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Abstract

Genetic programming (GP) is a subset of evolutionary computation where candidate so-

lutions are evaluated through execution or interpreted execution. The candidate solutions

generated by GP are in the form of computer programs, which are evolved to achieve a sta-

ted objective. Darwinian evolutionary theory inspires the processes that make up GP which

include crossover, mutation and selection. During a GP run, crossover, mutation and selec-

tion are performed iteratively until a program that satisfies the stated objectives is produced

or a certain number of time steps have elapsed.

The objectives of this thesis are to empirically analyse three different aspects of these

evolved programs. These three aspects are diversity, efficient representation and the chan-

ging structure of programs during evolution. In addition to these analyses, novel algorithms

are presented in order to test theories, improve the overall performance of GP and reduce

program size.

This thesis makes three contributions to the field of GP. Firstly, a detailed analysis is

performed of the process of initialisation (generating random programs to start evolution)

using four novel algorithms to empirically evaluate specific traits of starting populations of

programs. It is shown how two factors simultaneously effect how strong the performance of

starting population will be after a GP run. Secondly, semantically based operators are ap-

plied during evolution to encourage behavioural diversity and reduce the size of programs by

removing inefficient segments of code during evolution. It is demonstrated how these spe-

cialist operators can be effective individually and when combined in a series of experiments.

Finally, the role of the structure of programs is considered during evolution under different

evolutionary parameters considering different problem domains. This analysis reveals some

interesting effects of evolution on program structure as well as offering evidence to support

the success of the specialist operators.



Chapter 1

Introduction

Darwin’s theory of evolution acts as an inspiration to the field of evolutionary computation

within computer science. A relatively recent subset of evolutionary computation is that of

genetic programming (Cramer [1985], Koza [1992], Poli et al. [2008]); a system designed

to evolve process in the form of a population of computer programs. Human programmers

can easily demonstrate that there is more than one program that can be used to encode a

process; however, a human programmer will usually (or hopefully, depending on the level

of ability) select an optimal way in which to encode the process in syntax. Since programs

generated using genetic programming often only check the accuracy of a process, the latent

intelligence and selection of appropriate programming methods of a human programmer

are lost in the construction of an optimal process. This leads to several undesirable side

effects when using genetic programming to evolve programs. The objective of this thesis is

to examine, theoretically and empirically, the link between programming code and process

evolved using genetic programming, in order to understand and combat some of the side

effects of genetic programming.

1.1 Introduction

Genetic programming (GP) is a process whereby a population of programs are initialised

and evaluated against an objective. The programs that are most fit are selected and act as

parent programs during crossover and mutation operations, which are then used to generate

a new population. The new population is in turn evaluated against the objective, and the fitter
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individuals are selected for the genetic operations once more. In the form of GP discussed

in this thesis, this process continues until a termination criterion is met; which could be either

a program achieving total accuracy, or a certain number of iterative steps of the evolution

process.

Though GP is a powerful tool in knowledge discovery producing patentable results (Koza

et al. [2003]), it is not without weaknesses which impact the scalability and efficiency of

GP. Three prominent issues are examined in detail in this thesis. The first is that of program

growth or bloat, which is an increase in program size for no related increase in fitness (Tackett

[1994], Banzhaf et al. [1998], Soule and Foster [1998], Luke [2003], Langdon and Poli [1997],

Dignum and Poli [2007]). Secondly, there is the evaluation of the role or non role of introns in

evolution, which are areas of code that do not contribute to fitness (Nordin et al. [1995], Soule

and Foster [1997]). Finally, the one to many relationship between process (or behaviour) and

the many programs that can be used to represent a particular behaviour. This analysis

reaches into both issues in diversity (Gustafson [2004]) and representation theory (Rothlauf

[2006]).

This thesis presents methods to address bloat, remove introns, formally evaluate the

behaviours of programs and increase diversity in GP based on theoretically motivated tech-

niques to model the behaviours of programs evolved using GP. Initialisation, crossover, mu-

tation and the reduction of evolved programs are considered in empirical evaluation to test

how methods based on increased links between syntax and behaviour can impact at each

stage of the GP process.

1.2 Contributions

This thesis presents contributions in three areas to the field of genetic programming.

Firstly, four algorithms are presented to provide a theoretical analysis of the complexities

of program initialisation. The motivation for this research is a study of a traditional initialisa-

tion algorithm. This study highlights limitations of the traditional initialisation method, more

specifically focusing on the issues of repeated sampling of particular program behaviours

and how program structure at initialisation influences GP performance. The four algorithms

are developed to test different aspects of program behaviours and structures in an initial po-
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pulation. An empirical study is performed comparing these algorithms to the performance of

a traditional and widely accepted technique in order to assess how the issues of bias and

program structure affect initialisation. This research demonstrates the difficulty of developing

an initialisation algorithm that is consistently effective in terms of performance over different

domains and highlights areas for future research.

Secondly, three algorithms are presented which leverage the ability to assess the beha-

viour of a program and apply this knowledge during GP search. The first of these algorithms

is a modification to the crossover operation to enforce the semantic novelty of the child pro-

grams when compared to the parent programs. The second algorithm is a modification to

the mutation search operation in order to enforce the semantic novelty of the mutated pro-

gram in comparison to its original state. Finally, a semantic pruning algorithm is developed in

order to reduce programs to a minimalistic syntactic form during evolution. The three algo-

rithms are compared to traditional techniques in an empirical study and their relative merits

and disadvantages discussed. As a final experiment, the three algorithms are combined

to evaluate the cumulative effect which can both influence performance and program size

simultaneously.

Thirdly, based on the results using the algorithms for initialisation, crossover, mutation

and pruning, an analysis of structure of program during evolution is performed. The aim of

this analysis is to highlight previously unseen traits in program structure during evolution and

using the different algorithms which have been discussed in the previous chapters. The re-

sults show statistical differences in the shapes of programs produced by different algorithms

over several different problems and a discussion of how this differences may help or hinder

evolution is presented. The level of structural change required in order to find a solution is

compared for different problems and show that some problems require a larger amount of

structural change in order to find a solution. The level of structural change is compared to

the level of fitness change during evolution and the resulting measure of structural locality is

used to compare the level at which different problems are dependant on structural change in

order to achieve optimal solutions.

Finally, during the course of this thesis, GP analysis software known as Epoch X (Beadle

and Castle [2007]) has been developed and made available on the World Wide Web. This

software is open source and includes the specialist methods presented in this thesis for other

3



users to experiment with.

1.3 Thesis Overview

Chapter 2 introduces search and evolutionary algorithms and forms the first part of the lite-

rature review. The traditional GP process is fully explained, including detailed descriptions of

initialisation, selection, crossover and mutation with reference to more recent developments

in these areas.

Chapter 3 discusses current issues in GP and forms the second part of the literature

review, evaluating three relevant theoretical aspects of GP. The diversity of programs, pro-

gram bloat and building blocks and schema theories are discussed in detail with reference to

recent literature.

Chapter 4 presents the general methodologies used in this thesis. A test problem suite is

defined including nine benchmark GP experiments with a set of general parameters for the

empirical work presented in this thesis. Crucially, this chapter sets out methods to canonically

represent program behaviour, which provides the functionality to test the proposed algorithms

in this thesis. The test problems suite is composed of problems from three common domains

(Boolean, symbolic regression and artificial ant) and canonical representation methods for

each of these domains are outlined in this chapter.

Chapter 5 presents an empirically based evaluation of theory relating to the process of

initialisation in genetic programming. Firstly, an existing and popular initialisation technique

is examined in detail in terms of the semantic diversity of the programs produced and the

structure of the programs produced. Secondly, based on the analysis of the traditional tech-

nique, four new algorithms are presented to test different levels of semantic diversity and

changes to program structure during initialisation. The results presented demonstrate that

both semantic diversity and program structure can influence evolution using GP.

Chapter 6 presents an empirical evaluation of semantically driven operators. Firstly, se-

mantic comparison is combined with the crossover operation in order to check child pro-

grams are semantically distinct in comparison to their parent programs. Empirical analysis

demonstrates that semantically driven crossover is beneficial to GP in almost all cases. Se-

condly, semantic comparison is combined with the mutation operator to enforce the creation
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of semantically distinct mutated programs in comparison to the original program. Empirical

analysis shows that semantically driven mutation is beneficial in the majority of experiments.

Thirdly, programs are pruned through being modelled behaviourally and then using the be-

haviour to produce a minimalistic syntax. Empirical analysis shows this technique to be

effective when performing code reduction, yet not always desirable when considering the

performance of a GP run. Finally, all of the new algorithms are combined and the cumulative

effects evaluated. Empirical analysis shows the technique to be beneficial in the majority of

experiments as well as providing insight into existing theories of the GP search mechanism.

Chapter 7 evaluates the structure of programs during evolution. Firstly, the way in which

program structure changes over time during evolution is studied to search for clues as to

whether particular structure types can be linked with good GP performance. Secondly, the

amount of structural change required for the different experiments in the problem suite is

calculated and compared, indicating that some experiments require more structural change

than others to reach their solutions. Thirdly, structural change is compared to fitness change

in order to evaluate the level of correlation using a range of different GP parameters. Analysis

reveals that program structure during evolution can be effected by a variety of GP settings

indicating that some setting may perform better for different types of problem.

Chapter 8 presents general conclusions and discusses the contributions made by this

thesis. The conclusions and contributions are based around the three contribution areas

of program initialisation, search operators and the analysis of program structure. Several

suggestions for future work are presented based upon the three contribution areas.
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Chapter 2

Search and Genetic Programming

The aims of this chapter are to introduce the field of genetic programming and discuss cur-

rent issues within the field. Section 2.1 establishes the place of genetic programming in the

context of the development of search algorithms. Section 2.2 introduces genetic program-

ming and describes the genetic programming process. Sections 2.3 — 2.7 provide detailed

descriptions of common techniques available to perform the different operations within gene-

tic programming.

2.1 Search and Evolutionary Algorithms

There are numerous problems which require search techniques in order to find an optimal

solution. Different search techniques have evolved out of an increasing level of problem

difficulty. Whilst an exact measurement of problem difficulty remains elusive, it is relatively

easy to illustrate different example cases of some typical factors that will effect problem

difficulty.

The first issue is that of visualisation. Consider the function z = f(x, y). Given that z is

dependent on two variables, it would be possible to visualise the results of using different

values of x and y using three dimensional graphics. This is not normally the case for such

problems, but for the purpose of this discussion is beneficial.

If x and y are both considered as discrete variables operating over a small range, it may

be appropriate to run an exhaustive search that would calculate every value of z for every

combination of x and y. Whilst this strategy has its place, it may be the case that x and y

6



Figure 2.1: Example Fitness Landscape I

are continuous and operate over a large range; resulting in the calculation of every possible

value of z being excessively time consuming or impossible.

The next step would be to consider the nature of the fitness landscape. The three dimen-

sional representation of the fitness landscape could look something like figure 2.1. On the

assumption that the highest peak represents the best fitness of a candidate solution, in this

situation, it is possible to identify peaks and troughs.

The next logical step would then be to develop a search algorithm to move uphill. A

simple hill climbing algorithm would assess the fitness values (in this case z) of the area

around its current x, y location and then relocate to the highest neighbouring region (or most

fit) and perform the calculation again. Once the hill climbing algorithm reaches the highest

point and all its neighbours are lower values, the algorithm terminates. Whilst this would be

ideal in a situation where only one hill is present, there are numerous peaks and troughs, as

demonstrated in figure 2.1. In this situation, the hill climbing algorithm may become trapped

on one of the smaller peaks (known as local optima) and unable to reach the tallest peak

(global optimum).

7



Figure 2.2: Example Fitness Landscape II

In addition to premature convergence at a local optimum, there are two other major pro-

blems. Firstly, consider figure 2.2 where most of the landscape is flat. In this situation, the

hill climbing agent (or search agent) would not know which way to move, unless the agent

started at a location by the peak. This kind of landscape is known as needle in a haystack,

because the search agent is searching for something very small in a field of fitness neutra-

lity. The second problem would be if the single peak was surrounded by a trough, since this

would render the peak inaccessible to the search agent.

Situations such as needle in a haystack and inaccessible peaks inspired more complex

search algorithms in order to be able to cope with the increased complexity of the fitness

landscape. Several strategies have been proposed; one notable example being simulated

annealing (Kirkpatrick S. [1983]), in which the search agent can move down hill (to try to

escape a local optima) with a certain probability based on a temperature function.

In order to build more effective search algorithms, one of the next steps was developing

evolutionary algorithms inspired by nature’s selection processes. Evolutionary algorithms

had the benefit of using multiple interacting search agents, which could evaluate a popula-
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tion of individuals, keep the most fit individuals, use these individuals to make children subject

to a crossover or mutation operation and re-evaluate the population iteratively. These evolu-

tionary algorithms gave researchers the ability to search more complex search spaces with

more variables, whilst being able to reduce the chance of getting trapped in a local optimum

compared to simple hill climbing.

As evolutionary algorithms progressed, a class of algorithms known as genetic algorithms

was developed by Holland [1992], which included crossover and mutation operations inspired

by genetics and allowed researchers to evolve optimal solutions to problems. The next step

was to evolve optimal processes, in the form of programs (rather than optimal solutions),

which could be used to generate optimal solutions.

2.2 Genetic Programming

GP can be described as a subset of evolutionary algorithms which has the unique requi-

rement that their candidate solutions are executed or subjected to interpreted execution in

order to assess their fitness value. The difference between genetic algorithms and genetic

programming could be described as follows: an evolved solution using a genetic algorithm

describes an optimal solution to a problem, whereas a candidate solution evolved by gene-

tic programming describes a process (in the form of a program) which, through application,

results in a fit, possibly optimal, solution. In a more practical sense, the key differences

between genetic algorithms and GP is that programs in GP are represented in such a way

that they may be executed (commonly a tree form), whereas candidate solutions in genetic

algorithms are represented as a list of input values which would require interpretation by a

program to assess fitness.

Genetic programming first appeared as a progression from genetic algorithms (Holland

[1992]). Whilst Cramer [1985] was the first to develop GP in the commonly applied tree

format, GP was popularised by Koza [1992], who applied the process to several practical

problems. Since then GP has developed substantially, in several cases providing patentable

solutions (Koza et al. [2003]) to real world problems.

The genetic programming process features several different processes executed in se-

quence. The basic process is described as follows:
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1. Decide on a representation format, function and terminal sets and a fitness function for

the proposed problem.

2. Initialise a starting population of candidate solutions.

3. Assess the fitness of the candidate solutions.

4. Select a number of highly fit candidate solutions.

5. If a termination condition has been reached, exit. If not, continue to step 6.

6. Use crossover and/or mutation operations on selected candidate solutions to create a

new population of candidate solutions.

7. Return to step 3.

During a GP run, the GP practitioner will decide on the representation structure of the can-

didate solutions and choose problem specific function and terminal sets. To start the genetic

program, a seed population of randomly created candidate solutions is created to serve as

a starting point for the algorithm. The fitness function is then used to provide a measure

of fitness for each of the candidate solutions in the population. The termination condition in

step five is true when either a candidate solution has reached full score or a set number of

new candidate solutions has been generated using genetic operations and assessed by the

fitness function. The termination could be one, or both of the mentioned criteria.

Using the measure of fitness, it is more likely that the best of the candidate solutions is se-

lected (depending on selection method used) and used by the genetic operations (crossover

and/or mutation). GP practitioners may choose to run crossover or mutation either indivi-

dually or simultaneously. The crossover operation produces more candidate solutions which

are added to the population, whilst the mutation operation causes changes to programs in

the population. The candidate solutions are assessed for fitness and against the termination

criterion and the cycle repeats until the termination criterion is met.

Steps one to seven contain a number of key operations in the genetic programming pro-

cess including; the representation of candidate solutions (section 2.3), initialisation of candi-

date solutions (section 2.4), selection mechanisms (section 2.5), crossover (section 2.6) and

mutation operations (section 2.7). These operations are described in greater detail in the

respective sections.
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2.3 Representation of Candidate Solutions

The are two major aspects to consider when deciding on the representation of candidate

solutions. Firstly, the GP practitioner must decide on the choice of functions and terminals to

represent the functionality, inputs and constants required to solve the problem. Secondly, the

GP practitioner must decide upon the way in which the executable structure is represented.

Functions and Terminals

One of the first choices a GP practitioner is forced to make is to choose a function and ter-

minal set. A function set is a number of operations that the user specifies as required for the

genetic programming run. An example of a function would be logic operations such as AND

a b , OR a b , IF a b c where a, b and c represent substructures which are either functions

or terminals. Arity is a term used to describe how many inputs are considered by a function.

In the case of the IF function, the arity would be three. A terminal set will include both inputs

and/or constants. For example, when considering the symbolic regression domain, the GP

practitioner may choose the terminal set {X, Y, 0, 1, 2}. All terminals will have an arity of zero.

According to Koza [1992], function and terminal sets must have closure, defined as the

ability of each member of the function set to handle every possible input it might receive

gracefully. The random combinations of programs created using GP means that the closure

property will be tested. A common example would be using the division function in the

symbolic regression domain. Division by zero results in infinity, and situations such as this

need to be handled gracefully to facilitate the random nature of GP runs and prevent errors.

A second aspect of the function and terminal sets which is essential to solving problems

using GP is sufficiency. Sufficiency requires that the function and terminal sets must have

enough expressive power to be able to model the perfect solution. This is a difficult balance

since using too many functions and terminals results in an enlarged search space, which in

turn makes the solution harder for GP to attain. Minimising the search by using just enough

functions is known as parsimony. This is desirable because the use of less functions will

result in a smaller search, which should make the solution easier to attain.
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Figure 2.3: Example of the tree representation for the candidate solution IF I1 (AND I2 I3)
(OR I4 I5). I’s refer to different Boolean inputs.

Representation Structure

There are several different structural representation types which have been used in GP. The

most common representation structure is the S-expression tree structure, which used in the

context of genetic programming, was first described by Cramer [1985] and popularised by

Koza [1992].

An example of the tree representation is set out in figure 2.3. The tree representation

uses a system of nodes and edges to connect the different inputs (either terminals or sub

tree structures) to the functions, allowing for the construction of more complex programs.

Execution of a tree structure involves a recursive evaluation of each child node in relation to

its parent node. This has the effect of resolving the tree in a bottom up fashion. Whilst other

representation methods are described for completeness, the tree representation is the focus

of the work in this thesis because it is the most commonly used representation.

One of the alternatives to the tree structure is linear representation (Banzhaf et al. [1998]).

In this case, a sequential list of instructions (containing functions) is used to apply functions

to members of the terminal set. During execution the instruction list is executed and a result

returned after the last instruction.

A second alternative is grammar based genetic programming developed by Whigham

[1995a]. This differs from both linear and tree based genetic programming in that all func-

tions and terminals are considered to be terminal nodes. In Whigham’s examples, two non

12



terminals are used; one to describe expressions and the other, actual terminals. The gram-

mars are used to construct derivation trees upon which crossover takes place. Whigham has

used grammatically based GP in order to demonstrate the effects of bias of the representa-

tion (Whigham [1995b]).

An entirely different approach to representation in GP is the graph structure. Whilst tree,

linear and grammatical structures can be described by graphs and edges, they have very

particular ordering and execution constraints. In contrast to this, the PADO (Parallel Algo-

rithm Discovery and Orchestration) system, developed by Teller and Veloso [1996], allows

evolution to decide the structure of the edges connecting the nodes. This kind of system

permits functionality that is difficult to produce and utilise in other structures such as looping

and recursion1.

A fourth approach to representation, which is known as grammatical evolution (developed

by Ryan et al. [1998]) works in a slightly different way to traditional GP at the representation

level. Here, programs are evolved as a list of numbers, which is decoded using a grammar

into a program tree. Crossover takes place on the list of numbers which causes a substan-

tially different effect on the program tree in comparison to traditional GP. Using grammatical

evolution, trees are effectively cut across one or more branches as crossover occurs rather

than the exchange of one sub tree as with traditional GP.

According to Rothlauf [2006], there are three key theories to consider in relation to re-

presentation for evolutionary algorithms; these are redundancy, building block scaling and

locality. These three theories are based on the distinction between the genotype and the

phenotype. In the case of GP, the genotype refers to the actual representation of syntax in

the tree and the phenotype refers to the behaviour of the program during execution. This

is an important distinction in the context of this work as chapter 4 presents novel ways to

canonically represent the behaviour of programs (the phenotype) which had not previously

been available to GP practitioners.

Considering redundancy for the GP paradigm, in this case more than one genotype can

map to a phenotype. This is a common occurrence in GP and numerous results to support

this are presented in section 5.2.2. If two programs result in the same phenotype, then GP

is duplicating behavioural search steps which reduces the search capability of GP. A GP
1Looping and recursion have been described as difficult (Li and Ciesielski [2005]) as it is difficult to be sure of

a termination situation for the program containing either function when it is executed for fitness assessment.
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Figure 2.4: Example of Locality. The program on the left receives a one node modification
changing it to be the program on the right. The resultant formulae are quoted underneath
the program tree.

run has a fixed population size and usually a limited run time (or number of generations),

therefore, behavioural duplication reduces the search potential during a GP run which may

result in a loss of performance. Sections 6.1 and 6.2 use modifications to the crossover and

mutation operators respectively to try to reduce redundant search.

Building block scaling refers to the level at which the components of the genotype contri-

bute to the overall fitness. In the event that all parts of the genotype contribute equally, the

scaling is considered to be uniform. In the GP context, this scaling is not uniform since very

small changes in a genotype can result in large changes in fitness and vice versa (consider

for example a negation function). This further complicates the matter of understanding the

relationship between the genotypic space and the phenotypic space.
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Finally, locality refers to the situation in which small changes in the genotype map to

small changes in the phenotype. In GP, locality is considered to be low because it is easy

to demonstrate that small changes in syntax can result in relatively large changes to the

phenotype. This is demonstrated in figure 2.4, a one node change of 1 to 0 (left most node

at depth 1) results in a completely different behaviour or phenotype.

The representation of programs in GP adds to the complexity of problems due to the

fact that GP features genotypic redundancy (in some cases in large quantities, see section

5.2.2), exponentially scaled building blocks and low locality. According to Rothlauf [2006]

these three factors will increase problem complexity. This indicates that GP not only has to

navigate the undulating search space, but also address representational inefficiencies to find

a global solution.

2.4 Initialising Programs

Thinking back to figures 2.1 and 2.2 showing the two fitness landscapes, an ideal initialisation

algorithm should be able to distribute the different search agents (candidate solutions) across

the fitness landscape in order to give GP the best possible chance of finding the global

optimum. In addition to this, the initialisation algorithm needs to be relatively quick to execute

as it will be run multiple times in different runs for statistical averaging and comparison.

A general solution to this is to use an algorithm capable of randomly constructing program

trees in order to get a good distribution of programs across the search space. The size of

the initial programs needs to be limited so the initialisation can happen quickly. Due to the

random nature of the creation of the trees, there would also have to be checking to prevent

duplicate trees being inserted into the initial population. Several algorithms following this

general theme have been constructed and are summarised in the following paragraphs.

The most popular method for population initialisation is the Ramped Half and Half (RHH)

method. It was introduced by Koza [1992], who set out three methods for creating a diverse

starting population: GROW, FULL and RHH. Koza elected to use the RHH technique for

the majority of his experiments after conducting several experiments comparing FULL and

GROW to the RHH because “...the ramped half-and-half method creates trees having a wide

variety of sizes and shapes.” Koza [1992, p93]. Koza also recognised that whilst the RHH
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method creates a variety of programs, there was the possibility that programs could be du-

plicated. Therefore, he added syntactic duplicate checking of the programs to ensure the

syntactic diversity of the starting population.

The RHH algorithm is comprised of the FULL and GROW algorithms. To assemble a

program using the FULL algorithm, all branches of the program tree are filled to a predefined

maximum depth parameter. Whilst the branches are shallower than the maximum depth,

function nodes are selected uniformly and added to the tree. When the maximum depth of

the tree is reached, terminal nodes are selected uniformly.

The GROW algorithm is different from FULL in that the branches are filled randomly with

a maximum limit of the predefined maximum depth. Starting at the top of the program tree,

each node is selected randomly (following a uniform distribution) from all of the function

and terminals available to the problem. If a node is a function, all of the child nodes are

subsequently selected in the same way. As noted by Luke [2000a], GROW is particularly

susceptible to a poor choice of function and terminal sets. In the situation where more func-

tions are present than terminals, GROW will tend towards at full tree sized at the predefined

depth limit.

The RHH algorithm is a combination of GROW and FULL over a predefined maximum

depth range which is typically 2-6. The first 20% of the population is generated at depth

2. 10% is generated using FULL and 10% is generated using GROW. Once this process

is complete, the depth limit is increased for the next 20% of the programs and again 10%

is allocated to GROW and 10% is allocated to FULL for program creation. This process is

repeated for each 20% of the population. Whilst the RHH algorithm will prevent the dupli-

cation of initialised programs, no consideration is made for bias at either the genotypic or

phenotypic level.

A language bias, or genotypic bias (defined by Whigham [1995b] as “...bias is the set of

all factors that influence the form of each program”) is present when there is a bias in the

choice of items from the function or terminal sets. Whigham [1995a,b, 1996] analysed such

a bias and its effects on grammatically based genetic programming by conducting experi-

ments that explicitly added segment(s) of code to a program in the population. For example,

in one experiment he biased if statements so that the condition could only be a specific ter-

minal. This narrowed the exploration of the search space and increased the probability of

16



finding an ideal solution by artificially including segments of a known perfect solution. This

demonstrates that specific language bias, whilst beneficial, could also severely compromise

the ability of GP to find a solution to a problem with the highest fitness.

In order to address the concept of language bias Iba [1995] devised an approximately

uniform tree generation method (RAND_TREE). In parallel to Iba’s efforts, Bohm and Geyer-

Schulz [1996] independently devised a method called Exact Uniform Initialisation based

on statistical theory with the same objective in mind. Though both of these papers report

slight improvements in the success of GP runs compared to RHH, only a small number of

examples were studied, which left their results open to issues of problem-dependence (as

noted by Bohm & Geyer-Schultz). In turn, this issue was addressed by Luke and Panait

[2001], who conducted a more comprehensive survey and comparison of population initiali-

sation methods. This survey concluded that there was no significant statistical difference in

performance between the RHH and the uniform initialisation methods.

Langdon [2000] developed ramped uniform initialisation as part of experiments to control

code bloat through changing the bias in the distribution of syntax. The algorithm is similar to

Iba’s and focuses upon a method of distributing syntax, rather than controlling the semantics

of programs. Another potential approach for resolving this type of question would be to ask

whether the RHH and uniform creation methods create a similar behavioural (or phenotypic)

bias. Low locality and high redundancy may prevent a uniform distribution of syntax (or geno-

types) providing a uniform distribution of behaviours (or phenotypes). This may explain why a

theoretically grounded uniform initialisation method cannot improve results when compared

to an ad hoc method such as RHH.

Later results by Looks [2007] (covering four Boolean domain problems), Beadle and

Johnson [2009a] (covering more Boolean problems and the artificial ant domain) and the

results presented in chapter 5 (which include the symbolic regression domain) demonstrate

that redundancy is a key issue at initialisation. Whilst results are presented using semanti-

cally driven algorithms and semantic heuristics at initialisation show mixed results in terms of

GP performance, possibly indicating a change in semantic diversity at initialisation, an exact

analysis of locality at initialisation would be an interesting avenue for future research.

Despite the risk of imposing bias in a starting population, it is still a requirement that the

GP practitioner has some control over the size of the programs produced (measured in depth
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or length) in order to prevent excessively large programs being produced. Producing a star-

ting population should take a relatively short amount of time, allowing for the fact that GP runs

need to be executed many times to provide some degree of consistency in the results. To

address this issue, Chellapilla [1997] devised an algorithm called RANDOMBRANCH which

utilised a specified length rather than depth and produced approximately uniform programs.

One problem with this algorithm (highlighted by Luke and Panait [2001]) is that because the

RANDOMBRANCH, algorithm divides up the branch depths evenly, there are many trees

that this initialisation method cannot produce. This would result in a language (or genotypic)

bias in the starting population; however, the exact effect on (or phenotypic) behavioural bias

remains unstudied.

A later effort by Luke [2000a] addressed the related issue of control over program ini-

tialisation. This resulted in two Probabilistic Tree Creation algorithms (PTC) of which there

are two types, known as PTC1 and PTC2. These algorithms differed from those previously

mentioned in that they allowed more user control. PTC1 allowed the user to provide the pro-

bability of appearance of individual functions as well as defining an average size of the initial

programs. However, this method does not give the user any control of the variance of these

programs. PTC2 addresses this issue by allowing the user to set a probability distribution of

tree sizes which gives control over the variance in tree sizes. In comparison to the uniform

based algorithms, PTC1 and PTC2 are simpler to implement and provide the user with much

more control over the size and variation of programs in the initial population. In a similar

way to Whigham’s work, PTC1 and PTC2 give the user the ability to bias initial populations

in such a way that may or may not focus the starting population more towards the global

optimum. The risk with this is that if the wrong kind of bias is used, then the exploration could

be steered away from the global optimum.

The latest works on initialisation are based on the use of semantics (Looks [2007], Beadle

and Johnson [2009a], Jackson [2009]). Whilst there appears to be general consensus that

semantic initialisation can improve performance on a selection of problems, it also appears

that semantic initialisation performs worse on other problems. Though Looks [2007], Jackson

[2009] report positive results using semantics to enhance initialisation, Beadle and John-

son [2009a] use a larger experiment suite and demonstrate that behavioural diversity and

program structure affect the performance of GP. This topic is discussed in greater detail in
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chapter 5.

2.5 Selection

The purpose of selection is to provide a consistent process which makes it more likely that the

best candidate solutions will be selected as parents for the next round of genetic operations.

This process involves two parts. Firstly, each of the programs considered by selection has

its fitness score evaluated. Secondly, a selection method is applied to consistently choose

the candidate solutions with the best fitness scores.

Assessing Solution Fitness

When considering scoring, the scoring function is uniquely constructed for the problem under

consideration. In most cases, this involves assessing the performance of the candidate

solution over a range of, or all of, the possible input scenarios. The performance of the

candidate solution is compared to the ideal answer or a raw data set and a numeric value

of a level of error is produced as a measure of fitness. Fitness scores can be described as

either raw fitness or standardised fitness (Koza [1992]). Raw fitness denotes the number

of cases in which the candidate solution produced the correct answer. In this situation, the

higher the score, the better the answer. Standardised fitness denotes a measure of the

number of input to output tests the candidate solution provided an incorrect answer for. As

such, the lower the score, the more fit the candidate solution and when the score is zero, the

candidate solution is perfect for the input range considered.

Assessing a range of or all input-output scenarios is often the most computationally ex-

pensive part of genetic programming experiment and can expand exponentially with an in-

creased number of inputs. Consider, for example, a problem in the Boolean domain involving

3 inputs. To test every input scenario involves 23 = 8 tests. If this were expanded to consider

11 input variables, then each fitness assessment would involve 211 = 2048 tests of input

combinations in order to ensure the candidate solution will work in every situation. When

considering that populations of candidate solutions in the thousands are used for larger pro-

blems, this will substantially increase the computational effort required to solve the problem.

If one considers a Boolean problem with 20 inputs, then 220 = 1048576 input combinations
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will need to be tested to ensure the candidate solutions is accurate. It is at this point that it

becomes necessary to assess a sample of inputs in the interests of being able to complete

an experiment with the computational resources available, albeit at the risk of losing accu-

racy. Whilst the Boolean domain is finite, others, such as the symbolic regression domain is

not. Considering the symbolic regression domain, where GP is trying to evolve y = f(x), x

could represent an infinite range of numbers. In this case, it becomes necessary to consider

a limited range of inputs (values of x) in order to facilitate running the genetic program.

