
Automated Software Transplantation

Earl T. Barr Mark Harman Yue Jia Alexandru Marginean Justyna Petke
CREST, University College London, Malet Place, London, WC1E 6BT, UK

{e.barr,m.harman,yue.jia,alexandru.marginean.13,j.petke}@ucl.ac.uk

ABSTRACT
Automated transplantation would open many exciting av-
enues for software development: suppose we could autotrans-
plant code from one system into another, entirely unrelated,
system. This paper introduces a theory, an algorithm, and
a tool that achieve this. Leveraging lightweight annotation,
program analysis identifies an organ (interesting behavior to
transplant); testing validates that the organ exhibits the de-
sired behavior during its extraction and after its implantation
into a host. While we do not claim automated transplanta-
tion is now a solved problem, our results are encouraging:
we report that in 12 of 15 experiments, involving 5 donors
and 3 hosts (all popular real-world systems), we successfully
autotransplanted new functionality and passed all regression
tests. Autotransplantation is also already useful: in 26 hours
computation time we successfully autotransplanted the H.264
video encoding functionality from the x264 system to the
VLC media player; compare this to upgrading x264 within
VLC, a task that we estimate, from VLC’s version history,
took human programmers an average of 20 days of elapsed,
as opposed to dedicated, time.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software; D.2.5
[Software Engineering]: Testing and Debugging

Keywords
Automated software transplantation, autotransplantation,
genetic improvement

1. INTRODUCTION
Software engineers spend a great deal of time extracting,

porting, and rewriting existing code to extend the function-
ality of existing software systems. Currently, this is tedious,
laborious, and slow [15]. The research community has pro-
vided analyses and partial support for such manual code
reuse: for example, clone detection [5, 32, 36, 60], code
migration [38, 58], code salvaging [12], reuse [13, 14, 16],

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA
Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

dependence analysis [3, 22, 29, 30] and feature extraction
techniques [24, 33, 44]. However, the overall process remains
largely unautomated, particularly the critical transplantation
of code that implements useful functionality from a donor
into a target system, which we call the host.

What if we could automate the process of extracting func-
tionality from one system and transplanting it into another?
This is the goal we set ourselves in this paper. That is, we are
the first to develop and evaluate techniques to implement au-
tomated software transplantation from one system to another,
which one of the authors proposed (hitherto unimplemented
and unevaluated) in the keynote of the 2013 WCRE [28].

A programmer must first identify the entry point of code
that implements a feature of interest. Given an entry point
in the donor and a target implantation point in the host
program, the goal of automated transplantation is to identify
and extract an organ, all code associated with the feature
of interest, then transform it to be compatible with the
name space and context of its target site in the host. The
programmer also supplies test suites that guide the search for
donor code modifications required to make it fully executable
(and pass all test cases) when deployed in the host.

This is a challenging vision of transplantation, because
code from one system is unlikely to even compile when it is
re-located into an unrelated foreign system without extensive
modification, let alone execute and pass test cases. The ex-
traction of the code also involves identifying all semantically
required code and the successful insertion of the code organ
into the host requires nontrivial modifications to the organ to
ensure it adds the required feature without breaking existing
functionality. In this paper, we present results that demon-
strate that this vision of automated software transplantation
is indeed achievable, efficient and potentially useful.

Feature identification is well studied [14, 16, 58]. Extract-
ing a component of a system, given the identification of a
suitable feature is also well studied, through work on slicing
and dependence analysis [22, 24, 29, 33, 44]. The challenges
of automatically extracting a feature from one system, trans-
planting it into an entirely different system, and usefully
executing it in the organ beneficiary, however, have not pre-
viously been studied in the literature.

We developed µTrans, an algorithm for automated software
transplantation, based on a new kind of genetic program-
ming, augmented by a novel form of program slicing. µTrans
synergizes analysis and testing: analysis extracts an ‘organ’,
an executable slice from a donor; testing guides all phases
of autotransplantation — identifying the organ in the donor,
minimizing and placing the organ into an ice-box, and fi-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

ISSTA’15, July 12–17, 2015, Baltimore, MD, USA
ACM. 978-1-4503-3620-8/15/07
http://dx.doi.org/10.1145/2771783.2771796

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt
oR

eu
se
* *

Evaluated

*
IS
S
TA
*
Ar

tifact *
A
E
C

257

nally, specializing the organ for implantation into a target
host. Our slicing technique grows an organ in the donor
until that organ passes a test suite, thereby incorporating
the functionality that the test suite exercises. To increase
the performance and functional coverage of the test suite,
we introduce in-situ testing, a novel form of testing that con-
strains the input space of traditional testing to more closely
approximate behaviourally relevant inputs.

We implemented our approach in µScalpel and evaluated
it in 15 transplantation experiments, using five donor pro-
grams and three host programs. Our evaluation is systematic:
each and every donor is transplanted into each and every host.
As a sanity check, we also transplanted one donor into itself.
All experiments are repeated 20 times, as the underlying algo-
rithm, which is based on genetic programming, is stochastic.

All the systems involved in our experimentation are real-
world systems in current use, ranging in size from 0.4k lines
of code to 25k lines of code for the donor and 25–363k for the
host. We report on the effectiveness of transplantation along
two axes. First, we ask whether transplantation disrupts the
host’s existing functionality by means of regression testing
and second, whether the postoperative host can execute the
transplanted software organ and exhibits nontrivial, new
functionality. We use an acceptance test suite to verify (on
output not exit code [49]) the organ’s behavior.

We close with a case study of the transplantation of an
encoder for the H.264 video encoding standard from the x264
encoder into the VLC media player. The maintainers of VLC
are downstream users of x264. This encoder changes every
couple of years. For VLC, x264 consists of a binary library
and a wrapper that translates VLC’s internal protocols into
the x264 API. To keep up, the VLC community must peri-
odically replace their x264 library, including functionality in
it that VLC does not use, and update their wrapper. Across
39 updates of x264 over 11 years1, updating VLC for the
new version of x264 averaged 20 days of elapsed time. In
contrast, µScalpel, supplied with the encoder’s organ entry
point and an insertion point in the host, took only 26 hours.
Obviously, it does not make sense to transplant an organ into
a host that already has that organ. Thus, we stripped any
reference to x264 from VLC by building it with ./configure
−−enable−x264=no. Under this setting, the x264 library
is not linked and the preprocessor eliminates VLC’s x264
wrapper. This setup allowed us to produce a postoperative
version of VLC that dispenses with the wrapper and slices
out unused portions of the x264 library, dropping 47% of the
x264’s source code. This case study demonstrates that soft-
ware transplantation can be automated and can transplant
real software functionality that is both practical and useful.

Our experimental results provide empirical evidence that
software transplantation is realistic and viable. In 12 out of
15 experiments, involving 5 donors and 3 hosts, we success-
fully transplanted functionality that passes all regression and
acceptance tests. Moreover, µScalpel autotransplanted a
H.264 multi-threaded encoding feature from x264 into the
VLC media player in only 26 hours.

Transplantation is a longstanding development practice.
An organ is existing functionality with a well-defined inter-
face. Currently, programmers must manually identify an
organ, extract it, transform it so that it executes in the host,
then validate the correctness of the postoperative host. Iden-

1We identified these 39 updates by manually inspecting
VLC’s version history, so this number is a lower-bound.

Figure 1: The call graph identifying the vein and the
organ. The wavy line is the vein; main is the donor’s
entry point; idct is the organ’s entry; the rest of the
nodes are on the forward slice. A triangle behind a
node suggests subgraphs reachable from that node.

tifying an organ involves identifying a donor, an organ’s entry
point in that donor, a host, and an implantation point in that
host. These are hard problems µScalpel does not address.
Stepping in after these problems have been solved, µScalpel
automates the extraction of the organ, i.e. the identification
of its lines from its entry point, and its implantation into the
host. In addition to an organ’s entry point, µScalpel also
requires a test suite for the organ and one for the host. Given
these inputs, µScalpel computes an over-organ, an over-
approximate, context-insensitive slice over the donor’s call
graph; implements observational slicing [8] in GP to reduce
the organ, transform it to execute in the host, and validate
the postoperative host. Our approach automates the later
stages of software transplantion, making it faster, less labo-
rious and cheaper. Automated transplantation promises new
opportunities for enhancing development practices. For exam-
ple, speculative transplantation may allow the exploration of
feature reuse across systems that go untried because of cost.

The main contributions of this paper are:
1. The formalization of the software transplant algorithm

(Sec. 3);
2. The first software transplant algorithm µTrans and its

realization in µScalpel (Sec. 4); and
3. A demonstration of µScalpel’s effectiveness, over real-

world programs, at transplanting software organs —
useful, nontrivial functionality — from donors to hosts
(Sec. 6 and Sec. 7).

2. MOTIVATING EXAMPLE
For us, an organ is code whose functionality we wish to

reuse by copying it to and adapting it for a new host. We
assume that an organ starts at a function, which a user
annotates with /∗ OE ∗/. One such organ is the function
idct in Fig. 1, which computes the inverse discrete cosine
transform coefficients for an array of integers. Although there
is little reason to move idct into cflow, we move idct from
the donor, an audio streaming client, to cflow to illustrate how
µScalpel works2. To mark idct as our organ, we change line
36 in file dct.c to ‘short ∗idct (int ∗idata){ /∗OE ∗/ ’.

