Skip to main content

PSO-Based Search Rules for Aerial Swarms Against Unexplored Vector Fields via Genetic Programming

  • Conference paper
  • First Online:
Book cover Parallel Problem Solving from Nature – PPSN XV (PPSN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11101))

Included in the following conference series:

Abstract

In this paper, we study Particle Swarm Optimization (PSO) as a collective search mechanism for individuals (such as aerial micro-robots) which are supposed to search in environments with unknown external dynamics. In order to deal with the unknown disturbance, we present new PSO equations which are evolved using Genetic Programming (GP) with a semantically diverse starting population, seeded by the Evolutionary Demes Despeciation Algorithm (EDDA), that generalizes better than standard GP in the presence of unknown dynamics. The analysis of the evolved equations shows that with only small modifications in the velocity equation, PSO can achieve collective search behavior while being unaware of the dynamic external environment, mimicking the zigzag upwind flights of birds towards the food source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartashevich, P., Bakurov, I., Mostaghim, S., Vanneschi, L.: Evolving PSO algorithm design in vector fields using geometric semantic GP. In: Proceedings of the ACM Genetic and Evolutionary Computation Conference (GECCO 2018), Kyoto, July 2018, 2 p. (To appear)

    Google Scholar 

  2. Bartashevich, P., Grimaldi, L., Mostaghim, S.: PSO-based search mechanism in dynamic environments: swarms in vector fields. In: 2017 IEEE Congress on Evolutionary Computation, pp. 1263–1270 (2017)

    Google Scholar 

  3. Clerc, M.: Stagnation analysis in particle swarm optimization or what happens when nothing happens. Technical report (2006)

    Google Scholar 

  4. Di Chio, C., Di Chio, P.: Group-foraging with particle swarms and genetic programming. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 331–340. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71605-1_31

    Chapter  Google Scholar 

  5. Di Chio, C., Poli, R., Langdon, W.B.: Evolution of force-generating equations for PSO using GP. In: Proceedings of the 2005 AI*IA Workshop on Evolutionary Computation (2005)

    Google Scholar 

  6. Dioşan, L., Oltean, M.: Evolving the structure of the particle swarm optimization algorithms. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2006. LNCS, vol. 3906, pp. 25–36. Springer, Heidelberg (2006). https://doi.org/10.1007/11730095_3

    Chapter  MATH  Google Scholar 

  7. Diosan, L., Oltean, M.: What else is the evolution of PSO telling us? J. Artif. Evol. Appl. 1, 1–12 (2008)

    Article  Google Scholar 

  8. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1, 28–39 (2006)

    Article  Google Scholar 

  9. Erskine, A., Herrmann, J.M.: Critical Dynamics in Particle Swarm Optimization. CoRR (2014)

    Google Scholar 

  10. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann Publishers Inc., San Francisco (2001)

    Google Scholar 

  11. Langdon, W.B., Poli, R.: Evolving problems to learn about particle swarm optimisers and other search algorithms. IEEE Trans. Evol. Comput. 11(5), 561–578 (2007)

    Article  Google Scholar 

  12. Lyle, N.L., Howard, W.: The velocity dependence of aerodynamic drag: a primer for mathematicians. Math. Assoc. Am. 106, 127–135 (1999)

    Article  MathSciNet  Google Scholar 

  13. Moraglio, A., Krawiec, K.: Semantic genetic programming. In: Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 603–627. ACM (2015)

    Google Scholar 

  14. Pawlak, T.P., Wieloch, B., Krawiec, K.: Review and comparative analysis of geometric semantic crossovers. Genet. Program. Evolvable Mach. 16, 351–386 (2015)

    Article  Google Scholar 

  15. Poli, R., Di Chio, C., Langdon, W.B.: Exploring extended particle swarms: a genetic programming approach. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, New York, USA, pp. 169–176 (2005)

    Google Scholar 

  16. Poli, R., Langdon, W.B., Holland, O.: Extending particle swarm optimisation via genetic programming. In: Keijzer, M., Tettamanzi, A., Collet, P., van Hemert, J., Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 291–300. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31989-4_26

    Chapter  Google Scholar 

  17. Runka, A.: Evolving an edge selection formula for ant colony optimization. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 1075–1082. ACM (2009)

    Google Scholar 

  18. Tavares, J., Pereira, F.B.: Evolving strategies for updating pheromone trails: a case study with the TSP. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6239, pp. 523–532. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15871-1_53

    Chapter  Google Scholar 

  19. Vanneschi, L.: An introduction to geometric semantic genetic programming. In: Schütze, O., Trujillo, L., Legrand, P., Maldonado, Y. (eds.) NEO 2015. SCI, vol. 663, pp. 3–42. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-44003-3_1

    Chapter  Google Scholar 

  20. Vanneschi, L., Bakurov, I., Castelli, M.: An initialization technique for geometric semantic GP based on demes evolution and despeciation. In: 2017 IEEE Congress on Evolutionary Computation, pp. 113–120 (2017)

    Google Scholar 

  21. Vanneschi, L., Silva, S., Castelli, M., Manzoni, L.: Geometric semantic genetic programming for real life applications. In: Riolo, R., Moore, J.H., Kotanchek, M. (eds.) Genetic Programming Theory and Practice XI. GEC, pp. 191–209. Springer, New York (2014). https://doi.org/10.1007/978-1-4939-0375-7_11

    Chapter  Google Scholar 

  22. Wilke, D.N., Kok, S., Groenwold, A.A.: Comparison of linear and classical velocity update rules in particle swarm optimization: notes on scale and frame invariance. Int. J. Numer. Methods Eng. 70(8), 985–1008 (2007)

    Article  MathSciNet  Google Scholar 

  23. Wyatt, T.: Pheromones and Animal Behavior: Chemical Signals and Signatures. Cambridge University Press, Cambridge (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palina Bartashevich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bartashevich, P., Bakurov, I., Mostaghim, S., Vanneschi, L. (2018). PSO-Based Search Rules for Aerial Swarms Against Unexplored Vector Fields via Genetic Programming. In: Auger, A., Fonseca, C., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds) Parallel Problem Solving from Nature – PPSN XV. PPSN 2018. Lecture Notes in Computer Science(), vol 11101. Springer, Cham. https://doi.org/10.1007/978-3-319-99253-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99253-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99252-5

  • Online ISBN: 978-3-319-99253-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics