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Abstract 
 
The paper outlines the use of the extrinsic evolvable hardware approach to evolve 
finite state machines (FSM). Both the genetic algorithm (GA) and Evolvable 
Hardware (EHW) are combined together to produce optimal logic circuit. GA is 
used to optimise the state assignment problem. EHW is used to design the 
combinational parts of the desired circuit. The approach is tested on a number of 
finite state machines from MCNC benchmark set. These circuits have been evolved 
using different functional sets of logic gates and GA parameters. The results show 
promise for the use of this approach as a design method for sequential logic 
circuits. 
 
Keywords: Sequential logic circuits, evolutionary algorithm, extrinsic evolvable 
hardware. 
 
 

1 Introduction 
 
Automatic synthesis of digital logic to satisfy the functional specifications is a well-
researched area [1]. Automating the synthesis and optimisation of the circuits can 
significantly improve the quality of the implementation. Various techniques have 
been developed over the years to optimise combinational and sequential logic 
circuits [2].  
Recently a new area to design both combinational and sequential logic circuits 
known as evolvable hardware has been introduced [3]. EHW technique is based on 
evolving the functionality and connectivity of the rectangular array of logic cells in 
addition to the layout of this array [4]. There are different definitions of EHW 
depending on its purpose. One view regards EHW as application of evaluation 
techniques to circuit synthesis. Circuits generated by EHW are evaluated by one of 
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two methods: extrinsic evaluation and direct intrinsic evaluation. The extrinsic 
evaluation is implemented using software simulation. By contrast, in intrinsic 
evolution the circuit is downloaded into reconfigurable hardware devices and then 
evaluated [5].  
Many papers have discussed the use of extrinsic EHW for the implementation of 
combinational logic circuit, and different approaches have been proposed [6, 7]. 
One of the advantages of EHW is that if hardware errors occur or a new hardware 
functionality is required, EHW can alter its own hardware structure in order to 
accommodate such changes. EHW approach has begun to show that it is possible to 
evolve sequential logic circuits in a radically different way [8,9,10]. Thus, it has 
been proposed that the design of sequential logic circuit can be obtained using 
entirely only evolvable hardware [3]. In this case the state transition table has been 
used in order to evaluate the functionality of each chromosome represented as 
sequential circuit. Higuchi et al. have successfully evolved such sequential logic 
circuits as 4-state machine, 3-bit counter. It has been appeared only one more 
approach that attempted to evolve sequential logic circuits from the partial 
input/output sequence [8, 11]. The circuits evolved include reversible 8-counter, 
reversible 4-counter, modulo-4 counter, 0101 detector, 1010 detector, serial adder 
[12]. The simulated evolution has been used to synthesize finite state machine in 
[17, 18], where the resulting FSM can predict the output symbol based on the 
sequence of input symbols observed. One may make the conclusion that the 
complexity of circuit connections and encoding chromosomes to evolve the 
sequential logic circuit may be one of the reasons that not much work has been 
done in this area.  
There is a clear distinction between a conventional hardware and evolvable 
hardware design methods. A designer can begin to design a conventional hardware 
only after its detailed specification is given. EHW is applicable even when no 
hardware specification is known beforehand [12]. The sequential logic circuits are 
modelled by FSMs. FSMs are typically used for the control portion of a design, 
where sequences of instructions and conditions are interpreted to create a sequence 
of output actions. Circuit sizes of synthesised FSMs are strongly dependent on the 
number of inputs, outputs, and states as well as on the used state-encoding scheme 
[2, 13]. These dependencies were investigated and quantified based on FSM 
synthesis results obtained by the extrinsic EHW logic synthesiser. The approach is 
divided into two stages using GA as encoding scheme and evolutionary algorithm 
to evolve general FSMs from MCNC benchmark set [14]. The developed approach 
is the first attempt to evolve sequential logic circuits from the standard benchmark 
set. 
 