Given a test suite, a donor with an annotated organ entry
point, and a host with an annotated implantation point,
µTrans solves two problems: identifying an organ within
the donor and mapping that organ’s variables to the host’s
variables at the implantation point.

We use slicing to identify the organ and one of its veins.
To find a vein, we backward slice from the given organ entry
point until we reach the function main, then prune the slice to
a single path. To find the organ, we slice forwards. To com-
pute these slices, we context-insensitively traverse the donor’s

2http://crest.cs.ucl.ac.uk/autotransplantation/
downloads/Idct.tar.gz contains this example; we renamed
its variables here for readability.

258

http://crest.cs.ucl.ac.uk/autotransplantation/downloads/Idct.tar.gz
http://crest.cs.ucl.ac.uk/autotransplantation/downloads/Idct.tar.gz

call graph and transitively include all the functions called by
any function whose definition we reach. Fusing the slices pro-
duces an over-organ that conservatively over-approximates
the actual organ. To be viable, automatic transplantation
cannot use the over-organ. To solve this problem, µScalpel
builds an organ that includes only those portions of the
over-organ needed to pass a user-supplied organ test suite.
For example, ‘fwrite (prev_samples, 2, num_samples,
ofile)’ (recv.c:64) outputs an audio file. The organ test
suite ignores this functionality, so µScalpel removes it.

An organ requires a specific execution environment. To
make the required program state explicit in the organ’s
signature, we lift globals in the unmodified organ in the donor
into its signature. The signature for our running example
contains the following local and global variables: ‘int N,
double scale0, FILE ∗ifile, FILE ∗ofile, ...’.

The insertion point in the host defines an execution environ-
ment. We choose output.c:342 as the implantation point be-
cause it exposes the array of line numbers for the organ. After
annotation output.c:342 is ‘static void tree_output(){
/∗IP∗/’. While deciding where to place them may be difficult,
OE and IP are the only two annotations µScalpel requires.

We reify the host environment as an interface that captures
all variables, both local and global. Transplantation requires
mapping the parameters of this host-side interface to the
organ’s parameters. We can consider the organ’s signature
and the graft interface as set of parameters whose elements
are typed formals. Under this interpretation, transplanta-
tion fails if the parameter set of host’s graft interface is not
superset of the organ’s signature. The problem then is to
efficiently find an ordering of a subset of the parameters in
the graft interface that matches the organ’s signature and is
correct under an organ’s test suite. For this, µScalpel binds
the variables in the organ’s signature at the parameters of
graft_idct and synthesizes a call. For our example, this call
is: ‘graft_idct(length,symbols,i,outfile,num,...)’ .

3. PROBLEM FORMULATION
This section defines the software transplantation problem;

Sec. 4 shows µTrans, our algorithm for solving this problem.

Terminology D is a donor program from which we seek to
extract a software organ O, code in D that implements some
functionality of interest, to transplant. The organ O has entry
points or locations, which we call LO. H is the host program
into which we seek to transplant O at LH , the target loca-
tion(s) in the host. From the start of D, there may be many
paths of execution that reach one of LO; there is at least one,
or O is nonfunctional and not worth transplanting. These
paths build the program environment, ΓO, on which O’s exe-
cution depends. For instance, ΓO may contain initialised glob-
als or populated global data structures. In keeping with the
transplantation analogy, we call these paths veins. We assume
that all of them correctly build ΓO, pick one, and call it V .

Software Organ Transplantation Organ transplantation
involves inserting all statements from the organ O and V into
the target site in the host. For the host, H, with target site
LH , and the organ to be transplanted, O, the postoperative
host is H ′ = φ(H,LH , O). The function φ is a set of rewriting
rules that adapt O to the lexical context defined by LH .

The output of O in the donor D may differ from its output
in H ′. For example, assume O sorts and outputs a set of
numbers from a file and that D merely opens the file before

Insertion
points

Host

Entry
points

Donor

Stage 1 Stage 2

Matching Table
Donor <---> Host

Ice Box Test
 Suite

Manual process Automated process

A Vein

Organ

Vein and Organ
Backward

Slicing

Forward
Slicing GP

Semantic
Analysis

Transplantable
Organ

Host'

SDG

Stage 3

Transplantable
Organ

Figure 2: Overall architecture of µTrans; an SDG
is a system dependency graph that the genetic pro-
gramming phase uses to constrain its search space.

invoking O, while H ′ opens and doubles the contents of
the file before invoking O. We therefore need to equate
observations that can be made of executions of O in the
donor D to those in H ′. We denote this equality '. It can
be thought of as a mapping from an oracle for O in the donor
to an oracle for O in the postoperative host.

To be successful, a transplanted organ must 1) not disrupt
the existing functionality of its host and 2) must actually
execute and add the desired functionality to its host.

Definition 1 (Software Organ Transplantion). Software or-
gan transplantation has occurred when [[H]] = [[H ′]]¬O ∧
[[D]]O ' [[H ′]]O, where [[P]]O, borrowed from denotation se-
mantics [55], is the meaning of P restricted to the observable
behaviors of O in P .

µTrans Transplantation Program equivalence is unde-
cidable, so we approximate it with testing. To realize Def. 1,
we first regression test H ′ against H’s test suite, then use
acceptance testing over tests that elicit O’s behavior in H ′.

Let TH
R be the regression test suite for a host H. We say

that the organ O passes regression testing if (and only if)
all regression test cases yield identical observations on the
original host H and the postoperative host H ′:

Definition 2 (Regression Testing). The organ beneficiary
H ′ passes regression testing iff ∀t ∈ TH

R ·H(t) = H ′(t).

Let TD
A be the acceptance test suite for D that exercises the

organ O. We say that an organ beneficiary passes acceptance
testing if (and only if) all of the donor’s acceptance test
cases that exercise O yield observations that are equivalent
under ' to those same test cases adapted as necessary, by
the function τ , for the organ beneficiary:

Definition 3 (Acceptance Testing). The organ beneficiary
H ′ passes acceptance testing iff ∀t ∈ TD

A ·D(t) ' H ′(τ(t)).

It is the responsibility of the programmer to select D, an
entry point LO to some functionality of interest in D, H, its
target site LH , and to define ' and τ . It is the responsibility
of µTrans to find V , O, φ, and insert O into H at LH . An
organ in the donor and its version after transplantation are
type 4 clones, related by the rewriting system φ.

4. THE µTRANS APPROACH
Fig. 2 shows the overall architecture of the µTrans ap-

proach to the software transplantation problem. Given an
organ’s entry point LO and TO

D , a test suite that exercises O’s
behaviour, µTrans progressively ‘evolves’ O and V by adding

259

Figure 3: A GP chromosome. Figure 4: Two crossover operators. Figure 5: Two mutation operators.

code along a path (a vein) from donor start to LO. The
search space is enormous, consisting of all combinations of all
valid statements and variables of the desired functionality in
the donor and host. To explore this search space efficiently,
we separate our approach into two stages.

In the first, organ-extraction stage, we slice out an over-
organ, a conservative over-approximation of the organ and
one of its veins. The organ implements the functionality we
wish to transplant; the vein builds and initializes an execution
environment that the organ expects. In the second, implanta-
tion stage, we apply genetic programming, using the donor’s
test suite, reduce the over-organ and adapt it to execution
environment at LH , the insertion context in the host. The
second stage implements observational slicing [8] in GP to si-
multaneously reduce the over-organ and explore mappings of
the organ’s parameters to variables in scope at LH . The sec-
ond stage ends by implanting the organ into the host. Finally,
we apply additional testing to validate the correctness of the
postoperative host. This section explains the first and the sec-
ond stages of µTrans in detail; Sec. 5 discusses its validation.

4.1 Stage 1: Organ Extraction
This stage takes the donor, annotated with LO, and the

organ’s entry point in the donor. It produces two outputs for
the second stage. First, it constructs an over-organ, a vein
and an organ, that contains all the code in the donor that im-
plements the organ, given the organ’s entry with LO. Second,
it builds the donor’s System Dependence Graph (SDG) which
is used during GP to reject syntactically invalid offspring.

To produce the over-organ’s vein and the organ below, we
produce a conservative, over-approximate slice by context-
insensitively traversing the donor’s call graph: we include all
functions called by any function we reach. An organ’s vein is
a path from a donor’s start to LO, the organ’s entry. It con-
tains all source code that constructs the organ’s parameters.
To create it, we backward slice the donor from LO, travers-
ing the call graph in reverse. Once we reach the donor’s
main function, we prune the slice to retain only the shortest
path, under the assumption that all paths to the organ are
equivalent with respect to correctly constructing the organ’s
parameters. The organ’s vein in the case of the running exam-
ple (Sec. 2) is: ‘idct←recv_packet←transmit_packet←
send_packet←main’. To construct the initial organ, we for-
ward slice the donor from LO. The forward slice for the idct
organ (Sec. 2) is: ‘check, dct, malloc, cos, printf’.

This over-organ is quite imprecise; we rely on the second
stage to refine it to a small organ suitable for implantation.
Investigating more precise techniques is future work.

