
Evolving Cooperative Control on Sparsely Distributed
Tasks for UAV Teams Without Global Communication

Gregory J. Barlow
∗

The Robotics Institute
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

gjb@cmu.edu

Choong K. Oh
United States Naval

Research Laboratory
4555 Overlook Avenue, SW

Washington, DC 20375
choong.oh@nrl.navy.mil

Stephen F. Smith
The Robotics Institute

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213
sfs@cs.cmu.edu

ABSTRACT
For some tasks, the use of more than one robot may improve
the speed, reliability, or flexibility of completion, but many
other tasks can be completed only by multiple robots. This
paper investigates controller design using multi-objective ge-
netic programming for a multi-robot system to solve a highly
constrained problem, where multiple unmanned aerial vehi-
cles (UAVs) must monitor targets spread sparsely through-
out a large area. UAVs have a small communication range,
sensor information is limited and noisy, monitoring a target
takes an indefinite amount of time, and evolved controllers
must continue to perform well even as the number of UAVs
and targets changes. An evolved task selection controller
dynamically chooses a target for the UAV based on sensor
information and communication. Controllers evolved using
several communication schemes were compared in simula-
tion on problem scenarios of varying size, and the results
suggest that this approach can evolve effective controllers if
communication is limited to the nearest other UAV.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics—Autonomous ve-
hicles; I.2.2 [Artificial Intelligence]: Automatic Program-
ming—Program synthesis; I.2.8 [Artificial Intelligence]:
Problem Solving, Control Methods, and Search

General Terms
Design

Keywords
evolutionary robotics, unmanned aerial vehicles, multi-agent
systems, genetic programming, multi-objective optimization

∗At the time this research was completed, Gregory J. Barlow
was also affiliated with the U.S. Naval Research Laboratory,
4555 Overlook Avenue, SW, Washington, DC 20375

Copyright 2008 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07 ...$5.00.

1. INTRODUCTION
As the application of robotic systems to real-world prob-

lems increases, the use of multi-robot systems becomes more
attractive. When a task can be completed more quickly by
multiple agents than by a single agent, multi-robot systems
can improve the speed and flexibility of task completion over
single robot systems. More importantly, many tasks can
only be solved by multiple robots. Some tasks, like lifting a
large object, might require multiple robots working together.
Other tasks might have physical or temporal constraints,
such as requiring that two tasks be done simultaneously in
different locations. Multi-robot systems range from central-
ized approaches to fully distributed approaches, with many
approaches, like market-based coordination, falling some-
where in-between [6].

This paper investigates the design of a layered reactive
controller for a system of multiple unmanned aerial vehicles
(UAVs). Target radars are spread throughout a large area,
and each task in the problem requires the proximity of at
least one UAV and takes an indefinite amount of time, so the
problem is one of task allocation. There are multiple types
of radars, there is no a priori knowledge about radars, and
some radars can move, so task allocation must be dynamic.
The number of UAVs and radars is also not known a priori,
so controllers must be adaptable. The UAV communication
range is much smaller than the size of the environment, and
sensor information about the radars is limited and noisy,
making this a difficult problem to solve. In this paper, we
use genetic programming to evolve high level controllers for
task allocation.

Genetic programming (GP) [9] is a method of automated
program creation using evolutionary computation. Given a
measure of performance on a problem—a fitness function—
evolution uses operators like crossover and mutation to cre-
ate new solutions. Since more fit solutions are chosen with a
higher likelihood, solutions tend to improve over time. GP
creates solutions in the form of computer programs. Evo-
lutionary techniques, including GP, are increasingly used in
real-world applications, often producing results competitive
with the best human efforts [10]. Evolutionary robotics [13],
the application of evolutionary computation to robot ap-
plications, has yielded encouraging results in the design of
robot controllers. For many evolutionary robotics problems,
evolution is often able to create solutions a human would
not have considered in order to find optimal or near-optimal
solutions. Because of the difficulty of the problem consid-

177

ered here, evolving a controller using GP is an attractive
alternative to designing a controller by hand.