An alternative has been suggested (notably Yanagiya [1995]) where canonical semantic

representations of the candidate programs and solution are compared and the differences

used to calculate standardised fitness values. This technique has the advantage of not re-

quiring the processing of all the input values, which provides potential to massively scale up

problems. However, this technique has several disadvantages; first and foremost, is that it

requires the GP practitioner to be in possession of a canonical representation of the perfect

solution. In many cases, possessing the perfect canonical representation of the solution is

the desired outcome of GP, and as such the possession of the answer makes GP irrelevant.

In addition, if it were possible to construct the canonical representation of the perfect beha-

viour from the input output scenarios, GP would not be required either. In the defence of

this method, this technique is ideal for testing theoretical concepts on larger problems and

minimising computational load.

Selection Methods

Several selection mechanisms have been suggested over the years, each with their own

advantages and disadvantages. In this section, the three most common selection systems

in GP are described. These are tournament, fitness proportionate and ranked selection.

Tournament selection (as described by Banzhaf et al. [1998]) involves selecting (at ran-

dom) n programs (tournament size) from the population of candidate solutions, evaluating

their fitness and selecting the most fit candidate solution. This method has two advantages

which have made it popular in the GP community. Firstly, as the tournaments can be run

independently, they can be run in parallel saving time. In addition to this, it may be the case

that tournament selection does not require the whole population to be assessed, however,

it is usual that GP practitioners use statistics generated from the assessment of the whole
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population. With larger problems, this can be computationally expensive, so assessing tour-

naments separately and if possible only the programs in the tournament may result in saving

substantial processing time. Secondly, by increasing or decreasing n, the GP practitioner

can alter the selection pressure of the experiment adding another level of tunable control to

GP. A large tournament size will result in a high selection pressure. Whilst this can be useful,

it can also result in premature convergence of solutions.

A second common selection mechanism, fitness proportionate selection (Holland [1992],

Koza [1992]) can be described as a biased roulette wheel where the size of the individual

slots is proportional to the fitness of each candidate solution. This system relies on the

variance of the fitness of the candidate solutions being neither too large nor too small. If

the variance is too small, the fitness proportionate selection effectively become a random

selection method as it will move towards a uniform probability of selection as the variance

decreases to zero. If the variance is very large and there are one or two very fit candi-

date solutions, the slots for these candidate solutions become very large, resulting in these

solutions being repeatedly selected. This may result in the premature convergence of the

candidate solutions in a local optimum rather than a globally optimal solution. To smooth

out high variance of fitness, methods such as sigma scaling (Mitchell [1996]) have been de-

veloped. Sigma scaling generates an expected value as a function of fitness based on the

individuals fitness, the mean fitness of the population and the population standard deviation.

The expected value represents the expected number of off spring to be generated using the

individual. Methods such as sigma scaling do not resolve the problem of situations where

the variance of a population fitness is low.

A third common selection mechanism, ranked selection, applies a rank to each candi-

date solution based on the solution’s fitness and generates a selection probability based

on an individual’s rank. Obscuring the absolute fitness can be beneficial in that highly fit

candidate solutions are unable to dominate the population as quickly. Notwithstanding, in

some cases it may be necessary to know whether some candidate solutions are far more fit

than others. There are different schemes in use to generate the selection probability. Two

common methods are linear and exponential ranking (Banzhaf et al. [1998]).

In addition to selection, many practitioners use elitism (DeJong [1975]). Elitism copies

a small number of highly fit individuals through to the next generation unaffected by crosso-
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ver or mutation. This has the effect of preserving highly fit programs from the destructive

nature of crossover and mutation, as a result preserving highly fit building blocks for later

generations.

2.6 The Crossover Operator

Crossover is one of the core operations of the GP process. In this section, crossover is

described for tree based GP. The first version of crossover to be considered is standard

crossover with uniform swap points.

During standard crossover, two parent programs are selected using one of the selection

techniques as described in section 2.5. Once the two parents have been selected, they are

copied into two child program trees. Using a uniform distribution the node swap points are

selected for the sub tree swap. Once the sub trees are swapped, the new child programs are

added to the population. A diagrammatic example of the process using two small examples

is presented in figure 2.5.

A common modification to the crossover process, first described by Koza [1992], is to

place a bias on the swap points. In his version, a bias of 90% is applied to the function

nodes and 10% on the terminal nodes with the intention of resulting in more swaps nearer

the root of the program tree, potentially resulting more dramatic change to the genotype and

resulting phenotype. The counter argument is that once the structure has converged and

some results suggest this occurs relatively quickly (McPhee and Hopper [1999]), it becomes

more difficult to fine tune the leaves of the tree to add precision to a solution. As discussed

earlier, however, large structural changes at the genotypic level may not result in similarly

large changes at the phenotypic level due to low locality and high redundancy present in

the genotypic and phenotypic search space. This biased crossover is regularly used by GP

practitioners and in this thesis is referred to as Koza crossover.

2.6.1 Improving Crossover in Genetic Programming

Whilst crossover is the central operation to many GP algorithms (mutation is typically applied

with a low probability in comparison to crossover), it is a random process resulting in two

issues. Firstly, it has been documented that crossover is a mostly destructive process (Banz-
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Figure 2.5: An example tree diagram showing the results of tree based crossover. The trees
in the top row are the parent trees and the trees in the bottom row are the two child trees.
The crossover occurred at the “*” node in the top left parent and the “X” node in the top right
parent.
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haf et al. [1998]) and theories have been build on this fact. Secondly, due to the random

nature of crossover it is quite possible to produce child programs that are phenotypically (or

behaviourally) equivalent to their parent programs. This represents an inefficiency in the GP

search as the search agent is not moving around the search space. Both of these factors

have resulted in several attempts to improve the crossover algorithm.

There are three approaches when considering improving the crossover mechanism. These

approaches are: to change the way in which parents are chosen for the crossover, choosing

the swap points within the parent programs and using a system of pre and post crossover

evaluation.

When choosing parents based on a particular characteristic, common sense suggests

that two parents with that characteristic should be selected more frequently in order to im-

prove the performance of the GP run. This characteristic could be fitness based, or it could

be due to another attribute (e.g. containing all the distinct terminals when it is prior know-

ledge that all terminals will be required to solve the problem). The danger of this process is

that it could cause the GP to converge on a local optimum and may prevent the search pro-

cess producing large enough movement (because of the parsimony pressure of the parent

selection method) in the search space to escape the local optima.

Modifications to the method of choosing swap-points have been shown to have some

effect on performance. Whilst Koza [1992] has already been discussed, there are other

approaches to applying bias to swap points during crossover. The concept is that by putting

a bias on particular areas of the program tree, it is more likely to cause a bigger movement

in the search space. Rosca and Ballard [1999] proposed a similar idea based on a negative

binomial distribution over tree depth. Their experiments demonstrate a positive effect on GP

performance; while, an incorrect choice of swap-points could, however, have a negative effect

on performance. Another example of using the choice of swap points to influence crossover

is homologous crossover (Banzhaf et al. [1998], Langdon [2000], Poli and Langdon [1998],

Page et al. [1999]), where structurally similar sub trees (defined using edit distances) are

more likely to be crossed over.

Pre and post crossover evaluation compares the result of the crossover to the parents.

An example of this is presented by O’Reilly and Oppacher [1995], in which GP crossover is

hybridised with two hill climbing techniques. Whilst this technique demonstrated that fewer
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fitness evaluations were required to reach the ideal solution, there is always the risk that the

candidate solutions can be caught in local optima, as well as the additional computational re-

quirement needed to implement this technique. Other approaches using semantic analyses

(Beadle and Johnson [2008], Nguyen et al. [2009]) to compare the phenotypic or behaviou-

ral aspects of crossover have yielded positive results. These approaches will be discussed

further in section 6.1.

2.7 The Mutation Operator

Sub tree mutation selects a random point in a randomly chosen program tree and swaps

the sub tree with another randomly generated sub tree. Koza [1992] introduced sub tree

mutation, but questioned the value of the operator (later demonstrated by Luke and Spector

[1997, 1998] to be comparable to crossover) and chose to perform most of his experiments

without the mutation operator in use. Whilst the concept of sub tree mutation is relatively

simple, there are more detailed practicalities that influence the relative performance of the

GP with the use of the mutation operator.

The mutation process invokes selection to choose one of the candidate solution programs

from the population and also randomly selects a point within that program. For standard sub

tree mutation, the selected node within the candidate program is swapped for a random

node. This may be a terminal or a function. If it is a function, then all of the child nodes

are completed to make the tree structure valid. The function which was swapped out of the

original program is no longer required and deleted.

The main variation between mutation methods is how different authors have constructed

the new sub tree to replace the sub tree that was removed. Two examples of solutions to

this are by Kinnear, Jr. [1993] and Langdon [1998]. Kinnear created sub trees that could not

increase the program depth by more than 15% after mutation. Langdon’s size-fair sub tree

mutation utilised a system which ensured that the new sub trees were on average the same

sizes (50%-150%) as the previously removed sub tree.

A further variant of sub tree mutation is known as shrink mutation. In this system, a

random sub tree is replaced by a terminal. Whilst Angeline [1996] uses this type of mutation

to aid his investigation into the sensitivity of the frequency of leaf selection in GP, he also
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shows that it helps to reduce program size.

Point mutation (or node replacement mutation) McKay et al. [1995] picks a node and

replaces it with a node of equivalent arity. This essentially simulates a single bit flip mutation

from genetic algorithms. As noted by Poli et al. [2008], a similar idea is that of permutation,

which selects a node and mutates the arguments of this node. Whilst Koza [1992] used this

technique in one experiment with little success, Maxwell [1996] had more success with a

variant of permutation called swap.

Hoist mutation selects a sub tree from the program to be mutated and uses this sub tree to

replace the full tree from which the sub tree was copied. Kinnear, Jr. [1993, 1994] presented

and made use of this technique with some success; though it is potentially highly destructive

technique because of the loss of root functionality. Later research by McPhee and Hopper

[1999] indicated that specific patterns of code within successful programs can be traced back

to very early programs in most GP runs. Mutation such as hoist may be highly destructive in

that, if it were to alter the root of one of these common ancestors, it would cause a serious

decrease in performance.

In a similar fashion to crossover, instead of altering the mutation technique, a few authors

have attempted pre and post evaluation of the mutation in order to improve it. In the related

field of grammatical evolution, Majeed and Ryan [2007] demonstrate a technique known

as context aware mutation. The technique evaluates sub trees and works to prevent the

mutation operator causing a destructive change in fitness. One of the limitations noted by

the authors is the necessity of building up a repository of “good” subtrees to work with.

Potentially, however, this technique could turn the standard mutation operator into another

hill climbing operator. The danger of it becoming a hill climbing operator is that the fitness

distribution across the search space may be rugged, increasing the possibility of premature

convergence on a locally optimal solution compared to a non hill climbing algorithm.

Continuing the theme of pre and post evaluation, Beadle and Johnson [2009b] present

results demonstrating that using semantic analysis to enforce a phenotypic change as a

result of the mutation operation improves the performance of mutation. The technique, known

as semantically driven mutation proved successful in comparison to a control of standard sub

tree mutation in seven experiments across two problem domains. (Section 6.2 discusses this

process in further detail and includes more results from the symbolic regression domain.)
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2.8 Other Genetic Programming Practises

For completeness, basic descriptions of automatically defined functions (ADFs) and steady

state GP have been included, though they are not utilised in the work presented in this thesis.

ADFs were developed by Koza [1994] and hinges on a very small number of frequently

appearing sub trees being captured as a function. The benefit of this is that the sub tree,

expected to be a highly fit building block, does not get destroyed during the destructive cros-

sover process. GP candidate programs can use these functions as much or as little as

possible. Koza also reports that ADFs help to reduce code bloat.

ADFs require extra care in their implementation in three ways. Firstly, it has to be esta-

blished that the ADF is not a constant value (defined in this thesis in section 4.3.4). It would

be a waste of resources to capture a value which resolves to a constant as the ADF is not

providing any functionality. Secondly, recording multiple ADFs may be problematic due to the

recording mechanism selecting code equivalent to parts of an already composed ADF. This

would be a waste of the resources available to GP. Finally, there is a danger of recursion.

Without careful screening in the recording phase, it may be the case that the ADF calls itself,

which would result in an infinitely deep program tree which would not be possible to calculate

any result to.

The GP algorithm presented in section 2.2 is in the generational form. An alternative to

the generational approach is that of the steady state algorithm. In a steady state algorithm,

there are no clear time step iterations. The process performs selection on some of the

population, removes the weakest candidate solutions and uses the selected programs as

parents to generate new programs using GP operations to fill up the population again. The

process repeats until a solution is found or a predefined number of individual evaluations

have been performed.
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Chapter 3

Current Issues in Genetic

Programming

The objective of this chapter is to provide an overview of the latest research evaluating is-

sues in GP that relate to the goals of this thesis. The goals of this thesis are to increase

search efficiency through encouraging diversity, remove inefficient segments of code and, as

a result, control program growth and finally, to investigate the role of program structure in GP.

In section 3.1, the issue of diversity of candidate solution populations in GP is discussed.

In the context of this thesis, diversity is considered at the behavioural level, and tools develo-

ped to model behaviour provide new techniques to describe the behaviour of programs. The

tools can be applied on two levels; firstly, they can be used to measure the level of diversity

present in a GP run and secondly, they can be used to enhance the search ability of existing

GP operators.

In section 3.2, program growth or bloat and methods to control bloat are reviewed. The

ability to canonically model behaviour and back translate the behaviour into reduced code

that all contributes to the behaviour of the program, allows the possibility to reduce program

to a minimal form removing inefficient segments of code. This technique is useful as it allows

the ability to completely remove bloat from a GP run and evaluate the effects of GP on

programs in their minimal form.

In section 3.3, the schema theories are evaluated. The motivation to review building block

and schema theories is not directly to consider the numbers of building blocks persisting from

generation to generation, but to understand the effects of repeated patterns of code in the
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population in the form of program structure.

3.1 Diversity in Genetic Programming

GP is a search process and it is important for the candidate solutions to represent as many

different programs (and behaviours) as possible. Thinking back to figure 2.1, more search

agents (or in the GP case candidate programs) allow greater coverage of the search space.

More candidate programs are only better when they are traversing different areas of the

search space simultaneously, rather than a large number of these search agents assessing

the same areas of the search space.

Multiple programs assessing the same fitness result represent an inefficiency in the GP

search as it becomes less probable that GP will be able to find an acceptable solution.

Diversity in GP is further complicated due to the nature of genotypic redundancy (Rothlauf

[2006]) present in GP which results in two different kinds of diversity.

When considering diversity in GP populations, it is important to distinguish between the

two distinct types of diversity. The first type is syntactic or genotypic diversity, that is, pro-

grams in the population being syntactically different. Koza [1992] argues that this is important

both as a method of generating programs with different behaviours, and as a means of pro-

viding a pool of material from which programs can be evolved.

The second type is behavioural or phenotypic diversity, that is, diversity of the input-output

behaviour. It is easy to find examples of sets of programs that are all syntactically distinct,

yet which have identical behaviours (genotypically redundant) and theories such as fitness

causing bloat (Langdon and Poli [1997]), and formal semantic analysis of population diversity

support this fact (Beadle and Johnson [2009a] and chapter 5).

Managing or increasing diversity both at the genotypic and phenotypic level has been

poorly implemented within GP with a tendency to only ensure genotypic diversity at initiali-

sation through the traditional Ramped Half and Half technique (Koza [1992]) by preventing

the insertion of duplicate program trees into the population of programs. Later efforts by

Looks [2007] and Beadle and Johnson [2009a] (and chapter 5) applied phenotypic diversity

at initialisation and demonstrated that whilst this can be very successful at increasing GP per-

formance in some experiments, it is not the only aspect to be considered during initialisation
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as successful results appeared problem dependant.

After initialisation, standard GP runs are completed with no checks as to the diversity

level of the GP population. This combines with the random nature of GP operations such as

crossover, mutation and selection which will have a tendency to reproduce existing programs

at both the genotypic and phenotypic level, reducing diversity in the search space.

There have been studies aimed at increasing diversity during crossover (O’Reilly and Op-

pacher [1994a], Poli and Langdon [1998], Beadle and Johnson [2008], Nguyen et al. [2009]

and section 6.1) and mutation (Beadle and Johnson [2009b] and section 6.2). The earlier

approaches by O’Reilly and Oppacher, and Poli and Langdon, focused upon testing different

crossover operators and studying their effects on GP performance. Later approaches by

Beadle and Johnson and Nguyen et al. focused on controlling the semantic change of the

crossover to ensure a change took place. Whilst these techniques will not result in complete

phenotypic diversity (a completely behaviourally diverse population), they do force phenoty-

pic change at the crossover and mutation operations thus resulting in more movement around

the phenotypic search space and result in a nearly universal increase in performance.

Studies of the level of semantic diversity present in GP populations are not new to GP.

Gustafson et al. [2004], Burke et al. [2004], Gustafson [2004] conducted multiple analyses

of behavioural diversity in GP. Burke et al. [2004] conducted an analysis comparing beha-

vioural diversity measures with fitness. These behavioural measures were based on two edit

distances and this analysis concluded that the edit distance showed a strong correlation with

the level of change in fitness. Gustafson et al. [2004] present three different methods for

measuring the behaviours of the programs they study; however, the authors mention that

even these mechanisms do not provide an exhaustive representation of the behaviour of

the programs. One of the limitations of Gustafson’s work (Gustafson et al. [2004], Burke

et al. [2004]) was that a behaviourally canonical representation was not used to check for

isomorphism. The use of behavioural representations in this work (presented in chapter 4.3)

provides that particular ability. As a result of this, it is possible to accurately evaluate the

level of diversity present in a population and this has been incorporated into an analysis of

initialisation (Beadle and Johnson [2009a] and chapter 5).

Further use of semantic analysis has been applied when assessing the context of cros-

sover operations and attempting to identify semantic building blocks. McPhee et al. [2008]
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used truth tables to analyse behavioural changes in crossover. McPhee et al. highlight both

the concept of semantic building blocks and the idea of context, which is how the program

around the missing the sub tree will influence the behaviour of the sub tree. Context is im-

portant because no matter how fit the sub tree, if the context invalidates it, the sub tree will

not have any effect as part of the new program it is inserted into. McPhee reports rates as

high as over 75% of crossovers having no movement in the semantic search space due to

the context invalidating the swapped sub tree.

McPhee et al. [2008] highlight the inherent problems facing the crossover operation in

several Boolean problems. As McPhee et al. discuss, their work could be extended to other

domains (other than Boolean). This could be achieved by making use of the abstraction

techniques presented in chapter 4 for the artificial ant and symbolic regression domains.

The work in the Boolean domain could also be scaled up by using Reduced Ordered Binary

Decision Diagrams (Bryant [1986]) described in chapter 4. Further to this, results generated

by both Beadle and Johnson [2008], Nguyen et al. [2009] and in chapter 6.1 take into account

the context of crossovers as part of their mechanism of assessing behavioural change. As a

result, the extended results for semantically driven crossover may be able to add more data

to the argument for importance of context in domains other than the Boolean domain.

Previous research (McPhee et al. [2008], Looks [2007], Beadle and Johnson [2008]) has

demonstrated the inability of GP to efficiently move around the behavioural search space.

This clearly has an effect on the efficiency of GP search and as a result, phenotypic diversity

will become of the key areas of research in GP in the years to come. One possible objec-

tive would be the concept of a completely behaviourally diverse run, where every initialised

program is behaviourally unique and every GP operation results in a new behavioural step in

the phenotypic search space.

Combating the inefficiency in the phenotypic or behavioural search space is one of the

primary motivations of this thesis and methods are developed to promote semantic diversity

at every stage of GP.
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3.2 Bloat and Methods to Control Bloat

In the early GP literature, it was noted that programs grew during evolution with little or

no related increase in fitness (Koza [1992]). This increase in program size has commonly

been referred to as code bloat or just bloat. Several theories have been developed based

on experimentation (further discussed in section 3.2.1), however, there appears to be no

conclusive explanation or combination of explanations to formally describe the occurrence of

bloat. What is clear is that, unless GP practitioners can control bloat, it will negatively impact

the scalability of GP (Luke [2000c]) and the robustness (human readable programs that can

be tested and validated formally) of the programs GP produces. If programs grow without

a related improvement in fitness for small scale problems, then increased growth on larger

scale problems may prohibit GP finding a good solution simply due to the computational load

required to process these larger scale problems. Furthermore, larger programs are harder to

formally test the input-output behaviour and maintain, should any improvements be required.

Three of the existing theories have been based on the presence of introns within syntax

trees. Since the phrase intron was first used in the field of evolutionary algorithms (Angeline

[1994]), it has had a confused definition (Blickle and Thiele [1994], Nordin et al. [1995], Luke

[2000c]) in the literature. The confusion arises from the consideration of whether suboptimal

or redundant code should be treated as an intron as well as inviable or unreachable code.

An intron can be defined as a node (either a single node or sub tree) that does not have

an effect on the behaviour (or phenotype) of the program. Within this definition, introns fall

into one of two subclasses separated by execution. Firstly, an unreachable intron describes

a node which cannot be executed under any input state of the program. In other literature,

this is sometimes referred to as inviable code. An example of this would be:

IF A1 (IF A1 A2 A3) A4

In this situation A3 can never be evaluated because of the nested IF statement based

upon the A1 condition. The second kind of intron is the redundant intron. This describes a

node which is executed but does not affect the behaviour of the program. In other literature,

this is referred to as unoptimised code. Two examples of this would be:

AND A1 A1 ≡ A1
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MUL 0 (ADD 5 5) ≡ 0

In the first case, the behaviour will just be A1 and in the second case the answer will

result in a constant behaviour 0.

A number of authors have done experimentation examining unreachable introns (notably

Blickle and Thiele [1994], Luke [2000b]), however, there is little experimentation examining

redundant introns. One of the contributions described by this work are the methods presen-

ted in chapter 4.

3.2.1 Existing Bloat Theories

Program growth during GP evolution (or bloat) has affected GP since its inception. Several

theories have been presented in an attempt to at least partially describe the causes of bloat,

although the precise cause or causes of code bloat is still contentious and elusive. Hitchhi-

king (Tackett [1994]), protection from deletion (Altenberg [1994b], Blickle and Thiele [1994],

Banzhaf et al. [1998]), removal bias (Soule and Foster [1998]), the fitness function causing

bloat (Langdon and Poli [1997]), modification point depth (Luke [2003]) and the crossover

bias theory (Dignum and Poli [2007]) have all been proposed as causes of bloat each with

different merits. Hitchhiking, protection from deletion and removal bias require the presence

of introns whereas the other theories do not.

Hitchhiking occurs when introns as well as subtrees that contribute to fitness are crossed

over as part of the crossover operation. Selection occurs, selecting the most fit programs

and as a result, the successful programs continue to contain the introns and grow as this

same process repeats over the generations.

Tackett [1994] provided experimental evidence to demonstrate that bloat was related to

the level of selection pressure. In Tackett’s experiments, a random selection scenario re-

sulted in no bloat, and this is further confirmed by results presented by Langdon and Poli

[1997], Langdon and Banzhaf [2000]. Tackett disagrees with the protection from deletion

theory as when applying a less destructive brood crossover system, there was no proportio-

nal decrease in bloat.

Protection from deletion states that introns are required to protect fit programs from the

mostly destructive crossover operation. Successful individuals are able to survive generation
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to generation due to the fact that potentially destructive crossovers take place in intron areas

of the program, and as such does not degrade their fitness for selection. Luke [2000b] rejects

defence against crossover based on experiments using marking (Blickle and Thiele [1994]).

In these experiments, Luke marked inviable introns and demonstrated that bloat persisted

despite crossovers taking place in active areas of code. Further to this, semantically driven

crossover (Beadle and Johnson [2008]), showed that preventing behaviourally neutral cros-

sovers (an as a result increasing the proportion of destructive crossovers) can significantly

reduce bloat and significantly increase performance in some problems. This supports the

approach that in some problems introns do not appear to be required to achieve good results

and also that protection from deletion may be problem dependant.

Removal bias occurs when inviable subtrees near the leaves of programs more frequently

are replaced by larger subtrees with no effect on fitness. As most crossover is destructive,

these programs survive due to their fitness being unchanged, whereas, more programs that

had crossovers in areas of active code are culled at selection. Removal bias is a variation

on the protection from deletion theme and would suffer from the same criticisms as pro-

tection from deletion in the form of the marking experiments and semantically driven cros-

sover. Whilst some authors ran experiments using non-destructive crossover (O’Reilly and

Oppacher [1995], Soule and Foster [1997]) in order to demonstrate that the protection from

deletion theory and removal bias theories are valid because they reduced the level of code

growth, Luke [2003] suggests this may be down to replacing less fit children with the parents,

thus causing the full bloat effect to be delayed.

The fitness function causing bloat is due to a greater number of programs (or genotypes)

representing a particular behaviour (phenotype) in the search space. Given that crossover is

a destructive process, when more fit programs become hard to find, then programs of equal

fitness are favoured. As such, it is more likely that the size and shape of programs will move

to the region of the search space where programs are fit enough to survive. This theory

is grounded by a substantial amount of theoretical research (Langdon and Poli [2002]). In

addition to this, Rothlauf [2006] has discussed in detail the concept of genotypic redundancy

and the results in Beadle and Johnson [2009a] demonstrate the presence of genotypically

redundant programs, even from the initialisation stage of GP.

Modification point depth links the size of the program to the depth of the swap point in

34



the program. Given that most crossover is destructive, programs that experience swaps near

the leaves of the trees suffer less decrease in their fitness compared to trees that include

a crossover near the root. As a result, more code gets added near the leaves of the tree

and longer trees are favoured in terms of survival when the fitness function and selection are

applied. As shorter programs do not make it through selection, it suggests that code size is

related to survivability. Streeter [2003] also suggested a concept of resilience of programs

which was directly related to program size.

The crossover bias theory states that shorter programs will be more frequently sampled

as a result of crossover. These small programs will typically have poor fitness so will not

be selected during the selection process. This results in the average size of the population

increasing. Dignum and Poli [2007] support the crossover bias theory providing strong theo-

retical evidence showing how the distribution of program sizes follows a Lagrange distribution

of the second kind.

One of the key issues behind bloat appears to be the selection mechanism. As shown

by Tackett [1994] random selection results in no bloat. The moment the fitness function is

applied, underlying bias becomes present and have numerous effects on GP performance

and program size.

Given the semantic analysis tools described in chapter 4, results will be presented (in

chapter 6) which demonstrate the effects of intron free GP on bloat and performance of a GP

run for the experiments in the test suite.

3.2.2 Methods to Reduce Bloat

Given the lack of one concise theory to explain the presence of bloat, GP practitioners have

developed and applied numerous different techniques to counter bloat. A selection of the

most popular techniques are presented in this section.

The first of the efforts to reduce bloat are simple program size limits applied during the

genetic operations. The first of these were depth and length (total number of nodes) limits.

Koza [1992] used a depth limit of 17, such that if a program was greater than 17 nodes deep

after a crossover, the parent program was used instead of the child program. Similar tactics

have been used limiting the length (or total number of nodes) of a program. Later research by

Gathercole and Ross [1996] indicates that programs are attracted to a predefined depth limit

35



if one is in place. In addition, recent work by Dignum and Poli [2008b] shows that program

size will increase to limits in the early section of GP run defeating the point of them.

Dynamic limits (da Silva [2008], Silva and Almeida [2003]) are an extension of the simple

limits system. Programs can be limited by either depth or length (with the maximum limit

starting at the maximum initialisation size) and when a new, fit individual is found the limit

can be increased to allow the new individual to be entered into the population. Da Silva

applies this process in conjunction with other parsimony pressure based techniques and as

such the process is not a complete solution to bloat.

Resource limits (da Silva [2008], Silva et al. [2005]), unlike simple and dynamic limits,

do not apply to individual programs in the population. The resource limit is applied to the

population, for example, a limit of how many nodes are available to the population. This is a

difficult parameter as too many will result in bloat, and too little may result a situation where

programs grow and as a result the population decreases as there are no more resources for

additional programs. Silva and Costa [2005] report results comparing dynamic and resource

limited GP. These results support the superiority of dynamic program limits, although it was

noted that resource limited GP can achieve some good results earlier in the run.

Attempts have been made to combat bloat as part of the crossover operation itself. Lang-

don [1999, 2000] implemented a system which developed size fair crossover in order to tackle

bloat with some success. Further work by Beadle and Johnson [2008], using semantically

driven crossover unintentionally showed significant success at reducing code bloat on some

problems (discussed further in chapter 6).

Luke and Panait [2006] presented a substantial comparison of a selection of bloat control

methods and compared their results over a range of benchmark problems. This analysis

included linear and Pareto based parsimony pressure techniques, double tournament selec-

tion, proportional tournament selection, the Tarpeian selection method (Poli [2003]), waiting

room and death by size techniques.

The Tarpeian method (Poli [2003]) introduces a parameter which represents a probability

of assigning a very poor fitness value to a large program without assessing the fitness of the

program. The method is tunable and Luke and Panait report that a probability of 0.3 works

well in their experiments. If the probability is too low, there is not enough pressure against the

larger programs and if the probability is too high, then the Tarpeian method will reject large
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and highly fit individuals without assessing the fitness when some of the large individuals

may represent very fit programs. This method has the advantage of not having to assess the

fitness of a percentage of the larger individuals, thus saving computational resources.

Linear parametric parsimony pressure considers size as well as fitness as contributing

to the overall fitness of a candidate program. The potential problem with this method is the

fact that without scaling, one element of the equation fitness = f(fitness) + f(size) will

overwhelm the other element creating bias in the fitness function. As a result, the fitness

and size components are scaled in an effort to prevent this bias occurring. The choice of

coefficients in order to balance fitness and program size is difficult, however, recent work by

Poli and McPhee [2008] shows how to apply Price’s covariance theorem to dynamically set

and optimise the parsimony coefficients.

Pareto-based parsimony pressure considers size and fitness as two separate objectives

and use Pareto-dominance optimisation (Ekart and Nemeth [2001]). In similar circumstances

to the linear parsimony pressure, a potential problem using this methods is that either size or

fitness dominate the result at the Pareto front. Ekart and Nemeth [2001] dealt with this issue

using an algorithm known as SPEA2 to enforce diversity at the Pareto front.

Double tournament selection applies two tournaments during selection in sequence in

order to select each parent for crossover or mutation. One tournament is based on fitness

and the other on program size. Luke and Panait tried both orders of tournament, i.e. fitness

before size or fitness after size. Proportional tournament selection, based on a probability,

either uses a fitness function based on fitness or a fitness function based on program size.

The waiting room method forms an ordered queue of programs that are waiting to en-

ter the population with the biggest programs at the back. This has the effect of forcing the

evaluation of the smaller programs first in order to find high fitness within smaller programs.

Death by size is operational within the steady state version of GP. Instead of using genera-

tions, a number of programs are killed off every so often and crossover is used to refill the

population. In the case of death by size, larger programs are more likely to be killed off.

Luke and Panait [2006] concluded that individually, the linear parametric approach was a

good choice to control bloat across all the experiments they present. In addition to this, they

noted that any of the bloat reduction techniques combined with individual simple limits were

nearly always superior to the individual bloat control method alone.
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A final tactic for controlling bloat is to reduce programs, also referred to as code editing.

Recent work by Garcia-Almanza and Tsang [2006] presents a pruning mechanism known

as the Scenario Method which was shown to effectively reduce programs; however, this re-

sulted in a variance of performance. Another approach by Eggermont et al. [2004] presents

a method to detect and prune trees using static analysis techniques. This method reduces

production rules and can use the reduced trees to check for semantic equivalence. The work

of Eggermont et al. was used on classification problems (supervised machine learning) and

reduces programs at the genotypic representation rather than the phenotypic (or behaviou-

ral) level. In opposition to code editing, Haynes [1998] presented results which suggested

that code editing could be responsible for the premature convergence of solutions at a local

optima.

These techniques give GP practitioners formal mechanisms to evaluate all introns and in

chapter 6, explicit experiments are conducted aimed at removing all introns from programs

at the different stages (initialisation, crossover, mutation and pruning) in the GP run. The

resulting effects of these techniques can be used to analyse the effects on GP of the removal

of introns in relation to existing theories of bloat.