Last, this phase outputs data and control dependency
information. The GP process may generate many invalid
programs, offspring that use undeclared variables or include
only a syntactically invalid part of a compound statement,
like an if−else. Both of these issues occurred in our run-
ning example. In recv.c, GP selected ‘else if (nrOfLost

Packets == 2)’ (line 119). Tracking the data dependency en-
sures we include the declaration ‘int nrOfLostPackets’ (line
100), while the control dependency ensures the inclusion of
‘if (nrOfLostPackets == 1)’(line 102), the predicate of the
‘else if’ statement, since, in isolation, it violates C syntax.

4.2 Stage 2: Organ Reduction and Adaption
The second stage of µTrans has two steps. The first

searches for bindings from the host’s variable in scope at the
implantation point to the organ’s parameters. Some of these
variables need to be created and initialized during implanta-
tion; others use existing host variables. In the former case,
we use α-renaming [2] to avoid variable capture; in the latter,
we use types to restrict the space of possible mappings.

We use genetic programming to evolve an organ and its vein
from the over-organ produced by the first phase. To this end,
we introduce in-situ unit testing. Traditional unit testing
covers infeasible paths because it does not assume knowledge
of how the unit will be used, i.e. constraints on its starting
program states, and therefore executes paths that are infeasi-
ble in-situ, when the unit is embedded in a program. In-situ
unit testing is a novel form of unit testing that starts from a
valid program state rather than an arbitrary state. It loops
over this state, modifying individuals to maximize coverage.

In-situ is a generally useful concept. In addition to its use
in GP, it increased the rigor of our validation. Hosts tend to
have large input spaces into which µTrans inserts alien code.
Finding a path in the beneficiary to the transplanted organ
can be difficult. In-situ unit testing allows us to leverage a
single path to rigorously test whether the new functionality
executes correctly in the host. During in-situ testing, any
calls the unit makes to its enclosing environment, like its
host in autotransplantation, are executed and not stubbed
or mocked as they would be in traditional unit testing [4].
µTrans thus realises a form of dynamic, observational

slicing which removes redundant states from V while ensuring
that O and V remain compilable and executable, and still
correctly construct the parameters that O needs to retain the
correct behaviour as defined by TO

D , and in-situ unit testing.
Fig. 3 shows an example of the chromosome used in our GP.

We inline all functions, then map the over-organ’s statements
to an array; each array index uniquely identifies each state-
ment. The chromosome of each individual has two parts: a
host-to-organ map and a list of the indices in the over-organ
that this individual includes.

Unlike conventional GP, which creates an initial population
from individuals that contain multiple statements, µScalpel
generates an initial population of individuals with just 1 state-
ment, uniformly selected. Our underlying assumption is that
our organs need very few of the statements in their donor.
We also want to evolve small organs. Starting from one LOC
gives µScalpel the possibility to find small solutions quickly.

Alg. 1 shows the process of generating the initial popu-
lation. The organ’s symbol table stores all feature-related

260

Algorithm 1 Generate the initial population P ; the function
choose returns an element from a set uniformly at random.
Input V , the organ vein; SD, the donor symbol table; OM , the host

type-to-variable map; Sp, the size of population; v, statements in
individual; m, mappings in individual.

1: P := ∅
2: for i := 1 to Sp do
3: m, v := ∅, ∅
4: for all sd ∈ SD do
5: sh := choose(OM [sd])
6: m := m ∪ {sd → sh}
7: v := { choose(V) }
8: P := P ∪ {(m, v)}
9: return P

variables used in donor at LO. For each individual, Alg. 1 first
uniformly selects a type compatible binding from the host’s
variables in scope at the implantation point to each of the
organ’s parameters. We then uniformly select one statement
from the organ, including its vein, and add it to the individual.
The GP system records which statements have been selected
and favours statements that have not yet been selected.

Search Operators During GP, µTrans applies crossover
with a probability of 0.5. We define two custom, crossover
operators: fixed-two-points and uniform crossover. The fixed-
two-points crossover is the standard fixed-point operator sepa-
rately applied to the organ’s map from host variables to organ
parameters and the statement vector, restricted to each vec-
tor’s centre point. The uniform crossover operator produces
only one offspring, whose host to organ map is the crossover of
its parents’ and whose V and O statements are the union of its
parents. The use of union here is novel. Initially, we used con-
ventional fixed-point crossover on organ and vein statements
vectors, but convergence was too slow. Adopting union sped
convergence, as desired. Fig. 4 shows an example of applying
the crossover operators on the two individuals on the left.

After crossover, one of the two mutation operators is ap-
plied with a probability of 0.5. The first operator uniformly
replaces a binding in the organ’s map from host variables
to its parameters with a type compatible alternative. In
our running example, say an individual currently maps the
host variable curs to its N_init parameter. Since curs is
not a valid array length in idct, the individual fails the
organ test suite. Say the remap operator chooses to remap
N_init. Since its type is int, the remap operator selects a
new variable from among the int variables in scope at the
insertion point, which include ‘hit_eof, curs, tos, length,
. . . ’ . The correct mapping is N_list to length; if the remap
operator selects it, the resulting individual will be more fit.

The second operator mutates the statements of the organ.
First, it uniformly picks t, an offset into the organ’s statement
list. When adding or replacing, it first uniformly selects a
index into the over-organ’s statement array. To add, it inserts
the selected statement at t in the organ’s statement list; to
replace, it overwrites the statement at t with the selected
statement. In essence, the over-organ defines a large set of
addition and replacement operations, one for each unique
statement, weighted by the frequency of that statement’s
appearance in the over-organ. Fig. 5 shows an example of
applying µTrans’s mutation operators.

At each generation, we select top 10% most fit individuals
(i.e. elitism) and insert them into the new generation. We
use tournament selection to select 60% of the population for
reproduction. Parents must be compilable; if the proportion
of possible parents is less than 60% of the population, Alg. 1
generates new individuals. At the end of evolution, an organ

that passes all the tests is selected uniformly at random and
inserted into the host at Hl.

Fitness Function Let IC be the set of individuals that
can be compiled. Let T be the set of unit tests used in GP,
TXi and TPi be the set of non-crashed tests and passed tests
for the individual i respectively. Our fitness function follows:

fitness(i) =

{
1
3
(1 + |TXi|

|T | + |TPi|
|T |) i ∈ IC

0 i /∈ IC
(1)

For the autotransplantation goal, a viable candidate must,
at a minimum, compile. At the other extreme, a successful
candidate passes all of the TO

D , the developer-provided test
suite that defines the functionality we seek to transplant.
These poles form a continuum. In between fall those individ-
uals who execute tests to termination, even if they fail. Our
fitness function therefore contains three equally-weighted
fitness components. The first checks whether the individual
compiles properly. The second rewards an individual for
executing test cases to termination without crashing and last
rewards an individual for passing tests in TO

D .

Implementation Implemented in TXL and C, µScalpel
realizes µTrans and comprises 28k SLoCs, of which 16k is
TXL [17], and 12k is C code. µScalpel inherits the limita-
tions of TXL, such as its stack limit which precludes parsing
large programs and its default C grammar’s inability to prop-
erly handle preprocessor directives. As an optimisation we
inline all the function calls in the organ. Inlining eases slice
reduction, eliminating unneeded parameters, returns and
aliasing. For the construction of the call graphs, we use GNU
cflow, and inherit its limitations related to function pointers.

5. EMPIRICAL STUDY
This section explains the subjects, test suites, and research

questions we address in our empirical evaluation of automated
code transplantation as realized in our tool, µScalpel.

Subjects We transplant code for five donors into three hosts.
We used the following criteria to choose these programs. First,
they had to be written in C, because µScalpel currently
operates only on C programs. Second, they had to be popular
real-world programs people use. Third, they had to be diverse.
Fourth, the host is the system we seek to augment, so it had to
be large and complex to present a significant transplantation
challenge, while, fifth, the organ we transplant could come
from anywhere, so donors had to reflect a wide range of sizes.
To meet these constraints, we perused GitHub, SourceForge,
and GNU Savannah in August 2014, restricting our attention
to popular C projects in different application domains.

Presented in Tab. 1, our donors include the audio stream-
ing client IDCT, the simple archive utility MYTAR, GNU
Cflow (which extracts call graphs from C source code), Web-
server3 (which handles HTTP requests), the command line
encryption utility TuxCrypt, and the H.264 codec x264. Our
hosts include Pidgin, GNU Cflow (which we use as both a
donor and a host), SOX, a cross-platform command line au-
dio processing utility, and VLC, a media player. We use x264
and VLC in our case study in Sec. 7; we use the rest in Sec. 6.

These programs are diverse: their application domains
span chat, static analysis, sound processing, audio streaming,
archiving, encryption, and a web server. The donors vary in
size from 0.4–63k SLoC and the hosts are large, all greater

3https://github.com/Hepia/webserver.

261

https://github.com/Hepia/webserver

Table 1: Donor and host corpus for the evaluation.
Tests

Subjects Type Size #Regr. #Unit

Idct Donor 2.3k - 3-5
Mytar Donor 0.4k - 4
Cflow Donor 25k - 6-20
Webserver Donor 1.7k - 3
TuxCrypt Donor 2.7k - 4-5
x264 Donor 63k - 5

Pidgin Host 363k 88 -
Cflow Host 25k 21 -
SOX Host 43k 157 -
VLC Host 422k 20 -

than 20k SLoC. They are popular: Wikipedia reports that
more than 3 million people used the Pidgin chat client in
2007. Pidgin, SOX, and TuxCrypt are downloaded from
SourceForge over a million times each year on average. VLC,
MyTar, and Webserver average 105 forks and 148 watchers
on GitHub. x264 is an award winning and GNU Cflow is a
well-known, well-maintained static analysis tool.