Most multi-robot systems are hand-designed, but work
has been done on evolving controllers for multi-robot sys-
tems. A popular multi-agent problem in the evolutionary
computation literature is the predator-prey problem [4]. Con-
trollers have been evolved using GP [7, 11], neural net-
works [21], and finite state machines [8]. In domains like
the predator-prey problem, the numbers of agents and tar-
gets are often fixed, so one can use named sensing [11],
where an agent communicates with a remote agent through
a named channel specific to the remote agent. If the number
of agents is not fixed, this is no longer feasible. For exam-
ple, there may be a shortage of channels if the number of
agents is larger than was expected when designing the sys-
tem. An alternatives is non-symbolic sensor-based commu-
nication [1, 16, 19] where coordination is done through light
or distance sensors. While this works well in some domains,
an agent cannot easily share state information with this ap-
proach. Another alternative is the use of pheromone maps
[15, 18], which scale well and don’t require a fixed number
of agents. However, most realistic implementations require
global communication in order to share the pheremone map
among agents. Another alternative to named sensing is de-
ictic sensing [11]. In this approach, communication channels
are relative to the agent—e.g. nearest agent.

Experiments in the literature often assume global commu-
nication, where one agent can communicate with any other
agent. This may significantly simplify the problem, but
in many cases the assumption is not valid. The power to
transmit over long distances may be beyond the capabilities
of some robots, or the weight or size of long-distance com-
munication equipment might be too great for some robots.
While some researchers have addressed this problem in part
by only communicating with nearest neighbors [11, 17] or us-
ing non-symbolic sensor-based communication [1, 16], most
of the work using evolved controllers has ignored these limi-
tations, either by assuming a small area of operation or the
availability of long-distance communication.

Some recent results have investigated more realistic multi-
robot applications. Richards et al. [17] evolved GP con-
trollers for multi-UAV collaborative search. Communication
took place between nearest neighbors, so the size of UAV
teams and search area could scale. However, the search area
to be swept is known a priori, and global communication
is assumed. Agogino and Tumer [1] evolved neural network
controllers for a multi-rover task similar to the one consid-
ered here. A heterogeneous team of rovers tries to observe
points of interest of different values within the environment.
Points of interest were distributed relatively densely, and
there were typically more points of interest than rovers, mak-
ing the problem easier. Communication was sensor-based,
global communication was assumed, the points of interest
had fixed locations, and all sensors were noise-free. Tumer
and Agogino [20] extended this work by adding sensor noise,
allowing points of interest to move, and limiting the rovers
to local communication. Sauter et al. [18] demonstrate the
performance of digital pheromones on real vehicles for sev-
eral tasks, including surveillance and target tracking. The
Swarm-bots project has successfully evolved neural network
controllers for several multi-robot problems requiring tight
coordination between robots, including hole avoidance [19].

2. PROBLEM
In this paper, we look at a multi-robot domain that can be

posed as a distributed task allocation problem. The robots
are unmanned aerial vehicles (UAVs) operating in a large
environment. UAVs have a limited communication radius
and a limited time in the environment (mission time). The
environment contains target radars, with a one-to-one corre-
spondence between the number of radars and the number of
tasks. Each task requires a UAV to perform some action on
the radar, such as surveillance or jamming, which requires
proximity to the radar and takes an indefinite length of time.
Since the particular action taken by the UAV is independent
of the problem of assigning UAVs to radars, we will refer to
performing the chosen action—and being close enough to
the radar to do so—as monitoring the radar. Each radar
can be monitored by a single UAV, but it may be possi-
ble to improve performance by assigning multiple UAVs to
monitor the same radar. Unlike tasks that can be accom-
plished by finite length visits to a location, such as instances
of the multi-depot traveling salesman problem [22], we can
see tasks in this problem as taking indefinite time to solve.

UAVs sense two pieces of information about the incoming
signal from each radar: the amplitude and the angle of ar-
rival (AoA). The AoA measures the relative angle between
the heading of the UAV and the source of incoming elec-
tromagnetic energy. This model assumes an electronic sup-
port measures (ESM) sensor capable of splitting all incoming
electromagnetic energy into signals by radar and maintain-
ing a history of this information, a valid assumption given
the capabilities of current commercial offerings. In addi-
tion to the current sensory information, the UAV stores am-
plitude values for a fixed time window; the slope of these
historical values is available to the UAV controller. Real
sensors do not have perfect accuracy in detecting radar sig-
nals, so the simulation models an inaccurate sensor. Both
the amplitude noise and AoA accuracy can be set in the
simulation; in this research, controllers evolved with ampli-
tude noise of ±6dB and an AoA accuracy of ±10◦. A radar
is invisible when it is not emitting. A target radar may be
classified using two attributes: when it is deployed and its
mobility. In our simulations, radars fall into three distinct
types: stationary, delayed, and mobile. Stationary radars
have a fixed location and are deployed for the duration of
the mission. Delayed radars also have a fixed location, but
are not deployed until after the mission has begun. Mobile
radars are also delayed, but change location several times
during the course of the mission. Mobile radars do not emit
while moving. If all radars are stationary, then this problem
can be solved optimally prior to the mission using a cen-
tralized approach since all relevant information is known a
priori. This becomes a distributed problem when delayed
and mobile radars are present. All types of radars can emit
either continuously, where the radar signal is constant while
the radar is deployed, or intermittently, where the radar sig-
nal emits for some duration periodically. Radar locations
are random and are not known a priori.