 

2 Concept Overview 
 
An evolutionary algorithm is an extremely flexible technique when applied to 
optimisation applications in electronic circuit design in that the fitness function may 
be easily modified to accommodate new design criteria. The synthesis based on 
GAs allows a designer to minimize the actual area (in our case, the number of gates 



to implement the circuit). The search space is defined by a number of different 
components: (1) building blocks presented to the framework; (2) the number of 
logic elements used to generate the circuit; (3) the application for which the circuit 
is being evolved. The architecture of the genetic synthesis of sequential logic 
circuits is shown in Fig. 1. Stage 1 (Fig. 1) represents the target FSM benchmark 
specification using symbolic state transition table. The state minimization, if 
required, can be done using existing tools [15]. In the next stage (see Stage 2, Fig. 
1), the genetic algorithm uses this state transition table (STT) to generate optimal 
state assignment to assign binary code for each state. Therefore, the STT of the 
MCNC benchmark is formatted as two-level logic PLA file [15]. GA is used to 
generate the state assignment aiming to reduce the circuit area. The objective 
function of GA leads to simpler equations and therefore smaller area designs. 
Finally, the processing of genetic algorithm for state assignment and EHW to 
design the desired circuit are combined together to produce optimum logic circuit 
(Stage 3, Fig. 1). This combined process leads to clear interface among 
components. 
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Figure1: Procedure of the proposed approach to design sequential logic circuit 
using genetic algorithm and extrinsic evolvable hardware 
 
 

3 Evolution of FSM  
 
In order to evolve the MCNC FSMs benchmarks, two stages are combined. The 
first stage depends on the state table to represent the chromosome for state 
assignment. The second stage depends on the layout structure of the circuit at the 
functional level. 
 
3.1 Genetic Algorithm for the state assignment problem 
 
One of the problems that should be solved in sequential logic design is the state 
assignment problem. In our case, the optimal state assignment is defined by GA. 



The chromosome is encoded in such way that the solution space increases 
exponentially with the number of states. The only restriction for a valid state 
assignment is that each state has to be assigned a unique binary value. Further, if 
the FSM has n  states, then the code length b is equal to [ n2log ] bits long, where 
[g] is the smallest integer that is equals to or greater than g. The total number of 

possible unique assignments [2] is given by
!)2(!

!)12(),(
nb b

b

bnA
−

−= . GA is used to 

effectively search for an efficient state assignment by using recombination 
operation over a number of generations. 
 
3.1.1 Chromosome representation 
The chromosome represents the states of a FSM as a string of integers. The length 
of the chromosome is equal to the number of the states. The initial population of 
chromosomes is generated randomly. Each chromosome represents a solution to the 
problem. The duplicate chromosomes are discarded. 

 
 

Figure2: Chromosome representation of state assignment 
 
Let us consider the example in Fig. 2, where the genotype of the chromosome has 
been generated randomly and the genotype of a problem is represented by array of 
integers. The chromosome is decimal representation of the state assignment for the 
FSM. The random function generates six integers ( 2,4,5,2,4,2). The i-th element of 

the string is an integer in the range from 1 to ( b2 - i +1). The state assignments list 
starts with zero and contains all the states of the FSM using minimum length. It 
works through the status-validity table where the initial validity of all numbers is 1. 
The numbers are counted from left to right. The procedure starts by taking the first 
random number 2 and mapping it into second number of possible state assignment 
list 1 and set validity to 0, so that it is not used for future selections. The next 
number 4 is mapped to possible state list number 4 and removed from the list by 
setting the validity to 0. The procedure continues in the same way for the remaining 
numbers in the list. It can be seen from the Fig.2 that the random string 2,4,5,2,4,2 
maps the states 0,1,2,3,4,5,6,7 to the assignments 1, 4, 6, 2, 7, 3 respectively and 
assigns unique code to each state. In this case, the assignments 0 and 5 are not used. 



This method is applied to each individual to generate randomly the initial 
generation. 
 
3.1.2 Fitness function 
The fitness function is defined by the number of 2-input AND/OR logic gates that 
are used in the logic equations after being minimised using conventional methods 
[2]. 
 
3.1.3 Genetic operators 
Once gate count has been carried out for every chromosome, the fitness value is 
assigned to each individual in the population. Roulette wheel selection is used to 
select the chromosomes from the previous population. Once the new generation is 
created, the recombination operations are applied. In this case, the two-point 
crossover operation is used. A crossover operator that randomly selects two 
crossover points within a chromosome then interchanges the two chromosome 
genes between these points to produce two new offspring. The “|” symbols indicate 
the randomly chosen crossover points. This illustrated as shown in Fig. 3. 
 