Test Suites We use three different test suites to evaluate the
degree to which a transplantation was successful: 1) the host’s
pre-existing regression test suite, 2) a manually augmented
version of the host’s regression test suite (regression++), and
3) an acceptance test suite for the postoperative host, man-
ually updated to test the transplanted functionality at the
system-level. A host’s developers designed its pre-existing
regression test suite and distributed it. Sadly, these suites do
not always achieve high statement coverage. We use these test
suites to answer RQ1.1. To achieve higher statement cover-
age, we manually added tests to a host’s pre-existing test suite
to create regression++, our augmented regression suites, for
each host. We use these test suites to answer RQ1.2. Finally,
we manually realized Def. 3, defining input adaption τ and
equivalence ' for the test oracle, to create an acceptance test
suite for the postoperative host: starting from the donor’s
acceptance tests, one of the authors devised acceptance tests
for the postoperative host that execute the transplanted soft-
ware organ from the postoperative host’s entry point. They
assess whether the new functionality required is to be found
in the host. Our acceptance tests are not weak proxies [49].
Thus, our test cases check whether or not the output of the
organ is correct with respect to the original donor program,
rather than just checking the exit code. We use these to
answer RQ2. Our corpus and our test suites are available
at http://crest.cs.ucl.ac.uk/autotransplantation.

Research Questions Since our approach transplants code
from the donor into the host, a natural first question to ask
is ‘Whether transplantation breaks anything in the host pro-
gram?’. In biological terms, we are checking the side-effects of
the transplantation. In software engineering, this question be-
comes one of regression testing: ‘Does the modified host pass
all the regression test cases?’. If it does, then we conclude that
we have found no evidence for any side effects of the trans-
plant operation. This motivates our first research question:

Research Question 1: Can we transplant a software
organ into host that, after transplantation, still passes
all of its regression tests?

Of course, the answer to this question depends critically
on the quality of the regression testing. All the programs
with which we experimented are real-world systems equipped
with test suites, deemed to be useful and practical by their
developers. However, they were not designed to test trans-
plants and may not be sufficiently rigorous to find regression
faults introduced by transplantation.

Donor Acceptance

Tests
 Acceptance Tests

Whole

Host'

Regression

Tests
Augmented

RegressionTests

Whole

Host'

Whole

Host'

Validation 1 Validation 2 Validation 3

Figure 6: Three validation steps; the dashed boxes
are test cases we created.

We computed coverage information for each subject’s test
suites and found that it was not always high. Finding test
suites that achieve high coverage of real-world code using
system-level testing is a known challenge. Despite much
work on tool development, automating extensive coverage in
system-level testing remains an open problem [37]. Further-
more, the value of higher coverage in testing is the subject
of ongoing debate in the research community [31].

Nevertheless, since we are injecting new code into the host
from a foreign donor, we certainly ought to seek to cover
the host system as thoroughly as possible in our testing.
We therefore manually augmented each subject’s existing
regression test suites with additional test cases to increase
coverage. Our aim is to more rigorously regression test our
transplant operations for side effects. This motivates our
two specific versions of RQ1, which focus on each of these
coerces of regression test suite:

RQ1.1: Can we transplant a software organ and still pass
all of the postoperative host’s existing regression tests?
RQ1.2: Can we transplant a software organ and still pass
a regression test suite, manually augmented to achieve high
coverage in the postoperative host?

Achieving transplantation without side effects is necessary,
but not sufficient for success. We need to do more than
merely insert alien code into the host without breaking re-
gressions tests; we need to augment the functionality of the
postoperative host with new behaviour that replicates the
software organ we extracted from the donor, or the operation
is pointless. This motivates our second research question:

Research Question 2: Does the transplanted organ
provide any new functionality to its postoperative host?

We consider two approaches to test whether the postop-
erative host exhibits the transplanted functionality. The
first, natural question to ask is whether the postoperative
host passes acceptance tests, that is, system-level tests that
specifically target the new, hoped for behaviour that would
represent an implementation of the new feature in the host.
For this purpose, we need to adapt the donor’s acceptance
test suite to be suitable for the postoperative host, i.e. define
τ in Def. 3. In the most cases, the donor’s inputs and the
host’s are very different. Thus, we have manually defined
the τ function, for each transplantation. For example, Cflow
takes a set of C source code files as input, while Pidgin is a
GUI program. Thus, to supply Cflow with its inputs, after
its insertion into Pidgin, we added code to Pidgin that opens
a dialog to prompt the user for files. To validate the trans-
plantation, we then compared the output of the Cflow organ
in Pidgin against the original Cflow over same set of files.

In summary, our first two research questions draw on three
different forms of validation, as outlined in Fig. 6. If we
can find transplants that pass regression tests and transfer a
meaningful amount of new functionality into the host, satis-
fying all three of these validation steps, then this would be

262

http://crest.cs.ucl.ac.uk/autotransplantation

Table 2: Transplantation results over 20 repetitions:
column unanimously passing runs shows the number
of runs that passed all test cases in all test suites; col-
umn Test Suites shows the results for each test suite:
PR reports the number of passing runs; All and O
report statement coverage (%) for the postoperative
host and for the organ; column Time shows the exe-
cution time (User+Sys) in minutes; * excludes tests
that failed due to a pre-existing bug in the organ.

Unanimously Test Suites Time (min)

Donor Host Passing Regression Regression++ Acceptance Avg. Std.
Runs (PR) PR All O PR All O PR All O Dev.

IDCT Pidgin 16* 20 8 0 17 51 99 16* 40 99 5 7
MyTar Pidgin 16 20 8 0 18 51 93 20 40 61 3 1
Web Pidgin 0 20 8 0 0 51 65 18 40 65 8 5
Cflow Pidgin 15 20 8 0 15 52 53 16 41 54 58 16
TuxCrypt Pidgin 15 20 8 0 17 51 88 16 40 88 29 10

IDCT Cflow 16 17 48 91 16 69 91 16 50 99 3 5
MyTar Cflow 17 17 50 52 17 69 90 20 50 91 3 <1
Web Cflow 0 0 3 13 0 61 68 17 49 62 5 2
Cflow Cflow 20 20 71 70 20 71 70 20 71 70 44 9
TuxCrypt Cflow 14 15 46 66 14 69 87 16 50 83 31 11

IDCT SOX 15 18 32 94 17 42 94 16 20 94 12 17
MyTar SOX 17 17 31 62 17 42 90 20 22 60 3 <1
Web SOX 0 0 12 27 0 12 67 17 12 65 7 3
Cflow SOX 14 16 29 47 15 41 66 14 19 59 89 53
TuxCrypt SOX 13 13 35 79 13 41 86 14 20 79 34 13

encouraging evidence that automated code transplantation is
a feasible means of extracting and transplanting functionality
from donors to hosts. However, there remains the question
of the computational cost of this overall approach:

Research Question 3: What is the computation ef-
fort to find these organs?

We answer the first 3 questions entirely quantitatively using
our study of 15 transplant attempts from 5 donors into 3 hosts
including, as a sanity check, one self-application of a donor
into itself. With these questions, we give initial empirical
evidence to support our claim that µTrans to automated
reuse merits further consideration.

However, even if the answers to all of these questions are
generally positive and encouraging, there remains the ques-
tion of whether autotransplantation can deliver useful new
functionality. This motivates our final research question:

Research Question 4: Can automated transplanta-
tion transfer useful new functionality into the host?

To answer this question we use µScalpel to automatically
transplant a feature into a host that was also developed
by human developers. This allows us to qualitatively and
quantitatively study an instance of transplantation in which
we know the goal of transplantation is useful, since humans
sought to achieve the same results using traditional manually
intensive programming. For this study, we chose the VLC
open source media player. The human-implemented feature
we choose is the encoder for the H.264 format.

6. RESULTS AND DISCUSSION
For all 15 experiments, we report the number of runs in

which all test cases passed in all test suites. We call these
unanimously passing runs and report them in Tab. 2. We also
report the number of successful runs for the regression, aug-
mented regression and acceptance test suites (columns PR in
Tab. 2). We repeat each experiment 20 times. Before we an-
swer the research questions posed, we summarise our results.

We transplanted an archiving feature from MyTar. Gener-
ation of inverse discrete cosine transform coefficients from an
array of integers was extracted from the IDCT donor, while

the AES encryption feature was extracted from TuxCrypt.
We also transplanted our Web donor’s functionality that
starts a web server and provides file access. Parsing and pro-
cessing C source code was the feature extracted from Cflow.

Tab. 2 provides evidence that automatic software trans-
plantation is indeed feasible. In 12 out of 15 experiments all
test cases passed, while 63% (188/300) of all the runs unani-
mously passed all test suites. New functionality from 4 out of
5 different donors has been successfully transplanted into the
three chosen host systems. Moreover, within 20 repetitions we
were successful in at least 13 runs in these cases. Given that
we set ourselves the challenging task of transplanting new
functionality into an existing system, µScalpel’s success
rate of at least 65% shows the great promise of µTrans.

Furthermore, our regression failure in the case of the Web
donor is that the automatically extracted code contains a
loop that listens for server requests. Regression tests were de-
signed for the host prior to transplantation and may not han-
dle nonterminating behaviour. However, in at least 17 runs,
the postoperative host passed its acceptance test suites. The
Web donor’s organ is reachable in the postoperative host and
its behaviour retained in all three hosts. When transplanting
functionality from Cflow into itself we achieved 100% success
rate. This confirms our suspicion that this case would be the
easiest for our approach, since issues such as implantation
point, variable scope and renaming become less of a concern.

Once we extracted a new functionality, we insert it into
the host programs. We ran the test suites provided with
Pidgin, Cflow and SOX to check if these software systems
retained features deemed important by software developers.

RQ1.1: Can we transplant a software organ and still pass
all given regression tests? In all but two cases, the beneficia-
ries pass the regression suites in at least 13 of 20 runs (Tab. 2).
Web servers are reactive systems, which contain an event loop.
The webserver donor’s organ contains such a loop, in which it
listens for http requests. Some of Cflow and SOX tests enter
the event loop, do not terminate, and fail. Therefore, the
answer to RQ1.1 is that new functionality has been inserted
in 13 out of 15 experiments without distorting host program
behaviour exercised by the given test suites. In all transplanta-
tion experiments, Pidgin, on the other hand, passed all regres-
sion tests. Given this variance, we use gcov, a popular cover-
age tool, to measure the path coverage of our subject’s test
suites. Tab. 2 reports our results. The All columns report cov-
erage rates for the entire host program with new functionality
transplanted, while the O columns report statement coverage
just for the organ. For Pidgin, the statement coverage rate
is only 8%, while the transplanted code is not covered at all.

RQ1.2: Can we transplant a software organ and still pass
a regression test suite, manually augmented to achieve high
coverage in the postoperative host? We augmented the hosts’
regression test suites with additional tests to increase state-
ment coverage, which we report in Tab. 2. The new test suites
now cover 41–71% of the host programs with transplanted
features, with one exception, while organ coverage is even
higher, exceeding 90% in 6 cases. Furthermore, the success
rate was largely retained for Cflow and SOX, where we lost
at most one successful passing run for the augmented regres-
sion test suite vs. the pre-existing one, as shown in Tab. 2.
Coverage rates of Pidgin increased from 8% to 51–52% which
had an impact on success rates. The augmented test suite
covered 53–99% of the organ’s code. Since the organ from
Web donor was not covered by the original regression test

263

suite and the organ contains an infinite loop, as pointed out
above, the augmented suite has a pass rate of 0%. Therefore,
our answer to RQ1.2 is that postoperative hosts passed all of
their augmented regression tests in 12 out of 15 experiments.

RQ2: Does the transplanted organ provide any new func-
tionality to its postoperative host? Next, we test whether the
organ is reachable within the host and if it retains the desired
behaviour. The numbers of successful runs of these accep-
tance test suites, and the statement coverage are presented
in Tab. 2. The statement coverage ranges from 54 to 99% for
the organs and 12 to 71% for the whole host program with
transplanted new functionality. Since these tests are aimed
at the organ code, we did not expect to get high coverage in
the hosts, which is the lowest, 12–22%, in the case of SOX.
We suspect that dead code, from older audio formats that are
no longer supported, is the reason. However, organ coverage
always exceeds 59%. The highest coverage was achieved for
Cflow, which contains recursive calls.

The number of times the entire acceptance suite passed
ranges from 14 to 20. This means that new features are
indeed found in the hosts in at least 70% of the repeated
runs. Moreover, all subjects with new functionality from
MyTar pass all acceptance tests in all 20 runs, hence the
organ is always reachable. Furthermore, by transplanting
a piece of IDCT into Pidgin, we discovered a bug in the
original code, not reachable in the donor. With Pidgin as
its host, however, the IDCT organ can be reached with an
empty array which the code does not handle. The success
rates presented in Tab. 2 are based on the number of tests
passed excluding our test cases that discover the bug, since
it is present in the donor and we measure faithfulness to the
original program. Therefore, not only we have shown that
we can transplant code from one program into another, but
also these new features will be reachable and executable. To
answer RQ2, in all 15 experiments the transplanted features
are accessible and provide the desired functionality. Moreover,
85% (256/300) of the runs passed all acceptance tests.

RQ3: What is the computation effort to find these organs?
We have shown that we can successfully transplant new
functionality into an existing software system. The question
remains, how efficient is our approach? Average timings
of extracting and transplanting a new feature into the host
program are shown in Tab. 2 (column Avg). To answer RQ3,
average runtime of one run of the transplantation process did
not exceed 1.5 hour and in 8 cases it was less than 10 minutes.
This shows the efficiency of our approach. If you consider
the time it would have required for a human to perform the
same tasks of adding new functionality, we believe that these
timings would have been in the order of hours or days rather
than minutes.

7. A CASE STUDY
Despite the fact that the answers to research questions 1–3

in Sec. 5 are generally positive and encouraging, the question
of whether automatic transplantation can deliver useful new
functionality remains: RQ4: Can automated transplantation
transfer useful, new functionality into the host? We answer
this question by considering the automated transplantation
of a feature into a host that human developers implemented.
This allows us to qualitatively and quantitatively study the
transplantation of a feature whose transplantation we know
to be useful, since humans worked to achieve the same results
using traditional, manually intensive programming.

Library

LibraryDriver

Original VLC System - Host

?SCALPEL

x
2
6
4
 -

 D
o
n
o
r

H.264 encode

feature

Driver

ffmpeg Wrapper

Codec Library

... H.264 encode

feature

x264 Wrapper

Codec Library

ffmpeg Wrapper

...

Postoperative VLC System

Source codeSource code

ff
m

p
e
g

H.264 encode

feature

Figure 7: µSCALPEL autotransplants x264’s encoder
functionality into VLC; the donor is x264 , the organ
its H.264 encoder, and the host is VLC, stripped of
any reference to x264 prior to transplantation.

VLC is a popular open source media player4; VLC seeks
to offer a versatile media player that ‘can play any file you
can find’. To achieve this goal, VLC is under continual
development, especially to handle new media formats. x264
is a popular, widely-used, award winning, open source video
and audio encoding tool5, designed for the H.264/MPEG-4
AVC compression format6. Both programs are substantial:
at the time of this writing, x264 contains more than 63k lines
of code and 211 files; version 2.1.5 of VLC contains more
than 422k lines of code across 2821 files.

H.264 is an evolving video standard, to which features
are continually added. Keeping a code base current with
an evolving standard like H.264 is time-consuming. Cur-
rently the developers of VLC manually update the code
related to x264 library, when its interface changes. VLC has
invested considerable effort in supporting H.264, first imple-
menting it in November 2003. Since then, over 450 commits
in VLC’s version history mention H.264. These commits run
the gamut, including bug fixes, new features, or refactoring.
The most recent change to mention H.264 was committed 21
January 2015. VLC’s developers have worked over 11 years at
maintaining and updating the handling of the H.264 format.

To insulate themselves from changes in x264, the VLC
community includes it as a library veiled by wrapper, which
they must update when it changes. Autotransplantation can
sped this process by automatically handling renaming and,
as we describe below, it also takes only that part of the x264
codebase that VLC actually uses. To use µScalpel here,
a VLC developer strips out all the code at an implantation
point (conceptually, this removes the previous version) as
µScalpel implants an organ as an atomic entity, it does not
merge it into existing code.

Consider Fig. 7. At the left is the original VLC system,
which links all of x264 as an external library and interacts
with its encoder through a wrapper. At the right is the host,
which we produced from original VLC codebase by stripping
all references to x264, by building it using ./configure
−−enable−x264=no; this setting does not link the x264
library and eliminates the wrapper via preprocessor directives.
This step ensures that µScalpel transplanted new, rather
than uncovering old, functionality.

We marked x264_encoder_close (encoder.c:2815) as the
organ entry point and defined an organ test suite by using
the original x264 implementation as the oracle. In the host,
we annotated input_DecoderNew (decoder.c:314) as the im-
plantation point, because VLC calls this method for encoding
or streaming a video, and choosing what encoder to use.

Using the organ entry point annotation and the organ test
suite, µScalpel extracts the encoder organ, the box labeled

4http://www.videolan.org/vlc.
5http://www.videolan.org/developers/x264.html.
6http://en.wikipedia.org/wiki/H.264/MPEG-4_AVC.

264

http://www.videolan.org/vlc
http://www.videolan.org/developers/x264.html
http://en.wikipedia.org/wiki/H.264/MPEG-4_AVC

‘H.264 encode feature’ in Fig. 7, from the donor, then im-
plants it into the stripped version of VLC at the designated
implantation point to produce a postoperative version that
includes x264 encoder functionality. Due to its use of slicing,
µScalpel takes only what VLC needs and uses from x264,
unlike the human process which replaces the x264 as a library
and updates its wrapper.