3.3 Building Blocks and Schema Theories

In this section, the complex issue of repeated patterns within candidate solutions is discus-

sed. Firstly, building blocks and schema theories are discussed, outlining their difficult birth

in the context of GP to their most recent general and exact schema theories for GP. Secondly,

a related side issue of program structure (related in that repeated structures of programs are

built from repeated blocks of code) and its emerging role in GP are considered.

3.3.1 Schema Theories

In a most general sense, schema theory identifies a set of elements from the search space

(an individual schema) and provides mathematical methods in order to be able to predict

the probability of a schema being present in a future generation. In line with the building

block hypothesis (Goldberg [1989]), which is that small but highly fit individuals are combined

hierarchically as programs move towards a global optimum, schema theory can be used to
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predict the presence of these building blocks. The reason this is important is that, whilst

crossover and mutation are essentially random operators, it is difficult to understand the

mechanics that result in GP finding optimal solutions to problems. Combined with this, if GP

researchers can understand and model the transitional and random nature of crossover and

mutation, they may be able to suggest theoretically motivated techniques to enhance the

performance of GP runs.

Schema theories were originally developed for genetic algorithms (Holland [1992]) (ori-

ginal text in 1975, but republished in 1992) and expressed in the form of a lower bound of

the number of a particular schema that would be present in the next generation. Holland’s

original schema theory was informally extended into GP by Koza [1992].

The first of the schema theories dealt with non rooted schemata. Non rooted schema are

sub trees that can occur at any point in a program tree and potentially repeatedly. Altenberg

[1994a] was the first to suggest a schema theory specifically for GP. Altenberg’s theory was

developed under a number of assumptions including: the population being very large, no

mutation and that fitness proportionate selection was used. Altenberg’s schema theory dif-

fers from Koza’s in that Altenberg considered a schema as a sub expression, whereas Koza

considered that a schema could be made up of multiple sub expressions. A final fundamen-

tal difference is that Altenberg took account of schema creation which results in his theory

being an equality rather than a pessimistic lower bound.

O’Reilly and Oppacher [1994b] refined Koza’s work on schema theory by considering the

addition of a don’t care node. Schemata are defined as a set of unordered code fragments

and sub trees. Like Koza, O’Reilly and Oppacher do not take account of the position, and

therefore, do not take into account the context (the way in which the schema is executed

in the program) of the schema. One of the problems with potential for multiple contexts is

that the theory describes the way in which components of a representation change over time

rather than how the number of programs representing a specific schema changes over time.

In a related area of GP using context free grammars, Whigham [1995c] used a slightly

different definition of a schema to O’Reilly and Oppacher, however, this was still a non rooted

definition of a schema. As a result, the schema theory again describes the way in which

the components of a representation change over time rather than the number of programs

containing specific schema changing over time. The main difference is that the derivation
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tree fragments would always represent a single sub expression rather than multiple sub

expressions as with O’Reilly and Oppacher’s definition.

These early difficulties in obtaining a precise description of how schema propagates from

one generation to the next left schema theory open to some criticism. Langdon and Poli

[2002] describe three major weaknesses of the theory up to this point. Firstly, the schema

theories so far (with exception to Altenberg [1994a]) were inequalities and not equalities,

which means that they only provide a lower bound of the expected number of instances of

a particular schema in the next generation. Secondly, unless the population is infinite, the

expectation operator means that it is difficult to predict the behaviour of the genetic program

over multiple generations. Finally, as most of the theories only provide a lower bound, it is

questionable how useful a lower bound is even one generation ahead for the prediction of

the occurrences of a particular schema.

A further criticism of the non rooted schemata is that, given that candidate solutions

are executed to assess fitness, a non rooted schema takes no account of the context (the

way a schema is executed due to its position in the tree). As a result, the behaviour of a

schema may differ from one program to the next. Independently and simultaneously Rosca

and Ballard [1999] and Poli and Langdon [1997] developed rooted tree schema theories. The

theories were constructed slightly differently, however, they both reintroduced the importance

of position of components of a schema and could only be instantiated once per program

because the context information fixed the root of the tree. Whilst Rosca and Ballard [1999]

use a don’t care node to represent complete subtrees, Poli and Langdon [1997] use a don’t

care node to represent exactly one function or exactly one terminal. This has the effect of

fixing the size and shape of the schemata, which as a result made it easier to calculate all

the possible combinations of program using a particular schema in comparison to non rooted

schema.

One of the main issues resulting in schema theories producing a lower bound rather than

an equality was that the task of predicting the frequency of occurrence of a particular schema

in a later generation depended on two factors. The first is modelling the destructive effect

of crossover and mutation in combination with a schema being selected. Existing schema

theory produced a lower bound because it could only predict survival against destruction or

elimination through crossover, mutation and selection. The element that was missing is the
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prediction of how many instances of a particular schema could be created from crossover

or mutation events. Identifying all of the ways that a particular schema can be created after

having identified all the ways in which it could be destroyed is a complex task.

Whilst the first exact schema theories were described for genetic algorithms by Stevens

and Waelbroeck [1997], Stephens and Waelbroeck [1998], these theories were extended into

GP to provide an exact GP schema theory for one point crossover (Poli [2001]). This work

represented a step forward; however, it does not account for the usually applied sub tree

crossover with the uniform selection of crossover points (or the 90% bias on functions and

10% on terminals) favoured by the GP practitioners, only fixed size and shape representa-

tions in GP.

The difficulty with representing standard crossover is that the program trees may change

size and shape after crossover and mutation operations. As such, the fixed size and shape

schema needed to be extended to take advantage of both don’t care nodes as single nodes

(Poli and Langdon [1997]) and a second kind of don’t care node which could represent a

sub tree (Rosca and Ballard [1999]). This was described as variable arity hyperschema.

A variable arity hyperschema could contain functions, terminals, a don’t care node that re-

presented either a function or a terminal or a don’t care node that could represent a sub

tree.

A second problem that needed addressing was that a node referencing system needed

to be designed in order to uniquely identify every node in the program tree. The node re-

ferencing system would enable functions and probability distributions to be defined over the

node references. The full description of the node referencing system and how probability

distribution are made use of in the context of different types of crossover is set out by Poli

and McPhee [2003a]. This step allowed the creation of general and exact schema theories

by Poli and McPhee [2003b] for standard crossover in GP (and the 90% and 10% bias on

functions and terminals respectively) as well as a number of other types of crossover.

So the real question is; how can schema theory be put to practical use in GP? Lang-

don and Poli [2002] discuss the potential for practical uses in three areas. Firstly, given

that schema theories require the modelling of the effects of different operators, an advanced

understanding of these effects may lead to better choices of operators to solve particular

problems or the development on new theoretically motivated operators (for example, Poli
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and Langdon [1998]) to enable different effects in the GP search. Secondly, understan-

ding operator bias may enable the creation of theoretically driven initialisation algorithms (for

example, Langdon [2000]) which are able to benefit from or neutralise the effect of operator

bias. Finally, Langdon and Poli [2002] suggest that further research may make it possible (in

conjunction with Stephen and Waelbroek’s schema theory for genetic algorithms) to derive

a method of calculating population sizes in order to maximise success in GP. In turn, this

would enable the estimated calculation of how much computational effort is required to solve

a particular problem and may lead to being able to classify some problems as “easy” and

some as “hard” as a function of computational effort.

Whilst so much research has gone in to predicting the frequency of repeated blocks of

syntax within program trees, in comparison very little research has considered looking at

semantic or phenotypic building blocks within GP. For instance, it would be interesting to

build on the work of Haynes [1997] and evaluate a set of schema for a particular problem to

compare whether the schema represent the same number of schema in the semantic search

space. There is the potential for substantial redundancy in the form of genotypic schema to

be present and further analysis using phenotypic representations or even phenotypic schema

may allow a simpler understanding of the combination of behaviours during a GP run.

Langdon and Banzhaf [2005] developed further work analysing building blocks both concer-

ning the shape and size of programs and the semantics of programs. Langdon found that

the semantic repetition of building blocks was much higher than the syntactic repetition of

building blocks. Additionally, Langdon found that in the two problems chosen, the programs

produced were similar shapes which brings into focus a fractionally different area of research

in the form of program structure. Program structure could be considered as a low ordered

hyperschema, that is a tree structure full of don’t care nodes, which would just define the

shape of a program.

Previous work on the analysis of changes to program structure has demonstrated that

tree shape does have an influence on the success or failure of GP. Punch et al. [1996]

and Gustafson et al. [2005] present artificial problem domains in the form of royal trees

and the tree-string problem. These artificial problem domains are tunable and designed to

evaluate the relationship between program structure and the ability of GP search to navigate

through the search space. Whilst Langdon et al. [1999], Langdon and Banzhaf [2005] provide
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evidence that programs evolve towards particular shapes, Daida and Hilss [2003], Daida

et al. [2003] suggest not only that program structure has a role to play in evolution, but

that predictions can be made as to which shapes are the most evolvable. Further work by

Langdon [2000] and Daida et al. [2003] both discuss how tree shape can impact upon the

search power of GP, and as a result the performance. Daida et al. go further and discuss

how tree structure may determine problem difficulty.

3.4 Summary

Returning to the three goals of improving diversity, controlling bloat and evaluating the role of

program structure during evolution, this thesis presents novel techniques to evaluate these

three areas in details.

When addressing the search inefficiency in the form of low diversity in the phenotypic or

behavioural search, research presented in chapters 5 and 6 based on methods of canoni-

cally modelling behaviour described in chapter 4, seeks to encourage phenotypic diversity

at all stages of the GP process. More specifically, algorithms are presented to encourage

phenotypic diversity at the initialisation, crossover and mutation stages of GP and tested on

a suite of nine benchmark problems.

Considering controlling bloat, based on the methodology presented in chapter 4, one

algorithm is presented which completely rebuilds programs in a minimal efficient form in order

to analyse the effects of intron free GP. Combined with this, the semantically based crossover

algorithm shows some promise at controlling bloat. Further research in chapter 7 indicates

different characteristics of bloat when using crossover and mutation and demonstrates that

the choice of operator may help control program size.

Program structure in this thesis is analysed in two ways. Firstly, the effect of different

shaped programs at the point of initialisation is analysed in section 5.2.4. This small analysis

motivated a greater detailed analysis of program shape during evolution and particularly its

role at initialisation. The analysis is contained within chapter 7.
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Chapter 4

Methodology

This chapter presents the methodologies used for the experiments and analyses in chapters

5, 6 and 7. In section 4.1, the test problems are described and, in section 4.2, the standard

parameters for each of the test problems are described.

In order to model behaviour, three different descriptions of behaviour are developed for

three substantially different problem domains. The description of the behaviour of Boolean

problems is described in section 4.3.1. The description of the behaviour of the artificial ant

problem domain is described in section 4.3.2. Finally, the behaviour of programs in the

symbolic regression domain is described in section 4.3.3.

4.1 A Test Problem Suite

The nine problems which are studied have been chosen because they represent a selection

of benchmark problems from three substantially different problem domains. This difference in

the problems domains is required in order to test that the algorithms and theories presented

in this thesis are applicable to more than one problem domain. Within the Boolean domain,

the majority and multiplexer problems have been chosen for their contrasting nature and the

even parity problems have been chosen as they are deceptive (Langdon and Poli [2002]).

The experiments chosen have been scaled to make the problems more difficult for GP to find

accurate solutions to and test the theories and algorithms in a more complex setting. In the

artificial ant domain, the benchmark Santa Fe trail has been selected, which is known to be a

hard problem (Langdon and Poli [1998]) for GP to solve. In the symbolic regression domain,
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a version of a cubic and a quartic polynomial have been chosen as test problems.

The objective of the 6 bit multiplexer problem (referred to in all tables and figures as

6MUX) is to interpret two control bits {A0, A1} as a binary number and choose the correct

input bit from the terminal set {D0, D1, D2, D3} to output based on the binary number. The

fitness is the number of correct choices over over all possible 64 combinations of inputs for

the six Boolean bits. The function set used is {IF, AND, OR, NOT} and the terminal set is {A0,

A1, D0, D1, D2, D3}.

The 11 bit multiplexer problem (referred to in all tables and figures as 11MUX) is a larger

version of the 6 bit multiplexer problem. There are three control bits which, represented as a

binary number, can select one of 8 inputs to be output. The fitness is the number of correct

choices over over all possible 2048 combinations of inputs for the eleven Boolean bits. The

11 bit multiplexer is substantially more complex compared to the 6 bit multiplexer as the size

of the search space increases from 22
6

(6 bit multiplexer) to 22
11

(11 bit multiplexer). The

function set used for the 11 bit multiplexer is {IF, AND, OR, NOT} and the terminals set is {A0,

A1, A2, D0, D1, D2, D3, D4, D5, D6, D7}.

The objective of the even 4 parity problem (referred to in all tables and figures as 4PAR) is

to return true if and only if an even number of the inputs are true. The function set is {IF, AND,

OR, NOT} and the terminal set is {D0, D1, D2, D3}. The score in this case is the number of

correct outputs for all of the 16 different input combinations.

The 7 parity problem (referred to in all tables and figures as 7PAR) is a larger version of

the 4 parity problem with the objective or returning true, if and only if, an even number of

inputs are true. The function set used is {IF, AND, OR, NOT} and the terminal set is {D0, D1,

D2, D3, D4, D5, D6}. The fitness score is the correct classification of the even number of

inputs for all 128 input combinations.

The objective of the 5 majority problem (referred to in all tables and figures as 5MAJ) is

to return true, if and only if, the majority of the inputs are true. The function set is {IF, AND,

OR, NOT} and the terminal set is {D0, D1, D2, D3, D4}. the score in this case is the correct

classification of all 32 input combinations.

The 9 majority problem (referred to in all tables and figures as 9MAJ) is an extension of

the 5 majority experiment with the same function set and the terminal set {D0, D1, D2, D3,

D4, D5, D6 , D7, D8}. The larger number of terminals increases the difficulty as the score is
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Figure 4.1: The Santa Fe trail for the artificial ant problem. The ant starts at 0:0 facing east.
X symbols represent the location of food pellets.

based on the number of correct classifications out of 512 input combinations.

The artificial ant santa fe problem (referred to in all tables and figures as AASF) models

an ant operating over a trail of food pellets on a grid. The ant must collect all the food pellets

in order to achieve full score. The benchmark Santa Fe trail (Langdon and Poli [2002]) as

shown in figure 4.1 is used, which is a trail of 89 food pellets (and is also a broken trail in

places) on a 32X32 toroidal grid.

The function set for the ant problem is {IF-FOOD-AHEAD, PROGN2, PROGN3} and the

terminal set is {MOVE, TURN-LEFT, TURN-RIGHT}. The function IF-FOOD-AHEAD is an

if-then-else structure with the condition representing whether the ant has a food pellet in the

grid square directly in front of it. PROGN2 and PROGN3 execute the instructions they hold

in sequence. The only difference between them is that PROGN2 has an arity of two and

PROGN3 has an arity of three. The score is represented by how many food pellets the ant

can pick up in a set number of time steps, where a time step is either a move or a turn. In
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this case, 600 time steps are used.

In the cubic polynomial problem (referred to in all tables and figures as CUBIC), GP is

attempting to generate an equation equivalent to y = 3x3 +2x2 + x. The function set used is

{ADD, SUBTRACT, MULTIPLY, PROTECTED_DIVISION} and the terminal set is {-5, -4, -3,

-2, -1, 0, 1, 2, 3, 4, 5, X}. Protected division prevents division by zero calculating the result

as zero rather than infinity. Fitness is assessed by calculating the set of values between

−5 6 x 6 5 in intervals of 0.5, and summing the absolute error obtained for each reading.

In the quartic polynomial problem (referred to in all tables and figures as QUART), the

objective of GP is to generate an equation equivalent to y = x4 + x3 + x2 + x. The function

set and terminal set is the same as that used for the cubic polynomial problem. Fitness is

assessed using the same method as for the cubic polynomial problem.

4.2 General Genetic Programming Parameters

These parameters have been chosen based on the experimental settings presented in Koza

[1992] as they are relatively common parameters used by GP practitioners. Using zero

probability for mutation removes an additional variable of consideration. Whilst most ex-

periments presented in this work will use these parameters, individual parameters may be

modified for experimental purposes. For example, an experiment testing initialisation may

make use of different initialisations to that of the Ramped Half and Half initialisation method.

The general parameters used for all experiments, unless otherwise stated were:

• 0.9 crossover probability

• Koza standard crossover with 90% bias on functions and 10% on terminals

• 0.1 reproduction probability

• Breeding pool at 10% of population size

• 0 mutation probability

• Ramped half and half initialisation (depths 2 - 6)

• 10% elites moved through to the new population
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• Maximum depth limit of 17 enforced during crossover and mutation operations. Pro-

grams deeper than depth 17 are replaced by their parent programs.

• 50 generations

• 100 runs

• 7 competitor tournament selection

• Population size of 500 for 4PAR, 5MAJ, 6MUX, AASF, CUBIC, QUART and population

size 4000 for 7PAR, 9MAJ, 11MUX

4.3 Modelling Behaviour

The problems described in section 4.1 fall into one of three categories of problem domain.

These are; the Boolean domain, the artificial ant domain and the symbolic regression do-

main. This section presents the methods used to reduce syntax to canonical representations

of behaviour in the respective domains.

4.3.1 Boolean Domains

In order to canonically model the behaviour of Boolean programs, Reduced Ordered Binary

Decision Diagrams (ROBDDs) have been chosen due to their well established reduction

rules, as set out by Bryant [1986]. The important functionality that this provides is the ability

to reduce program representation to its canonical form by removing redundant and unrea-

chable arguments. The key functionality is that the resulting canonical representations can

be used to compare programs for semantic equivalence. Any two programs that reduce to

the same ROBDD are semantically equivalent, and vice versa. In the GP context, not only

can this technique be used to reduce programs to a canonical form for semantic equivalence

checking, it can also be used to reduce programs and translate them back to a smaller, fully

effective syntax.

In a practical sense, to enable the semantic evaluation of Boolean programs during a

GP run, a Java implementation of GP (Beadle and Castle [2007]) which is linked to the Co-

lorado University Decision Diagram Package (CUDD—Somenzi [1998]) using the JavaBDD

48



(Whaley [2007]) interface has been constructed. This provides the ability to both translate

GP syntax into reduced representation and translate the reduced representations back into

syntax.

This section is further divided into an explanation of key features of ROBDDs, the trans-

lation and reduction mechanism and back translation mechanism.

Key Features of Reduced Ordered Binary Decision Diagrams

An ROBDD is a node tree where each node represents a Boolean decision variable. These

nodes are linked by true and false branches to either other nodes or the final output of the

diagram (true or false). An example of an ROBDD can be found in figure 4.2.

Figure 4.2: This example ROBDD is a canonical representation of behaviour. In the diagram,
circles represent variables (terminals in the GP context), solid arrows represent true paths
and dotted arrows represent false paths. The squares marked 1 and 0 represent output of
true and false respectively. This behaviour could be represented by many different parse
trees. Two examples of parse trees that would result in this behaviour are IF A0 D0 D1 and
IF (NOT A0) D1 D0.

Two important measurements used in the analysis of ROBDDs are SatCount and No-

deCount. SatCount is a value between 0 and 1 that represents the number of input combi-

nations resolving to true in the ROBDD, divided by the total number of input combinations

possible. NodeCount will return the number of variables present in the ROBDD (in the GP

context the number of terminals used). This function can be used in conjunction with Sat-

49



Count to classify behaviours. For example, a SatCount of 0.25 with a NodeCount of 2 would

represent a function such as AND A0 A1, given that there are four input combinations in total

of which only one results in true. In a second example, a SatCount of 0.75 with a NodeCount

of 2 would indicate a function such as OR A0 A1. If the NodeCount is 1 and the SatCount

is 0.5, the ROBDD of the program parse tree will reduce to just one variable (terminal) and

possibly a function such as NOT.

A tautology is a program which produces the output true regardless of input. In the case

of a tautology, the value of SatCount is 1. A contradiction is a program which produces the

output false regardless of input. For a contradiction, the value of SatCount is 0. Unlike in

program parse trees, ROBDD functions are not represented explicitly as nodes in the parse

tree, but by using true and false links between the variables. Due to the reduction mechanism

(Bryant [1986]), it is possible to reduce some ROBDDs to just true or false (i.e. tautology or

contradiction). If one considers the example AND A1 (NOT A1), this program will always

result in false and the ROBDD of this program will reduce to false. In the GP context this is

very undesirable because it indicates that the result is not dependent on any of the variables

and always returns the same answer (true or false).

Translation to ROBDD

With a limited function set such as F = {IF, AND, OR, NOT} and a arbitrary fixed ordering of

variables, translation to an Ordered Binary Decision Diagram is a matter of following a rule

set as follows:

• Terminal, assemble variable with true and false links to correct outputs.

• Function NOT, swap the true and false links of the child node to the outputs.

• Function AND, first node with false link to false output and true link to second node,

second node with false link to false output and true link to true output.

• Function OR, first node with true link to true output and false link to second node,

second node with false link to false output and true link to true output.

• Function IF, true link from condition node to true branch node and false link from condi-

tion node to false branch node.
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After these rules have been applied the Ordered Binary Decision Diagram can be reduced.

Bryant [1986] defines an ROBDD as “A function graph G is reduced if it contains no vertex v

with a low(v)=high(v), nor does it contain distinct vertices v and v’ such that the sub graphs

rooted by v and v’ are isomorphic.” (where low and high are the false and true branches res-

pectively connecting the child nodes). This provides the basis for the reduction mechanism

and Bryant describes an example algorithm to perform the reduction method.

Back Translation from ROBDD

Considering the same limited function set, F = {IF, AND, OR, NOT}, translation back from

ROBDD format is a matter of following the rule set:

• Node with true link to true output and false link to false output becomes single terminal.

• Node with true link to false output and false link to true output becomes NOT and single

terminal.

• Node with false link to false output and true link to another node becomes AND function.

• Node with true link to true output and false link to another node becomes OR function.

• Node with both links to other nodes becomes an IF function.

• Node with true link to false output and false link to another node becomes OR function

with nested NOT function.

• Node with false link to true output and true link to another node becomes AND function

with nested NOT function.

Limitations

Bryant [1986] notes there are limitations to making use of ROBDDs. From the point of view

of GP, one limitation is the fact that node trees including ten or more variables can in some

situations result in node trees containing over 100,000 vertices. Given the random nature

of GP, this could be possible when reducing a program to ROBDD form. Having expressed

these limitations, throughout the running of all of the experiments (including the 11MUX), the

creation of the ROBDDs has never been excessively slow or unusable (see results presented
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in table 5.1). This maybe due to a bias towards simplistic behaviour (see discussion in chap-

ter 5) or the increased power of modern computers considering this algorithm was devised

in 1986.

In contrast, the back translation mechanism does have limitations. Problems with more

variables/terminals than the 11MUX do hinder the ability to back translate the programs,

although the loss of performance appears to occur when constructing the syntax tree and

the fact that the resultant syntax trees can be much larger than the standard GP depth

limitations. For further discussion on this topic, see chapter 5.

4.3.2 Artificial Ant Domain

In order to represent the behaviour of ants, a behavioural model can be considered as a

sequence of moves and orientations that represent the path which the ant has travelled

during only one execution of the ant control program (or GP candidate solution). When the

artificial ant is simulated in GP, the candidate solution is repeatedly executed until the ant

has travelled a set number of time steps (600 in this case) Langdon and Poli [2002]. In this

behavioural model, the ant control code is only executed once. In addition to this, the ant

code is executed on a toroidal grid (32X32) that contains no food pellets and the path of both

the true and false branches of the IF-FOOD-AHEAD (if-then-else) function are calculated.

An example program in this domain is as follows:

PROGN2 (PROGN3 (MOVE, (IF-FOOD-AHEAD (PROGN2 (MOVE, TURN-RIGHT)) MOVE)

MOVE) TURN-LEFT)

An example of the syntax, equivalent to the above program, is as follows:

Ant Representation = 〈M, 〈 M, S 〉, 〈 M 〉, M, N 〉

The character M represents one move and the characters N, S, E, W represent the orien-

tations north, south, east and west respectively. The sub sequences within the set indicate

when a branch of an IF-FOOD-AHEAD statement is being accessed and coordinates within

those brackets indicate the path travelled during each branch of the condition. When consi-

dering the ends of the IF-FOOD-AHEAD statements, rather than duplicate the path following
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the IF branches in each branch, the orientation is reset to the orientation before the IF sta-

tement and a single path follows the branches of the IF statement. Because modelling the

shape of the trail is the only concern (consider the picture of the trail as one looks down

on the grid), it is unimportant whether or not the ends of each of the if-blocks have different

orientations for the trail to continue upon, only that the relative meaning for modelling change

of position (or picture of the trail) is captured (once and not duplicated) after the IF statement.

More formally, the representation can be described in Backus-Naur Format:

rep ::= 〈< expr >〉

expr ::= M |N |S|E|W | < bracketExpr > | < expr >,< expr >

bracketExpr ::= 〈< expr >,< expr >〉

As with the Boolean domain, the random combination of syntax produced by GP can

produce very simplistic behaviours. The most common of these is an ant that does not

move. As a result, this produces a zero trail and effectively is similar to the tautology and

contradiction in the Boolean domain.

Translation to Representation

In addition to this model structure, three checks are added which condense the abstract

representation to a canonical form. These three checks are:

• Remove duplicate sub branches of the same if statement and incorporate the paths as

part of the fixed path the ant was on before the if statement.

• Search for sequences of orientations and reduce them to the last orientation in the

sequence. This has the effect of removing redundant turns from the ant abstract model.

• Moving through the representation, remember the current orientation and remove any

duplicate calls to turn to the current orientation. This serves to remove redundant turn

instructions.
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Back Translation from Representation

Back translation of the ant representation is performed in two stages. Firstly, a linear list

of instructions is created from the representation using the terminals available for the ant

representation. Secondly, the list is transformed into a tree using the function set {IF-FOOD-

AHEAD, PROGN2, PROGN3}. The IF-FOOD-AHEAD branches can be interpreted from the

linear list and after this is resolved it is a matter of using PROGN2 and PROGN3 to build up

the tree.

Due to a weakness in the ant representation, extra syntax is required to back translate

from the representation. The reason for this is that it is possible to produce a non moving ant

that ends in the same orientation as one of the branches of the IF-FOOD-AHEAD function.

Without any method to cater for this the result would be a blank branch, which syntactically

would be invalid. The fix that has been applied to this is to create an extra terminal called

SKIP. The only functionality of SKIP is to cost the ant one move, because the ant could get

trapped on the execution of SKIP due to the nature of the IF-FOOD-AHEAD function.

4.3.3 Symbolic Regression

In order to model symbolic regression, the representation of behaviour is considered as an

ordered list of powers, variables and coefficients very similar to the concept of a simplified po-

lynomial equation with some cosmetic differences. In the implementation that provides the

results for this thesis, the translation and simplification methods have been created consi-

dering a single variable, any number of numeric constants and the function set F = {ADD,

SUB, MUL, PDIV} (where PDIV is a protected division resolving numbers divided by zero to

zero rather than infinity). This is expandable as the representation could be made to ma-

nage multiple variables and the simplification methods could be improved to include for more

functionality. This minimalistic version is presented as a proof of concept.

Consider the example:

ADD (MUL X 4) (ADD (MUL 4 5) (ADD X 1))

The example syntax would resolve to:

{CVP(21 X 0), CVP(5 X 1)}
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Where CVP represents a coefficient, variable, power object.

Written in mathematics notation 5x + 21 is the result of the formula. The CVP object

format is used to provide a standard format to model both constants and variables as well

as allow mathematical manipulation of algebraic terms. In the CVP list the element with the

lowest power is listed first so that the list is ordered to simplify checks for isomorphism.

Readers may note that functions using PDIV will result in zero when divided by zero

causing a plot of the regression formula to spike towards zero when X is zero. As this

reduction mechanism does not calculate the result of the regression formula, this problem

does not effect the reduction mechanism. Consider the example PDIV 1 (ADD 5 X). This

would result in a representation value of {CVP(1 X -1), CVP(0.2 X 0)}.

As with the Boolean and ant domains, there is the potential for constant behaviour repre-

sentations to be produced. A simple example would be a multiply by zero operation at the

root of the tree, thus resolving with the whole formula to 0. This is not ideal as the result is

not dependant on any of the GP terminals. Moreover, any CVP object with a power of zero

is not reliant on any input variables as, for example, x0 = 1. As a result of this, regression

representations that resolve to a constant value are considered as undesirable. There may

be the argument that sometimes the solution is a constant, however, it would be doubtful that

GP would be used to construct a constant solution not dependant on any variables.

Translation to Representation

Several steps are used to translate the syntax tree to the CVP list format. These are:

• Resolve all multiply by zeros.

• Resolve all PDIV by zeros and PDIV with isomorphic subtrees.

• Resolve all constant calculations.

• Reduce to the CVP format by first changing all terminals into CVP format and then

conducting algebraic simplification to remove all multiplication and protected division

operations.

• Simplify any CVP addition and subtraction operations where possible.
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• Extract the remaining CVP objects from the tree and place them into the ordered CVP

list.

This process effectively mimics that of algebraic simplification for polynomial equations.

Back Translation to Syntax

Translating back to syntax from the ordered CVP list is straightforward in comparison to

the reduction mechanism. Firstly, build a basic syntax tree using the list of CVPs in the

representation containing ADD and SUB functions. Secondly, recurse through the node tree

and expand out all the CVP objects. For those with powers of zero, then insert a constant,

for positive powers, expand using MUL and those with negative powers using PDIV.

4.3.4 Constant Behaviours

Within the Boolean, ant and regression domains, it is easy to demonstrate programs that do

not depend on the input variables. Some examples of these programs include:

AND A1 (NOT A1)

PROGN2 TURN-LEFT TURN-RIGHT

SUB X X

Throughout this work, programs that do not depend on inputs are referred to as constant

behaviours. The ant is somewhat different in design, however, an ant that contains no move

instructions is stuck (as a constant) in one place and cannot pick up any food. In symbolic

regression, a program may resolve in such a way that no variables are present and as such

will be a constant value. In the Boolean domain, truth tables dictate that some programs will

reduce to tautology or contradiction form, and while these programs do not depend on the

values of their input variables, they count as a constant result for every input.
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Chapter 5

Semantic Analysis of Initialisation in

Genetic Programming

The goal of this chapter is to attain an advanced understanding of the issues involved with

program initialisation in genetic programming (GP) through the analysis of different aspects of

program initialisation. Although four different program initialisation algorithms are presented

with varying levels of success, the focus of this chapter is primarily on testing theories rather

than presenting algorithms for practical use. This chapter extends the results presented in

Beadle and Johnson [2009a] to include results from experiments in the symbolic regression

domain.

The ideal initialisation of random programs in a many to one genotype to phenotype si-

tuation (such as GP) presents a challenge when performing uniform population initialisation.

Unlike other forms of evolutionary computation, GP relies on the execution (or interpreted

execution) of programs in order to attain fitness values (although some work has included

program structure as a factor, for example, Punch et al. [1996], Daida et al. [2003], Gustaf-

son et al. [2005]). In terms of creating random programs to seed a GP run, the fact that

fitness is based on the execution of the program means that a semantically diverse starting

population should be investigated, rather than a starting population that is only syntactically

diverse. It seems reasonable that this would increase the search power of GP because the

initialised programs would have a greater range in the semantic search space.

In order to test the theory that increased semantic diversity affects GP results, an enti-

rely Semantically Driven Initialisation (SDI) algorithm (built on ideas developed from analysis
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of the traditional ramped half and half (RHH) technique created by Koza [1992]) has been

developed, which produces one hundred percent effective code (Nordin et al. [1995]) at initia-

lisation. In addition to the performance results generated when using this algorithm, the size

and shape metrics of the programs produced by SDI are compared to the RHH technique

over a range of benchmark problems. In a further set of experiments, the SDI algorithm is

hybridised with the existing FULL (Koza [1992]) initialisation technique. When compared to

the results produced by the RHH and SDI techniques, the experiments presented demons-

trate that full semantic diversity is not the only major influence on program initialisation for

GP.