From the problem outline, it should be clear that to solve
this problem, multiple UAVs are necessary. Since radar po-
sitions are not known a priori and UAVs have small commu-
nication ranges, this is a distributed task allocation problem.
A single UAV can be assigned to only one radar at a time,
so we need at least as many UAVs as there are radars for an
optimal solution. An ideal solution to this problem would

178

be able to dynamically assign UAVs to radars such that at
least one UAV is monitoring every radar at all times. Since
radars are distributed spatially, a given UAV must be within
some distance of the radar to monitor it, making a perfectly
ideal solution infeasible. We pose this as a maximization
problem in the time each radar is monitored by at least one
UAV. If all radars are of equal importance, performance can
be measured as a sum of monitoring time for each radar. It
is more likely, however, for radars to have different priorities.
We prefer a solution that takes into account these priorities.

The constraints imposed by this problem make good con-
troller design difficult. The sparseness of targets and short
range of communication mean that UAVs have only small
windows of time for communication and must make deci-
sions with incomplete information. Because radars are long
distances apart and monitoring a radar requires proximity to
it, poor task allocation heavily degrades performance. Lim-
ited and noisy sensor information, radar movement, and the
lack of a priori information about the number of UAVs and
the number and type of radars all contribute toward making
this a difficult problem of dynamic task allocation.

3. APPROACH
Our approach to this problem assumes a layered reactive

controller. The control architecture of an individual UAV,
shown in Figure 1, is divided into three layers. The target
selection controller, the layer evolved in this work using GP,
takes current sensor information, communication from other
UAVs, and a small amount of internal state information as
inputs and then outputs a target radar. The next layer,
the navigation controller, takes as inputs the current sen-
sor information, the target radar from the target selection
controller, and the current roll angle and outputs a desired
roll angle. The navigation controller used in this work, de-
scribed in [2, 3, 14], was also evolved using GP. The roll
angle from the navigation layer is passed to the autopilot
layer. The autopilot uses the desired roll angle to change
the heading of the UAV. This layered technique results in
a general controller model that can be applied to a wide
variety of vehicle platforms; the evolved controllers are not
designed for a specific UAV airframe or autopilot. The sys-
tem is homogeneous; all UAVs use the same controller. For
a specific scenario with a fixed number of UAVs and known
radars, a heterogeneous system might perform better than
a homogeneous system, since heterogeneity would allow for
specialization, but in this problem, homogeneity allows easy
variation in the number of UAVs and the number and types
of target radars.

With limited local communication, a UAV only has the
option of communicating with other UAVs in range. The
number of UAVs in range changes, so one must have some
scheme to decide how communication from a variable num-
ber of agents will be amalgamated. We investigate three
communication schemes which fit the representation and
controller structure: communication only with the closest
other UAV; communication with all UAVs in range, where
all communication is weighted equally; and communication
with all UAVs in range, where the closer another UAV, the
more heavily weighted the communication. The first com-
munication scheme, closest, uses only communication from
the nearest UAV in range. The genetic program is run once,
using communication from the nearest UAV, and the output
is set as the radar to track. The second scheme, majority,

weighs communication from all UAVs in range equally. The
genetic program is run once for each UAV in communication
range, and the most common output is chosen as the radar
to track (ties are broken arbitrarily). The third scheme,
weighted, weighs communication from all UAVs in range by
distance. The genetic program is run once for each UAV
in communication range, and the output from each execu-
tion is weighted by the distance to the remote UAV, where
closer UAVs have higher weights. The radar with the highest
weighted sum is tracked.

We chose this approach based on the qualities of the prob-
lem, which required a solution that used small amounts of
local communication, was scalable to larger groups of UAVs
and target radars, and was flexible to different types of
radars. Our approach does not require any high level world
knowledge, using only a limited set of sensors and small
amounts of local communication. Computation is completely
distributed, allowing a single UAV to operate independent
of other UAVs when necessary. While we used a fixed com-
munication range of 5 nautical miles, this approach would
work for other communication ranges. It is important to
note, however, that if global communication is available, the
performance of our approach will not be as good as a cen-
tralized or market-based approach.