7.1 Study Design and Setup
x264 is multi-threaded, and so is the organ that µScalpel

extracted from it and transplanted. We transplanted the
H.264 organ from x264 with the assembly optimisations dis-
abled, because µScalpel is built on TXL’s C grammar,
which does not handle assembly code. The latest version of
VLC (2.1.5) was our target host, after manually disabling its
existing H.264 functionality by building it with ./configure
−−enable−x264=no. As noted above, the implantation
point is input_DecoderNew, VLC’s encoder selection method.

Before we could apply µScalpel to x264, we had to manu-
ally workaround TXL’s limitations in handling C preprocessor
directives: by default, TXL treats preprocessor directives as
strings. Programmatically resolving an #ifdef as a string
requires replacing it with its then branch or its else branch
or both. In any nontrivial program, like x264, any of these
choices either fail to compile or generate invalid code.

For our evaluation, we chose 5 movie trailers, with lengths
varying between 10 and 138 seconds, frames between 150 and
2260, and bit rates between 3218 and 9419. We ran both of
our versions of VLC — original and with the transplant — in
command line mode, bypassing its GUI. We used VLC’s com-
mand line parameter vlc://quit to close VLC when a video
ends. We used the same encoding options across all videos
and all program versions: x264 without and with x264 ASM
optimisations, original VLC, and VLC with the x264 organ
implanted. These options are ‘4:4:4 Predictive’ for the pro-
file option (colour handling), 4:2:0 for YUV (luminance and
chrominance weight), and 2.2 for level (maximum bit rate).

7.2 Observations
We transplanted a specific version of x264 into VLC. We

cannot precisely measure how much time the VLC community
spent updating their code for new versions of x264, so we
bound it using VLC’s version history. Over 11 years, the VLC
community has upgraded VLC many times. We assumed
that these upgrades triggered a burst of commits, where we
consider a burst to be sets of four commits no more than 10
days apart. In VLC’s version history, we identified 39 commit
bursts whose logs contain ‘264’. On average, an H.264 commit
occurred every 9 days. The average number of commits across
the 39 bursts is 8; 312 commits were in bursts, while 126 were
isolated. Each commit burst spanned 20 days on average. We
uniformly selected the commit burst starting 5 January 2012
and ending 21 January 2012. It has 12 commits. Its commits
changed 2 files. The diffstat of these commits is 171.

The total size of the organ µScalpel extracted was 23k
LOCs, including the veins, as reported by cloc. In contrast,
an over-approximate estimate of the equivalent human organ
is 12k in VLC and 44k SLoC in its x264 library. Half of
the µScalpel’s organ’s lines are global variable declarations;
type and function definitions consume half the lines; inlined
function calls are the next largest source of lines. µScalpel
performs standard renaming, but is also able to reuse dec-
larations in the host. For example, both VLC and x264

contain the typedef uint8_t. In the vein, we have ‘uint8_t
output_csp_fix[]’ ; in the host, we have ‘uint8_t ∗p’ in
scope. Since the types are compatible, µScalpel unifies
them, and removes uint8_t from the organ, since it is no
longer needed. The organ likely contains unnecessary func-
tions. In the future, one could post-process µScalpel’s
output to shrink the organ, as proposed in GI work [41, 48].

Fig. 8 shows µScalpel in action. On the left, Fig. 8a con-
tains a snippet of code as it appears in the donor, after slicing
has identified it as part of the vein in the donor. Fig. 8b
shows the organ after extraction into the ice-box, with all the
functions in the vein inlined. The dotted lines bracket the
regions inlined from Fig. 8a to Fig. 8b. At the right, Fig. 8c
shows the organ after transplantation into the host. From
Fig. 8b to Fig. 8c, the dashed lines show deletions and the
solid lines show variable equivalences. At the right, we see
graft_h264, the entry point into the organ in the host. Its
parameter list is all variables in scope at the insertion point
in the host. The organ may not use all of these parameters.
At entry, graft_h264 hooks the host variable (as parameters)
to the organ’s variables, then executes the code from the or-
gan’s vein to initialize state before calling the organ. This is
why this snippet has many deletions and is dominated by as-
signment statements. For example, the organ reads the video
stream from $_host_filename. We use TXL’s built facility
for generating fresh names to avoid variable capture to gener-
ate the names you see. As you can see, µScalpel reduces an
if statement to a NOP; organ minimization is future work.

Fig. 8 focuses on initialization code; Fig. 9 shows how
µScalpel modified functional organ code during autotrans-
plantation. x264 heavily uses x264_malloc, its wrapper for
the standard malloc function. µScalpel specialises it for
different calling contexts. Here, x264 has called it to allocate
memory for x264_t, which is bigger than ‘2 ∗ 1024 ∗ 1024
∗ 7 / 8’ . This allocation always succeeded in our test cases,
so µScalpel eliminated the unneeded if statements, as
shown. Since function calls can occur in arbitrary expression
and µScalpel greedily inlines their definition upon encoun-
tering them, it replaces return statements with assignment to
a fresh variable. To skip any code that follows the replaced
return, whose execution the return blocked, µScalpel fol-
lows the assignment with a GOTO to a label after the call in
the caller (2 in Fig. 9). When a declaration follows the added
LABEL, as with void functions, µScalpel generates a NOP
to preserve syntactic correctness, without affecting semantics.
µScalpel needed only a single run and 26 hours to ex-

tract and transplant x264’s H.264 encoder into VLC; in other
words, it passed all the regression, augmented regression and
acceptance test suites. Since statement coverage for VLC’s ex-
isting test suite was 11.5% and 0% for the organ, we manually
added tests. The resulting, augmented test suite combined
with our acceptance tests achieved 63% coverage of the benefi-
ciary and 49.4% of the organ. After 50 runs over our test cases
(10 for each video trailer), gcov reported a coverage of 49.4%.

As mentioned, µScalpel works just on C. In the case of
video encoding, ASM optimisations vastly improve encoding
speed. Because of this limitation, our runtime results are up
to 8 times slower than those of the original VLC program.
Here again, we can, in the future, turn to GP to optimise
efficiency of the beneficiary: a recent technique speed up
existing code 70-fold [41, 48]. We also measured the size of
the encoded video. The output of our transplanted organ
matches the size of its output when run in the donor, in

265

int main(){
parse();

}

static int
parse(){

select_input();
}

static int
select_input()

{}

(a) x264 Original Code

...
char * input_filename = NULL;

int b_turbo = 1;
...
if(preset &&!strcasecmp(preset,"placebo"))
b_turbo = 0;

...
int b_auto = !strcasecmp(demuxer,

"auto");
const char * ext = b_auto ?

get_filename_extension
(filename):"";

int b_regular = strcmp(filename,"-");
if(!b_regular && b_auto)

ext = "raw";
b_regular = b_regular &&

x264_is_regular_file_path(filename);
if(b_regular){
FILE* f = x264_fopen(filename,"r");
if(f){
b_regular = x264_is_regular_file(f);
fclose(f);

...
...

(b) x264 Inlined Source Code

void graft_h264(..., int
$_host_error_one_per_line,
char * $_host_filename ...) {
...
$_host_error_one_per_line = 1;
...

$_parse_output_filename1 =
$_host_output_filename;

...
char *$_select_input_filename1

/*$_parse_input_filename1*/
= $_host_filename;

int $_select_input_b_auto1;
if(!$_host_optopt &&

$_select_input_b_auto1){}

FILE *$_select_input_f1 =
fopen ($_host_filename, "r");

fclose($_select_input_f1);
...

}
(c) Transplanted Source Code

Figure 8: Code snippet from the beginning of the x264 organ:
is function inlining; is variable binding; is α–renaming;

grayed lines are deleted. The last if was dropped because the
organ is unreachable with an empty file in VLC.

I <<h = x264_encoder_open_142 (param);>>
+ x264_param_t ∗$_x264_encoder_open_142_param1 = $_encode_param1;
+ x264_t ∗$ABSTRETVAL_ret_x264_encoder_open_1421;
α x264_t ∗$_x264_encoder_open_142_h1;

do {
do {

I <<x264_malloc (sizeof (x264_t))>>
+ $_host_error_one_per_line = sizeof (x264_t);
/ uint8_t ∗$_x264_malloc_align_buf2;
/ $_x264_malloc_align_buf2 = ((void ∗) 0);
− if (i_size >= 2 ∗ 1024 ∗ 1024 ∗ 7 / 8) {
α $_x264_malloc_align_buf2 = memalign (2 ∗1024 ∗

1024,$_host_error_one_per_line);
− if (align_buf) {
α size_t $_x264_malloc_madv_size2 = ($_host_error_one_per_line + ...);
α madvise ($_x264_malloc_align_buf2, $_x264_malloc_madv_size2, 14); }
− else align_buf = memalign (32, i_size);

...
− return $_x264_encoder_open_142_h1;
+ $ABSTRETVAL_ret_x264_encoder_open_1421 = $_x264_encoder_open_142_h1;
+ goto LABEL_x264_encoder_open_142_1;

...
− return ((void ∗) 0);
+ $ABSTRETVAL_ret_x264_encoder_open_1421 = ((void ∗) 0);
+ LABEL_x264_encoder_open_142_1:
+ $_encode_h1 = $ABSTRETVAL_ret_x264_encoder_open_1421;

Figure 9: Standard diff of code transplanted from
the ‘library’ part of x264, augmented with: in-
lining(‘I’); α–renaming (‘α’); initialisation separa-
tion (‘/’). µSCALPEL has specialised the function
x264_malloc; for the host, the predicate of the first
if is always true, so GP removed it.

every case. However, the size of the output of our organ
after transplantation is up to 1.7 times as big as in the origi-
nal VLC. This is because we provided µScalpel with test
cases that tested x264’s lossless encoding, which µScalpel
therefore extracted into the organ, not x264’s lossy encoding;
VLC, in contrast, uses lossy encoding. To answer RQ4, our
tool needed just 26 hours for extracting and transplanting the
H.264 multi-threaded encoding feature from x264 into VLC.