Finally, a set of experiments is devised in order to test the importance of the role of pro-

gram structure during initialisation. The experiment compares programs constructed using

an existing algorithm and then semantically prunes them to result in behaviourally equivalent

programs of a different structure containing no introns.

At the time of writing, initialisation in GP is an area that has received relatively little re-

search attention in comparison to other aspects such as crossover. The contribution made

by this work is formally examine semantic diversity and program structure at initialisation and

attempt to understand the reasons these two factors affect GP performance and program

metrics.

Section 5.1 presents the algorithms used for program initialisation. Section 5.2 presents

the results, which include unique behaviour analysis, program bias analysis, program me-

trics analysis, GP performance results and evolvable shape experiments over a range of

benchmark problems. Section 5.3 presents a discussion of the results and in section 5.4 the

conclusions are presented. Section 5.5 discusses several avenues for future related work.

5.1 Methods and Algorithms

In order to test the theory that increasing the semantic diversity of the starting population

will increase GP performance, two algorithms have been developed. The first of these is the

Semantically Driven Initialisation (SDI) algorithm. This algorithm builds starting populations

purely from a combination of semantically unique programs. All programs produced by SDI

are semantically distinct and one hundred percent effective code. The second algorithm is
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Algorithm 5.1 Semantically Driven Initialisation
Phase 1:
for each Terminal in Terminal_Set

create Representation of Terminal
add to Representation_Store

end for each
Phase 2:
while Representation_Store_size < population_size

choose a function from the Function_Set (uniform probability)
choose function_arity Representations from the Representation_Store

at random (uniform probability)
apply the function to the function_arity Representations at tree root
if resulting_Representation is a new behaviour and not a constant behaviour

add resulting_Representation to Representation_Store
end if

end while
Phase 3:
for each Representation in Representation_Store

translate Representation to program
add to First_Generation

end for each

the Hybridised Semantically Driven Initialisation (HSDI) algorithm. Again, this algorithm will

produce a semantically distinct starting population, however, it is seeded using the existing

FULL (Koza [1992]) algorithm.

In order to test the importance of program structure during initialisation, a further two al-

gorithms have been developed. The first is a modified version of the FULL algorithm (known

as MODFULL) which will not produce constant behaviours (tautologies, contradictions, no

move ants, constants in regression). MODFULL will produce “fat” programs with unrea-

chable and redundant code present. To produce the contrasting smaller “thin” programs with

fully effective code, semantic pruning is applied to the resulting programs of the MODFULL

algorithm. This combination of the MODFULL algorithm and semantic pruning is referred to

as WASHED initialisation.

The ability to reduce programs to canonical representation and back translate them to

syntax is as described in section 4.3 and the nine experiments used are as set out in section

4.1. The parameters used are as set out in section 4.2 unless otherwise stated.
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5.1.1 Semantically Driven Initialisation

Pseudo code for the SDI algorithm is presented in algorithm 5.1. In phase 1 the terminals

are translated to behavioural representations and added to the representation store. This is

required as at least one example of each input variable is needed to be present as building

blocks for phase 2. Without any representations in the representation store from phase

1, phase 2 would fail as it would have nothing to combine using the functions. Phase 2

starts to combine the terminals (or single variable representations) using functions: when a

semantically unique representation is produced, it is saved in the representation store. As

phase 2 continues, the algorithm is able to take advantage of all of the representations held

in the representation store and this encourages more complex behaviour to be generated.

Phase 3 translates the representations back to syntax trees. One other important factor is

that this algorithm will not produce constant behaviours.

Close observers of the SDI algorithm will notice that there is no syntax that will result

in the guarantee of termination. Termination in this case occurs because the behavioural

search space is larger than the number of programs being initialised. In GP, it would be very

unlikely that a practitioner would be trying to evolve a solution when they could generate

every possible behaviour in a reasonable amount of time, otherwise it would defeat the point

of using GP to solve a particular problem. Theoretically, for small finite problems (such as a

3 bit multiplexer), if the SDI was asked to generate a population of more than 254 behaviours

(256 in total minus the tautology and contradiction), the algorithm would not terminate.

There are underlying differences between the three problem domains. The ant domain

is toroidal, and therefore potentially infinite. When a domain is infinite, it is necessary to

constrain the size. This has been achieved by constraining the behaviour, whereas in pre-

vious work (Koza [1992]) this has been done by constraining the syntax. Furthermore, whilst

programs in the Boolean domain would be run only once, in the ant domain the program is

executed repeatedly up to a limit of 600 time steps. As a result of both the toroidal nature

and the repeated executions, a behavioural size limit of ten moves (chosen as an arbitrary

reasonable value) has been applied to enforce a syntactic size limit. This limit was set so that

if the function PROGN3 is used, it allows enough moves to traverse the grid in one execution.
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Algorithm 5.2 Hybridised Semantically Driven Initialisation
Phase 1:
Generate FULL_First_Generation (depth 4)
for each program in FULL_First_Generation

translate program into representation
if representation is not a constant behaviour and not in Representation_Store

add representation to Representation_Store
end if

end for each
Phase 2:
while Representation_Store_size < population_size

choose a function from the Function_Set (uniform probability)
choose function_arity Representations from the Representation_Store

at random (uniform probability)
apply the function to the function_arity Representations at tree root
if resulting_Representation is a new behaviour and not a constant behaviour

add resulting_Representation to Representation_Store
end if

end while
Phase 3:
for each Representation in Representation_Store

translate Representation to program
add to First_Generation

end for each

5.1.2 Hybridised SDI

In addition to the SDI algorithm, a hybridised version of the algorithm (HSDI) was developed.

The objective of the hybridised version of the algorithm was to combine behaviours both in

the simplistic and complex areas of the search space, aiding a wider search. The pseudo

code for the HSDI is displayed in algorithm 5.2.

In the hybridised version of the SDI, phase 1 of the initialisation algorithm is altered in

comparison to the SDI algorithm. Instead of using representations of terminals as the initial

seed to build on, the existing FULL (Koza [1992]) algorithm is used to create the first round

of representations. The FULL algorithm is used because of the increased semantic diversity

it provides (shown in figure 5.2 and table 5.2) and the fact that because the programs are

converted into representations the shape of the trees is unimportant to the outcome of this

algorithm. Upon creation of each FULL program, the representation is stored, if and only if,

it is unique and is not a constant behaviour. Section 5.2.2 shows results to demonstrate the

current level of unique behaviours within different starting populations using the RHH and

FULL techniques. Once this seed is complete, the HSDI algorithm continues in the same
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Algorithm 5.3 The MODFULL Algorithm with Additional WASHED Section.
while first_Gen_Size < pop_Size

generate FULL_Program
generate FULL_Program_Representation
if FULL_Program_Representation is NOT a tautology or contradiction

add FULL_Program to first_Gen
end if

end while
—Additional code to reduce the programs produced above for “Washed” code.—
for each program in first_Gen

translate program to representation
back-translate representation to reduced_program
replace program with reduced_program in population

end for each

way as the SDI algorithm and combines behaviours at the root, therefore encouraging more

complex behaviour. In phase 3, the behaviours are translated back to one hundred percent

effective syntax.

In the hybridised version of the artificial ant problem, phase 3 can become problematic

due to the fact that the abstract representation can reduce branches of the IF-FOOD-AHEAD

statement to nothing (for example if it contained a turn left and then a turn right instruction).

As mentioned in chapter 4, an addition has been made to the ant syntax which can only

occur in back translation. This addition is the SKIP operation. This has no effect on the ant

apart from costing it one move. The move cost is required because some IF structures result

in the ant always falling into the SKIP function when it is executed.

5.1.3 Evolvable Structure Analysis Algorithms

In order to evaluate how program structure affects GP performance, the MODFULL and WA-

SHED algorithms are used to provide contrasting tree shapes. The MODFULL and WASHED

algorithms are presented in algorithm 5.3.

The MODFULL algorithm is based on the FULL algorithm (presented by Koza [1992])

with a maximum depth of four. The notable difference is that the MODFULL algorithm will not

produce a constant behaviour. The reason for this is that, if a program is reduced seman-

tically to a constant behaviour, it cannot always be translated back to syntactic form. The

reason for developing the MODFULL algorithm is to compare equivalent trees that are com-

posed of different structures. As the WASHED algorithm is an extension of the MODFULL
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Experiment SDI HSDI RHH

4PAR 161 203 87
5MAJ 243 279 89
6MUX 414 415 87
7PAR 650 614 90
9MAJ 1885 1516 87

11MUX 5581 3882 86
AASF 548 625 129

SYM_REG 123 108 58

Table 5.1: One hundred populations of size five hundred are initialised using SDI, HSDI
and the RHH techniques. The times quoted are in milliseconds and represent the average
number of milliseconds taken for one initialisation of a population to take place.

algorithm and translates representation to syntax, constant behaviours cannot be present,

otherwise it would not be possible to translate from representation to code.

The key differences between the the first generation produced by the algorithms are two-

fold. Firstly, by applying the WASHED algorithm all introns are removed from the starting

population and in conjunction with this there are no constant behaviours either. Secondly,

the programs produced by MODFULL and WASHED are structured distinctly, yet are seman-

tically equivalent.

5.2 Results

Results are presented for the experiment suite presented in section 4.1, which analyse dif-

ferent characteristics of the GP run by comparing different initialisation methods. These

experiments include a speed comparison, analysis of unique behaviours, behavioural bias

analysis, size and shape analysis, a comparison of overall GP performance, and a compari-

son of performance using program structures at initialisation.

5.2.1 Speed Comparison of Initialisation Methods

To address initial fears that these new algorithms might take impractical amounts of compu-

tation time, a comparison of speed of initialisation is presented showing the time it takes to

initialise a starting population using SDI, HSDI and the traditional RHH technique.

Whilst table 5.1 shows that the RHH technique takes less time to generate programs, this

experiment does not give any indication of the comparable quality of the resulting programs.
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Considering that the results quoted are in milliseconds, it is reasonable to use semantically

driven initialisation in order to attain a semantically diverse starting population, as even the

slowest initialisation is only six seconds.

A second aspect of this experiment which is not comparable is that RHH has a built in

depth limit and, as such, cannot build programs greater than that depth. As a result of these

depth limitations we know that the average depth of programs will fall in the range of two to

six, therefore limiting the size of the programs generated. The SDI and HSDI algorithms do

not use a depth limit1 to constrain the size of the programs. Therefore, it seems reasonable

to expect that the process might take longer as given that the programs generated by the

SDI and HSDI algorithms only represent the behaviour in the form of effective code, the SDI

and HSDI are having to do more work in terms of code generation, and the size and shape

results in section five support this. The difference in speed of generation is not considered

to be a significant factor in choosing between these different methods as the difference is

comparable in seconds and these algorithms are being used in this work to test and evaluate

theories only.

5.2.2 Behaviour in Starting Populations

Analysis of Unique Behaviours

The behavioural representations set out in section 4.3 are used to analyse GP starting po-

pulations. Given a starting population, each program in the population is transformed into

behavioural model form. The number of unique behaviours in the population is enumera-

ted by testing for model equivalence. In addition to testing for representational equivalence,

the number of programs associated with a specific behaviour is calculated to analyse any

bias towards specific behaviours. In these experiments, one hundred populations at each

population size are initialised and all results reported are averages of these one hundred

initialisations.
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Figure 5.1: Enumeration of unique behaviours present in starting populations expressed as a
percentage of the total population size. SYMREG% represents experiments in the symbolic
regression domain because the same functions and terminals are used for initialisation in
both symbolic regression experiments. This analysis is repeated for population sizes ran-
ging from 500-5000 for each experiment. All results quoted are an average of one hundred
initialisations.

65



Figure 5.2: The figure shows the percentage of semantically unique programs generated by
the FULL (depth 4) and RHH techniques against population size for the 6MUX, AASF and
CUBIC problems.

Unique Behaviours

Figure 5.1 shows that in every model, there is a notable percentage of duplicated beha-

viours. The 4PAR experiment represents the worst performing result in terms of the number

of unique behaviours: when the population increases past 2500, less than 40% of the pro-

grams produced by RHH are semantically unique. Furthermore, the 11MUX experiment

demonstrated the least duplication of behaviours with a maximum of 15%. One feature ap-

plicable to all models is that, at different levels, all percentages of unique programs decrease

as the population increases. This could indicate a type of bias such that some behaviours

are favoured and repeatedly produced by the RHH. The final feature of note is that as the

number of terminals increases for the Boolean domain, there is less duplication of behaviour.

Figure 5.2 shows a sample of three of the test problems (one from each domain conside-

red) comparing the semantic diversity when using the FULL (depth 4) and RHH techniques.

In two out of three cases, the FULL technique generated more semantic diversity overall
1Except as already explained for the artificial ant SDI with the behavioural building block size of ten moves.
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Problem Experiment Mean Unique Behaviours PT

6MUX RHH 1911.86 ±987.11 -
FULL4 2471.93 ±1347.99 0.001

AASF RHH 2292.90 ±1225.27 -
FULL4 2719.33 ±1488.46 0.001

CUBIC RHH 1248.73 ±635.58 -
FULL4 2210.75 ±1181.79 0.000

Table 5.2: The table shows statistical tests comparing the number of unique behaviours ge-
nerated by the RHH and FULL (depth 4) algorithms. Problem indicates the problem conside-
red, experiment indicates the initialisation method used, Mean Unique Behaviours indicates
the average number of unique behaviours ± the standard deviation. PT indicates the P-
Value of a Paired T-test comparing the numbers of unique behaviours produced by the RHH
and FULL4 algorithms. In the case of significance at the 95% confidence level, the result is
aligned with the most diverse starting population.

(for the range of populations sizes presented) and paired T-tests (table 5.2) revealed that

this difference is significant at the 99% confidence levels for the 6MUX, AASF and CUBIC

problems.

This is an interesting result as previous authors Koza [1992] have reported that FULL

does not perform as well as RHH in terms of GP performance. This result lends weight

to the theory that there is an ideal evolvable shape of program tree. In the context of the

HSDI algorithm, if a semantically diverse seeding mechanism is required and the shape of

the programs is not important (because they will be modelled as behaviour), then the FULL

algorithm would be ideal to seed the HSDI.

5.2.3 Bias Analysis

In a second experiment, aimed at analysing any bias present in an initialised population,

100 populations of size 1000 are initialised. Every behaviour produced by the 100,000 ini-

tialised programs is recorded and if behaviours are produced multiple times, a record of the

frequency is saved.

Table 5.3 shows that for the initialisation of the populations considering 4PAR experiment,

the RHH favours simplistic behaviours with the readings at rank one and two being the

contradiction and tautology. As explained in section 4.3.1, tautologies and contradictions

are a constant behaviour and their result does not depend on the input value of any of the

variables (or terminals in the GP context). In every initialisation of population size 1000, an
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4PAR

Rank Frequency Node Count Sat Count

1 42.25 0 0
2 40.94 0 1
3 18.59 1 0.5
4 18.32 1 0.5
5 18.14 1 0.5
6 18 1 0.5
7 10.7 2 0.25
8 10.55 2 0.75
9 10.53 2 0.75
10 10.5 2 0.25

7PAR

Rank Frequency Node Count Sat Count

1 17.52 0 1
2 17.05 0 0
3 7.21 1 0.5
4 7.05 1 0.5
5 7.02 1 0.5
6 6.69 1 0.5
7 6.67 1 0.5
8 6.66 1 0.5
9 6.47 1 0.5

10 3.29 2 0.75

6MUX

Rank Frequency Node Count Sat Count

1 21.78 0 1
2 21.68 0 0
3 9.15 1 0.5
4 8.93 1 0.5
5 8.85 1 0.5
6 8.7 1 0.5
7 8.65 1 0.5
8 8.64 1 0.5
9 4.13 2 0.25
10 4.1 2 0.25

11MUX

Rank Frequency Node Count Sat Count

1 8.62 0 1
2 7.67 0 0
3 3.6 1 0.5
4 3.59 1 0.5
5 3.54 1 0.5
6 3.54 1 0.5
7 3.53 1 0.5
8 3.52 1 0.5
9 3.47 1 0.5

10 3.42 1 0.5

Table 5.3: Bias results for the parity and multiplexer models. Rank indicates the relative
frequency with one being the most frequent behaviour. The frequency is the total number
of occurrences of this behaviour divided by 100 which indicates the number of times this
behaviour is expected to occur per initialisation. Node count and sat count are as explained
in section 4.3.1.
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average of 40.94 tautologies and 42.25 contradictions occur. This results in 8.32% (com-

bination of tautology and contradiction) of the programs generated in each initialisation not

depending any any of the input variables.

Moreover, none of the behaviours in the ten most frequent behaviours contain all the

terminals and therefore these behaviours represent partially blind candidate programs. Be-

haviours in ranks three to six represent single terminals with or without the possibility of a

NOT function and the behaviours in ranks seven to ten represent simple AND or OR func-

tionality. The 46th ranked most frequent record (with a frequency of 2.92) is the first record

which has a node count of four. This indicates that behaviours that use four inputs (and

possibly all the terminals) are being infrequently created when compared to the simplistic

structures we see in table 5.3.

In table 5.3, the 7PAR results are similar to that of the 4PAR results. Again, the constant

behaviour states feature at ranks one and two, and single terminals at positions three to nine

and simplistic OR functionality in position ten. Whilst the behavioural structures are simi-

lar to the 4PAR experiment, the frequencies are slightly reduced such that tautologies only

represent 5.78% of the behaviours generated in an average initialisation. The introduction

of more terminals adds but a little more diversity to creation of behaviours using the RHH

technique. It is not until the 1515th ranked most frequent behaviour with a frequency of 0.5

occurrences per initialisation, that we see a node count of seven for the first time. Again, this

indicates a bias towards simplistic behaviours being generated by the RHH technique.

In table 5.3, the 6MUX and 11MUX experiments show similar results to that of the even

parity experiments. Again, the tautology and contradiction states feature as the two most

frequently constructed behaviours. These are followed by single terminals, and then simple

two terminal structures. As the number of terminals in the problem increases, the chances

of constructing a behaviour with all terminals present becomes even worse.

The first occurrence of a behaviour with a node count of six (for the 6MUX problem)

is ranked 559th, with a frequency of 0.13 occurrence per initialisation. This information is

worth considering as the 6MUX problem frequently has its population size parameter set at

500. Therefore, considering an average initialisation, the population is unlikely to contain one

candidate program which has all terminals present in the behaviour.

Table 5.3 shows that the bias results for the 11MUX experiment have similar characte-
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ristics to the other Boolean models: the increase in terminals results in a decrease in the

frequency of behaviours which use all inputs. In this analysis, it was not until the 345th ran-

ked most frequent program (with a frequency of 0.16) was reached until only three nodes

were used to create a behaviour.

In keeping with the other Boolean domain experiments, table 5.4 shows that the 5MAJ

and 9MAJ experiments suffer a similar bias. In the case of the 5MAJ experiment, it was the

150th most common behaviour with a frequency of 0.67 when a node count of 5 was first

achieved. In the case of the 9MAJ experiment, it was the 2614th most frequent behaviour

before a node count of 9 was achieved.

The AASF results in table 5.4 exhibit similar simplistic behaviours, albeit not in the same

way as the problems in the Boolean domain. The most frequent structures assembled by the

RHH technique are simple one move or turn structures. It is not until the 6th most frequent

reading that a behaviour contains two operations. It is not crucial to have behaviours with

large numbers of moves (because of re-execution of the ant control code), but in order to

achieve full score, the ant will have to have a behaviour containing several moves and turns.

To put this into perspective, it is not until the 197th most frequent reading (0.32 frequency)

when five moves are first accomplished.

Both the CUBIC and QUART experiments use the same function and terminal set so only

a single bias analysis has been carried out in table 5.4. In keeping with the other results

obtained, the most frequent behaviours are all simplistic. All of the top ten most frequent

behaviours are constant behaviours not dependant on any variables. It is not until the 18th

most frequent behaviour with a frequency of 5.24 that the first non constant behaviour is

present in the initialised population.

If one considers the distribution of behaviours in the search space, behaviours that in-

clude all of the variables will compose the majority of the search space in comparison to

behaviours that do not rely on all of the input variables. Therefore, the level of bias to achieve

the favouring of constant behaviours presented in tables 5.3 and 5.4 is strong enough to bias

to the distribution of behaviours to a very simplistic area of the search space.
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5MAJ

Rank Frequency Node Count Sat Count

1 29.88 0 1
2 29.11 0 0
3 12.73 1 0.5
4 12.18 1 0.5
5 11.99 1 0.5
6 11.73 1 0.5
7 11.31 1 0.5
8 6.2 2 0.25
9 6.08 2 0.75
10 6.04 2 0.75

9MAJ

Rank Frequency Node Count Sat Count

1 11.26 0 0
2 10.61 0 1
3 5.01 1 0.5
4 4.88 1 0.5
5 4.84 1 0.5
6 4.76 1 0.5
7 4.6 1 0.5
8 4.57 1 0.5
9 4.46 1 0.5

10 4.42 1 0.5

Regression

Rank Frequency Terms Constant

1 125.1 1 T
2 25.67 1 T
3 24.6 1 T
4 21.21 1 T
5 20.66 1 T
6 19 1 T
7 18.5 1 T
8 18.45 1 T
9 18.32 1 T

10 15.93 1 T

AASF

Rank Frequency Move Count Final Orientation

1 11.11 1 E
2 9.82 0 S
3 9.70 0 N
4 7.97 0 W
5 7.93 0 E
6 5.48 2 E
7 5.19 1 S
8 5.14 1 N
9 5.13 1 N
10 4.96 1 S

Table 5.4: Bias results for the artificial ant and majority models. Rank indicates the relative
frequency with one being the most frequent behaviour. The frequency is the total number
of occurrences of this behaviour divided by 100 which indicates the number of times this
behaviour is expected to occur per initialisation. Node count and sat count are as explained
in section 4.3.1. For the AASF table, the move count represents the number of moves in the
behaviour and the final orientation is the direction the ant is facing on the grid after the moves
have taken place. For the regression table, Terms indicates the number of terms present in
the reduced formula and Constant indicates whether any variables are present. T = true
(F = false), which implies the reduced formula is a constant and therefore, no variables are
present.
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Discussion

Both the analysis of unique behaviours present in starting populations, and the focused bias

analysis for each model have revealed several biased features of the output of the RHH

initialisation technique.

Despite preventing syntactically identical code being produced, there are still notable

quantities of duplicated behaviours present in the starting population. Further bias analysis

of all problem domains considered revealed that the RHH technique favours simplistic beha-

viours or constant behaviours. Constant behaviours represent the RHH’s inability to create

building blocks dependent on terminal values and its ability to produce ineffective code, as

it is not possible to directly construct true or false with the syntax available. The fact that

they are the most frequent behaviours in the Boolean problems indicates that this is the main

weakness of using the RHH technique as an initialisation method.

When considering the ant domain, a similar bias in the form of a constant behaviour is

present. Unfortunately, this characteristic is the second to the fifth most produced beha-

viour by the RHH technique generating syntax in the artificial ant domain. In the symbolic

regression domain, out of the top ten most frequently produced behaviours, all of them were

constant behaviours. Across all three domains, this simplistic bias during RHH initialisation

is present.

A final aspect of concern is the apparent inability of the RHH to construct more complex

behaviour. In the case of the Boolean domain, the low rank of the first occurrences of can-

didate behaviours with node counts capable of representing all inputs present were noted.

With increasing numbers of terminals, it was harder for the RHH to generate behaviours that

used all the inputs. This effect is not limited to the Boolean domain. When considering the

ant domain, it was not until the 197th most frequent behaviour (with frequency of 0.1) that the

RHH achieved an ant that was capable of moving five positions. This situation is repeated in

the symbolic regression domain and it is not until the 33rd most frequent behaviour that two

terms are present in the reduced regression formula.

An advantage of the SDI algorithm is that it knows when behaviours reduce to the

constant behaviour, and therefore these behaviours can be removed. In addition the SDI

will prevent bias in behaviours because it can enforce semantically the uniqueness of pro-

grams in the population.
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4PAR Depth Length Functions Terminals Distinct Terminals Length/Depth

SDI 3.8276 13.7575 6.7903 6.9672 3.8385 3.5943
RHH 3.6121 29.9810 14.4263 15.5546 3.2304 8.3002
HSDI 3.5902 12.003 5.9322 6.0710 3.6950 3.3433

7PAR Depth Length Functions Terminals Distinct Terminals Length/Depth

SDI 7.3996 46.351 23.302 23.049 6.1663 6.2640
RHH 3.2604 28.197 13.537 14.661 4.3065 8.6483
HSDI 6.1480 32.348 16.230 16.118 5.5344 5.2615

6MUX Depth Length Functions Terminals Distinct Terminals Length/Depth

SDI 6.2213 31.8924 15.9970 15.8954 5.5051 5.1263
RHH 3.3571 28.5263 13.7093 14.8169 4.0049 8.4970
HSDI 5.2024 22.811 11.429 11.382 4.9242 4.3847

11MUX Depth Length Functions Terminals Distinct Terminals Length/Depth

SDI 14.2564 203.931 102.762 101.168 8.7484 14.3045
RHH 2.9887 27.199 13.041 14.158 5.2075 9.1006
HSDI 10.253 107.91 53.994 53.916 7.5249 10.5247

Table 5.5: Size and shape comparisons. SDI represents readings produced by semanti-
cally driven initialisation. RHH represents readings produced by the ramped half and half
technique. HSDI represents reading produced by the hybrid SDI. All readings quoted are
averages of 100 runs of 1000 population size.

5.2.4 Size and Shape Analysis

Analysis of Size and Shape of Programs

As previously mentioned there is no size or depth limit on programs produced using SDI.

This section aims to present an analysis and comparison of the size and shapes of programs

produced by the RHH, SDI and HSDI algorithms. 100 populations of size 1000 are initiali-

sed for each problem. The results are averaged over the 100 initialisations and the metrics

examined are program depth, program length (total number of nodes in the tree), number of

functions, number of terminals and the number of distinct terminals.
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Results

Table 5.5 shows size and shape analysis from the parity and multiplexer experiments. Two

sample T-tests revealed that the length and depth metrics of the SDI and HSDI are signi-

ficantly different compared to the length and depth metrics of the RHH initialisation at the

99% confidence level. The two most notable points that apply to all but the 11MUX are that

the SDI produces deeper, thinner trees, compared to the RHH technique; and that the SDI

increases the numbers of distinct terminals in all cases. The HSDI falls somewhere between

the SDI and RHH extremes. In problems such as the 11MUX, this is useful as it creates

smaller programs that are less likely to grow beyond the crossover depth cap (Koza [1992])

(in this case 17) during evolution as a result of the bloat phenomenon (Banzhaf et al. [1998],

Luke [2003], Poli et al. [2007], Dignum and Poli [2007]).

Table 5.6 shows the results for the majority, ant and symbolic regression experiments.

Two sample T-tests revealed that the lengths and depths of the SDI and HSDI initialisations

are significantly different when compared to those of the RHH initialisation at the 99% confi-

dence level. The majority experiments reflect the multiplexer and parity results in that the

SDI produces deeper, thinner trees, except for the larger 9MAJ problem and the 11MUX.

The 11MUX and 9MAJ results show a large increase in the size (all metrics) of the programs

produced. This relates to the earlier discussion in section 5.1 regarding the limitations of

generating syntax directly from behaviour. As there are no size checks in the SDI, it will

produce syntax to represent the behavioural complexity of the problem faced. In the majority

experiments (table 5.6) the SDI and HSDI consistently produce more distinct terminals during

the initialisation which indicates a better ability for programs to deal with all possible inputs

presented. Similar characteristics of size and shape are shown in the ant domain. Deeper

thinner programs are produced by the SDI and HSDI compared to the RHH technique and

both the SDI and HSDI produce a statistically higher level of distinct terminals. The symbo-

lic regression domain is somewhat closer to the 11MUX. The SDI produces large programs

near the depth cap (17), however, the HSDI produces programs that are significantly thinner

in tree shape than the RHH initialisation. Whilst the SDI uses a larger number of distinct

terminals in the symbolic regression domain, the HSDI uses the least. One speculative ex-

planation for this is that the HSDI simplifies constants present in the program tree, therefore

causing less distinct terminals to be present when programs are reduced from their FULL
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5MAJ Depth Length Functions Terminals Distinct Terminals Length/Depth

SDI 4.9326 20.6616 10.3361 10.3255 4.6724 4.1888
RHH 3.4762 29.1390 14.0198 15.1193 3.6557 8.3824
HSDI 4.3329 16.141 8.0663 8.0745 4.3020 3.7252

9MAJ Depth Length Functions Terminals Distinct Terminals Length/Depth

SDI 10.5130 99.9944 50.3765 49.6179 7.5707 9.5115
RHH 3.1005 27.4803 13.1808 14.2995 4.7949 8.8632
HSDI 8.1057 61.135 30.632 30.503 6.6202 7.5422

AASF Depth Length Functions Terminals Distinct Terminals Length/Depth

SDI 6.3281 49.542 19.486 30.056 2.9631 7.8289
RHH 3.7340 56.369 23.718 32.652 2.7955 15.0961
HSDI 5.4073 37.788 15.392 21.867 2.9906 6.9883

SYMREG Depth Length Functions Terminals Distinct Terminals Length/Depth

SDI 16.091 146.79 72.89 73.89 12.729 9.1225
RHH 2.8784 26.692 12.846 13.846 5.4836 9.2732
HSDI 2.6590 8.4406 3.7203 4.7203 3.2643 3.1744

Table 5.6: Size and shape comparisons. SDI represents readings produced by semanti-
cally driven initialisation. RHH represents readings produced by the ramped half and half
technique. HSDI represents reading produced by the hybrid SDI. All readings quoted are
averages of 100 runs of 1000 population size. SYMREG represents one test for both the
symbolic regression problems as they use the same function and terminal set.
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program form.

One final point to mention is the intron wash effect the HSDI will have on the populations it

produces. It is seeded from the FULL method, but generated from behavioural representation

of that code, so that it produces effective code, which, from studying the size and shape

analysis, is supported by the consistently low length/depth values in tables 5.5 and 5.6 (with

the exception of the 11MUX).

Discussion

One global feature of the size and shape experiments is that no matter which problem do-

main is being considered, the RHH always produces roughly similar sized programs, whe-

reas the SDI produces different sized programs depending on the problem. It is reasonable

to assume that this happens because different problem domains have different behavioural

requirements, therefore this would result in different size and shape characteristics of pro-

grams.

In addition to this, as the number of terminals increases, the potential combinations of

behaviour will increase, causing deeper programs that require more functions and terminals

to attain specific behaviours. This is borne out in the results for the Boolean domain, where

the increase in program sizes and depths is in line with the increase in the numbers of

terminals present in our experiments.

The second point to be made when studying these results is the level of importance that

should be given to the measurement of the depth of the tree. The majority of the SDI and

HSDI results produced trees of greater depth than the RHH (but generally shorter in terms of

length) and this would be consistent with using composite functions (trees of nested simple

functions) to model specific behaviours. The length metric may be a better measure to use,

in terms of flexibility, as it gives programs the opportunity to develop complex behaviour as

well as controlling the overall size of the program.

The third observation is that in all experiments the SDI produced significantly more dis-

tinct terminals than RHH. Statistically, there are fewer possible behaviours that can be gene-

rated in the Boolean domain when not all the terminals are used. Once these are generated,

the SDI has to generate more complex behaviour to retain the semantic variety it promises.

As a result of this, the SDI will automatically have a tendency towards producing programs
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with all the terminals present, especially in larger populations.

5.2.5 GP Performance Results

In the experiments presented in this section, the performance of GP runs that are initialised

using the SDI, HSDI and RHH algorithms is compared. The parameters are as set out in

section 4.2 with exception to the initialisation algorithms.