Before Crossover  
Chromosome 1= 2  1 | 3    5 | 6   
Chromosome 2= 4  2 | 7    3 | 1        

After Crossover 
Offspring1= 2  1 | 7  3 | 6 
Offspring2= 4  2 | 3  5 | 1 

Figure 3: Two-point crossover operators. 
 
The mutation operation chosen is based on the interchange of two genes (states) in 
each chromosome. However, when creating a new population using crossover and 
mutation operators, the best chromosome can be lost. In order to prevent these, 
elitism has been utilised. The best chromosome is preserved in new population 
because of elitism technique. Elitism rapidly increases the performance of the GA, 
by preventing the loss of the best-found solutions. Several parameters control the 
way GA optimises the state assignment of the FSM, allowing the users to vary their 
value. The parameters are: 
• the population size of the genetic algorithm; 
• the number of generations of the GA around the main loop; 
• the initial number of runs of the GA to perform optimisation; 
• the probabilities of crossover rate ( cP ) and mutation rate ( mP ). 

The mutation rate is variable and has been increased with each generation if there 
had been no improvement in the number of gates count for the best chromosome. 
 
3.2 EHW to design the combinational part of the circuit 
 
For efficiency, a simple tabular representation for the FSMs is chosen. Rows in a 
table correspond to states, and columns correspond to inputs. This circuit layout of 
FSMs is represented as a rectangular array of building blocks. These building 
blocks are uncommitted and can be removed from the actual circuit design if they 
prove to be redundant. The building blocks can implement any primary logic 
operation defined in Table 1. The genetic synthesis creates circuits at the gate-level 



using a library of logic gates such as AND, OR, XOR, NOT and D flip-flops. It is 
up to the evolutionary algorithm to choose among these building blocks to create 
the best possible desired circuits. 
 
3.2.1 Chromosome representation 
Chromosome is represented by rectangular array [6, 7]. Fig. 4 shows the 
rectangular array representation where the number of rows and columns are defined 
as ( cN , rN ). The building block which form the array are numbered column wise 

from n to (n+ cN  x rN -1). The example to encode the outputs of logic gates is 

shown in Fig. 4. The circuit layout is chosen to be 3x4. The data describing the cell 
contain the number of inputs, the array of inputs and the functional gene. The value 
of functional gene is defined according to Table 1. 
 
3.2.2 Fitness function  
Dynamic fitness function ( 1F  + 2F ) is used to evaluate the circuit [6]. 1F  uses 
Hamming distances to measure the 100% functionality of the circuit between a 
given set of outputs and real implementation of function outputs. 2F  defines the 

number of primitive logic cells that are used in the circuit. 2F  is activated when 

1F  reaches 100% functionality. 
 

Table 1: Functional set of logic gates used in EHW 

Gene   Function 

gene 

Gene   Function gene Gene   Function gene Gene   Function gene 

0         “0” 4       !a NOT(a) 8         !ab  AND(!a, b) 13    !a|b  OR(!a, b) 

1        “1” 5      !b NOT(b) 9        !a!b AND(!a, !b) 14     !a|!b OR(!a, !b) 

2        “a” wire 6      ab AND(a, b) 10      a|b  OR(a, b) 15     a^b XOR(a, b) 

3       “b” wire 7     a!b  AND(a, !b) 11    a| !b OR(a, !b) 16    !a^!b XOR(!a, !b) 
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Figure 4: Schematic of the chromosome structure  used in EHW approach with 

circuit layout equalled to 3x4 



 
3.2.3 Genetic operators 
The circuit evolution is performed using a rudimentary )1( +λ  evolutionary 
strategy with uniform mutation [16]. The parameter circuit mutation is used to 
change the type of genes in chromosome excluding the number of columns and 
rows. The mutation rate defines how many genes in the population are involved in 
mutation. 
 
 

4 Motivating Example 
 
The proposed approach described in Fig. 1 is tested against dk27 benchmark with 
seven states (S0, S1, S2, S3, S4, S5, S6), one input and two outputs. The 
experimental plan is outlined and results are given. A number of experiments have 
been carried out in order to investigate the specific features of the proposed 
method.  
The initial data for the experiment are given in Table 2 for both GA state 
assignment and EHW. The benchmark is given to the system in a file containing the 
objective state table in the form of a programmable logic array (PLA). The 
structure of dk27 circuit in the proposed approach contains 3 sub-circuits. Fig. 5 
shows the decomposition of the combinational part of the benchmark circuit into 
sub-circuits A and B. Sub-circuit C represents the D flip-flops (Dff).   
 