8. RELATED WORK
Our transplantation approach builds on recent work in

Genetic Improvement (GI) [1, 27, 41, 43, 47, 56, 64], which
treats code as ‘genetic material’ to be manipulated to im-
prove systems. GI can repair broken functionality [1, 43, 56],
dramatically scale-up performance [40–42, 47, 52, 54, 64],
and port between languages and platforms [39]. It is a kind
of program synthesis [45] an area that has recently been the
subject of much activity [21].

The idea of software transplantation as a form of Genetic
Improvement was recently introduced by Harman et al. [28].
Previously, Weimer et al. [61] had transplanted code from one
location to another within the same system for automated
repair, while more recently, Petke et al. [48] transplanted
fragments of code from multiple versions of the same system
for performance improvement. However, the present paper
transplants functionality between different systems. We be-
lieve it is the first to do this, although previous work [26]
has grafted new functionality (grown from scratch) into ex-
isting systems and, independently (but at the same time as
our work), Sidiroglou-Douskos [51] used transplantation for
automated repair. Miles at al. [46] reused in-situ logically
extracted functionalities from a running program, by using a
debugger and manual annotations.

In order to transplant code from a donor to an unrelated
host, we must capture the code upon which the chosen func-
tionality depends in the donor, a problem closely related
to program slicing [7, 10, 25, 53, 57, 62]. Slices can be
constructed in a backward or forward direction [30]. Our
approach most closely resembles backward slicing. Slices
can be static [30, 63], dynamic [34] and various flavours in
between [6, 11, 20, 22, 59]. Our approach is closer to dynamic
slicing, but it is guided by test suite observation [8, 9], rather
than dependence analysis, and with only a limited form of
control dependence [19]. Our slices also need only capture

the particular features of interest and not the entire compu-
tation on the slicing criterion, thereby resembling ‘barrier’
slicing [35] and feature extraction [18, 24]. The slices required
by transplantation are transformed, making them amor-
phous [23]. Within the (considerably rich and diverse) slicing
nomenclature, our slices can therefore regarded as ‘amor-
phous observation-based dynamic backward barrier slices’.

Ray et al. investigate the problem of keeping a trans-
planted organ in sync with its clones, as the organs change
over time [50]. In their setting, an organ is manually moved
to a host. When both original organ and its clone change,
the SPA tool checks the two patches for consistency, and
flags the inconsistencies if found. In our work we automate
the transplantation of functionality from a donor to a host.

9. CONCLUSION AND FUTURE WORK
In this paper, we have introduced µTrans, an approach

to autotransplantation that combines static and dynamic
analysis to extract, modify, and transplant code from a donor
system into a host. We have sought to migrate functionality
from one system into an entirely different system, and vali-
date that the result passes regression testing and acceptance
testing of the new functionality.

Autotransplantation is a new (and challenging) problem for
software engineering research, so we did not expect that all
transplantation attempts would succeed. We systematically
autotransplanted five donors into three hosts. 12 out of these
15 experiments contain at least one successful run. µScalpel
successfully autotransplanted 4 out of 5 features, and all 5
passed acceptance tests. In all, 65% (188/300) runs pass
all tests in all test suites, giving 63% unanimous pass rate;
considering only acceptance tests, the success rate jumps to
85% (256/300).

Our case study compared the autotransplantation of adding
support for a new media format to the VLC media player,
a task humans had previously accomplished. This study
indicates that automated transplantation can be useful, since
we showed µScalpel could insert support for H.264 en-
coding into the VLC media player in 26 hours, passing all
regression and acceptance tests. Our evaluation provides ev-
idence to support the claim that automated transplantation
is a feasible and, indeed, promising new research direction.
You can download µScalpel from http://crest.cs.ucl.

ac.uk/autotransplantation and join us in its exploration.

266

http://crest.cs.ucl.ac.uk/autotransplantation
http://crest.cs.ucl.ac.uk/autotransplantation

10. REFERENCES

[1] A. Arcuri and X. Yao. A Novel Co-evolutionary Ap-
proach to Automatic Software Bug Fixing. In CEC,
pages 162–168, 2008.

[2] H. P. Barendregt. Handbook of logic in computer science
(vol. 2). chapter Lambda Calculi with Types, pages 117–
309. Oxford University Press, Inc., New York, NY, USA,
1992.

[3] J. Beck and D. Eichmann. Program and interface slicing
for reverse engineering. In IEEE/ACM 15th Confer-
ence on Software Engineering (ICSE’93), pages 509–518,
Los Alamitos, California, USA, 1993. IEEE Computer
Society Press.

[4] B. Beizer. Software Testing Techniques. Van Nostrand
Reinhold, New York, 1990.

[5] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and
E. Merlo. Comparison and evaluation of clone detec-
tion tools. IEEE Transactions on Software Engineering,
33(9):577–591, 2007.

[6] A. Beszédes and T. Gyimóthy. Union slices for the
approximation of the precise slice. In IEEE International
Conference on Software Maintenance, pages 12–20, Los
Alamitos, California, USA, Oct. 2002. IEEE Computer
Society Press.

[7] D. Binkley and K. B. Gallagher. Program slicing. In
M. Zelkowitz, editor, Advances in Computing, Volume
43, pages 1–50. Academic Press, 1996.

[8] D. Binkley, N. Gold, M. Harman, S. Islam, J. Krinke,
and S. Yoo. ORBS: Language-independent program slic-
ing. In 22nd ACM SIGSOFT International Symposium
on the Foundations of Software Engineering (FSE 2014),
pages 109–120, Hong Kong, China, November 2014.

[9] D. Binkley, N. Gold, M. Harman, J. Krinke, and S. Yoo.
Observation-based slicing. Technical Report RN/13/13,
Computer Sciences Department, University College Lon-
don (UCL), UK, June 20th 2013.

[10] D. Binkley and M. Harman. A survey of empirical results
on program slicing. Advances in Computers, 62:105–178,
2004.

[11] G. Canfora, A. Cimitile, and A. De Lucia. Conditioned
program slicing. Information and Software Technology
Special Issue on Program Slicing, 40(11 and 12):595–607,
1998.

[12] G. Canfora, A. Cimitile, A. De Lucia, and G. A. D.
Lucca. Software salvaging based on conditions. In In-
ternational Conference on Software Maintenance, pages
424–433, Los Alamitos, California, USA, Sept. 1994.
IEEE Computer Society Press.

[13] G. Canfora, A. Cimitile, A. De Lucia, and G. A. D.
Lucca. Decomposing legacy programs: A first step to-
wards migrating to client–server platforms. In 6th IEEE
International Workshop on Program Comprehension,
pages 136–144, Los Alamitos, California, USA, June
1998. IEEE Computer Society Press.

[14] G. Canfora, A. De Lucia, and M. Munro. An integrated
environment for reuse reengineering C code. Journal of
Systems and Software, 42:153–164, 1998.

[15] G. Canfora and M. Di Penta. New frontiers in reverse
engineering. In L. Briand and A. Wolf, editors, Future of
Software Engineering 2007, pages 326–341, Los Alamitos,
California, USA, 2007. IEEE Computer Society Press.
This volume.

[16] A. Cimitile, A. R. Fasolino, and P. Marascea. Reuse
reengineering and validation via concept assignment.
In International Conference on Software Maintenance
(ICSE 1993), pages 216–225. IEEE Computer Society
Press, Sept. 1993.

[17] J. R. Cordy. The TXL source transformation language.
Science of Computer Programming, 61(3):190–210, 2006.

[18] T. Eisenbarth, R. Koschke, and D. Simon. Locating
features in source code. IEEE Transactions on Software
Engineering, 29(3):210–224, 2003. Special issue on ICSM
2001.

[19] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The
program dependence graph and its use in optimization.
ACM Transactions on Programming Languages and Sys-
tems, 9(3):319–349, July 1987.

[20] C. Fox, S. Danicic, M. Harman, and R. M. Hierons.
ConSIT: a fully automated conditioned program slicer.
Software—Practice and Experience, 34:15–46, 2004. Pub-
lished online 26th November 2003.

[21] S. Gulwani. Automating string processing in spread-
sheets using input-output examples. ACM SIGPLAN
Notices, 46(1):317–330, Jan. 2011.

[22] R. J. Hall. Automatic extraction of executable pro-
gram subsets by simultaneous dynamic program slicing.
Automated Software Engineering, 2(1):33–53, Mar. 1995.

[23] M. Harman, D. Binkley, and S. Danicic. Amorphous pro-
gram slicing. Journal of Systems and Software, 68(1):45–
64, Oct. 2003.