Table 5.7 shows that the performance of the RHH, SDI and HSDI techniques vary de-

pending on the problem being analysed. In terms of maximum scores over each generation,

the HSDI performs best in four experiments, the SDI in three and the RHH in two experi-

ments (at the 95% confidence level). Three experiments present statistically similar results

overall. This raises two complex questions about how the dynamics of creating the starting

population can impact on the performance of GP runs.

The first issue concerns the way in which initialised programs are distributed in relation

to the search space for a particular problem. The SDI performs well on the parity and 6MUX

experiments, but poorly on the 11MUX experiment, when compared to the RHH. Further

complicating the matter is the result for the CUBIC and QUART experiments, where the SDI

is the statistically similar to RHH result overall for the CUBIC and QUART, but achieves better

maximum scores at generation 50.

A simplistic theory is that the SDI produces too many complex behaviours in the wrong

region of the search space when the ideal program may be a simplistic program in another

region of the search space. This might explain why, for example, the SDI performs well at the

6MUX experiment, but poorly at the 5MAJ experiment. It might also explain how the HSDI is

able perform well on both multiplexers, as it is seeded with simplistic behaviour, but can build

more complex behaviour on top of this.

The second issue is the effect of initialising one hundred percent effective code compared

to code with redundant and unreachable statements. The introduction of the SKIP operation

was necessary in the HSDI applied to the artificial ant problem, to alleviate the problem

whereby RHH and FULL produce dead branches for the IF-FOOD-AHEAD statement. Given

the performance results shown in table 5.7, this SKIP statement is clearly required.

The obvious comparison to this work is that of Looks [2007] which presented results for

a selection of multiplexer and parity experiments. Whilst Looks examines similar problems,
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Problem Experiment Max Score Overall RO Max Score G50 RG50 Success

4PAR SDI 0.0500 (±0.0542) 1 0.0200 (±0.0396) 1 77% G3
HSDI 0.0601 (±0.0590) 1 0.0238 (±0.0477) 1 77% G6
RHH 0.0949 (±0.0735) 3 0.0425 (±0.0494) 3 50% G9

5MAJ SDI 0.0549 (±0.0363) 1 0.0300 (±0.0266) 3 32% G9
HSDI 0.0467 (±0.0356) 1 0.0213 (±0.0250) 1 50% G9
RHH 0.0427 (±0.0394) 1 0.0188 (±0.0231) 1 54% G10

6MUX SDI 0.0287 (±0.0534) 1 0.0052 (±0.0232) 1 95% G4
HSDI 0.0212 (±0.0506) 1 0.0003 (±0.0031) 1 99% G3
RHH 0.0763 (±0.0498) 3 0.0431 (±0.0529) 3 51% G6

7PAR SDI 0.2966 (±0.0822) 1 0.1745 (±0.0388) 1 0% –
HSDI 0.3176 (±0.0775) 2* 0.2037 (±0.0361) 2 0% –
RHH 0.3452 (±0.0621) 3 0.2582 (±0.0297) 3 0% –

9MAJ SDI 0.1783 (±0.0379) 2 0.1338 (±0.0120) 3 0% –
HSDI 0.1657 (±0.0381) 2 0.1202 (±0.0124) 2 0% –
RHH 0.1228 (±0.0467) 1 0.0722 (±0.0118) 1 0% –

11MUX SDI 0.1411 (±0.0790) 3 0.0755 (±0.0660) 3 22% G25
HSDI 0.0992 (±0.0848) 1 0.0377 (±0.0441) 1 45% G16
RHH 0.1019 (±0.0906) 1 0.0339 (±0.0401) 1 45% G15

AASF SDI 0.3220 (±0.0547) 3 0.2781 (±0.0855) 1 0% –
HSDI 0.2889 (±0.0639) 1 0.2407 (±0.1187) 1 10% G7
RHH 0.3177 (±0.0812) 2* 0.2579 (±0.1299) 1 11% G5

CUBIC SDI 788.9 (±287.7) 1 539.3 (±261.4) 1 0% –
HSDI 850.8 (±181.9) 1 661.8 (±256.0) 3 0% –
RHH 816.3 (±287.3) 1 498.6 (±204.7) 1 0% –

QUART SDI 1114.2 (±587.9) 1 517.8 (±358.7) 1 0% –
HSDI 1040.3 (±493.2) 1 625.7 (±298.8) 2 0% –
RHH 1258.5 (±596.1) 1 711.9 (±311.5) 2 0% –

Table 5.7: Problem is the problem being analysed. Experiment shows the initialisation me-
thod. Max Score Overall shows the average of one hundred runs of standardised maximum
scores for all generations. The scores have been normalised to be in the range 0-1 for easy
comparison, except for the continuous regression domain which shows raw fitness. Stan-
dardised fitness is used so 0 is the best value. The ± values are the standard deviation of
the maximum scores normalised to the 0-1 scale (except regression domain). RO shows the
rank of the overall scores based on a one way ANOVA test conducted to the 95% confidence
level. The individual ranks are based on results from a Tukey test comparing all three results.
A rank of 2* indicates that the middle result is statistically equivalent to the best and worst
results, however, the best and worst results are statistically different. Max Score G50 shows
the average of maximum scores at generation 50 (the end of evolution) and RG50 shows the
performance rank using a one way ANOVA and post hoc Tukey test on the generation 50 re-
sults. Success shows the percentage of runs that reach full score and the earliest generation
that full scores is reached out of all 100 runs.
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he uses a different function set and different parameters, and a different semantic sampling

initialisation. Despite these differences, for the 6MUX and the 4PAR, there is still a similar re-

lative change in performance based on semantic style sampling. Looks uses an even 5 parity

experiment whereas a 7PAR experiment is used in this evaluation; given that these results

support the value of semantic initialisation for parity problems overall, these GP performance

results are in line with those of Looks. The 11MUX result is different to the results of Looks;

a speculative reason is that this is because these experiments use no depth limits on the

SDI, and as a result (supported by the size and shape results (table 5.5)) vastly increased

program sizes are created changing the distribution of programs in the search space. By

contrast, Looks does control the size of the programs he produces using the semantic sam-

pling algorithm. As stated in the introduction to this chapter, the algorithms presented were

designed to test theories in order to better understand the important issues in producing

good quality starting populations.

Finally, there is an element of difference in program sizes when comparing the SDI, HSDI

and RHH initialisation algorithms. These size and shape results (section 5.2.4) show that

the SDI and HSDI algorithms produce programs at varying sizes depending on the problem.

Some are smaller than the RHH output and some are larger. There is an argument to try to

make the programs the same size for comparison, however, as the only control mechanism

on the RHH algorithm is depth and section 5.2.4 supports that the HSDI and SDI tend to

produce deep thin trees, the job of creating similar sized starting programs is very complex.

As such, the traditional 2-6 depth range of the RHH algorithm has been used for compari-

son. Furthermore, crossover bias will quickly modify the size of the majority of the programs

resulting in a change in the size distribution of programs. As a counter argument, given that

semantic based initialisation results in starting programs of different sizes, crossover bias will

occur using a different length distribution of programs compared to initialisation with RHH.

This will affect the results of a GP run and makes it difficult to determine whether the ef-

fects of factors such as diversity and shape, if the mean size factor is not discounted. While

distributions of functionality (and as a result fitness) reach a limit beyond a certain program

size, there are potential program sizes which provide promising and poor functionality (and

fitness) before that limit. The difficulty is establishing an initialisation method which can de-

velop programs of the right size and or shape to assist evolution to a good solution.
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Problem Experiment Max Score Overall PT Max Score G50 2T-50 Success

4PAR WASHED 0.0782 (±0.0631) 0.00 0.0381 (±0.0554) 0.409 60% G6
MODFULL 0.0923 (±0.0710) - 0.0444 (±0.0513) 0.409 50% G9

5MAJ WASHED 0.0503 (±0.0346) - 0.0103 (±0.0167) - 38% G9
MODFULL 0.0321 (±0.0373) 0.00 0.0253 (±0.0246) 0.00 70% G7

6MUX WASHED 0.0235 (±0.0506) 0.00 0.0025 (±0.0152) 0.00 97% G4
MODFULL 0.0663 (±0.0577) - 0.0270 (±0.0395) - 60% G8

7PAR WASHED 0.3177 (±0.0784) 0.00 0.2025 (±0.0358) 0.00 0% –
MODFULL 0.3449 (±0.0687) - 0.2491 (±0.0527) - 0% –

9MAJ WASHED 0.1656 (±0.0383) - 0.1201 (±0.0117) - 0% –
MODFULL 0.1177 (±0.0449) 0.00 0.0683 (±0.0083) 0.00 0% –

11MUX WASHED 0.0971 (±0.0850) 0.00 0.0366 (±0.0505) 0.012 51% G18
MODFULL 0.1498 (±0.0879) - 0.0529 (±0.0389) - 13% G33

AASF WASHED 0.3032 (±0.0625) - 0.2563 (±0.1137) 0.359 8% G2
MODFULL 0.2968 (±0.0789) 0.011 0.2413 (±0.1161) 0.359 10% G7

CUBIC WASHED 935.74 (±141.02) - 798.72 (±229.70) - 0% –
MODFULL 799.14 (±250.15) 0.00 485.94 (±225.44) 0.00 0% –

QUART WASHED 1330.58 (±481.49) - 932.18 (±307.98) - 0% –
MODFULL 1200.72 (±533.65) 0.00 700.96 (±296.71) 0.00 0% –

Table 5.8: Problem indicates the problem being analysed. Experiment represents the initia-
lisation type (WASHED of MODFULL see 5.1.3). Max Score Overall is the average of the
maximum scores ± the standard deviation of max scores. PT is a Paired T-test of the overall
scores. 0.00 aligned with an experiment indicates a best result. Max Score G50 shows the
average of the maximum scores at generation 50 and 2T-50 shows a 2 sample T test of these
results. Success indicates the percentage of runs that reached full score at generation 50
and the first generation in which a single run attained full score.

5.2.6 Evolvable Shape

In order to examine evolvable shape, the MODFULL and WASHED algorithms (as set out in

section 5.1.3) are used. The parameters are as stated in section 4.2. The MODFULL and

WASHED algorithms are used at initialisation to examine the effect that changing the shape

of programs without changing the semantics will have on GP performance. The MODFULL

and WASHED algorithms are used because the data in tables 5.5 and 5.6 support that the

semantically reduced code (WASHED) will provide a dramatic contrast in tree shape, whilst

retaining the same behaviour as the MODFULL code.

Table 5.8 demonstrates that changing the shape of the initialised program trees can have

a dramatic effect on the performance of GP runs. When considering the results, all experi-

ments show a statistically significant difference between the MODFULL and WASHED algo-
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rithms overall, and seven out of nine of the problems at the 95% confidence level at gene-

ration 50. However, whether MODFULL or WASHED gives a superior performance appears

to be problem dependent. Overall, five of the experiments favour the MODFULL algorithm

and four favour the WASHED algorithm. Even when comparing the initialised programs ave-

rage lengths and depths (table 5.9) there appears to be no pattern linking a particular shape

to the different results. Table 5.9 shows that the WASHED algorithm results in shorter and

deeper trees trees in the majority of cases. The fact that average depth and length reading

are statistically different at the 95% confidence level indicates that the WASHED algorithm

is having a substantial effect on the composition of initialised programs. In the absence of

any pattern, it is hard to establish the cause for the difference in performance other than a

speculative reason that different problems may require different program structures in order

to compose fit candidate solutions.

The other factor of note when considering the success rates on the experiments that do

find ideal solutions is the level of the difference in success. The biggest difference is 37% in

the case of the 6MUX. This shows the importance of program shape to evolvability in a GP

run.

The AASF results statistically favour MODFULL overall, and is statistically similar at ge-

neration 50. This is surprising, as despite the size and shape results in tables 5.6 and 5.9.

The back translation mechanism still constructs full trees (just smaller FULL trees) when it

reassembles the ant movement instructions. The only difference is that redundant and un-

reachable code will have been removed in this reduced form. The fact the performance is

statistically significant in favour of MODFULL for the artificial ant indicates that simply remo-

ving both unreachable and redundant introns does not improve performance overall.

5.3 Discussion

One of the main points to draw from this analysis, as well as the work of other authors (for

example, Looks [2007], Luke and Panait [2001]) in the field, is that the choice of initialisation

method may result in statistically significant variation in the performance of GP runs. In the

context of this investigation, and the results presented in tables 5.7 and 5.8, it is clear that

changing different aspects of program initialisation can have an impact on performance far
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Problem Experiment Average Length PL Average Depth PD

4PAR WASHED 9.49 (±0.19) 0.00 3.11 (±0.05) 0.00
MODFULL 31.48 (±0.61) - 4.00 (±0.00) -

5MAJ WASHED 14.71 (±0.39) 0.00 4.08 (±0.08) -
MODFULL 31.35 (±0.55) - 4.00 (±0.00) 0.00

6MUX WASHED 21.78 (±0.62) 0.00 5.05 (±0.09) -
MODFULL 31.32 (±0.65) - 4.00 (±0.00) 0.00

7PAR WASHED 31.18 (±0.36) 0.00 6.02 (±0.04) -
MODFULL 31.38 (±0.24) - 4.00 (±0.00) 0.00

9MAJ WASHED 59.33 (±0.98) - 7.99 (±0.07) -
MODFULL 31.29 (±0.22) 0.00 4.00 (±0.00) 0.00

11MUX WASHED 104.25 (±1.90) - 10.09 (±0.10) -
MODFULL 31.24 (±0.23) 0.00 4.00 (±0.00) 0.00

AASF WASHED 37.84 (±0.48) 0.00 5.41 (±0.05) -
MODFULL 51.06 (±0.54) - 4.00 (±0.00) 0.00

CUBIC WASHED 6.24 (±0.13) 0.00 2.23 (±0.04) 0.00
MODFULL 31.00 (±0.00) - 4.00 (±0.00) -

QUART WASHED 6.23 (±0.12) 0.00 2.23 (±0.03) 0.00
MODFULL 31.00 (±0.00) - 4.00 (±0.00) -

Table 5.9: Problem indicates the problem being analysed. Experiment indicates the type of
initialisation algorithm used. Average Length is the average length of programs at initiali-
sation averaged over 100 runs. PL indicates the result of a 2 Sample T-test comparing the
average programs lengths. The P-Value is aligned with the shorter programs. Average Depth
indicates the depth of the programs at initialisation averaged over 100 runs. PD is the result
of a 2 Sample T-test comparing the initialised program depths. The P-Value is aligned with
the shorter programs.
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beyond that required for statistical significance.

5.3.1 Distribution of Behaviours in the Search Space

The results in sections 5.2.2 and 5.2.3 clearly demonstrate how the existing RHH technique

has bias, frequently duplicating simplistic and constant behaviours. The SDI algorithm was

developed to counter these effects by producing complete behavioural diversity and building

more complexity into the starting populations.

Preliminary analysis of the size and shape output (tables 5.5 and 5.6) of the SDI algorithm

appeared positive for two reasons. The first is the ability of the SDI to create starting popu-

lations that vary their programs size depending on the problem. This gives the impression

that the SDI is actually modelling behaviours specific to the search space of each problem

rather than the “one size fits all” solution in the RHH. The second is that depth appears not

to be the best way to constrain programs. This size and shape analysis (tables 5.5 and 5.6)

showed that the SDI produced deeper but thinner trees in order to specifically model more

complex behaviour.

Whilst the SDI might be theoretically superior in terms of distributing behaviours in the

search space, table 5.7 shows that it only outperforms the RHH technique in the 6MUX,

4PAR, 7PAR experiments and is equal overall in 5MAJ, CUBIC and QUART. The parity pro-

blems are known to be a deceptive problem (Langdon and Poli [2002]), requiring a more

intricate and complex program to solve them. This may be the reason that the SDI perfor-

med well on this problem. The multiplexer results are less clear, as it is intriguing that the

SDI does not outperform RHH on the 11MUX problem. A possible explanation for this is that

in terms of the overall search space the program required to secure 100% fitness is relatively

simplistic in comparison to all the behaviours in the 11MUX search space. If one considers

the exponential increase in search space size between the 6MUX search space of 22
6

to the

11MUX search space of 22
11

, the SDI is having to model far more complexity to distribute

programs through the breadth of the search space. It is possible that, as a result of this, the

RHH is more biased to the correct area of the search space, therefore achieving a higher

success rate.

The SDI failed on the majority experiments, which is arguably the most simple of the

Boolean experiments. This would suggest that the RHH was better able to produce programs
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in the most successful areas of the majority search space whereas the SDI’s complexity

worked against it biasing search away from high fitness areas. The SDI combines functions

resulting in deep thin trees resulting in more complex functionality. Given that the MODFULL

algorithm was best performing in the majority of experiments, it may have been the case that

a shallow fat tree was more likely to facilitate a need for less functionality, but more choice of

nodes at a shallow level in the tree. This may be the behaviour that is required to solve the

majority experiments and as a result the SDI biased the search for behaviours in a different

area of the search space.

Based on these results, the hybrid algorithm (HSDI) was created to take advantage of the

increased semantic diversity generated by the FULL algorithm and the increased complexity

aspect of the SDI algorithm. The HSDI produced an algorithm capable of being the best

performer overall in one experiment and equal best overall in eight experiments (at the 95%

confidence level). In generation 50, it was able to statistically equal the best result in five

out of nine experiments. The performance of the HSDI was good overall, equalling eight

best results, but disappointing at generation 50 considering the HSDI combined the different

features of the SDI and RHH algorithms. This is a testament to the difficulty of creating a

problem independent population generation algorithm.

This difficulty in creating one initialisation algorithm which can be applied to every pro-

blem could be a consequence of the no free lunch theorem (Woodward and Neil [2003]).

If initialisation algorithms were all equally good at generating starting populations, results

would be varied like those of RHH and SDI. The HSDI algorithm is a contrast in that, it per-

forms to a good standard in comparison to RHH and SDI most of the time. This may be an

indication that HSDI is able to obtain good results (a free lunch) over a wider problem space

(Poli et al. [2009]).

5.3.2 Evolvable Shape

The results presented in table 5.8 clearly show that the shape of the trees can have a signi-

ficant effect on GP performance which is in agreement with Daida et al. [2003], Daida and

Hilss [2003] and Langdon et al. [1999]. In the Boolean domain, all of the experiments pre-

sented demonstrate not only statistically significant differences at the 95% confidence level,

but also some dramatic changes in the performance of the GP runs. Given the variations in
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these results, it would appear that the ideal evolvable shape for a program is problem de-

pendent (based on the varying program sizes and depths in table 5.9) and therefore it would

be difficult to predict ideal program structures for specific problems. This suggests that fur-

ther work comparing these results with those of Daida and Hilss [2003] would be valuable,

as well as, further evaluation of the structure of programs.

The difference between the artificial ant shape results overall is surprising, given that the

translation mechanism between abstract meaning and syntax of the ant problem builds full

trees (without redundant code). As a result, the experiment compares larger full trees with

smaller, more effective, full trees. In this case, it is clear that removing introns and changing

the size of programs through the WASHED process reduces evolutionary potential across

all experiments as the MODFULL algorithm is statistically the best performer. A noteworthy

point is that the SDI contains no introns for the ant domain, whereas the HSDI has simulated

introns (in the form of SKIP), and this increases the performance of the algorithm in the

ant domain. Counter intuitively, when the WASHED algorithm reduces code applying SKIP

terminals the performance reduces. From these conflicting results, it is difficult to decide

whether the code produced using WASHED reduces the evolutionary potential of programs,

or whether the increased diversity generated by HSDI or whether a fundamental change in

program size caused by both of the algorithms improves performance.

Another algorithm that gives the user the ability to influence tree shape is Probabilistic

Tree Creation (Luke [2000a], Luke and Panait [2001]). This is because the user-controlled

bias in the appearance of functions and terminals would have an overall effect on tree shape.

Luke’s success using this algorithm could, at least partially, be a result of evolvable shape.

With reference to the results presented in table 5.8, it would be interesting to see if perfor-

mance would increase if the probabilities of selection of the terminals and functions were

changed from experiment to experiment, for example, to cater for the difference between the

parity and majority problems.

Having shown that there is a preferred evolvable shape for specific problems (Table 5.8

and 5.9), it can be argued that this lends support to GP schema theory (Poli and McPhee

[2003a,b], Langdon and Poli [2002]). In this interpretation, the schemata are in a more

abstract form, consisting of a tree of a (problem specific) particular shape containing “don’t

care” nodes. Alternatively, one could follow a strategy such as Salustowicz and Schmidhuber
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[1997] enforcing a structure and using node weightings to perform the learning. This would

be an interesting direction for future work.

The issue of problem dependence in the context of generating starting populations is a

complex one. Table 5.7 shows that the three algorithms presented seem to favour particular

problems and the results in table 5.8 merely complicate the matter further. Based on this

data, further research is required in the field of program initialisation in order to be in a po-

sition to recommend specific code generation algorithms for specific problems. Once this

research is completed, it would be interesting to run a further study which did not treat initia-

lisation as a separate issue from crossover and mutation and consider the array of different

choices of crossover and mutation operators which may have further effects on populations

initialised in different ways.

5.4 Conclusions

The results presented in this analysis of program initialisation in GP have shown that the

initialisation method chosen can have a dramatic impact on the performance of GP runs.

However, it appears that this impact is problem specific, and that it cannot concluded that

one of the algorithms presented is best (or better than the other algorithms presented) for

every problem considered. The results presented in sections 5.2.2 and 5.2.3 have clearly

illustrated the limitations of the RHH algorithm, and tested theories using the algorithms

presented. It is clear that none of the methods described, in the form of either the SDI, HSDI,

MODFULL or WASHED algorithms present one clear solution to program initialisation that

incorporates measures to deal with the behavioural distribution of programs and to control

the shape of the syntax produced.

Clear evidence has been presented in sections 5.2.5 and 5.2.6 showing that both the

distribution of programs in the search space and the structure of the program tree can have

dramatic effects on the performance of GP. Both of these variables are strongly dependent

on the problem being tackled, which therefore makes the challenge of constructing an ini-

tialisation algorithm that consistently produces a more diverse and better structured first

generation of programs a highly complex one. As a result of this work, there is evidence to

support the need to create initialisation algorithms that can explicitly exercise control over
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both the behavioural distribution of programs and the shape of the programs they produce.

5.5 Future Work

Based on evidence presented, future work in the area of program initialisation needs to

be able to address both behavioural diversity and program structures and the interactions

between the two. Possible ideas, could be merging one of the algorithms presented (either

SDI or HSDI) with one of Luke’s PTC algorithms in order to gain a more granular control over

program structure, whilst retaining behavioural diversity.

Alternatively, it would be a worthwhile experiment to build a new initialisation algorithm

which is capable of explicitly and tunably controlling both behavioural diversity and program

structure. From the results presented in the chapter, the correct use of these new controls

would allow statistically significant improvement in GP performance.
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Chapter 6

Semantically Driven Operators

The objective of this chapter is to discuss methods for increasing the efficiency of three

different areas of the process of search in GP. The motivation for this work is two fold. In the

case of semantically driven crossover and semantically driven mutation, the key concept is to

change a syntax altering operation to become a semantics altering operation. This increases

the power of GP search resulting in better performance in the experiments presented. In

the case of semantic pruning and intron free GP, the motivation is to reduce programs to

consist of only effective code, and attempt to combat the bloat phenomenon, as well as

understanding the effects on the performance of GP when using intron free GP.

In section 6.1, semantically driven crossover is described. This section is based upon

work presented by Beadle and Johnson [2008] and is presented with a greatly expanded

problem suite (as described in section 4.1) compared to the original paper. The results

presented demonstrate the increased search power of semantically driven crossover and in

some cases, how this operator can work to reduce bloat.

Section 6.2 described the semantically driven mutation process. This section is based

upon work presented by Beadle and Johnson [2009b] with further experimentation from a

greater problem suite (as described in section 4.1). The results obtained using semantically

driven mutation demonstrate how increased search power can improve performance in GP.

In section 6.3, semantic pruning is described. This operator has mixed effects on GP

performance but also powerful effects on reducing program size.

Finally, in section 6.4, semantically driven crossover, semantically driven mutation, se-

mantic pruning and semantically driven initialisation methods (chapter 5) are combined to
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produce intron free GP. Results are presented using the problem suite outlined in section

4.1.

6.1 Semantically Driven Crossover

Semantically Driven Crossover (SDC) is a modification to the crossover algorithm which can

be used to increase the performance of GP. The key concept of the SDC algorithm is to

not allow the production of child programs which are behaviourally equivalent to their parent

programs. This section is based on techniques presented by Beadle and Johnson [2008]

using the greater test suite described in section 4.1.

The key feature of this work is the use of a canonical representation of behaviour of mem-

bers of the population. These representations are as described in section 4.3. In the gene-

tic programming context, being able to compare the behaviour of two syntactically distinct

programs creates the ability to ensure that candidate programs are mobile in the semantic

search space. This increased movement in the phenotypic search space will improve the

search power of genetic programming.

Section 6.1.1 discusses the SDC algorithm in relation to other methods to improve the

crossover operation. Section 6.1.2 presents the SDC algorithm. Section 6.1.3 presents

results using the SDC algorithm and the associated discussion of the results. Section 6.1.4

links the effects of the SDC algorithm to existing theories of bloat and sections 6.1.5 and

6.1.6 present conclusions using the SDC algorithm and ideas for future work arising from the

use of the SDC respectively.

6.1.1 Improving Crossover and Effective Fitness

The first priority of the SDC algorithm is to increase the performance of GP through the

control of program behaviour. This increase in performance highlights an inefficiency in the

crossover operation which is the possibility of the production of semantically equivalent child

programs. The second effect of the SDC algorithm is significant changes in the level of bloat

through not allowing the crossover of redundant or unreachable code in some of the test

problems. In the majority of cases, the use of the SDC algorithm results in a decrease in

bloat.
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In relation to improving the performance of crossover, there are three categories of set-

tings to amend to change the performance of crossover. The first of these is to change

the way parent programs are selected (using different selection methods, some outlined in

section 2.5), the second is to change the method which is used to select swap points on pro-

gram representations (for example, Koza [1992] applying a 90% bias to functions and 10%

to terminals as swap points) and the third is to perform some type of pre and post crosso-

ver processing to test for some desirable property of the crossover operation (for example,

O’Reilly and Oppacher [1995]). Whilst the SDC algorithm falls into the category of pre and

post processing, it is novel in that it does not look for some improvement, it merely tests that

there is some new behaviour in the child program. This is important as, when using the SDC

programs will take a semantic step in the search space in relation to the parent programs

instead of stepping to an area of higher fitness such as during crossover hybridised with hill

climbing.

Whilst several authors have started to consider the implications of semantics in GP (no-

tably, Looks [2007], McPhee et al. [2008], Gustafson et al. [2004]), only two research teams

have used semantics to directly influence the crossover operation (Beadle and Johnson

[2008], Nguyen et al. [2009]), although McPhee et al. [2008] did present semantic analyses

of the effects of the crossover operation on small scale problems.

When considering the changing effects on bloat, the SDC algorithm is an interesting

case as it was never designed with bloat control in mind. Whilst other authors have proposed

methods to control bloat during crossover, for example Koza [1992] imposing an absolute

depth limit on child programs (for a more complete review of bloat control methods, see Luke

and Panait [2006]) and Langdon [2000] devising a method for size fair crossovers, the SDC

algorithm does nothing to explicitly control program size during crossover.

6.1.2 Semantically Driven Crossover Algorithm

The implementation of the SDC algorithm could be applied to any form of crossover algo-

rithm as the SDC algorithm acts as a wrapper evaluating the behaviour before and after the

operation. As such it could be used with single point, uniform swap point or Koza style cros-

sover (Koza [1992]). It could also be applied around other pre and post crossover evaluation

techniques. The SDC algorithm is presented in algorithm 6.1.
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Algorithm 6.1 Semantically Driven Crossover Algorithm
while number_of_programs < population_size

if random_number < crossover_probability
while not (crossover_accepted1 and crossover_accepted2)

select p1 randomly from breeding pool (parent 1)
select p2 randomly from breeding pool (parent 2)
copy p1 into c1 (child 1)
copy p2 into c2 (child 2)
choose swap_point1 on c1
choose swap_point2 on c2
perform crossover at swap points
generate Representation of p1, p2, c1, c2
if p1_Representation not equivalent to c1_Representation AND p2_Representation

not equivalent to c1_Representation
crossover_accepted1 set to true

end if
if p1_Representation not equivalent to c2_Representation AND p2_Representation

not equivalent to c2_Representation
crossover_accepted2 set to true

end if
end while
add c1 to population
add c2 to population

else
select program 1 randomly from breeding pool and add to new population
select program 2 randomly from breeding pool and add to new population

end if
end while
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The SDC algorithm (6.1) repeats standard crossover until the child programs produced

are not semantically equivalent to either parent. Whilst this means that there is an extra

computational requirement in terms of both the numbers of crossovers to be performed, and

the construction of the behaviours, this increased load is offset in some cases by decreased

program size. In all of the experiments presented, the SDC does not produce excessive or

unusable run times.

Experimental Parameters

The parameters used for these experiments are set out in section 4.2 with the notable excep-

tion of the crossover techniques. Four experiments have been conducted per test problem.

These include using standard crossover with a uniform choice of swap points (UNIXO), a se-

mantically driven version of standard crossover with uniform choice of swap points (UNIXO-

SDC), standard crossover with Koza style choice of swap points (90% bias on functions and

10% bias on terminal swap points) (KOZAXO) and a semantically driven version of standard

crossover with Koza style choice of swap points (KOZAXO-SDC). Statistical comparison has

been conducted between UNIXO and UNIXO-SDC, and KOZAXO and KOZAXO-SDC. This

provides the ability to test that semantically driven crossover will work against an equivalent

control experiment rather than comparing experiments with different crossover mechanisms.

6.1.3 Results

When considering crossover with a uniform selection of crossover points, table 6.1 shows

that semantically driven crossover is able to statistically improve the performance of GP, in

terms of max scores overall, in every experiment. At generation 50, semantically driven

crossover is able to significantly improve performance in all but two experiments which are

statistically similar to the control experiment.