4. GENETIC PROGRAMMING
Genetic programming is a method of automated program-

ming that uses a genetic or evolutionary algorithm [9]. Start-
ing from a measure of performance for a particular problem—
a fitness function—GP creates a computer program to solve
the problem. Like a genetic algorithm, a population of ran-
dom solutions is generated, and each individual in the popu-
lation is evaluated for fitness. Individuals are selected based
on fitness to create new members of the population using
genetic operations like crossover and mutation. Since indi-
viduals with higher fitness are more likely to be selected, the
fitness of the population tends to improve toward optimal
solutions over successive generations. In GP, each individ-
ual is a computer program, which can be represented as a
tree or a symbolic expression similar to Lisp. Programs are
composed of functions and terminals from a defined set of
operations.

An evolved target selection controller takes as input local
sensor information and information communicated to it by
other UAVs and outputs a radar for the navigation controller
to track. The choice of appropriate functions and terminals
is essential to the success of GP-based solutions. Initially,
we experimented with evolving navigation controllers with
functions and terminals on the space of sensor values where
control actions were side effects of the GP operators, sim-
ilar to the operators in [3, 14] with added operations for
communication. Representations that directly used sensor
values and attempted to evolve both target selection and
navigation performed poorly; one reason was that it is not
straightforward how to combine information from multiple
UAVs given no a priori information about the number of
UAVs or the number of radars. Rather than operate on the
space of sensor values and use side effects for control, our
approach operates on the space of radars, where all argu-
ment and return types are radar identification numbers. At
each time step, the UAV tracks the radar that is the out-
put of the genetic program. To allow for a variable number
of radars, the representation is deictic. Deixis is a process

179

Sensors

Communication

Internal state

Target radar

Target selection controller

Sensors

Sensors

Target radar

Internal state

Roll angle

Navigation controller

Internal state

Communications

Roll angleActuators

Autopilot

UAV

Actuators

Figure 1: UAV controller architecture

where expressions rely on context. In this representation,
the output of functions and terminals depends on the posi-
tion and orientation of the UAV. For example, depending on
the orientation and location of the UAV, the terminal that
outputs the radar with the smallest AoA could represent any
radar.

The functions and terminals used by GP are shown in Ta-
bles 1 and 2. Many of the operators in the table are split
between sensing relative to the UAV executing the genetic
program (local) and sensing relative to a UAV in communi-
cation range (remote). The communication scheme, chosen
from the schemes described above, determines the remote
UAV. If no other UAV is in range, the local UAV is set to be
the remote UAV. In all operators, ties are broken arbitrarily.
Figure 2 shows an example controller. In this controller, if
the local UAV and the remote UAV are tracking the same
radar, a new radar to track is chosen at random. Otherwise,
if the UAV is tracking a radar, it continues to do so, else it
chooses a radar to track at random.

Three fitness functions measure the performance of a group
of UAVs. In order to measure performance, we make a dis-
tinction between the time a UAV spends tracking a radar
(once assigned to a radar, the UAV moves toward the radar
and begins to circle it) and the time the UAV spends close
enough to monitor the radar (in this work, 2 nautical miles).
The first fitness function, fmonitor, measures the percentage
of the time the target radars are not monitored by at least
one UAV. Designed to measure the performance of the UAV
team on only the main goal of monitoring the target radars,
this fitness function used alone tends to suffer from the boot-
strap problem [12], and due to the noise in the system can
lead to undesirable results. The second fitness function,
ftrack, alleviates the bootstrap problem by measuring the
percentage of time that each radar is not tracked by at least
one UAV. Often, when evolving robot controllers, the best
controllers exhibit some unwanted behaviors that have only
minor negative effects on fitness. In an optimal controller,
evolution would weed out these behaviors, but when evolv-
ing controllers in a noisy environment, evolving a perfectly

optimal controller is often not feasible. In this environment,
one such behavior is a tendency for a pair of UAVs to repeat-
edly swap targets mid-flight. This has very little effect on
fmonitor and no effect on ftrack, but the crossing zig-zag pat-
tern this behavior creates could lead to collisions. To help
eliminate this behavior, the third fitness function, fswitch,
measures the percentage of time UAVs switch from track-
ing one radar in order to track another. These three fitness
functions are measured over the course of each simulation.

