a Gaussian noise. 
Therefore, it is not the case to look for a better model of 
ARIMA type.  

Using AdaGEP the best solution over 50 
independent runs of each window size 5,1=w , had the 
prediction error of 64.17, and the ratio of the prediction 
error over the standard deviation of 0.69. 

Combining the AdaGEP solution with an AR model, 
the result was improved. For example, starting with a 
model for which the prediction error was 111.874, the 
final model (Model 1) had the prediction error 45.94 
(Fig.9), obviously an improvement over the AdaGEP 
solution. 
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Fig.9. Model 1 for the annual data 

 
 

4.2. Models for S_2 
Since S_2 was normally distributed after a Box –Cox 
transformation, the first attempt was to use GEP and 
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AdaGEP to model the transformed series, but the results 
were not satisfactory. (Fig.10) 

 
Fig.10. AdaGEP model for S_2 

 
Therefore, for the same series, after the mean 

extraction a model of ARMA(2, 2) type was determined. 
It has the equation: 

,9914.0929.09915.09577.0 2121 −−−− ε+ε−ε+−= tttttt ZZZ
)( tεwhere is a white noise with the variance 0.9517. 
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Fig.11. ARMA(2,2) model for S_2 

 
4.2.1  Models for S_21 
In order to model S_21, ACF and the Partial ACF were 
studied. Some of their values lie outside the confidence 
limits at the level of confidence of 95%. 

 
Fig.12. MA(4) model for S_21 

 
To attenuate the differences between the data of 

S_21 we made a Box-Cox transformation, with λ=0.42. 
The form of ACF of the transformed data is of damped 

sine. The values of PACF are inside the confidence 
level, excepting the fourth. So, the model chosen was of 
moving average type.  

Using Akaike’s criterion for the model selection, the 
best one was: 

,76,5,2242.0 4 ∈ε−ε= − tX ttt  
with 76,1)(

∈
ε tt  a white noise. 

The charts of the best models obtained using GEP 
and a combination of GEP and AR are presented in Figs. 
13 and 14. The corresponding errors were respectively 
27 and 26.238. 
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Fig.13. GEP Model for S_21 
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Fig.14. Combined model for S_21 

 
4.2.2 Models for S_22  
In Fig. 15 we present the charts of the best models 
obtained using genetic algorithms. We mention that the 
best models had the calculation error of 26.13.  
     A good model of ARIMA type wasn’t found for this 
subseries. It was obtained by a decomposition process, 
and it is beyond the purpose of this paper. 
 
4.2.3 Models for S_23 
The calculated errors of the best models determined 
using GEP and AdaGEP were comparable with those 
obtained for the previous subseries.  

The model determined using Box-Jenkins methods 
was an MA(11). The same improvement of the 
calculation error was registered using the combination of 
GEP and AR. (Fig.16) 
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Fig.15. AdaGEP model for S_22 
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Fig.16. Combined model for S_23 

  
4   Conclusions 
The results show the adaptive gene expression 
programming algorithm as a fair competitor of classical 
methods. Better results were obtained on time series of 
smaller size. A straightforward explanation is the 
continuously changing characteristics around data that 
concerns weather in general, which coincides with our 
intuition that there exist points in meteo-hydrological 
time series when the underlying process changes. Our 
results come to support the idea that combining 
statistical tests for detecting change points with both 
heuristic methods, such as GEP, and classical Box-
Jenkins methods leads to overall better models. We also 
reported good results combining AR with GEP. This is 
an idea that will be investigated in future research. 
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