When considering crossover with Koza style bias on the choice of swap points, table 6.2

shows that semantically driven crossover improves performance overall in all experiments

except the artificial ant problem, which is statistically similar to the control experiment. At

generation 50, semantically driven crossover outperforms the control experiment significantly

in all but two cases.
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Problem Experiment Max Score Overall PT Max at G50 2T Success (Gen)

4PAR UNIXO-SDC 0.0653 (±0.0487) 0.00 0.0222 (±0.0360) 0.00 69% (G10)
UNIXO 0.0854 (±0.0376) - 0.0859 (±0.0594) - 44% (G9)

5MAJ UNIXO-SDC 0.0282 (±0.0455) 0.00 0.0006 (±0.0044) 0.00 98% (G7)
UNIXO 0.0429 (±0.0414) - 0.0144 (±0.0215) - 63% (G8)

6MUX UNIXO-SDC 0.0484 (±0.0622) 0.00 0.0094 (±0.0285) 0.00 88% (G6)
UNIXO 0.0684 (±0.0534) - 0.0291 (±0.0431) - 62% (G8)

7PAR UNIXO-SDC 0.3382 (±0.0682) 0.00 0.2394 (±0.0493) 0.00 0% –
UNIXO 0.3533 (±0.0588) - 0.2696 (±0.0277) - 0% –

9MAJ UNIXO-SDC 0.1258 (±0.0482) 0.00 0.0718 (±0.0088) 0.00 0% –
UNIXO 0.1307 (±0.0460) - 0.0796 (±0.0098) - 0% –

11MUX UNIXO-SDC 0.0910 (±0.1033) 0.00 0.0098 (±0.0204) 0.00 76% (G18)
UNIXO 0.1014 (±0.0954) - 0.0301 (±0.0351) - 49% (G15)

AASF UNIXO-SDC 0.3367 (±0.0774) 0.00 0.2730 (±0.1371) 0.98 11% (G3)
UNIXO 0.3409 (±0.0782) - 0.2719 (±0.1292) 0.98 10% (G1)

CUBIC UNIXO-SDC 807.70 (±288.77) 0.00 493.78 (±212.55) 0.004 0% –
UNIXO 877.47 (±261.54) - 579.33 (±199.53) - 0% –

QUART UNIXO-SDC 1246.77 (±605.85) 0.00 682.69 (±282.01) 0.338 0% –
UNIXO 1288.83 (±599.18) - 721.37 (±287.42) 0.338 0% –

Table 6.1: Table showing results comparing semantically driven crossover to semantically
driven crossover. Problem indicates the test problem being tackled. Experiment indicates
the type of crossover being used. Max Score Overall indicates the average of maximum
scores (standardised fitness so 0 is best score) (with standard deviation in brackets) over all
generations. All results are scaled in relation to full possible score except regression domain
results. PT indicates the P-Value of a Paired T-test comparing two experiments. In the
event that one result is statistically superior to another, the P-Value will be aligned with the
better result. Max at G50 indicates the mean of the maximum scores at generation 50 (with
standard deviation in brackets). 2T indicates the P-Value result of a 2 sample T-test. In the
case of statistical significance, the P-Value is aligned with the best result. Success indicates
the number of runs that reached full score and (Gen) indicates the earliest generation at
which full score was achieved.
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Problem Experiment Max Overall PT Max at G50 2T Success (Gen)

4PAR KOZAXO-SDC 0.0562 (±0.0512) 0.00 0.0131 (±0.0285) 0.00 81% (G6)
KOZAXO 0.0854 (±0.0378) - 0.0506 (±0.0522) - 43% (G12)

5MAJ KOZAXO-SDC 0.0266 (±0.0435) 0.00 0.0019 (±0.0075) 0.00 94% (G6)
KOZAXO 0.0364 (±0.0406) - 0.0125 (±0.0199) - 68% (G7)

6MUX KOZAXO-SDC 0.0457 (±0.0634) 0.00 0.0061 (±0.0186) 0.00 87% (G3)
KOZAXO 0.0732 (±0.0521) - 0.0406 (±0.0578) - 56% (G6)

7PAR KOZAXO-SDC 0.3378 (±0.0660) 0.00 0.2438 (±0.0320) 0.00 0% –
KOZAXO 0.3461 (±0.0611) - 0.2588 (±0.0252) - 0% –

9MAJ KOZAXO-SDC 0.1168 (±0.0493) 0.00 0.0640 (±0.0095) 0.00 0% –
KOZAXO 0.1217 (±0.0477) - 0.0707 (±0.0116) - 0% –

11MUX KOZAXO-SDC 0.0873 (±0.0999) 0.00 0.0102 (±0.0214) 0.00 77% (G15)
KOZAXO 0.0973 (±0.0905) - 0.0327 (±0.0353) - 46% (G16)

AASF KOZAXO-SDC 0.2768 (±0.1264) 0.19 0.2764 (±0.1258) 0.19 5% (G11)
KOZAXO 0.2985 (±0.1113) 0.19 0.2985 (±0.1113) 0.19 3% (G1)

CUBIC KOZAXO-SDC 771.97 (±302.31) 0.00 440.36 (±195.14) 0.041 0% –
KOZAXO 816.26 (±287.25) - 498.64 (±204.69) - 0% –

QUART KOZAXO-SDC 1210.30 (±288.71) 0.00 637.57 (±268.58) 0.087 0% –
KOZAXO 1258.54 (±596.09) - 711.89 (±311.47) 0.087 0% –

Table 6.2: Table showing results comparing standard crossover to semantically driven cros-
sover. Problem indicates the test problem being tackled. Experiment indicates the type of
crossover being used. Max Overall indicates the average of maximum scores (standardised
fitness so 0 is best score) (with standard deviation in brackets). All results are scaled in re-
lation to full possible score except regression domain results. PT indicates the P-Value of a
Paired T-test comparing two experiments. In the event that one result is statistically superior
to another, the P-Value will be aligned with the better result. Max at G50 indicates the mean
of the maximum scores at generation 50 (with standard deviation in brackets). 2T indicates
the P-Value result of a 2 sample T-test. In the case of statistical significance, the P-Value is
aligned with the best result. Success indicates the number of runs that reached full score
and (Gen) indicates the earliest generation at which full score was achieved.

94



Problem Experiment Mean Program Length PT

4PAR UNIXO-SDC 117.05 (±29.20) 0.00
UNIXO 186.76 (±59.49) -

5MAJ UNIXO-SDC 81.05 (±29.46) 0.00
UNIXO 132.15 (±56.36) -

6MUX UNIXO-SDC 48.98 (±13.50) 0.00
UNIXO 88.77 (±38.05) -

7PAR UNIXO-SDC 274.06 (±93.95) 0.00
UNIXO 342.50 (±121.58) -

9MAJ UNIXO-SDC 245.67 (±146.31) 0.00
UNIXO 254.82 (±140.86) -

11MUX UNIXO-SDC 75.08 (±34.56) 0.00
UNIXO 101.13 (±53.38) -

AASF UNIXO-SDC 125.68 (±29.11) -
UNIXO 106.38 (±24.27) 0.00

CUBIC UNIXO-SDC 133.80 (±48.09) 0.00
UNIXO 137.43 (±46.52) -

QUART UNIXO-SDC 133.67 (±46.24) -
UNIXO 129.81 (±44.30) 0.00

Table 6.3: Table showing depth comparison using standard and semantically driven crosso-
ver. Problem indicates the test problem being studied. Experiment is the type of crossover
being used. Mean Program Length is the mean number of nodes present in the trees in all
generations. PT is the P-Value result of a Paired T-test. In the case of statistical significance
the P-Value is aligned with the best result.
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Problem Experiment Mean Program Length PT

4PAR KOZAXO-SDC 151.28 (±44.52) 0.00
KOZAXO 239.22 (±86.77) -

5MAJ KOZAXO-SDC 104.59 (±38.92) 0.00
KOZAXO 181.64 (±83.13) -

6MUX KOZAXO-SDC 79.35 (±29.81) 0.00
KOZAXO 117.88 (±56.19) -

7PAR KOZAXO-SDC 362.02 (±151.61) 0.00
KOZAXO 432.03 (±180.23) -

9MAJ KOZAXO-SDC 351.40 (±212.41) 0.019
KOZAXO 356.25 (±204.41) -

11MUX KOZAXO-SDC 101.74 (±47.72) 0.00
KOZAXO 128.95 (±75.20) -

AASF KOZAXO-SDC 148.04 (±38.44) -
KOZAXO 127.81 (±33.92) 0.00

CUBIC KOZAXO-SDC 163.56 (±60.70) -
KOZAXO 161.87 (±62.33) 0.01

QUART KOZAXO-SDC 180.71 (±72.64) -
KOZAXO 168.51 (±62.69) 0.00

Table 6.4: Table showing depth comparison using standard and semantically driven crosso-
ver. Problem indicates the test problem being studied. Experiment is the type of crossover
being used. Mean Program Length is the mean number of nodes present in the trees in all
generations. PT is the P-Value result of a Paired T-test. In the case of statistical significance
the P-Value is aligned with the best result.

96



Tables 6.3 and 6.4 show a comparison of the size of programs produced when using

SDC with either uniform swap point crossover or biased swap point crossover. The results

dictate that SDC consistently produces smaller programs in the Boolean domain problems,

but in the ant and symbolic regression domains 5 out of 6 experiments produce significantly

shorter programs using original crossover. These conflicting results are examined in more

detail in the discussion section.

Figures 6.1 — 6.5 show varying levels and trends of the numbers of crossovers which are

rejected for parent child equivalence. In the majority of the experiments there is an upward

trend in the numbers of rejected crossovers, which in some cases is nearly the same size as

the population. This demonstrates that the SDC algorithm is having to do more work later in

the runs to enforce semantic diversity during evolution. The two experiments which contrast

this trend are the CUBIC and QUART (figure 6.5) which both show a decreasing trend to very

small numbers of rejected crossover (if considered as a percentage of the total population)

6.1.4 Discussion

The results presented in tables 6.1, 6.2, 6.3 and 6.4 highlight two separate effects of using

semantically driven crossover. These are the improvement of fitness and the problem de-

pendant reduction in bloat.

Improvement in Fitness

The motivation for researching this crossover technique was to test the hypothesis that in-

creasing semantic diversity in a population of programs would result in the increased perfor-

mance of GP. In all but one of these experiments, semantically driven crossover has resulted

in statistically significant improvements in the performance of GP. In the case where perfor-

mance was not better than existing crossover, the fitness was statistically equivalent. The

fact that maintaining semantic diversity in GP populations increases performance is impor-

tant as it demonstrates that directly relating operators to the semantic search space does

have advantages in evolution.

Whilst critics of this operator will compare semantically driven crossover to a brood ope-

rator (an operator that produces more children than are required and selects children against

a criteria to be inserted into the new population Zhang et al. [2006]) saying that it has more
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Figure 6.1: The figures show the numbers of rejected crossovers in box plot form, with
outliers marked as * using the KOZAXO-SDC variant of SDC for the multiplexer experiments.
The results presented are averaged over 100 runs.
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Figure 6.2: The figures show the numbers of rejected crossovers in box plot form, with
outliers marked as * using the KOZAXO-SDC variant of SDC for the even parity experiments.
The results presented are averaged over 100 runs.
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Figure 6.3: The figures show the numbers of rejected crossovers in box plot form, with
outliers marked as * using the KOZAXO-SDC variant of SDC for the majority experiments.
The results presented are averaged over 100 runs.
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Figure 6.4: The figure shows the numbers of rejected crossovers in box plot form, with
outliers marked as * using the KOZAXO-SDC variant of SDC for the artificial ant experiment.
The results presented are averaged over 100 runs.

chances to pick a desirable child program, one can argue that semantically driven crossover

does not examine any particular feature of a child program except its behavioural originality

which may be a positive or negative result.

Moreover, this operator may offer improvements in GP scalability. If one considers a situa-

tion where a fitness function is computationally expensive to execute (for example, a situation

with a large number of input-output scenarios where behavioural representation comparison

will operate relatively quickly compared to standard fitness assessment), using abstraction

to enable crossovers to produce novel children more often will reduce the number of fitness

neutral and semantically equivalent programs that are assessed. Essentially, this operator

may give the GP practitioner the opportunity to do a more efficient evolution compared to

performing more evolution (either by increasing population size or generations).

Reduction of Bloat

As described in section 3.2, there are several theories as to the cause of bloat. The results

presented in tables 6.3 and 6.4 demonstrate that semantically driven crossover can have a

significant impact on bloat both positively and negatively. In the experiments presented, all
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Figure 6.5: The figures show the numbers of rejected crossovers in box plot form, with
outliers marked as * using the KOZAXO-SDC variant of SDC for the symbolic regression
experiments. The results presented are averaged over 100 runs.
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of the Boolean domain problems experiences reduced bloat when using SDC, whereas all

but one of the other experiments experiences increased bloat when using the SDC.

Figures 6.1 — 6.5 showed varying trends of rejected crossover. In the experiments pre-

sented, all of the Boolean problems showed substantial levels of rejected crossover with

an increasing trend. A possible reason for this is that, as introns build up within programs,

crossover finds it harder to chose swap points which will effect the overall behaviour of the

candidate program. This would lead to higher numbers of crossovers being rejected as time

increments. The artificial ant and the symbolic regression domain, generally saw a relati-

vely low level of crossovers being rejected. In the symbolic regression domain, there was

a decreasing trend in the level of rejected crossovers. This may be as a result of the SDC

forcing diverse evolution paths in the early generations of the run and after this point candi-

date programs retained that diversity. In this situation the number of behaviours in the search

space which are attainable with larger programs becomes important. The symbolic regres-

sion domain will have many more behaviours than the discrete domains when programs are

large and this would contribute to the lower number of reverted crossovers in the symbolic

regression domain.

An interesting note at this point is the way in which introns are defined. The contrast

between the Boolean and symbolic regression domains is that IF statements in the Boolean

domain render areas of code unreachable whereas in the symbolic regression domain, in-

validators (such as multiply by 0) render code redundant. Changes to redundant code may

result in the code becoming active again, whereas changes in unreachable code can never

have an effect. The lack of unreachable code could be a reason for fewer rejected crossovers

in the symbolic regression domain.

Given the varying results, the impact of semantically driven crossover is compared to

existing theory. When considering the protection from deletion theory, the SDC algorithm

would magnify the effect of destructive crossover as it only checks whether a crossover is

behaviourally neutral rather than whether it is constructive or destructive. As a result, if in-

trons are prevented from being added to programs at the point of crossover, it would be

expected that programs would perform worse in terms of overall score if the protection from

deletion theory were applied. Given that the results presented do not show any degradation

of performance using semantically driven crossover, it would indicate that introns are not
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required to achieve good performance. Furthermore, given that in the majority of the experi-

ments presented, there is increased performance as well as reduced program size, it would

suggest that programs do not need to be protected from having valuable subtrees deleted.

A further problematic aspect of this theory is the idea that to achieve high scores GP

evolution is dependent on an inefficient one to many mapping between behaviour and syntax

respectively. The system proposed in this section has taken a small step towards a one to

one relationship between syntax and behaviour and outperforms the standard GP technique.

This would indicate that it may be better to aspire to a one to one mapping between syntax

and behaviour to achieve better performance.

When considering the fitness causes growth theory, two aspects need to be considered.

The first of these is the concept that programs may need to grow to attain higher scores

as they may be missing essential parts. The second is the idea that a population will drift

to a region of the search space where they are more likely to attain a higher score and

multiply resulting in the same standard behaviour. Both of these factors are plausible under

the system presented and although the SDC mean program size is substantially smaller than

the standard GP, it does increase with improved performance.

One interesting difference between standard crossover and the SDC algorithm is the fact

that whilst the search may move to areas of semantically equivalent programs, the lineage

will be different because each crossover forces the creation of a child program which will

make a new behavioural step in relation to the parent programs. Therefore, whereas in

standard crossover, code may drift to semantically equivalent and fitness equivalent areas of

the search space, in SDC the population be more diverse.

Removal bias hinges on the idea that in the event of a fitness neutral crossover, it is more

probable that a small sub tree will be swapped for a larger one during crossover. Behaviou-

rally neutral crossovers are subsumed by fitness neutral crossovers, however, figures 6.1 —

6.5 show that a substantial proportion of behaviourally neutral crossovers are rejected. As

a result of these experiments, the SDC algorithm serves to dampen the effect of removal

bias, as it will prevent a substantial proportion of fitness neutral crossovers from occurring.

Whilst it is possible for fitness neutral crossovers to occur under this system, the removal

bias theory remains a plausible explanation for the code growth present in our experiments.

Semantically driven crossover would have no noticeable effect on modification point depth
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providing the swaps near the leaves of the tree were not in intron areas. If the swaps were

in intron areas near the leaves of the tree, then semantically driven crossover would force

modification point depth to be more aggressive at increasing the program size. Considering

that semantically driven crossover hampers the build up of introns, it is less likely that swaps

in the leaves of the program tree will be in intron areas, therefore, the effect of modification

point depth in this situation is unchanged.

When considering crossover bias, it is suggested that smaller programs are more fre-

quently sampled and removed by the fitness function due to poor fitness. Smaller programs

have more simplistic behaviours and repeated sampling of these simplistic behaviours, in

relation to the parent programs, would be prevented by semantically driven crossover. The-

refore, semantically driven crossover, may slightly reduce the effect of crossover bias. A

counter argument to this is that, there are many simplistic behaviours and that semantically

driven crossover only compares child behaviour to the parent. The result of this would be

that it is perfectly plausible to sample more smaller programs despite semantically driven

crossover.

6.1.5 Conclusions

Semantically driven crossover can significantly increase performance of GP in the majority

of problems presented and decrease code bloat in a selection of the problems presented.

It has been demonstrated that the addition of behaviourally neutral code can be eliminated

at the point of crossover using abstract representation. The higher performance level is

unsurprising as the semantically driven crossover algorithm effectively forces programs to

make more movements around the behavioural search space. Using the semantically driven

crossover algorithm, probability would dictate that the search is wider which is supported by

our results.

One factor that remains interesting is the high number of behaviourally neutral crossovers

that occur under the standard GP process. This represents a substantial waste in terms of

computation and reduces the power of the GP search. Despite the theory that introns protect

valuable code from destruction in crossover, the combination of two factors would indicate

that introns are not required to achieve high performance in GP. These factors are increased

performance and in some cases smaller program sizes. Based on these two factors, and the
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added computational burden of bigger programs, it can be argued that unreachable introns

are undesirable in GP.

6.1.6 Future Work

There are several areas of interest following on from this work. One of the key aspects of

whether a crossover will result in a behavioural change is how the code transplanted from

the swap partner will work together with the rest of the program. A further understanding

of linkage and context may yield clues as to how to make crossover more effective in terms

of increasing the probability of changing the behaviour of a program with each crossover.

With greater analysis, it may even be possible to intelligently guide crossover to be a more

effective operator.

These experiments have demonstrated the benefit of a wider, behaviourally driven search

to GP. It would be useful to conduct an experiment which forced the GP to move into new

areas of the search space as well as quantify how many times behaviours are produced to

analyse and behavioural bias. To do this GP could be hybridised with a semantic based Tabu

search.

Finally, if the ability to measure the difference between two behaviours became available,

it may be possible to enumerate the search properties of different crossover operators and

as a result intelligently choose between crossover operators to aid in the GP search. For

example, if GP prematurely converged, it may be possible to choose an operator that on

average causes a high level of semantic change in order to continue searching the search

space.

6.2 Semantically Driven Mutation

In this section, the semantically driven mutation (SDM) algorithm is described and evalua-

ted. The motivation to create this algorithm is similar to that of the motivation for developing

semantically driven crossover, in that forcing each mutation to take a new semantic step in

relation to its parent program in the search space should improve performance as a larger

search is conducted. Similarly to semantically driven crossover, the SDM algorithm works to

improve performance by not allowing mutated programs to be produced when they are beha-
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viourally equivalent to the original program. The aim of this is to avoid returning to sections

of the search space that have already been traversed. The SDM algorithm is compared to

standard sub tree mutation over the problems described in the test suite in section 4.1 and

performance, program size and rejected mutations results are evaluated.

In a similar fashion to the semantically driven crossover algorithm, SDM is an extension

to the development of different mutation algorithms (described in detail in section 2.7) and

acts as a wrapper around existing mutation techniques using pre and post evaluation of the

operator. The abstraction techniques used are set out in section 4.3. Whilst mutation initially

was not favoured by GP practitioners (Koza [1992]) later reviews by Luke and Spector [1997,

1998] have shown mutation can be as effective as crossover during evolution.

In section 6.2.1, the experiment specific parameters are described. Section 6.2.2 pre-

sents the performance, program size and rejected mutation results and section 6.2.3 pre-

sents a discussion of the results. In sections 6.2.4 and 6.2.5, conclusions and suggestions

for future work related to the use of the SDM are presented respectively.

6.2.1 Methods and Algorithms

The aim of this work is to demonstrate the positive effects of redesigning the mutation opera-

tor so that instead of merely altering syntax, it will attempt to alter the behaviour of programs.

The SDM process is set out in algorithm 6.2.

The SDM algorithm will try to mutate a program into a new behavioural state. The process

involves performing a standard sub tree mutation; however, after each mutation attempt, the

algorithm checks to ascertain that each mutated program is semantically different to the

original program. In some cases it may not be possible to semantically mutate a program

(for example, if the program contained substantial inviable code) and as a result a counter

system has been applied such that the mutation operator will have at most five attempts

to behaviourally mutate a program, after which the original program is returned. Despite

initial fears that this algorithm would be slow due to the creation of the representations of

behaviour, run time appears roughly comparable to standard mutation.

The experiment suite used is as set out in section 4.1 with the following modifications.

No crossover has been used in order to isolate this variable from the experiment. Mutation is

applied with 0.9 probability and reproduction with 0.1 probability. Standard sub tree mutation
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Algorithm 6.2 Semantically Driven Mutation Algorithm
for each program in population

if random_no < prob_mutation
counter = 0
while counter < 5

generate semantic_representation1 of program
select mutation_point (uniform)
generate sub_tree using grow (depth 4)
insert sub_tree at mutation_point
generate semantic_representation2 of mutated_program
if semantic_representation1 ≡ semantic_representation2 {

revert mutated_program back to program
else

break
end if
counter++

end while
end if

end for each

is used and a uniformly selected node is replaced with a new sub tree. The new sub tree is

generated using the GROW depth 4 algorithm. Whilst Luke [2000a] highlighted a weakness

the of GROW algorithm, a consistent method was required to generate new subtrees for

experimental comparison and FULL and Ramped Half and Half were not suitable for the

purposes of generating individual subtrees. FULL would generate new subtrees all of the

same depth and RHH operates over a number of programs changing program depth and

initialisation type which is not suitable for randomly generating one subtree.

6.2.2 Results

Table 6.5 shows that the SDM algorithm significantly improves the performance of GP runs

in 8 out of 9 experiments. In the CUBIC experiment the overall maximum scores favoured

traditional mutation. When comparing the scores at generation 50, the SDM produced better

performing results in 4 out of 9 experiments. The other 5 results were statistically similar.

Table 6.6 shows that the SDM has no clear effect on program size. Two experiments

reported shorter programs using the SDM, 4 with standard sub tree mutation and 3 with no

statistical difference. Further to this, unlike semantically driven crossover, there appeared to

be mixed program length results across individual domains.

Figures 6.6 — 6.10 show varying trends of the rate at which mutations are rejected over
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Problem Experiment Overall Max (StDev) PT G50 Max (StDev) 2T Success

4PAR SDM 0.0768 (±0.0774) 0.00 0.0231 (±0.0423) 0.009 74% (G9)
MUT 0.0970 (±0.0749) - 0.0400 (±0.0483) - 52% (G6)

5MAJ SDM 0.0389 (±0.0426) 0.00 0.0088 (±0.0154) 0.00 74% (G7)
MUT 0.0527 (±0.0395) - 0.0219 (±0.0241) - 47% (G8)

6MUX SDM 0.0831 (±0.0553) 0.00 0.0406 (±0.0478) 0.141 47% (G7)
MUT 0.0946 (±0.0520) - 0.0511 (±0.0520) 0.141 42% (G8)

7PAR SDM 0.3511 (±0.0583) 0.00 0.2680 (±0.0373) 0.009 0% –
MUT 0.3584 (±0.0549) - 0.2813 (±0.0339) - 0% –

9MAJ SDM 0.1576 (±0.0344) 0.00 0.1204 (±0.0098) 0.224 0% –
MUT 0.1595 (±0.0340) - 0.1221 (±0.0104) 0.224 0% –

11MUX SDM 0.1942 (±0.0703) 0.00 0.1117 (±0.0380) 0.00 0% –
MUT 0.2070 (±0.0620) - 0.1334 (±0.0452) - 0% –

AASF SDM 0.3411 (±0.0733) 0.00 0.2787 (±0.1315) 0.139 10% (G8)
MUT 0.3685 (±0.0719) - 0.3045 (±0.1202) 0.139 5% (G13)

CUBIC SDM 989.18 (±209.76) - 780.81 (±156.61) 0.963 0% –
MUT 984.24 (±212.18) 0.002 779.80 (±150.75) 0.963 0% –

QUART SDM 1554.88 (±483.73) 0.00 1088.59 (±385.14) 0.81 0% –
MUT 1605.38 (±492.15) - 1100.94 (±340.11) 0.81 0% –

Table 6.5: The table shows results using sub tree and semantically driven mutation. Problem
is the problem being examined. Experiment is the type of mutation being used where MUT
is standard mutation and SDM is semantically driven mutation. Overall max is the mean
of the maximum scores over all generations and the StDev is the standard deviation of the
maximum scores. The scores are presented in standardised fitness (lower = better). PT is
the statistical result of paired T tests comparing the maximum scores over the generations.
G50 Max is a mean of the maximum scores at generation 50 and StDev is the standard
deviation of these maximum scores. The scores are represented in standardised fitness. 2T
is the statistical result based on 2 sample T test of the maximum scores at generation 50.
Success is the number of runs which reached full score and the bracket figures represent
the first generation in any run at which full score was achieved. Scores for the discrete
fitness functions (Boolean and Ant domains) have been scaled to be comparable. The scores
quoted for the regression domain are raw absolute error.
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Problem Experiment Overall Length (StDev) PT

4PAR SDM 144.62 (±29.45) 0.00
MUT 159.08 (±39.87) -

5MAJ SDM 82.27 (±21.75) 0.00
MUT 90.32 (±28.82) -

6MUX SDM 52.29 (±12.85) 0.60
MUT 51.95 (±16.08) 0.60

7PAR SDM 215.71 (±47.86) -
MUT 206.04 (±44.67) 0.00

9MAJ SDM 86.78 (±25.30) -
MUT 80.34 (±23.19) 0.00

11MUX SDM 41.02 (±8.87) -
MUT 38.92 (±9.64) 0.00

AASF SDM 121.14 (±28.66) -
MUT 111.65 (±26.02) 0.00

CUBIC SDM 70.00 (±11.15) 0.494
MUT 70.19 (±10.76) 0.494

QUART SDM 68.78 (±11.05) 0.222
MUT 69.29 (±10.00) 0.222

Table 6.6: The table compares program lengths using sub tree mutation and semantically
driven mutation. Problem is the problem being examined. Experiment is the type of mutation
being used where MUT is standard mutation, SDM is semantically driven mutation. Overall
Length is an average of the average program lengths for all generations and StDev repre-
sents the standard deviations of these mean lengths. PT indicates the result of a Paired
T-test analysed at the 95% confidence level.
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Figure 6.6: The graphs indicate the number of mutations that were rejected (or disallowed)
by the SDM algorithm when considering the multiplexer problems. The Y axis have been
scaled to represent the size of the population. All results are averaged over 100 runs.
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Figure 6.7: The graphs indicate the number of mutations that were rejected (or disallowed)
by the SDM algorithm when considering the even parity problems. The Y axis have been
scaled to represent the size of the population. All results are averaged over 100 runs.
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Figure 6.8: The graphs indicate the number of mutations that were rejected (or disallowed)
by the SDM algorithm when considering the majority problems. The Y axis have been scaled
to represent the size of the population. All results are averaged over 100 runs.
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Figure 6.9: The graphs indicate the number of mutations that were rejected (or disallowed)
by the SDM algorithm when considering the artificial ant problem. The Y axis have been
scaled to represent the size of the population. All results are averaged over 100 runs.

the generations. One rejection counts when the first child produced by the SDM algorithm is

equivalent to the original program. Further attempts to mutate the program (up to the five al-

lowed) are not counted as rejected mutations. When considering the multiplexer experiments

(figure 6.6), the 6MUX show a clear increasing trend in the number of mutations being rejec-

ted between 20% and 40% of all mutations as time goes on. The 11MUX shows a constant

level of approximate 600 rejections over each generation. The parity experiments (figure

6.7) both show a constant level of rejections with over 40% for the 4PAR and approximately

25% for the 7PAR. The majority experiments (figure 6.8) show varying trends. The 5MAJ

increases the level of rejected mutation to nearly 40% of the population. The 9MAJ has a

constant level of approximately 600 rejections for each generation. The AASF (figure 6.9)

shows very few rejections in comparison to some of the other problems featuring a constant

level of approximately 50 rejections. The regression models (figure 6.10) present a contrast

to similar results from other problems. Both CUBIC and QUART present a decreasing trend

in the numbers of mutations being rejected over time.
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Figure 6.10: The graphs indicate the number of mutations that were rejected (or disallowed)
by the SDM algorithm when considering the symbolic regression problems. The Y axis have
been scaled to represent the size of the population. All results are averaged over 100 runs.
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6.2.3 Discussion

The results presented indicate that the one to many relationship between behavioural and

syntactic representations constitutes an inefficiency in performance. Using standard mu-

tation, many fitness evaluations represent wasted computational effort, since the mutated

program is semantically equivalent to the parent program. In all but one experiment, the ove-

rall comparisons demonstrated that the semantically driven mutation must force increased

levels of movement (as evidenced by figures 6.6 — 6.10) around the search space. The

result is that better solutions are found quicker compared to traditional sub tree mutation and

this is evidenced in the performance of SDM (table 6.5).

A speculative explanation for the varying program size results is the possibility that the

increased search forced programs to move to different regions of the search space which

required different numbers of nodes in the trees. This effect would be problem specific and as

such, varying results can be observed in the program sizes produced by the SDM algorithm

when compared to standard sub tree mutation.

In addition to the GP performance and program size results, the percentage of programs

being rejected was examined. Figures 6.6 — 6.10 show varying trends of rejection rates. It is

difficult to predict the numbers of rejections expected to be present and different trends may

be the result of different explanations. Considering 6MUX and 5MAJ, clear positive trends

could be a symptom of increased intron areas being present as mutations take place causing

many to be rejected due to swap point positioning. In a search context, the decreasing trends

present in CUBIC and QUART may indicate that at first the SDM had to work hard to enforce

diversity in the early generations, but once a diverse population became present, it was less

likely that programs would converge again.

A final point of note is that the SDM has only been applied to a simple version of sub tree

mutation. As mentioned in section 2.7 there are several other mutation techniques. Whilst

each technique has a different mutation process, the SDM concept could be applied over

the top of each of these different mutation processes. One fact to be drawn from increa-

sing semantic diversity in standard sub tree mutation is the increase in overall performance

noted in all but one of our experiments, and there is no reason to assume that applying

the SDM concept on other mutation processes cannot demonstrate a similar increase in GP

performance.
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6.2.4 Conclusions

In conclusion, there are two key points to draw from the results generated using semantically

driven mutation. Firstly, the SDM algorithm significantly increased the performance of GP in

all but one experiment. This indicates that SDM is a valuable mutation operator because of

its ability to increase performance in the majority of experiments.

Secondly, the variable rejections rates indicate that an explanation of the effect for using

the SDM is non trivial. Constant, increasing and decreasing trends are observed and despite

attempting to correlate these trends with program size, there appears to be no link. All that

can be provided is speculative reasons for the level of rejected mutation present when using

the SDM algorithm.

6.2.5 Future Work

There are two key areas of future work the use of the SDM lead to. Firstly, the simple path is

to use the SDM with other types of mutation operator (for example, hoist, point or even size

fair homologous). The mechanics of this are relatively simple to implement, however, given

that increasing diversity in both crossover and mutation appears to have a positive effect on

GP performance, speculatively, one could predict that this will simply increase performance

for each of the operators separately.

The second area worth examining is to study the level of semantic change caused by

mutation operators. This information could be used in two ways. Firstly, it could be used by

practitioners to make intelligent choices as to which operators to use. Secondly, this seman-

tic change information could be compared with similar information relating to the crossover

algorithm to examine whether crossover and mutation exhibit different search properties (An-

geline [1997]).

6.3 Semantic Pruning

This section presents an algorithm to reduce program bloat during evolution using a seman-

tics based technique. The objective is to completely remove both unreachable and redundant

introns from candidate programs during evolution. The reason for performing these experi-

ments is to examine the effects on evolution of removing introns through pruning. By remo-

117



Algorithm 6.3 Semantic Pruning Algorithm
for each candidate_program in population

translate candidate_program to representation
if representation is a constant_behaviour

swap candidate_program for a random_terminal
else

translate representation back to reduced_candidate_program
swap candidate_program for reduced_candidate_program

end if
end for each

ving all introns from the candidate programs, it becomes possible to examine how introns

may or may not be valuable to evolution.

In order to achieve this goal, a semantic pruning technique, which reduces programs via

generating a behavioural representation of syntax and then translates the behaviour back to a

reduced syntax tree is presented. Semantic pruning represents a novel step, as unlike other

bloat control techniques (descriptions in section 3.2.2), and more specifically unlike program

reduction or editing, semantic pruning completely rebuilds the program tree from a canonical

representation of behaviour. This characteristic results in semantic pruning falling into the

category of code reconstruction which is equivalent to refactoring a program to reduce its

size.