[24] M. Harman, N. Gold, R. M. Hierons, and D. Bink-
ley. Code extraction algorithms which unify slicing and
concept assignment. In IEEE Working Conference on
Reverse Engineering (WCRE 2002), pages 11 – 21, Los
Alamitos, California, USA, Oct. 2002. IEEE Computer
Society Press.

[25] M. Harman and R. M. Hierons. An overview of program
slicing. Software Focus, 2(3):85–92, 2001.

[26] M. Harman, W. B. Langdon, and Y. Jia. Babel pidgin:
SBSE can grow and graft entirely new functionality into
a real world system. In 6th Symposium on Search Based
Software Engineering (SSBSE 2014), pages 247–252,
Fortaleza, Brazil, August 2014. Springer LNCS.

[27] M. Harman, W. B. Langdon, Y. Jia, D. R. White,
A. Arcuri, and J. A. Clark. The GISMOE challenge:
Constructing the pareto program surface using genetic
programming to find better programs (keynote paper).
In 27th IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE 2012), pages 1–14,
Essen, Germany, September 2012.

267

[28] M. Harman, W. B. Langdon, and W. Weimer. Genetic
programming for reverse engineering (keynote paper). In
R. Oliveto and R. Robbes, editors, 20th Working Con-
ference on Reverse Engineering (WCRE 2013), pages
1–10, Koblenz, Germany, 14-17 October 2013. IEEE.

[29] M. J. Harrold and N. Ci. Reuse-driven interprocedural
slicing. In 20th International Conference on Software
Engineering (ICSE ’98), pages 74–83. IEEE Computer
Society Press, Apr. 1998.

[30] S. Horwitz, T. Reps, and D. Binkley. Interprocedu-
ral slicing using dependence graphs. In ACM SIG-
PLAN Conference on Programming Language Design
and Implementation, pages 25–46, Atlanta, Georgia,
June 1988. Proceedings in SIGPLAN Notices, 23(7),
pp.35–46, 1988.

[31] L. Inozemtseva and R. Holmes. Coverage is not strongly
correlated with test suite effectiveness. In Proceedings of
the International Conference on Software Engineering,
pages 435–445. ACM, 2014.

[32] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A
multi-linguistic token-based code clone detection sys-
tem for large scale source code. IEEE Transactions on
Software Engineering, 28(6):654–670, 2002.

[33] R. Komondoor and S. Horwitz. Semantics-preserving
procedure extraction. In 27th Symposium on Principles
of Programming Languages (POPL-00), pages 155–169,
N.Y., Jan. 19–21 2000. ACM Press.

[34] B. Korel and J. Laski. Dynamic program slicing. Infor-
mation Processing Letters, 29(3):155–163, Oct. 1988.

[35] J. Krinke. Barrier slicing and chopping. In IEEE Inter-
national Workshop on Source Code Analysis and Ma-
nipulation (SCAM 2003), pages 81–87, Los Alamitos,
California, USA, Sept. 2003. IEEE Computer Society
Press.

[36] J. Krinke. Is cloned code older than non-cloned code?
In J. R. Cordy, K. Inoue, S. Jarzabek, and R. Koschke,
editors, 5th ICSE International Workshop on Software
Clones, IWSC 2011, pages 28–33, Waikiki, Honolulu,
HI, USA, 2011. ACM.

[37] K. Lakhotia, P. McMinn, and M. Harman. Automated
test data generation for coverage: Haven’t we solved
this problem yet? In 4th Testing Academia and Indus-
try Conference — Practice And Research Techniques
(TAIC PART’09), pages 95–104, Windsor, UK, 4th–6th
September 2009.

[38] W. B. Langdon and M. Harman. Evolving a CUDA
kernel from an nVidia template. In IEEE Congress on
Evolutionary Computation, pages 1–8. IEEE, 2010.

[39] W. B. Langdon and M. Harman. Evolving a CUDA
kernel from an nVidia template. In P. Sobrevilla, editor,
2010 IEEE World Congress on Computational Intel-
ligence, pages 2376–2383, Barcelona, 18-23 July 2010.
IEEE.

[40] W. B. Langdon and M. Harman. Genetically improved
CUDA C++ software. In 17th European Conference on
Genetic Programming (EuroGP), pages 87–99, Granada,
Spain, April 2014. Springer.

[41] W. B. Langdon and M. Harman. Optimising existing
software with genetic programming. IEEE Transactions
on Evolutionary Computation (TEVC), pages 118–135,
2014.

[42] W. B. Langdon, M. Modat, J. Petke, and M. Harman.
Improving 3d medical image registration cuda software
with genetic programming. In Proceedings of the 2014
Conference on Genetic and Evolutionary Computation,
GECCO ’14, pages 951–958, New York, NY, USA, 2014.
ACM.

[43] C. Le Goues, S. Forrest, and W. Weimer. Current
challenges in automatic software repair. Software Quality
Journal, 21(3):421–443, 2013.

[44] F. Lianubile and G. Visaggio. Extracting reusable func-
tions by flow graph-based program slicing. IEEE Trans-
actions on Software Engineering, 23(4):246–259, 1997.

[45] Z. Manna and R. J. Waldinger. Toward automatic pro-
gram synthesis. Communications of the ACM, 14(3):151–
164, 1971.

[46] C. Miles, A. Lakhotia, and A. Walenstein. In situ reuse
of logically extracted functional components. Journal
in Computer Virology, 8(3):73–84, 2012.

[47] M. Orlov and M. Sipper. Flight of the FINCH through
the java wilderness. IEEE Transactions Evolutionary
Computation, 15(2):166–182, 2011.

[48] J. Petke, M. Harman, W. B. Langdon, and W. Weimer.
Using genetic improvement & code transplants to spe-
cialise a C++ program to a problem class. In 17th Eu-
ropean Conference on Genetic Programming (EuroGP),
Granada, Spain, April 2014. To Appear.

[49] Z. Qi, F. Long, S. Achour, and M. Rinard. Efficient
automatic patch generation and defect identification in
kali. In International Symposium on Software Testing
and Analysis (ISSTA), July 2015. To appear.

[50] B. Ray, M. Kim, S. Person, and N. Rungta. Detecting
and characterizing semantic inconsistencies in ported
code. In Automated Software Engineering (ASE 2013)),
pages 367–377, Palo Alto, California, 2013.

[51] S. Sidiroglou-Douskos, E. Lahtinen, F. Long, P. Piselli,
and M. Rinard. Automatic error elimination by multi-
application code transfer. In 36nd ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation (PLDI 2015), Portland, Oregon, June 2015.
To appear.

[52] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and
M. C. Rinard. Managing performance vs. accuracy
trade-offs with loop perforation. In FSE, pages 124–134,
2011.

[53] J. Silva. A vocabulary of program slicing-based tech-
niques. ACM Computing Surveys, 44(3):12:1 – 12:48,
June 2012.

268

[54] P. Sitthi-amorn, N. Modly, W. Weimer, and J. Lawrence.
Genetic programming for shader simplification. ACM
Transactions on Graphics, 30(6):152:1–152:11, 2011.

[55] J. E. Stoy. Denotational semantics: The Scott–Strachey
approach to programming language theory. MIT Press,
1985. Third edition.

[56] J. Swan, M. G. Epitropakis, and J. R. Woodward. Gen-
o-fix: An embeddable framework for dynamic adaptive
genetic improvement programming. Technical Report
CSM-195, Computing Science and Mathematics, Uni-
versity of Stirling, 2014.

[57] F. Tip. A survey of program slicing techniques. Journal
of Programming Languages, 3(3):121–189, Sept. 1995.

[58] A. van Deursen and T. Kuipers. Identifying objects
using cluster and concept analysis. Technical Report
SEN-R9814, Centrum voor Wiskunde en Informatica
(CWI), Sept. 1998.

[59] G. A. Venkatesh. The semantic approach to program
slicing. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 26–28,
Toronto, Canada, June 1991. Proceedings in SIGPLAN
Notices, 26(6), pp.107–119, 1991.

[60] T. Wang, M. Harman, Y. Jia, and J. Krinke. Search-
ing for better configurations: a rigorous approach to
clone evaluation. In European Software Engineering
Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, ESEC/FSE’13,
pages 455–465, Saint Petersburg, Russian Federation,
August 2013. ACM.

[61] W. Weimer, T. V. Nguyen, C. L. Goues, and S. For-
rest. Automatically finding patches using genetic pro-
gramming. In International Conference on Software
Engineering (ICSE 2009), pages 364–374, Vancouver,
Canada, 2009.

[62] M. Weiser. Program slices: Formal, psychological, and
practical investigations of an automatic program abstrac-
tion method. PhD thesis, University of Michigan, Ann
Arbor, MI, 1979.

[63] M. Weiser. Program slicing. IEEE Transactions on
Software Engineering, 10(4):352–357, 1984.

[64] D. R. White, A. Arcuri, and J. A. Clark. Evolutionary
improvement of programs. IEEE Transactions on Evo-
lutionary Computation (TEVC), 15(4):515–538, 2011.

269

	Introduction
	Motivating Example
	Problem Formulation
	The muTrans Approach
	Stage 1: Organ Extraction
	Stage 2: Organ Reduction and Adaption

	Empirical Study
	Results and Discussion
	A Case Study
	Study Design and Setup
	Observations

	Related Work
	Conclusion and Future Work
	References