At time t, let targetu
t be the target radar of UAV u, and let

the binary variable switchedu
r be true if targetu

t 6= targetu
t−1.

Let dr
t be the minimum distance from radar r to a UAV, xr

t

and yr
t its location in space, and priorityr

t its priority (the
more important the target, the higher the priority value).
For the following binary variables, let deployedr

t be true if
radar r is emitting at time t, let monitoredr

t be true if dr
t <

range (where range is the monitoring range of the UAV)
and radar r is emitting at time t, let movedr

t be true if
(xr

t 6= xr
t−1) ∪ (yr

t 6= yr
t−1), and let trackedr

t be true if ∃u

such that targetu
t = r at time t. For each binary variable,

let tr
variable be its sum over time. For example

t
r
deployed =

T
X

t=1

deployed
r
t (1)

The moved variable is used to calculate the travel time to a
radar as distance — initial distance plus distance increments
when the radar moves — divided by UAV velocity. The
variable tr

travel eliminates the bias from different travel times
to each radar.

t
r
travel =

dr
0 +

PT

t=1
dr

t · movedr
t

v
(2)

The first fitness function is the average over all radars of the
percentage of time that each radar is unmonitored weighted
by the radar priority.

fmonitor =
1

R

R
X

r=1

priority
r tr

deployed − tr
travel − tr

monitored

tr
deployed − tr

travel

(3)

180

Table 1: Functions
Function Arity Description
If{Same,Diff} 4 If the first two arguments are the same/different, returns the third

argument, else returns the fourth argument
IfUAVsInCommRange 2 If at least one other UAV is in communication range, returns the first

argument, else returns the second argument
IfTracking 2 If the UAV is tracking a radar, returns the first argument, else returns

the second argument
IfPosition{N,S,E,W} 2 Returns the first argument if the UAV is further in the given cardinal

direction than the remote UAV, else returns the second argument
IfHeading{N,S,E,W} 2 Returns the first argument if the UAV’s heading is closer to the given

cardinal direction than the remote UAV’s heading, else returns the
second argument

{Local,Remote}AoA{Smaller,Larger} 2 Returns the radar with the smaller/larger angle of arrival
{Local,Remote}AoA{Left,Right} 2 Returns the radar with the angle of arrival further to the left/right
{Local,Remote}Amp{Smaller,Larger} 2 Returns the radar with the smaller/larger amplitude
{Local,Remote}Slope{Smaller,Larger} 2 Returns the radar with the smaller/larger slope
Priority{Smaller,Larger} 2 Returns the radar with the smaller/larger priority

Table 2: Terminals
Terminal Arity Description
{Local,Remote}TrackingCurrent 0 Returns the radar currently being tracked
{Local,Remote}TrackingLast 0 Returns the radar tracked prior to the radar returned by TrackingCur-

rent
{Local,Remote}AoA{Smallest,Largest} 0 Returns the radar with the smallest/largest angle of arrival
{Local,Remote}AoA{Left,Right}most 0 Returns the radar that, based on a sweep of the angle of arrival, is

the furthest left/right
{Local,Remote}AoA{N,S,E,W}most 0 Returns the radar with the angle of arrival closest to the given cardinal

direction
{Local,Remote}Amp{Smallest,Largest} 0 Returns the radar with the smallest/largest amplitude
{Local,Remote}Slope{Smallest,Largest} 0 Returns the radar with the smallest/largest slope
Priority{Smallest,Largest} 0 Returns the radar with the smallest/largest priority
RandomRadar 0 Selects a radar at random to return

Table 3: Genetic programming parameters
Population Size 1000
Crossover Rate 0.9
Mutation Rate 0.05

Tournament Size 2

Maximum Initial Depth 5
Maximum Depth 25

Generations 80
Trials per Evaluation 20

The second fitness function is the average over all radars of
the percentage of time that each radar is not being tracked.

ftrack =
1

R

R
X

r=1

tr
deployed − tr

tracked

tr
deployed

(4)

The third fitness function is the average over all UAVs of
the percentage of time that each UAV switches targets.

fswitch =
1

U

U
X

u=1

tr
switched

T
(5)

The genetic programming system attempts to minimize all
three fitness functions.

We evolved controllers using multi-objective GP with non-
dominated sorting, crowding distance assignment to each so-
lution, and elitism using an implementation of NSGA-II [5]
for GP. Evolution was generational, with crossover and mu-
tation similar to those outlined in [9]. The parameters used
by GP to evolve controllers are shown in Table 3. Tourna-

ment selection was used. Initial trees were randomly gener-
ated using ramped half and half initialization. All computa-
tion was done on a Beowulf cluster parallel computer with
ninety-two 2.4 GHz Pentium 4 processors.

5. EXPERIMENTS
We evolved controllers with a single, general scenario—

five UAVs and four radars—for all three communication
schemes: closest, majority, and weighted. We performed
ten evolutionary runs for each scheme, and for each evalua-
tion, all UAVs used the same controller and communication
scheme. Two radars were stationary: one with normal pri-
ority, the other with high priority. The third radar was a
delayed radar with normal priority, and the fourth radar was
a mobile radar with high priority. All four radars emitted
intermittently for a normally distributed random duration
with a mean of 5 minutes and a normally distributed ran-
dom period with a mean of 10 minutes. All controllers were
evolved using the fitness functions and GP parameters out-
lined in Section 3. While ftrack and fswitch were important
fitness functions for overcoming the bootstrap problem and
controlling behavior, fmonitor is a true measure of the fit-
ness of a controller, so we chose the best controller for each
communication scheme from 10 evolutionary runs using only
this fitness function.

To evaluate this approach, we compared the best con-
trollers from each communication scheme over a variety of

181

IfSame

Local
Tracking
Current

Remote
Tracking
Current

Random
Radar

IfTracking

Local
Tracking
Current

Random
Radar

Figure 2: Example controller

scenarios. Since an exhaustive study of all possible scenarios
was not feasible, we selected realistic scenarios for the simu-
lation area of forty nautical miles by forty nautical miles. We
evaluated these controllers on four scenarios: three UAVs
and three radars, where all radars were stationary and emit-
ted continuously (this scenario has a perfect solution when
radar assignments are determined a priori); five UAVs and
four radars, where the radars are the same types as used to
evolve the controllers; ten UAVs and four radars, with the
same radar types as before; and ten UAVs and eight radars,
with the same radar types as before, just twice as many of
each. There is no limit in the simulator to the number of
UAVs or radars. The number of UAVs is always at least as
large as the number of radars so that it is possible to monitor
every radar in a given scenario. The density of radars and
UAVs was the most important consideration in choosing a
realistic scenario, since the problem of five UAVs and four
radars in 1600 square nautical miles is effectively the same
at fifty UAVs and forty radars in ten times the area, as long
as the radars are distributed randomly.

When information about all radars is not known a pri-
ori, a centralized approach produces poor solutions; since
the communication range of a UAV is much smaller than
the area where the tasks are distributed, a situation where
all UAVs could communicate with one another occurs in-
frequently. On the other end of the spectrum, a fully dis-
tributed approach with no communication would also tend
to produce poor solutions. Under certain initial configura-
tions of UAVs and radars, it is possible to perform well with-
out communication, but in general, communication is neces-
sary in order to get the best distribution of UAVs to radars.
In recent literature, multi-depot traveling salesman prob-
lems using real robots have been successfully solved with
market-based approaches [6, 22]. These approaches bene-
fit from free and global communication and knowledge of
the environment for use in planning paths and estimating
bids on tasks. While it would be possible to use a market-
based approach on this problem, the small communication
range and lack of knowledge about radar locations for plan-
ning purposes would make it difficult to achieve good per-
formance.

Since the specific characteristics of this problem made
these competing controller methodologies unsuitable, we com-
pared the evolved controllers to a baseline randomized con-
troller. In the random controller, each UAV initially chooses
a radar to track uniformly from all known radars (initially,

only stationary radars). At each time step, a UAV polls all
other UAVs in range to see which ones are tracking the same
radar; let n be the number of UAVs tracking this radar. The
UAV knows the number of other UAVs, u, and the number
of deployed radars, r. Ideally, the number of UAVs monitor-
ing each radar is u

r
. At each time step, if n > u

r
, then the

UAV picks a new radar to track randomly with probability
n−

u

r

n
, since the number of UAVs tracking this radar that

should be tracking other radars is n − u

r
. This controller

performs reasonably well given that selection of which radar
to track is random.