As a method to reduce program size, semantic pruning achieves a dramatic reduction

in bloat, in some cases rendering resultant programs human readable. The price of the

dramatic level of bloat reduction is varying performance results when compared to a control

experiment.

6.3.1 The Semantic Pruning Method

The pruning algorithm is executed after crossover and mutation operators and immediately

prior to selection, and consists of translating each member of the population into a canonical

semantic form, then reconstructing a syntax tree from that representation. This process

removes all introns from the code.

Algorithm 6.3 sets out the semantic pruning process. Programs are reduced unless they

are classed as a constant behaviour (as set out in section 4.3.4). When programs are

constant behaviours, they are swapped for a random terminal. The reason for this is that

constant behaviours do not represent a behaviour that uses any of the input behaviours and
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Problem Experiment Max Score PT Max Score G50 2T Success (Gen)

4PAR Pruned 0.1514 (±0.0030) - 0.1499 (±0.0160) - 0%
Control 0.0949 (±00735) 0.00 0.0425 (±0.0494) 0.00 50% (G9)

5MAJ Pruned 0.1280 (±0.0097) - 0.1253 (±0.0031) - 0%
Control 0.0406 (±0.0396) 0.00 0.0159 (±0.0245) 0.00 63% (G9)

6MUX Pruned 0.0255 (±0.0522) 0.00 0.0088 (±0.0321) 0.00 93% (G3)
Control 0.0763 (±0.0498) - 0.0431 (±0.0529) - 51% (G6)

7PAR Pruned 0.2585 (±0.1121) 0.00 0.0951 (±0.0417) 0.00 2% (G40)
Control 0.3286 (±0.0685) - 0.2333 (±0.0259) - 0% –

9MAJ Pruned 0.1018 (±0.0356) - 0.0548 (±0.0079) - 0% –
Control 0.0912 (±0.0362) 0.00 0.0496 (±0.0089) 0.00 0% –

11MUX Pruned 0.0472 (±0.0936) 0.00 0.0019 (±0.0107) 0.00 97% (G10)
Control 0.1019 (±0.0906) - 0.0339 (±0.0401) - 46% (G14)

AASF Pruned 0.2802 (±0.0628) 0.161 0.2655 (±0.0990) - 6% (G3)
Control 0.2828 (±0.0722) 0.161 0.2300 (±0.1160) 0.02 11% (G5)

CUBIC Pruned 1046.11 (±146.25) - 956.76 (±178.29) - 0% –
Control 816.26 (±287.25) 0.00 498.64 (±204.69) 0.00 0% –

QUART Pruned 1694.87 (±448.78) - 1336.42 (±473.88) - 0% –
Control 1258.54 (±596.09) 0.00 711.89 (±311.47) 0.00 0% –

Table 6.7: The table shows results comparing the performance of pruned algorithm to tradi-
tional GP runs. Experiment shows which are the control GP experiment and the pruned GP
experiment. Max Score indicates an average of the maximum scores (± the standard de-
viation). Standardised fitness is used (all results normalised to fall between 0 and 1, except
continuous regression domain), so lowest values indicate best performance. PT indicates
the P-Value obtained from doing a Paired T-test comparing the pruned and control experi-
ments. The result is aligned with the best performing result. Max Score G50 is the average
of the maximum scores at generation 50 (± the standard deviation). 2T shows the P-Value
of a 2 sample T-test comparing the maximum scores at generation 50. The value is aligned
with the best result. Success is the number of runs that reach full score and (Gen) is the first
generation in which a full score was obtained from any run.

as a result cannot be back translated to a valid syntax. This process iterates over the whole

of the candidate program population.

The experimental parameters are as set out in section 4.2 and experiments are conducted

on the experiment suite outlined in section 4.1. The semantic pruning process is performed

before fitness is assessed and selection takes place.
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Problem Experiment Mean Program Length PT

4PAR Pruned 16.76 (±2.92) 0.00
Control 248.88 (±89.61) -

5MAJ Pruned 14.79 (±2.61) 0.00
Control 178.44 (±79.54) -

6MUX Pruned 8.87 (±3.05) 0.00
Control 112.62 (±50.95) -

7PAR Pruned 141.58 (±41.68) 0.00
Control 527.81 (±232.21) -

9MAJ Pruned 138.65 (±58.64) 0.00
Control 351.43 (±206.38) -

11MUX Pruned 23.55 (±6.49) 0.00
Control 136.08 (±78.85) -

AASF Pruned 117.62 (±25.45) 0.581
Control 118.18 (±29.16) 0.581

CUBIC Pruned 15.23 (±5.48) 0.00
Control 161.87 (±62.33) -

QUART Pruned 20.76 (±8.01) 0.00
Control 168.51 (±62.69) -

Table 6.8: The table shows a comparison of program lengths using the pruned algorithm and
traditional GP runs. Problem indicates the test problem being studied. Experiment indicates
whether pruning is being used. Mean Program Length is the mean number of nodes present
in the trees in all generations. PT is the P-Value result of a Paired T-test. In the case of
statistical significance the P-Value is aligned with the best result.

6.3.2 Results

Table 6.7 shows that semantic pruning can dramatically effect performance in GP. Overall,

there appears to be no clear pattern as to whether semantic pruning is a benefit or a hin-

drance. When comparing overall performance, 5 experiments favour the control runs, 3

favour the pruned runs and 1 is statistically equivalent. At generation 50 a similar mix of

performance is visible. In 6 experiments the control runs are better performing and in 3

experiments the pruned runs produce better performance. Whilst some domains clearly

produce better performing runs for the control runs (for example, the symbolic regression ex-

periments), and others for the pruned runs (for example, the multiplexer experiments) some

outcomes are less obvious. The even parity results are contrasting in that runs perform better

for the 4PAR using control parameters and better for the 7PAR using pruning.

Table 6.8 shows that semantic pruning dramatically decreases program sizes in all cases
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Figure 6.11: The figure shows the length of the pruned programs over the generations. All
data is averaged over 100 runs.

but the artificial ant. In addition to vastly reduced program sizes, many of the programs

produced by the pruning algorithm are human understandable. For example, a common

resultant program output for the 6MUX problem was:

Program 1 Score = 0.0

IF A0 ( IF A1 D0 D1 ) ( IF A1 D2 D3 )

Whilst the above example of output is easy to note down for humans (as an answer for the

6MUX), it is difficult for GP to generate a minimal candidate solution such as this. Using

semantic pruning, simplified and accurate statements such as the above are common output

programs.

Figure 6.11 shows how the average lengths of the pruned programs change over the

course of a run. Despite the ability of semantic pruning to control program size, programs in

a selection of the experiments continue to grow in size as the generations pass.

6.3.3 Discussion

It is clear from the results in table 6.8 that semantic pruning is a very effective mechanism for

removing introns from program trees. Combined with this, it is clear from the performance
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results presented in table 6.7, that this reduction can have both positive and negative effects

on the evolvability of programs. As a result of this, an investigation into the role of program

structure in evolution may yield clues as to the evolvability of programs. The analysis of

program structure will be developed in greater detail in chapter 7.

Whilst on the subject of program shape, the contrast in results brings into question the

way in which programs are translated from behavioural representation to syntactic form (as

outlined in section 4.3). For the Boolean experiment, the ROBDDs only provide one obvious

route in which to translate the behaviour to syntax. However, this reconstruction of syntax

can be affected by variable ordering of the ROBDD (Downing [2006b]). Other domains are

less clear, and the statistical outlier in table 6.7 was the result for the artificial ant problem.

The artificial ant, in this situation, has produced statistically equivalent overall perfor-

mance results and statistically similar tree lengths. One difference, when compared to the

Boolean back translation mechanism (behaviour to code) is that the ant back translation me-

chanism produces full trees rather than deep thin trees. It is intriguing that this has resulted

in equivalent performance between the two experiments, as it suggests that standard ini-

tialisation (Ramped Half and Half) operates more towards producing bushy trees. This is

in agreement with Luke [2000a] analysis of the GROW algorithm. Furthermore, it is also in

agreement with the conclusion of Langdon [2000], in that the initialisation process would have

a notable effect on the initial structure of the population as well as the continuing population

structure throughout evolution.

With the mixed results presented, the question remains as to the value of introns in GP

evolution. In terms of performance, they are not needed for the multiplexer problems or the

7PAR problem. Theoretically, introns are not needed to succeed at any of the other problems,

so the question remains as to why such poor performance is obtained in several of the

experiments presented? One speculative answer, could be that introns are required purely

for “padding” to make high performing tree shapes more readily acceptable to evolutionary

search. In a highly multimodal landscape GP could easily do worse than random search and

neutrality can help to improve the situation. This would tie together the works of Daida et al.

[2003] with other works involving research into neutrality in GP, for example, Downing [2005],

Galvan Lopez et al. [2005].

Despite the semantic pruning process, figure 6.11 shows that in some experiments pro-
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grams continue to grow. The only difference in this situation is that the code growth is va-

luable exon code and as a result, candidate solutions should be moving towards an optimum,

possibly global, but maybe local. A possible explanation for the mixed effects of pruning on

program growth could be the concept of structural steps as a form of fitness step. Traps in

the form of visual cliffs in the 3 dimensional search space are not uncommon topics, howe-

ver, a structural step in this case may be slightly different. Consider the possibility that a

search agent is very close to a solution in the search space; however, in order to change

its behaviour (phenotype) to take the next small search step, the candidate program would

have to substantially, or improbably modify itself at the syntactic level in order to achieve the

change in behaviour. This is similar to the concept of locality (Rothlauf [2006]) and in this

situation, problem difficulty would be complimented by a structural difficulty. Referring back

to figure 6.11, this may explain why some problems are able to grow (with 100% effective

code) towards a solution while others stagnate at a particular size (or achieve full fitness) as

the structural steps for different problems may be at different program sizes.

Introns would allow neutral evolutions (Downing [2005, 2006a]) which may help smooth

out the fitness steps, both in terms of problem hardness and structural evolutions. This

would be in direct contrast to the aggressive nature of the semantic pruning procedure. An

alternative approach to alleviate this problem would be to combine semantic pruning with

search operators that can force behavioural change and examine the effects. This set of

ideas is studied in further detail in section 6.4.

When considering how the results presented relate to existing theories of bloat, the fact

that introns are completely removed (with the exception of the ant with simulated introns)

does impact upon some of the explanations of bloat. The semantic pruning implementation

by design will not allow protection from deletion to function effectively, and as such, we should

see marked decrease in performance, however, our results are conflicting on this issue.

Removal bias is also effectively removed because there are no smaller inactive subtrees

near the leaves of a program tree to be exchanged for larger inactive subtrees. As part of

the fitness causing bloat explanation, this system would prevent groups of larger programs

with similar fitness values occurring, given that semantic pruning can reduce redundant but

executable code. As a counter argument, the concept of programs favouring moving towards

a particular program size potentially links with program shape in that the fitness function is
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causing programs to favour a particular structure. Not allowing this movement to take place

could be a partial explanation for the variations in performance presented in these results.

6.3.4 Conclusions

In the context of the reduction of bloat, semantic pruning is effective at reducing program

size, but it also demonstrates that pruning might not necessarily be an ideal process to use

during the course of a GP run, due to its dramatic effect on performance in a non consistent

manner. The mixed results produced by semantic pruning demonstrate that whilst a formal

reduction mechanism is being used to improve GP efficiency, it is not a simple task to reduce

programs without reducing evolutionary potential. It has been shown that semantic pruning

can be either, very successful, a complete failure or produce statistically indistinguishable

results and this problem dependence indicates that other forces are at work, namely the role

of program structure and the locality of program structures during evolution.

In line with the work of Daida et al. [2003] and Langdon [2000], it is clear that program

structure (or the lack of evolvability of program structure) has effected these results in the

Boolean domain. Whilst the artificial ant mechanism uses a different reduced tree construc-

tion method (producing full trees), it acts as a counter example supporting the importance of

the shape of the program trees during evolution.

Program structure, being one of or an additional causes of either GP hardness or problem

dependence, would add further complexity for the GP practitioner. On one level of difficulty,

the practitioner must design an algorithm that is capable of finding an optimal solution in a

search space of undulating fitness, and on a second level the GP practitioner needs to take

care to ensure that a representation does not need to be optimised itself (forming a particular

shape) in order to be able to provide the best possible solution to all GP problems.

6.3.5 Future Work

Based on this work, there are two major avenues for future work. Firstly, there needs to be

more research into representation in GP. This work highlights the potential for weaknesses

of the tree structure and the potential additional complexity through shape optimisation that

it causes during the course of a GP run. Whilst other authors have utilised other repre-

sentations (Teller and Veloso [1996], Banzhaf et al. [1998]), there is scope for additional
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theoretically backed work (such as Rothlauf [2006]), but more specifically for GP.

Secondly, if GP practitioners are to continue using the tree representation, then there is

a need for further research in controlling program shape. One way of doing this could be

implemented from initialisation, for example, using modified versions of Luke’s probabilistic

tree creation algorithms Luke [2000a] to bias the shapes of initialised programs. A second

approach may be to enforce a variety of structures in the population and control the values

of the nodes using probability such as Salustowicz and Schmidhuber [1997] probabilistic

incremental program evolution. A final approach for controlling size and shape distributions

or programs is using crossover equalisation (Dignum and Poli [2008a]). This would control

the size and shape of programs used in crossover, therefore influencing the structure of

programs during evolution.

6.4 Intron Free Genetic Programming

This section combines all of the work presented so far in chapter 6 in order to create intron

free GP with behavioural search. The motivation for this is to increase the efficiency of GP

by moving program syntax a step closer to program behaviour. This can be harnessed to

increase the power of search operators (sections 6.1 and 6.2) and to reconstruct programs

in their most efficient form by removing all introns (section 6.3).

A secondary motivation for this particular set of experiments is that the role of introns

in GP has remained unclear and several of the experiments in the previous sections and

chapters have demonstrated that introns may not be required in order to achieve good per-

formance in GP. The ability to explicitly remove all introns from every point in GP evolution

provides the opportunity to formally test whether the presence of introns is beneficial or de-

trimental to GP.

There are two potential criticisms of these procedures. The first question that may be

asked is “Why not just use a canonical representation for GP?”. The answer to this lies in

two parts. Firstly, it is extremely difficult to create a representation that will remain canonical

during the evolution process. For example, performing GP using ROBDDs as the representa-

tion would not result in perfectly reduced binary decision diagrams after each operation. The

same problem occurs for all of the abstraction mechanisms contained in this thesis and the
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abstraction representations used all have a series of reduction rules that need to be applied

in order to achieve a canonical form. Secondly, if GP is to expand as a main stream form of

code generation then it would be helpful for GP to be able to operate on main stream forms

of code. Whether its Java, C++ or another language, it is relatively easy to achieve the same

behaviour using different syntax.

The second criticism is to do with the semantic methods being more computationally ex-

pensive that traditional GP. The response is that this work focuses on performing GP correctly

and efficiently rather than just using larger populations and longer runs. Problems with lar-

ger numbers of input-output combinations would be the first to benefit as a larger number of

input-output combinations makes the fitness function more computationally expensive. This

is compounded by repeatedly assessing the fitness of semantically equivalent programs.

Forcing new search steps in relation to parent programs means that less computational time

is spent assessing the fitness of equivalent programs. Whilst there is some trade off in the

computational effort required to build representations of behaviour, in theory, GP would need

to perform less fitness evaluations to find good candidate solutions.

6.4.1 Methodology

The parameters used on the experiment suite are aimed at eliminating introns at every stage

of GP. With the exception of the parameters mentioned below, all other parameters are as

specified in section 4.2.

For initialisation, hybrid semantically driven initialisation has been used in order to remove

introns in the starting population. Chapter 5 demonstrated the difficulty in constructing a

behaviourally diverse starting population and the hybrid semantically driven initialisation has

been chosen, not because it was the best, but because it was never the worst performing

technique in the experiments. The other initialisation methods presented extreme results

from problem to problem.

A probability of 0.45 is used for semantically driven crossover in order to ensure beha-

viourally novel child programs are produced. A probability of 0.45 is used for semantically

driven mutation, again to ensure the production of behaviourally novel children. A probability

of 0.1 is used for reproduction. After this, should any programs be produced that have introns

through linkage issues with new subtrees, semantic pruning will be applied to remove these
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Problem Experiment Max Overall (±StDev) PT Max G50 (±StDev) 2T Success (Gen)

4PAR Intron Free 0.0510 (±0.0754) 0.00 0.0056 (±0.0253) 0.001 95% (G6)
Control 0.0765 (±0.0778) - 0.0231 (±0.0423) - 72% (G5)

5MAJ Intron Free 0.0119 (±0.0220) 0.00 0.0009 (±0.0053) 0.00 97% (G5)
Control 0.0235 (±0.0222) - 0.0122 (±0.0166) - 63% (G5)

6MUX Intron Free 0.0165 (±0.0525) 0.00 0.0000 (±0.0000) 0.002 100% (G3)
Control 0.0417 (±0.0605) - 0.0069 (±0.0211) - 89% (G3)

7PAR Intron Free 0.2779 (±0.1035) 0.00 0.1243 (±0.0430) 0.00 0% –
Control 0.3311 (±0.0696) - 0.2330 (±0.0411) - 0% –

9MAJ Intron Free 0.1028 (±0.0324) - 0.0592 (±0.0074) - 0% –
Control 0.0944 (±0.0355) 0.00 0.0534 (±0.0081) 0.00 0% –

11MUX Intron Free 0.0563 (±0.1024) 0.00 0.0000 (±0.0000) 0.00 100% (G12)
Control 0.0791 (±0.1001) - 0.0195 (±0.0241) - 79% (G13)

AASF Intron Free 0.3015 (±0.0596) 0.00 0.2587 (±0.0631) 0.03 0% –
Control 0.3354 (±0.0747) - 0.2797 (±0.0724) - 0% –

CUBIC Intron Free 952.16 (±132.56) - 841.30 (±205.95) - 0% –
Control 862.63 (±271.55) 0.00 563.43 (±212.81) 0.00 0% –

QUART Intron Free 1283.39 (±408.23) 0.11 991.47 (±280.31) - 0% –
Control 1330.51 (±587.96) 0.11 755.52 (±313.15) 0.00 0% –

Table 6.9: The table shows the performance of GP when comparing runs containing no
introns to a control experiment. Problem indicates which problem is being tackled and Exp
indicates whether the run was a control run or an intron free run. Max overall indicates the
best performing score overall± the standard deviation (in discrete domains scores are scaled
against total score for comparison). PT indicates the result of a Paired T-test comparing the
maximum overall scores by generation. The P-Value is aligned with the best performing
result. Max G50 indicates the average maximum score at generation 50 (in discrete domains
scores are scaled against total score for comparison). 2T indicates the result of a 2 sample T-
test comparing the maximum scores at G50. The P-Value is aligned with the best performing
result. Success shows the number of runs to reach full score and generation indicates the
earliest any run reached full score. All results are averaged over 100 runs.

introns from the code.

6.4.2 Results

Table 6.9 shows the performance results comparing intron free GP with a control experiment.

Overall, intron free GP performed best in 6 out of 9 experiments and the control in 2 out of 9

experiments. The QUART experiment is statistically similar overall. At generation 50, intron

free GP performed best in 6 experiments and the control performed best in 3 experiments.

Table 6.10 shows a comparison of the programs lengths generated by the intron free

127



Problem Experiment Mean Length PT

4PAR Intron Free 19.05 (±2.97) 0.00
Control 233.40 (±82.30) -

5MAJ Intron Free 17.12 (±3.18) 0.00
Control 143.12 (±61.46) -

6MUX Intron Free 10.79 (±3.16) 0.00
Control 105.83 (±48.56) -

7PAR Intron Free 132.00 (±38.65) 0.00
Control 409.44 (±165.64) -

9MAJ Intron Free 134.21 (±48.47) 0.00
Control 299.43 (±171.93) -

11MUX Intron Free 39.70 (±26.16) 0.00
Control 113.20 (64.31) -

AASF Intron Free 83.78 (±28.91) 0.00
Control 106.11 (±30.87) -

CUBIC Intron Free 18.55 (±7.61) 0.00
Control 130.68 (±43.46) -

QUART Intron Free 27.91 (±9.75) 0.00
Control 138.32 (±46.17) -

Table 6.10: The table shows the program length results comparing no intron GP to a control
GP experiment. Problem indicates the problem being tacked. Experiment indicates whether
the results are for the intron free or control experiment. Mean length indicates the mean
length of the programs and PT indicates the results of a Paired T-test comparing the mean
lengths. The P-Value is aligned with the smallest programs. All results are averaged over
100 runs.
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Problem Rejected Crossovers Rejected Mutations

4PAR 128.19 (±46.15) 17.86 (±2.62)

5MAJ 174.03 (±44.52) 14.88 (±2.21)

6MUX 191.00 (±73.1) 11.88 (±1.74)

7PAR 323.90 (±130.90) 79.13 (±11.71)

9MAJ 270.90 (±99.00) 64.96 (±9.56)

11MUX 478.10 (±316.6) 53.78 (±7.97)

AASF 3.84 (±0.82) 15.54 (±2.26)

CUBIC 20.29 (±4.36) 3.28 (±0.51)

QUART 13.90 (±3.82) 3.40 (±0.53)

Table 6.11: The table shows the rejection levels of semantically driven crossover and se-
mantically driven mutation. Problem indicates the test problem being considered. Rejected
crossovers indicates the mean number of crossovers rejected (± the standard deviation)
and rejected mutations indicates the mean number of mutations rejected (± the standard
deviation). All results are averaged over all generations and 100 runs.

experiments and the control experiments. Unsurprisingly, the program reduction ability of

semantic pruning prevails and in every experiment and shorter programs are produced for

the intron free runs. The artificial ant result is interesting because when the problem was

assessed with pruning only, statistically similar program sizes were recorded, yet the program

size is statistically less in the no intron experiment.

Table 6.11 compares the mean rejection rates of semantically driven crossover and se-

mantically driven mutation for each of the problems tackled. It is difficult to directly compare

the numbers of rejected crossovers and mutation due to the different way in which they are

implemented (SDC taking new parents each time and SDM trying five times to mutate a

program); however, there are obvious discrepancies between experiments such as mutation

attaining more rejections that crossover in the artificial ant problem.

6.4.3 Discussion

Despite many theories concerning introns (Luke [2000b], Soule and Foster [1998], Tackett

[1994], Banzhaf et al. [1998], Nordin et al. [1995]), the experiments presented show no clear

and consistent pattern as to the role of introns. Whilst the results presented in table 6.7 show

that the complete removal of introns through pruning alone on balance adversely effects per-

formance, it is not a consistent result. Furthermore, with the application of semantically dri-
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ven search operators in order to enable the search to behaviourally move around the search

space and overcome structural steps, the performance of intron free GP suddenly improves

notably to being an on balance positive effect on evolution in the experiments presented.

Table 6.9 shows that whilst performance is improved compared to semantic pruning

alone, performance across domains is inconsistent. This inconsistency is troubling, espe-

cially when theories such as hitchhiking, protection from deletion and removal bias are built

on the presence and importance of introns. The results presented simply do not support any

consistent value of either unreachable or redundant introns and as such the importance of

theory based upon the inconsistent value of introns should be cautioned against.

Studying the results in table 6.9, it is reasonable that an explanation of the purpose of

introns may be proposed in the form of a problem specific concept. This leads on to a

consideration of the fitness landscape of individual problems. As mentioned in the sections

6.3 and briefly in section 2.1, characteristics of the search space such as fitness steps may

be responsible for the perceived value of introns.

As an example explanation for this problem, consider the contrast between the Boolean

and symbolic regression domains. In the Boolean domain, discrete levels of fitness and

as such behaviour are present. In contrast, the symbolic regression domain is continuous

and so the fitness steps could be very small. The continuous domain with very small steps

between different fitness values would allow a number of similar but not equivalent candidate

programs to be present. This can be evidenced by the low rejection rates for the symbolic

regression experiments as shown in table 6.11. In comparison, problems in the Boolean

domain show relatively large numbers of rejection rates indicating that evolution could be

struggling to move to a new fitness value. One possible reason for this is that there is less

chance of identical functionality in the continuous symbolic regression domain. There are

also two other concepts to consider. Firstly, there is the idea of a taking fitness step which is

changing a program such that it can move to a different fitness value. Secondly, there is the

idea of a structural step, which is how much of the genotype needs to be changed in order

to cause a new fitness value of the program. It may be the case that small structural steps in

the symbolic regression domain are enough to cause small fitness changes and that in the

Boolean domain, larger structural steps are required in order to cause a fitness change.

Whilst semantically driven crossover and mutation will help overcome fitness and structu-
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ral steps, they are potentially not a perfect solution. Consider that a candidate program has

reached a fitness step. Consider also that the fitness steps around the candidate program

are of different sizes. The iterative approach of the SDC and SDM algorithms and the pro-

bability of a major structural alteration being relatively low, due to the nature of a tree would

result in the SDC and SDM favouring the more probable structural steps compared to the

less probable ones when presented with a choice.

Both large structural steps and small structural steps could potentially cause problems for

the semantically driven operators. Small steps on a continuous domain result in a difficulty

trying to leverage semantic power to the search as evidenced by the symbolic regression

continuous fitness landscape. Large steps may cause a bias to more easily accessible areas

of the search space due to the probability of representation change through the search ope-

rator. In contrast traditional search operators may take more search steps to achieve the

same goal as they would require the build up of introns in the representational structure in

order to be able to move over a difficult structural step.

This further questions the way search is conducted in GP. Poli and Langdon [1998] sho-

wed that different operators presented different search properties. Based only on the different

numbers of rejected crossover and mutations in table 6.11, it would be reasonable to suggest

that semantically driven operators result in different search properties in comparison to tradi-

tional operators and that these properties may even be domain specific. Comparison of the

numbers of rejections for SDC and SDM algorithms indicate a difference in search properties

between crossover and mutation in this analysis.

It may be the case that introns are required to smooth out structural steps in the search

space and as such aid the search operators available to GP practitioners on difficult fitness

landscapes. The tree representation of GP does not directly correlate (in that the size of a

change to the genotype may not correspond to the size of a change of a phenotype) to the

fitness landscape in terms of low locality and as such introns may be required to bridge large

gaps in the representation of the genotype in comparison to a small change in the phenotype

between two fitness states.
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6.4.4 Conclusions

In theory, intron free GP should increase the power of the GP search and in the majority

of the experiments presented, intron free GP is very effective. In practice, introns may be

required problem dependently in order to allow larger stuctural changes to genotypes to

occur and as a result allow the creation of a different phenotype. This calls into question the

way in which search operators function and the representations upon which they function. In

order to search freely, search operators need to be able to navigate the fitness landscape

without the hindrance of having to bridge large gaps between genotypes to enable movement

between behavioural states. Ideally, there would be high locality present between genotype

and phenotype and in theory, this would result in the behaviour of search operators being

more predictable in comparison to the current situation.

6.4.5 Future Work

This section leads to three suggestions of areas for future research. Firstly, further investiga-

tion needs to take place (beyond that of Poli and Langdon [1998] and considering mutation

as well as crossover) into the search properties of different search operators over a range

of domains (Dignum and Poli [2007], Dignum [2008], Dignum and Poli [2008a]). A deeper

understanding of this feature may enable the intelligent choice of search operators or even a

theoretically based design of new search operators for GP.

Secondly, an evaluation of representation and comparison of different representation

types could be conducted to enable a deeper understanding of representational concepts

such as locality and its effects on GP. An evaluation similar to that of Rothlauf [2006], but

specifically for GP would be valuable for the community.

Finally, considering the tree representation in current GP, an analysis of program shape

through evolution may yield clues as to the requirements evolution makes of the tree repre-

sentation. More specifically, to assess whether program structure itself influences the course

of evolution.
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Chapter 7

An Analysis of Program Structure in

Genetic Programming

The aim of this chapter is to analyse program structure during the course of evolutionary

runs using GP. The study presented in this chapter is motivated by the results obtained in

section 5.2.4, which demonstrated that the shape of programs at initialisation could have

an effect on overall GP performance. In section 6.3, code reconstruction using semantic

pruning demonstrated varied effects on the performance of GP and even with the combina-

tion of semantically driven operators (in section 6.4), performance results were still varied in

comparison to traditional GP.

The results generated using semantic pruning indicate that the structure of programs

defined by the tree representation has at least some role to play in evolution; however, the

theory of locality adds complexity to the study. In GP, low locality is an issue and as such it

implies that changes in the phenotype of a program are disproportionate to changes in the

genotype of the program. Despite the issue of locality, results in this thesis (section 5.2.4,

6.3 and 6.4) and research by other authors Daida et al. [2001, 2003], Daida [2003, 2004]

indicate that shape may have a role to play in evolution.

The aim of this chapter is to evaluate the role of shape in evolution from a more detailed

perspective than previously outlined in this thesis. In section 7.1, the methodology used

in this chapter is outlined. In section 7.2, the shape profiles of the tree representation are

profiled over time for the different problems in the test suite (section 4.1). In section 7.3, the

changes in shape profiles are compared to changes in fitness in each of the test problems
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in order to examine locality. Sections 7.4 and 7.5 discuss and conclude the findings of this

chapter respectively and section 7.6 suggests areas for future research based on results

presented in this chapter.

7.1 Methodology

The problems examined in this section are as described in section 4.1 and the general pa-

rameters are as described in section 4.2, unless a specific experiment is indicated to use

different general parameters. In addition to a standard GP run, the numbers of nodes at

each depth of each program tree have been recorded. This provides information which des-

cribes the composition and structure of the trees. This information is averaged over the

population in each generation in order to create an average shape of a program tree for a

population in a generation.

Averaging this information may be controversial as the differences between program

structures could be substantial; however, it easy to demonstrate on a microscopic level (indi-

vidual program level) that structural preferences and levels of locality can occur. See figure

2.4 for an example of locality at the microscopic level. It is more interesting to demonstrate

the level of change of the structure of programs in a population during evolution. Once this

level of change can be measured, it is possible to compare how the level of structural change

in a population correlates to the level of fitness change in a population, during an evolutionary

run.

All experiments have been run 100 times for averaging to ensure the effects of profiling

are accurate when GP is run repeatedly.

7.2 Profiling Program Structure

Figures 7.1 — 7.9 show how the structure of programs evolve over generations. The figures

present some interesting common effects and some problem specific effects.

A very noticeable common effect is the early evolution of an increase in the number of

nodes at depths 5 and 6. This increase in the number of nodes at depths 5 and 6 usually

occurs before generation 10. After generation 10, the programs appear to grow in size in
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the lower depths (greater than depth 6). There appears to be a gradual padding out of the

number of nodes at depth 7 and greater throughout the remainder of the generations after

generation 10. A final noticeable effect is that the majority of outliers are all greater that the

mean of the box plot. This would imply that some runs substantially bloat in comparison to

others, yet none appear to substantially shrink compared to other runs.

Problem specific effects are in the form of spikes and hills. In the 4PAR, 7PAR, AASF,

CUBIC and QUART, the spike generated at depth 6 appeared to remain until the end of evo-

lution. In the 5MAJ, 9MAJ, 6MUX and 11MUX, a smooth hill was generated which reached

a greater depth than the initially evolved spike at depth 6.

There are practical limits to the shapes evolved depending on the arity of the function

sets. These limits determine an absolute minimum and maximum of the number of nodes

at each depth in the tree. More specifically, at the early generations, the size and shape of

trees is substantially limited by the arities of the function set. As depth increased the possible

maximum limit at each depth increases exponentially.

Figure 7.10 shows the mean shape at generation 50 for each of the problems presented.

The noticeable contrast is that 5 problems retain the spike at depth six where as 4 models

present a smoother hill shape. Out of the five problems with spikes at depth 6, the 7PAR,

AASF, CUBIC and QUART problems have resulted in relatively low success rates in the

experimental results presented. The second point of note is that the experiments with the

two lowest success rates during experimentation (7PAR and 9MAJ) have many more nodes

at the majority of depths than the average shapes for other experiments.

