Genetic Improvement for DNN Security

Hunter Baxter, Yu Huang, Kevin Leach

kevin.leach@vanderbilt.edu

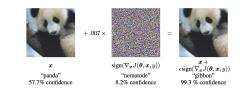
April 9, 2024

Bottom Line Up Front

This position paper conveys:

- DNN layers can be distributed over multiple machines
- Scheduling and organizing DNN layer distribution can be represented as a genome
- Genetic Improvement can be used to obfuscate DNN architecture and execution as a type of moving target defense
- A prototype for scheduling DNN distribution called Jigsaw

Approach

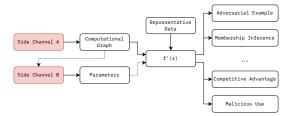

Evaluation

Conclusion

<ロト < 回 > < 言 > < 言 > 三 の < C 3/17

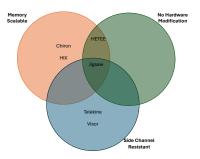
Motivation

- DNN are often proprietary
- Current defenses cannot secure modern models sufficiently
- There is a demand for a scalable defense against model theft
- Balancing performance with security is essential for industrial purposes


Attack Type	Distribution
Distribution Poisoning	10
Model Stealing	6
Model Inversion	4
Backdoored ML	4
Membership Inference	3
Adversarial Examples	2

イロト イボト イヨト イヨト

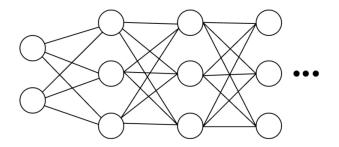
Table: Industry Top Attack Priorities

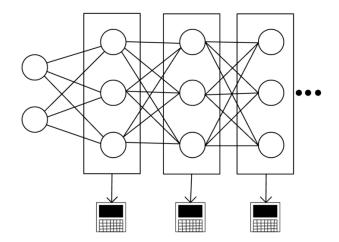

Model Extraction

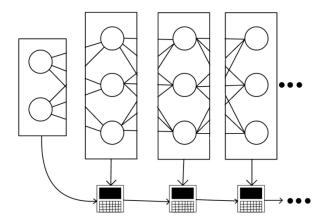
- An adversarial attack where a private model f(x) is completely reconstructed
- Model Extraction accelerates malicious activity
- Cache Telepathy: Spectre
- DeepSteal: RowHammer
- DeepSniffer: GPU timing information

Prior Work

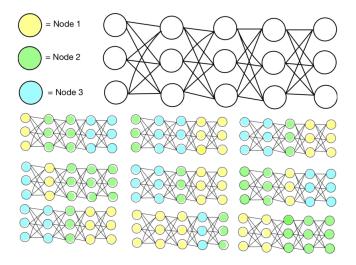
- Strong Isolation
 - Limited Scalability
 - Hardware Modification
 - Side-Channel Vulnerabilities
- Data Obliviousness
 - Large Performance
 Overhead
 - Algorithm Dependent
- Jigsaw proposes probabilistic, not strong, isolation
- Information gained at t may not work at $t + \delta$



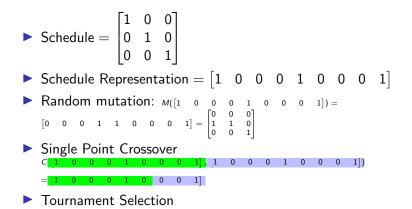

Approach


Evaluation

Conclusion


∢□▶∢∄▶∢≣▶∢≣▶ ≣ ∽)९० 7/17

<ロト <回ト <三ト <三ト <三ト ミックへで 10/17

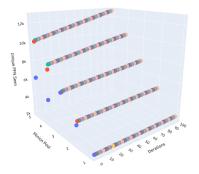


Moving the Target

Schedule modeled by binary matrix

- "Seed" schedule from a tool like Alpa
- Genetic algorithm generates solutions
- Multi-Objective Fitness Function of Difference and Latency
- Replace "seed" schedule with generated solution

Genetic Algorithm Parameters


Approach

Evaluation

Conclusion

Evaluation

- Linear Increase in Memory Pages
- Linear Increase in Latency
- Quick Solution Generation

Approach

Evaluation

Conclusion

<ロト < 回 ト < 巨 ト < 巨 ト 三 の < C 16/17

Conclusion

- DNNs are often subjected to model extraction attacks
- Security-critical DNNs may require sophisticated defenses
- DNN architecture can be split across multiple nodes
- Genetic Improvement can be used to develop how to distribute DNN layers among multiple hosts
- 'Jigsaw' prototype provides initial basis for improving security posture of DNNs