Each combination of communication scheme and scenario
was evaluated 1000 times, where radar positions were ran-
dom for each evaluation. Figure 3 shows the average per-
centage of time that a radar is unmonitored (with 95% confi-
dence intervals) for the closest, majority, weighted, and ran-
dom communication schemes on each of the four scenarios.
This measure is equivalent to fmonitor without weighting
for radar priority. In all scenarios, the closest controller
performed best. The majority and weighted controllers had
similar performance, but always performed worse than the
random controller. The best closest controller also required
very little communication, as not all communication func-
tions and terminals appear in the evolved program. Of the
43 nodes in the program tree, the only communication op-
erations were the RemoteAoALargest, RemoteTrackingCur-
rent, and RemoteTrackingLast terminals, several functions
requiring heading and position, and the RemoteSlope{Smaller,
Larger} functions, requiring the communication of only r+6
variables, where r is the number of radars (slope values for
all radars plus heading, latitude, longitude, and the values
of the three terminals). Interestingly, the AoASmallest ter-
minal was not used at all by the best controller.

Why do the best majority and weighted controllers per-
form so poorly, when we might expect them to outperform
the closest controllers? First, these controllers only have
an advantage over the closest controllers when more than
one other UAV is within communication range. Given the
sparse distribution of radars in the environment, this rarely
happens, and it happens most often at the beginning of a
simulation, when tracking assignments are largely arbitrary.
In these situations, communication can often be more con-
fusing than advantageous, especially if it leads to constant
switching between radars to track. A look at the genetic
programs for some of the best controllers for each commu-
nication scheme reveal the source of this discrepancy in per-

182

0

20

40

60

80

100

A
ve

ra
ge

 p
er

ce
nt

 o
f t

im
e

a
ra

da
r i

s
un

m
on

ito
re

d

3 UAVs
3 radars

5 UAVs
4 radars

10 UAVs
4 radars

10 UAVs
8 radars

closest
majority
weighted
random

Figure 3: Average percentage of time that a radar is unmonitored (with 95% confidence intervals) for closest,
majority, weighted, and random communication schemes.

formance. The best closest controllers take the form shown
in Figure 4a, while all of the best majority and weighted
controllers take the form shown in Figure 4b where (...) rep-
resents sub-trees for choosing a new radar to track (which
vary, and are too complex to show here in full). The closest
controller first checks to see if the local and remote UAV
are tracking the same radar, and if so, chooses a new radar
(which might be the same radar), otherwise, it checks to
see if the UAV is tracking a radar, and if so, continues to
track that radar, otherwise, it chooses a new radar. This
structure allows the UAV to choose a new radar to track
in the case of redundancy, something that is necessary for
tracking delayed and mobile radars, since these radars are
not immediately visible. The best majority and weighted
controllers evolved much less complex structures which only
allow the UAV to track stationary radars. Evolution stalls
on this simple structure, and seems unable to jump to a more
complex structure, as it was able to do with the closest con-
trollers. One reason for this may be that avoiding confusion
by using this simpler structure brought higher fitness than
using a more complex structure. It is also possible that the
combination of the representation and these communication
schemes is not conducive to evolving good controllers.

6. CONCLUSIONS
Based on these experiments, this approach can evolve ef-

fective controllers if communication is restricted to the clos-
est other UAV in range. For UAVs controlled by the best
closest controller, the average percentage of time spent un-
able to monitor radars was never worse than 16%, while the
percentage for the random controller, the second best con-
troller on all scenarios, was never better than 25%. Given
the limited capabilities of a multi-robot system with such
small windows of opportunity for collaboration, these results
suggest that our approach using the closest communication
scheme is a good solution to the problem.

Evolved controllers performed well for a variety of scenar-
ios, responding well with changes in the number of UAVs,

IfSame

Local
Tracking
Current

Remote
Tracking
Current

... IfTracking

Local
Tracking
Current

...

(a)

IfTracking

LocalTrackingCurrent ...

(b)

Figure 4: Evolved controller structures

183

number of radars, and types of radars. For this particu-
lar class of multi-robot problem, where tasks have indefinite
length, only local communication is available, and tasks are
distributed sparsely throughout the environment, this work
successfully evolved GP controllers with good fitness that
require very little communication bandwidth. While this ap-
proach is tailored to this type of problem, and would not be
suitable for all multi-robot problems, we feel this approach
could be successful for other problems of this type.

Acknowledgments
The U.S. Naval Research Laboratory (Code 5730) provided
computation time on their Beowulf cluster for this work.

7. REFERENCES
[1] A. Agogino and K. Tumer. Efficient evaluation

functions for multi-rover systems. In Proceedings of
the 2004 Genetic and Evolutionary Computation
Conference, pages 1–11, Seattle, WA, 2004.

[2] G. J. Barlow and C. K. Oh. Robustness analysis of
genetic programming controllers for unmanned aerial
vehicles. In Proceedings of the 2006 Genetic and
Evolutionary Computation Conference, Seattle, WA,
July 2006.

[3] G. J. Barlow, C. K. Oh, and E. Grant. Incremental
evolution of autonomous controllers for unmanned
aerial vehicles using multi-objective genetic
programming. In Proceedings of the 2004 IEEE
Conference on Cybernetics and Intelligent Systems,
Singapore, December 2004.

[4] M. Benda, B. Jagannathan, and R. Dodhiawala. On
optimal cooperation of knowledge sources. Technical
Report BCS-G2010-28, Boeing AI Center, Boeing
Computer Services, Bellevue, WA, August 1986.

[5] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, April 2002.

[6] M. B. Dias and A. Stentz. A comparative study
between centralized, market-based, and behavioral
multirobot coordination approaches. In Proceedings of
the 2003 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 2279–2284, 2003.

[7] T. Haynes, S. Sen, D. Schoenefeld, and
R. Wainwright. Evolving a team. In Working Notes of
the AAAI-95 Fall Symposium on Genetic
Programming, pages 23–30. AAAI Press, 1995.

[8] K.-C. Jim and C. L. Giles. Talking helps: Evolving
communicating agents for the predator-prey pursuit
problem. Artificial Life, 6(3):237–254, 2000.

[9] J. Koza. Genetic Programming. MIT Press, 1992.

[10] J. R. Koza, M. A. Keane, M. J. Streeter,
W. Mydlowec, J. Yu, and G. Lanza. Genetic
Programming IV: Routine Human-Competitive
Machine Intelligence. Kluwer Academic Publishers,
2003.

[11] S. Luke and L. Spector. Evolving teamwork and
coordination with genetic programming. In Genetic
Programming 1996: Proceedings of the First Annual
Conference, pages 150–156, Stanford University, CA,
July 1996. MIT Press.

[12] A. L. Nelson. Competitive Relative Performance and
Fitness Selection for Evolutionary Robotics. PhD
thesis, North Carolina State University, Raleigh, NC,
2003.

[13] S. Nolfi and D. Floreano. Evolutionary Robotics. MIT
Press, Cambridge, MA, 2000.

[14] C. K. Oh and G. J. Barlow. Autonomous controller
design for unmanned aerial vehicles using
multi-objective genetic programming. In Proceedings
of the Congress on Evolutionary Computation, pages
1538–1545, Portland, OR, June 2004.

[15] H. V. D. Parunak, M. Purcell, and R. O’Connell.
Digital pheromones for autonomous coordination of
swarming uav’s. In Proceedings of the First AIAA
Unmanned Aerospace Vehicles, Systems, Technologies,
and Operations Conference, April 2002.

[16] M. Quinn. Evolving communication without dedicated
communication channels. In Proceedings of the
European Conference on Artificial Life, pages 357–366,
Prague, September 2001.

[17] M. D. Richards, D. Whitley, J. R. Beveridge,
T. Mytkowicz, D. Nguyen, and D. Rome. Evolving
cooperative strategies for UAV teams. In Proceedings
of the 2005 Genetic and Evolutionary Computation
Conference, Washington, DC, June 2005.

[18] J. A. Sauter, R. Matthews, H. V. D. Parunak, and
S. A. Brueckner. Performance of digital pheromones
for swarming vehicle control. In Proceedings of the
International Joint Conference on Autonomous Agents
and Multi-Agent Systems, pages 903–910, 2005.

[19] V. Trianni and M. Dorigo. Self-organisation and
communication in groups of simulated and physical
robots. Biological Cybernetics, 95(3):213–231, 2006.

[20] K. Tumer and A. Agogino. Coordinating multi-rover
systems: Evaluation functions for dynamic and noisy
environments. In Proceedings of the 2005 Genetic and
Evolutionary Computation Conference, pages 591–598,
Washington, DC, 2005.

[21] C. H. Yong and R. Miikkulainen. Cooperative
coevolution of multi-agent systems. Technical Report
AI-01-287, The University of Texas at Austin
Department of Computer Sciences, 2001.

[22] R. Zlot and A. Stentz. Market-based multirobot
coordination using task abstraction. In Proceedings of
the International Conference on Field and Service
Robotics, 2003.

184