This raises an interesting question in that, if GP is initialised using a fixed depth algorithm

(such as Ramped Half and Half), how much more structural alteration work is having to take

place to alter the structure of the program in order to make an optimal solution attainable

with the collection of nodes present in the tree. In order to assess this, the following change

metric has been developed:

4 St =
D∑

d=0

| nd,t − nd,t−1 | (7.1)

In equation 7.1, the structural change 4St at time t is defined as the sum of the number

of nodes difference at each depth between depth d = 0 and maximum depth D which in
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Figure 7.10: The figures show the shapes of the mean program tree at generation 50 for the
different problems. These results are averaged over 100 runs.
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Problem G10 G10% G11-50 G11-50% Total

4PAR 129.18 37.54% 214.95 62.46% 344.13

5MAJ 76.52 26.56% 211.60 73.44% 288.12

6MUX 38.90 20.97% 146.56 79.03% 185.46

7PAR 255.66 30.87% 572.63 69.13% 828.29

9MAJ 110.31 15.92% 582.50 84.08% 692.81

11MUX 28.70 13.22% 188.34 86.78% 217.04

AASF 146.50 57.44% 108.56 42.56% 255.05

CUBIC 89.48 36.05% 158.77 63.95% 248.26

QUART 85.66 35.02% 158.91 64.98% 244.57

Table 7.1: The table shows the level of structural change taking place for each of the problem
domains. Problem indicates the problem being evaluated. G10 indicates the total amount
of structural change that has occurred up to and including G10. G10% indicates the total
amount of structural change up to and including G10 as a percentage of total structural
change. G11-50 indicates the total amount of structural change that occurs in generations 11
to 50. G11-G50% indicates the total amount of structural change that occurs in generations
11 to 50 as a percentage of total structural change. Total indicates the total level of structural
change.

this case is 17. nd,t is the number of nodes at depth d in time period (or generation) t. The

calculation is made using the average of the 100 runs produced during experimentation.

Table 7.1 shows the structural changes observed for the different test problems using

the metric presented in equation 7.1. A statistical comparison of structural change over

generations including all of the test problems using a one way ANOVA test revealed that the

level of structural change in some experiments were statistically different (P-Value of 0.000).

A further Tukey test revealed that the level of structural change for the 7PAR and 9MAJ were

statistically different from the other experiments. This is unsurprising as 7PAR and 9MAJ

typically have the most bloat in their runs. Two groups were formed revealing that the 7PAR

and 9MAJ were statistically similar to each other and the other experiments were statistically

similar to each other. Table 7.1 shows that 7PAR and 9MAJ feature larger levels of structural

change compared to the other experiments.

The 4PAR, 7PAR, AASF, CUBIC and QUART experiments were grouped due to the fact

that they feature a spike at depth 6 at generation 50. Table 7.1 reveals that a disproportionate

amount of structural change occurred in the first 10 generations of evolution and figures 7.1,

7.4, 7.7, 7.8 and 7.9 show that this spike was formed within the first 5 generations of a run.
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This early structural change and depth 6 spike effect is a result of crossover bias. In the early

generations, smaller programs, being typically less fit than the larger programs (depths 5 and

6) are less likely to be selected resulting in more programs in the population being depth 6 in

early generations (up to the 10th generation).

A final point of note is the high correlation between the height of the shape profiles in

figure 7.10 and the mean length of programs in the population. Linear regression analysis

indicates that with a formula of Height = −5.99 + 0.208Length, an R2 of 99.5% is achie-

ved, demonstrating that the largest number of nodes at any depth of a program tree can be

explained with a high degree of accuracy using the program length as a predictor.

7.3 Program Structure and Problem Fitness

7.3.1 Structural Locality

Following on from the structural analysis presented in section 7.2, the structural change me-

tric presented in equation 7.1 is compared with changes in mean fitness during the course of

evolution. This study is performed on the averaged population structure in an average run,

which is a run developed by averaging together all 100 runs by generation. In this compari-

son, the change in fitness is treated as a response variable in a regression equation and the

structural change metric is applied as a predictor variable. The coefficient of determination

(R2) is used to show how much of the data is explained by the regression formula created.

The adjusted (R2adj) is also used to show how much of the data is explained by the regres-

sion model created. The R2adj differs from the R2 in that it only increases if the explanatory

terms improve the model more than by chance.

Table 7.2 shows the level of correlation between changes in program structure and pro-

gram fitness. In section 2.3, the concept of locality was discussed and it was predicted that

in GP, there would be a low level of locality due to the fact it is relatively easy to demons-

trate individual examples of low locality between genotypes and phenotypes. As a result of

expected low levels of locality, the explanatory power of models predicting fitness changes

using information derived from structural changes should be relatively low.

Table 7.2 shows that in all but one of the models, the R2 and R2adj are below 50% which

indicates that the link between changes in structure and changes in fitness is relatively poorly
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Problem R2 R2adj

4PAR 43.4% 42.2%

5MAJ 11.9% 10.1%

6MUX 12.0% 10.2%

7PAR 30.3% 28.8%

9MAJ 3.9% 1.9%

11MUX 12.5% 10.7%

AASF 79.6% 79.2%

CUBIC 3.6% 1.6%

QUART 3.13% 1.3%

Table 7.2: The table shows the explanatory power of the regression models when trying to
assess the correlation between structural changes and changes in the mean fitness of a
run. R2 indicates the coefficient of determination with a higher number indicating that the
regression model has a greater ability to explain the data points present. R2adj indicates the
adjusted coefficient of determination. A higher number indicates that the regression model
has a greater ability to explain the data points present.

explained by the model. This is in alignment with the theory that GP has the characteristic

of low levels of locality. The surprising result is the R2 and R2adj values for the AASF

problem which are nearly 80%. This implies that 80% of the data is explained by the model

which indicates that there are much higher levels of structural locality in the AASF problem

in comparison to the other problems.

This result enables explanation of some outlying results produced by the artificial ant ex-

periments. Firstly, the AASF problem was the only problem to produce a statistically similar

result when applying semantically driven crossover. Semantically driven crossover is speci-

fically designed to bridge the gap between genotype and phenotype as part of the search

operation. With high levels of structural locality present, a lot of the leverage of this search

operator is lost because as long as the crossover alters the structure of the program slightly,

there is a high probability it will alter the fitness as well. This is also supported by the relatively

low level of crossover rejections for the AASF problem (figure 6.4).

When considering the pruning experiments, the AASF problem was the only experiment

to produce no statistical change in fitness or program size. A possible reason for this is that

as selection takes place, the fitter program are selected and then attempted to be reduced.

If any different shaped programs are produced, the probability is that the fitness will change
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and may be lower. This will result in these programs being filtered out at selection and the

average population size being statistically similar whether pruning is applied or not.

When considering problems other than the AASF, one obvious question is, if changes in

structure and changes in fitness are not linked, why is structure important to GP runs? The

answer to this lies in behavioural bias. This bias is of the kind presented in section 5.2.3

where programs produced with specific size and shape limits produced repeated behaviours

despite the fact they may be subject to low levels of locality. Furthermore, theories such as

fitness causes bloat where programs group in areas of the search space in order to survive

selection also support the idea of bias, due to the fact that they require bias and redundancy

in representation to make fitness causes bloat applicable as a theory. As a result of these

points and the experiments presented in sections 5.2.6 and 6.3, and the work of other authors

(for example, Daida [2004]), it is clear that the structure of programs does influence evolution.

7.3.2 Changing Program Shape

Table 7.2 demonstrated that different problems presented different levels of structural locality.

Following on from this fact, this section examines the effects of applying different operators

presented in this thesis to assess whether there are changes in the levels of structural locality

for the different problems.

Seven experiments are run on each of the nine problems (presented in section 4.1). The

experiments are standard GP runs (as set out in section 4.2) with the following modifica-

tions. The KOZAXO experiment represents a run using the standard crossover with the 90%

bias on functions and 10% bias on terminals at crossover swap points. KOZAXOSDC is an

experiment using the Koza style standard crossover in conjunction with semantically driven

crossover. PRUNED is a standard run with the semantic pruning algorithm switched on. SDI

is a otherwise standard run were semantically driven initialisation has been applied to gene-

rate the starting population of programs. SDM is a run using semantically driven mutation

with a probability of 0.9 and no crossover. MUT is a run using sub tree mutation (GROW

depth 4 generation of sub trees) with a probability of 0.9 and no crossover. UNIXO is a

standard run using crossover with uniform choice of swap points.

The results of these experiments are compared in two ways. Firstly, the shape profiles

are compared using a one way ANOVA with a Tukey test to separate which shapes profile are

149



Shape Comparison - 4PAR
(ANOVA) P = 0.009

PRUNED
MUT, KOZAXOSDC, SDI, SDM

KOZAXO, UNIXO

4PAR R2 R2adj

KOZAXO 43.4% 42.2%

KOZAXOSDC 68.1% 67.4%

PRUNED 77.8% 77.4%

SDI 31.4% 30.0%

SDM 54.6% 53.6%

MUT 47.3% 46.2%

UNIXO 42.2% 41.0%

Table 7.3: 4PAR shape and structural locality comparison. The table on the left indicates the
differences in shape analysed using a one way ANOVA and post hoc Tukey test to compare
individual mean program shapes. Experiments are ordered with smallest at the top. The
vertical lines indicate which shape profiles are statistically similar by group. The table on
the right indicates a comparison of the explanatory power of the regression model predicting
changes in mean fitness using structural changes.

different to each other. Secondly, a regression model is constructed to try to model changes

in mean fitness based on the predictor of structural change as outlined in equation 7.1.

Tables 7.3 — 7.11 show several noteworthy features. The first areas to discuss are points

that are general to all of the experiments presented.

Firstly, standard sub tree mutation presents a slightly higher level of structural locality

than standard crossover (with biased swap points) (MUT Vs KOZAXO) in every experiment.

This effect could be a result of sub tree mutation changing fewer nodes in comparison to

crossover. Secondly, standard sub tree mutation presents slightly higher structural locality

in all but one experiment compared to standard crossover with uniform swap points. As a

result, in the majority of experiments presented mutation is more likely to result in fitness

change when the structure of a tree is modified.

When evaluating tree shape, PRUNED, MUT and SDM consistently produce different and

smaller tree shapes compared to the crossover mechanism; indicating, in conjunction with

the previous paragraph, that there may be some fundamental difference between the way

crossover and mutation function during evolution.

In all but the 7PAR and CUBIC problems, using the KOZAXOSDC in comparison to the

KOZAXO increases structural locality in relative terms. This may be one of the reasons

semantically driven crossover appears to be successful on a range of problems. When

considering the mechanism behind KOZAXOSDC, the phenotypic link of semantically dri-
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Shape Comparison - 5MAJ
(ANOVA) P = 0.000

PRUNED
SDM, MUT,

KOZAXOSDC, SDI, UNIXO
KOZAXO

5MAJ R2 R2adj

KOZAXO 11.9% 10.1%

KOZAXOSDC 20.8% 19.2%

PRUNED 66.0% 65.3%

SDI 0.8% 0.0%

SDM 41.1% 39.9%

MUT 47.6% 46.5%

UNIXO 40.8% 39.6%

Table 7.4: 5MAJ shape and structural locality comparison. The table on the left indicates the
differences in shape analysed using a one way ANOVA and post hoc Tukey test to compare
individual mean program shapes. Experiments are ordered with smallest at the top. The
vertical lines indicate which shape profiles are statistically similar by group. The table on
the right indicates a comparison of the explanatory power of the regression model predicting
changes in mean fitness using structural changes.

Shape Comparison - 6MUX
(ANOVA) P = 0.000

PRUNED
SDM, MUT,

KOZAXOSDC, SDI, UNIXO
KOZAXO

6MUX R2 R2adj

KOZAXO 12.0% 10.2%

KOZAXOSDC 34.3% 32.9%

PRUNED 93.7% 93.6%

SDI 40.0% 38.8%

SDM 81.2% 80.8%

MUT 82.8% 82.5%

UNIXO 27.5% 26.0%

Table 7.5: 6MUX shape and structural locality comparison. The table on the left indicates the
differences in shape analysed using a one way ANOVA and post hoc Tukey test to compare
individual mean program shapes. Experiments are ordered with smallest at the top. The
vertical lines indicate which shape profiles are statistically similar by group. The table on
the right indicates a comparison of the explanatory power of the regression model predicting
changes in mean fitness using structural changes.
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Shape Comparison - 7PAR
(ANOVA) P = 0.015

PRUNED
SDM, MUT, SDI, UNIXO, KOZAXOSDC

KOZAXO

7PAR R2 R2adj

KOZAXO 30.3% 28.8%

KOZAXOSDC 30.1% 28.7%

PRUNED 3.4% 1.4%

SDI 59.4% 58.6%

SDM 32.8% 31.4%

MUT 32.6% 31.2%

UNIXO 28.6% 27.1%

Table 7.6: 7PAR shape and structural locality comparison. The table on the left indicates the
differences in shape analysed using a one way ANOVA and post hoc Tukey test to compare
individual mean program shapes. Experiments are ordered with smallest at the top. The
vertical lines indicate which shape profiles are statistically similar by group. The table on
the right indicates a comparison of the explanatory power of the regression model predicting
changes in mean fitness using structural changes.

Shape Comparison - 9MAJ
(ANOVA) P = 0.000

SDM, MUT
PRUNED
UNIXO

SDI
KOZAXO, KOZAXOSDC

9MAJ R2 R2adj

KOZAXO 3.9% 1.9%

KOZAXOSDC 11.0% 9.2%

PRUNED 30.5% 29.1%

SDI 74.4% 73.9%

SDM 38.8% 37.5%

MUT 28.0% 26.5%

UNIXO 0.1% 0.0%

Table 7.7: 9MAJ shape and structural locality comparison. The table on the left indicates the
differences in shape analysed using a one way ANOVA and post hoc Tukey test to compare
individual mean program shapes. Experiments are ordered with smallest at the top. The
vertical lines indicate which shape profiles are statistically similar by group. The table on
the right indicates a comparison of the explanatory power of the regression model predicting
changes in mean fitness using structural changes.
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Shape Comparison - 11MUX
(ANOVA) P = 0.000

MUT, SDM, PRUNED
UNIXO, KOZAXOSDC

KOZAXO
SDI

11MUX R2 R2adj

KOZAXO 12.5% 10.7%

KOZAXOSDC 44.4% 43.3%

PRUNED 60.7% 59.9%

SDI 19.5% 17.8%

SDM 64.5% 63.8%

MUT 46.3% 45.2%

UNIXO 19.4% 17.7%

Table 7.8: 11MUX shape and structural locality comparison. The table on the left indicates
the differences in shape analysed using a one way ANOVA and post hoc Tukey test to com-
pare individual mean program shapes. Experiments are ordered with smallest at the top.
The vertical lines indicate which shape profiles are statistically similar by group. The table on
the right indicates a comparison of the explanatory power of the regression model predicting
changes in mean fitness using structural changes.

Shape Comparison - AASF
(ANOVA) P = 0.617

No difference between samples

AASF R2 R2adj

KOZAXO 79.6 79.2

KOZAXOSDC 80.4 80.0

PRUNED 51.4 50.4

SDI 38.5 37.2

SDM 87.2 86.9

MUT 82.5 82.2

UNIXO 87.3 87.1

Table 7.9: AASF shape and structural locality comparison. The table on the left indicates the
differences in shape analysed using a one way ANOVA and post hoc Tukey test to compare
individual mean program shapes. Experiments are ordered with smallest at the top. The
vertical lines indicate which shape profiles are statistically similar by group. The table on
the right indicates a comparison of the explanatory power of the regression model predicting
changes in mean fitness using structural changes.
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Shape Comparison - CUBIC
(ANOVA) P = 0.000

PRUNED
MUT, SDM

SDI
UNIXO, KOZAXO

KOZAXOSDC

CUBIC R2 R2adj

KOZAXO 3.6% 1.6%

KOZAXOSDC 0.0% 0.0%

PRUNED 0.1% 0.0%

SDI 1.1% 0.0%

SDM 2.2% 0.2%

MUT 6.2% 4.3%

UNIXO 1.2% 0.0%

Table 7.10: CUBIC shape and structural locality comparison. The table on the left indicates
the differences in shape analysed using a one way ANOVA and post hoc Tukey test to com-
pare individual mean program shapes. Experiments are ordered with smallest at the top.
The vertical lines indicate which shape profiles are statistically similar by group. The table on
the right indicates a comparison of the explanatory power of the regression model predicting
changes in mean fitness using structural changes.

Shape Comparison - QUART
(ANOVA) P = 0.000

PRUNED
SDM, MUT, KOZAXOSDC

SDI, UNIXO, KOZAXO

QUART R2 R2adj

KOZAXO 3.3% 1.3%

KOZAXOSDC 6.5% 4.6%

PRUNED 0.2% 0.0%

SDI 73.4% 72.9%

SDM 2.8% 0.8%

MUT 15.3% 13.6%

UNIXO 1.5% 0.0%

Table 7.11: QUART shape and structural locality comparison. The table on the left indicates
the differences in shape analysed using a one way ANOVA and post hoc Tukey test to com-
pare individual mean program shapes. Experiments are ordered with smallest at the top.
The vertical lines indicate which shape profiles are statistically similar by group. The table on
the right indicates a comparison of the explanatory power of the regression model predicting
changes in mean fitness using structural changes.
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ven crossover would speculatively result in more change in structure compared to standard

crossover. The result of this appears to be increased changes in fitness and more movement

around the search space would probabilistically result in a better chance of finding a global

optimum.

When considering results that are specific to domains, the PRUNING experiments in-

crease structural locality greatly for all of the Boolean problems (except 7PAR). Increased

structural locality should make problems easier to solve, however, varied results using se-

mantic pruning disagree with the idea that pruning alone makes all problems less complex

and thus easier to solve. One of the arguments presented at the end of section 6.4 was that

introns are required to traverse fitness steps. In this case local genotypic representations

may be redundant and as such pruning reduces them back to the original behaviour and

back translates them to a particular syntax tree. This would result in introns being required

to allow an otherwise improbable modification to the genotype and as a result make a new

step in the phenotypic space.

A second problem specific factor is the contrasting results in the symbolic regression

domain. The results presented in tables 7.10 and 7.11 present substantial differences both in

terms of shape groupings and structural locality results. It may be the case that the symbolic

regression domain presents different representational properties for different target solutions.

The artificial ant domain, in comparison to the other problems, presents high structural

locality which in theory should reduce the complexity of the problem at the representational

level. A second aspect which causes the artificial ant domain to stand out is that out of the

seven techniques presented in table 7.9, none managed to change the mean shape profile

(at a statistically significant level) of evolved trees in the ant domain. It seems that in the ant

domain, changes in tree structure are correlated to changes in fitness.

A final consideration is the role of semantically driven initialisation. Semantically driven

initialisation appears to randomly reduce and increase structural locality from problem to pro-

blem. Results presented in table 5.7 showed the variable performance of semantically driven

initialisation. It seems that not only is it difficult to construct a consistently good initialisation

algorithm in terms of performance, but also in terms of producing a GP run with high locality

in order to reduce the complexity of a problem.
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7.4 Discussion

Structural Profiling

The structural profiling data presented in figures 7.1 — 7.9 showed one noticeable feature.

This was the spike of nodes generated at depth 6 during the first few evolutions. This feature

appears as a type of initialisation bias, based on crossover bias (Dignum and Poli [2007]). As

crossover bias makes it less likely that shorter less fit programs will be selected, the average

depths of programs in the population in early runs will increase to the predefined maximum

depth limit of the initialisation algorithm, which in the case of RHH is six.

A question that arises from this research is, can GP practitioners use structural profiling

in order to aid pruning or even bloat control as a whole? When considering pruning, shape

profiling knowledge could be used to know at which depths to apply pruning. For example,

in the 4PAR experiment (figure 7.1), there was still a spike at depth 6 at the end of the run.

It may be possible to apply pruning at depths 7 and below in order to remove the worst of

the bloat. In terms of bloat control in total, a system that uses a shape distribution to control

preferable program structures (with some similarity to the system presented in Silva and

Dignum [2009] controlling program lengths) may help to reduce bloat. It is clear from the

evolved shape profiles and the further results presented in section 7.3.2 that both problem

and operators used during evolution result in different shape profiles being produced. This

information could be leveraged in order to control bloat with a self adaptive shape distribution.

Structure and Fitness

When comparing structural locality against changes in mean fitness, there are two observa-

tions to be drawn from the results in table 7.2. It is clear from table 7.2 that different pro-

blems present different levels of locality and this affects the complexity of problems (Rothlauf

[2006]). Problems with high locality have been demonstrated to be less complex to solve

than problems with low locality. One could theorise that the semantic operators presented in

chapter 6 take steps to combat the issue of low locality. If one considers, that the semantic

operators force change in the phenotypic space, then it is reasonable to suggest that the

semantically driven operators help to combat complexity in situations where low levels of

locality are present.
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Considering the crossover operation (studying tables 7.3 — 7.11), the level of structu-

ral locality (or explanatory power when assessing the correlation between fitness change

and structural change) is increased in all but two problems when using semantically driven

crossover. A second argument to support this effect using crossover is that the ant domain

appears to present relatively high structural locality in comparison to the other problems

(table 7.2) presented. The results presented in section 6.1, table 6.2 indicate that it was

the artificial ant experiment that was the only experiment to produce an equivalent fitness

result overall. This is further corroborated in section 6.3, table 6.7 when studying the results

obtained using semantic pruning, where again the artificial produces a unique result in that

it is statistically similar to the control experiment both in terms of performance and program

length.

A second point of note shown in the results presented in tables 7.3 — 7.11 is that stan-

dard sub tree mutation appears to encourage a higher structural locality when compared

to standard crossover with biases swap points (KOZAXO). In addition to this, in several of

the experiments the mean shape profile produced by sub tree mutation (MUT) is statistically

different to the mean shape profile produced by standard crossover (KOZAXO) with biased

swap points. This would indicate that on a structural level, standard crossover with biased

swap points and standard sub tree mutation appears to function differently during evolution.

When comparing standard crossover with biased swap points (KOZAXO) to crossover

with uniform choice of swap points (UNIXO), the results are less clear. In some cases KO-

ZAXO presents higher structural locality and in others UNIXO presented higher structural

locality. The important point to draw from this is that the choice of operators may increase or

decrease problem complexity.

Further examination of the effect of semantic pruning indicates that in most cases (with

exception to the symbolic regression problems) pruning increased structural locality substan-

tially which in theory should make problems less complex. This is in direct contrast to the

results presented in table 6.7 where the majority of experiments reported a drop in perfor-

mance using semantic pruning. Semantic pruning has a second effect in that it also limits

the level of redundancy because of the mechanism behind back translation. This could result

in evolution being limited as the search operators would have to make improbable changes

to the syntax in order to change the phenotype. Whilst this increases structural locality, it re-
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moves redundancy which may enable higher probabilities of genotypic change between two

phenotypic states. A suggested improvement to the pruning algorithm would be to prune,

yet retain the context of the original program where possible. This may make it easier for the

search operators to effect genotypic changes which will allow different phenotypic changes,

thus improving the search ability of GP.

A further point highlighted by the results presented in tables 7.3 — 7.11 is that not only do

the problems feature different levels of locality, the operators chosen to solve the problems

can increase and decrease the representational complexities of a particular problem. A

recommendation to be taken from this is that when practitioners want to test theories, they

should not only consider problems from different domains, but also, where possible, different

combinations of search operators in order to validate their experiments as widely as possible.

7.5 Conclusions

In conclusion, it appears that tree structure has at least some role to play in the evolution

of programs. Results presented in this chapter have shown graphically and statistically that

structure can vary by problem and choice of operators. Furthermore, the link between the

change in structure and change in mean fitness of a run can give an indication of the level

of structural locality present in a problem. The level of structural locality present can give an

indication of the relative complexities of each problem from a representational point of view.

The results presented in this chapter at least start to explain one of the possible reasons

for the success or failure of semantically driven operators. These results demonstrate that,

whilst semantically driven operators were designed to improve diversity, when considering

representational theory, semantically driven operators can help to reduce problem complexity

by directly linking the genotypic space with the phenotypic space during a GP run.

Experimentation has shown that the effects of different search operators can also im-

pact structural locality suggesting that not only the choice of problem will influence problem

complexity but also the choice of operator may influence complexity during a GP run. This

indicates that GP practitioners attempting to validate theories need to not only use problems

from different domains, but also, where possible, apply different search operators to problems

in order to study theoretical effects.
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7.6 Future Work

Future ideas for research derived from the results presented in this chapter can be divided

into three areas.

Firstly, the issue of initialisation has been evaluated in some detail in this thesis and the

conclusion is that it is very difficult to construct an initialisation algorithm which consistently

provides strong performance. One factor identified by the shape analyses in this chapter

was the early depth 6 spike in nodes present to a degree in every problem presented. One

possible area of research is to see how initialising programs in a band of depths that are

less susceptible to crossover bias will affect a GP run. A simple example could be to use

RHH with a depth range of 5 to 9 or to use a narrower range of depths in order to prevent

crossover bias having such a dominant effect on the distribution of program sizes.

A second area of research would be to help augment an existing method of bloat control.

Silva and Dignum [2009] presented an process known as a fitness based self adaptive length

distribution. Having demonstrated that different shape profiles are present, it would be inter-

esting to examine whether a fitness based self adaptive shape distribution can be developed

in order to control bloat and possibly to increase performance.

Finally, a theoretical analysis of the representation concepts presented by Rothlauf [2006]

(building block scaling, redundancy and locality) specifically for GP may present a greater

understanding of representational issues which could be leveraged by the GP community.

159



Chapter 8

Conclusions

The methods, algorithms, experiments and discussions presented in this thesis have been

used to both evaluate existing techniques used by GP practitioners and attempt to improve

upon them. In some cases, experimentation has demonstrated that increasing the link bet-

ween the genotypic and phenotypic search spaces by using behavioural representations has

resulted in significant benefits to the GP. In other cases, the results are varied and lead to

further discussions regarding theory and ways to improve the techniques presented in this

thesis.

8.1 Contributions

There are three general contributions to be drawn from the investigations presented in this

thesis.

Firstly, after an extensive empirical evaluation of diversity, bias and program structure

during initialisation, it is clear that two different factors affect the performance of GP runs

using the different initialisation algorithms presented. The factors are diversity in the starting

population and the structure of the trees generated at initialisation. Empirical analysis reveals

that both of these factors can influence the performance of GP run at statistically significant

levels. A secondary issue is that of the initialisation of programs with no introns, where

again empirical analysis reveals that performance results are varied. Having identified that

shape and increasing phenotypic diversity can both influence initialisation, one hopes that

practitioners developing new initialisation algorithms will take these factors into account.
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The second contribution made by this thesis is that of the semantically driven operators;

including semantically driven crossover, semantically driven mutation and semantic pruning.

In the experiments presented, semantically driven crossover consistently and significantly

outperformed both variants of standard crossover (with uniform and biased choice of swap

points). Whilst this algorithm was designed purely to increase diversity, in several cases it

appeared to more closely link changes in the structure of programs to changes in the fitness

of programs, which may indicate that it actually reduces the representational complexity of

a GP problem by increasing structural locality. This algorithm has been one of the big suc-

cesses of this thesis, and given that further research in the area is starting to appear (Nguyen

et al. [2009]), the author hopes that this technique may be further adopted by the community.

Based on the same principles as semantically driven crossover, it is clear from expe-

rimentation that semantically driven mutation can significantly increase the performance of

GP runs in the majority of the experiments presented. Further experimentation in chapter 7

indicates that mutation generally causes a stronger link between changes in structure and

changes in fitness when compared to crossover, and results in significantly different and

smaller program structures that crossover. Mutation in GP has been demonstrated to be as

effective as crossover by Luke and Spector [1997, 1998]; however, it was not initially favou-

red in GP as a search operator by Koza [1992]. Preliminary evidence proposed in chapter 7

indicates that mutation might present different search opportunities and this combined with

semantically driven mutation may enhance the search power of mutation in GP.

Whilst the use of semantic pruning (code reconstruction) in itself in the majority of cases

was a negative result in terms of performance, semantic pruning is dramatically effective

at reducing the size of programs. There are two points to be drawn from the lack of per-

formance. Firstly, semantic pruning does not preserve the context of the original program

due to the back translation mechanism changing all syntax to a common form. Because

of this factor, semantic pruning will change the functionality of the genotypic search space

because behaviourally equivalent, but different context programs are removed effectively

causing cracks in the genotypic search space. As a result, whilst locality increases, the gaps

between genotypes increase. This concept is validated further by the GP runs using the

semantically driven operators together. Semantically driven crossover and mutation cause a

stronger link between the genotypic and phenotypic search spaces, possibly increasing lo-
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cality, and as such reducing representational complexity. The result in better performance in

the majority of GP runs with human readable candidate programs. This result in itself is im-

portant because it is a large step towards increasing the efficiency of GP through controlling

bloat and increasing diversity using the search operators. This result also suggests that a

possible reason for the existence of introns is to pave over the cracks in the genotypic space,

allowing access to new areas in the phenotypic space due to allowing a larger number of

different combinations of syntax to be produced through search operations.

Finally, a structural analysis revealed previously unseen traits and links between structural

changes and fitness changes. These links have added some explanatory power as to the

level at which semantically driven operators may be effective. Two interesting points to note

from the analysis of structure is that structure is affected not only by problem domain (which is

unsurprising), but structure can also be affected by operator choice; notably in some cases a

difference in structure using either crossover or mutation. Further investigation of this feature

might provide more clues as to which operators to use to different probabilistic levels.

8.2 Future Directions of Research

Building upon this research, there are numerous avenues for future work. Several of these

avenues are presented here.

The overwhelming point to note from the analysis of initialisation is that it is very difficult to

design an initialisation algorithm which will consistently provide strong performance. Further

understanding of initialisation is key because the results presented in chapter 5 indicate

that changes in the choice of methods of initialisation can cause dramatic changes in the

performance of GP runs. It would be desirable that further theoretical and practical work

took place to understand the sensitive balance between diversity and shape and whether

introns are required during evolution and produce initialisation algorithms that can control

these factors. Once further initialisation algorithms have been developed to take account

of these factors, it would be important to the community to conduct an up to date empirical

comparison of initialisation techniques such as the comparison presented by Luke and Panait

[2001].

Rothlauf [2006] examines in detail how different representations can change the com-
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plexity of a problem. Semantically driven operators not only work to increase diversity but

preliminary results indicate they may help to change the level of structural locality in a pro-

blem which would influence representational complexity. A detailed analysis of the represen-

tational issues presented by Rothlauf [2006] specifically for GP could result in more search

operators which are theoretically motivated to reduce representational complexity, and as

such should result in the increased performance of GP runs.

Results obtained using semantic pruning indicate that code reconstruction as a process

has a less than ideal effect on evolution (of performance) although, in this case, it does help

to provide an explanation for the presence of introns. This algorithm could be improved to

retain the context of the original program, which should increase the probability of genotypic

changes. This may lead to a situation where the intron free GP results would improve as

there is more opportunity for taking new steps in the genotypic search space.

A second experiment using semantic pruning could be conducted to assess the validity

of the hitchhiking bloat theory. The sub trees that are swapped during crossover could be

reduced using semantic pruning to not include introns, and the resulting performance and

program sizes compared and evaluated.

A possible application of the research in chapter 7 concerning shape profiling could be

to build a method similar to that of Dignum and Poli [2008a], Silva and Dignum [2009], but

rather than use length distributions, consider shape distributions. This may result in additional

power to reduce bloat in specific areas of a program whilst retaining high performance.

One final thought is for the day that GP is routinely capable of evolving complete pro-

grams coded in main stream programming languages such as Java or C++. The concepts

and theories presented in this thesis will still be useful as there are many ways to abstract

and analyse the behaviour of programs (Nielson et al. [1999]). In addition, execution of many

programs to assess fitness will be slow, and rather than increasing population sizes or the

number of generations, it will be preferable to GP practitioners to make evolution more effi-

cient. The concepts presented in this thesis are motivated specifically to perform GP more

efficiently rather than increasing the amount of evolution.
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