Table 2: Initial parameter used to evolve sequential logic circuit (Dk27.kiss2) 

 
Problem State assignment Combinational logic design 

(EHW) 
 Population size 20 15 
 The number of generations 100 50000 
 The number of GA runs 10 100 
 Type of crossover Two-point - 
 Crossover rate 0.25 - 
 Mutation rate 0.015 0.05 
 The number of rows - 4 , 8 
 The number of columns - 3 , 8 
 Target function Dk27.kiss2 Dk27.kiss2 
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Figure 5: Description the circuit parts 

 
Each sub-circuit has been evolved separately using the EHW approach. In Fig. 6, 
step1 shows the valid encoding for the benchmark by simply replacing the symbols 
of the states in the SST by the respective state binary code generated by GA. Step2 
generates the state assignment. Step 3 partitions the STT of the benchmark circuit 
into input combinational logic circuit A and output combinational logic circuit B. 
Once the EHW decomposition is completed, the fully functional circuit can be 
generated. The obtained experimental results are shown in Fig. 7 (a) and Fig.7 (b). 
In Fig. 7 (a), the circuit has been evolved using functional set (0-6, 10) and the 
circuit consists of 11 gates in sub-circuit A, 10 gates in sub-circuit B and 3 D flip-
flops in sub-circuit C. The total number of logic gates in assembled circuit is 21 (12 
AND, 7 OR, 2 NOT). Fig. 7 (b) shows the circuit evolved using functional set (0-6, 
10,15). The most efficient evolved circuit consists of 11 logic gates in sub-circuit 
A, 5 gates in sub-circuit B and 3 D flip-flops. The total number of logic gates in the 
circuit is 16 (5 AND, 3 OR, 4 XOR, 4 NOT). The two circuits discussed above 
illustrate how choosing the functional set of logic gates affects the evolved circuit 
structures. The functional genes are encoded according to Table 1. 
 
 

5 Experimental results 
 
EHW begins from randomly connected and randomly chosen logic gates and 
gradually evolves the target functionality. The evolutionary algorithms does not 
guarantee that 100% functionality circuit of the resulting connections will be 
achieved in all cases. So, the results reported here are the average from 100 runs. In 
this section, some experimental results obtained for the MCNC benchmark circuits 
are given.  
The experimental results obtained are summarised in Table 3. The table shows the 
numbers of gates used to evolve each subcircuit after 100 runs. The particular set of 
logic gates used is fixed in advance, but whether or not any particular gate is used, 
or how many time a gate is used, is entirely free. The advantage of this approach is 
that it allows us to synthesis the benchmarks circuit using any set of logic gates. 
Consequently, it permits the synthesis of compact and unusual circuit structures. 



The quality of evolved circuits is defined by the number of logic gates in the 
circuit. It can be seen from Table 3 that large FSM benchmarks (dk16) is difficult 
to evolve with one valid solution after 100 runs. These benchmark sets results are 
compared against SIS [15] for sequential logic synthesis and optimisation. The 
inputs to SIS are given in state table format and the library is given in genlib 
format. The output is a netlist of gates for the target technology. It can be seen that 
in some cases the evolved circuits are much better then the one generated by SIS. 

 

Figure 6: The procedure of generation the *.pla file from the state transition table 
based on the example of dk27 (Kiss2 benchmark). Step1 shows the initial symbolic State 
Transition Table, Step2 generates State Assignments using the genetic algorithm and Step 3 
generates the PLA files (*.pla) based on the state assignments obtained. 
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Figure 7: Evolved dk27 design using (a) functional set (0-6, 10) (b) functional set 
(0-6, 10,15) 

Table 3: Experimental results of extrinsic EHW approach. #in, #out and #stat are the 
number of inputs, outputs and states respectively. #100 cases is the number of fully 
functional solutions obtained after 100 runs of GA. The evolved circuits which are 
more optimal in comparison with SIS[15] are shown in bold. 

Specification Estimation of the best SIS 
[15] Benchmark 

.kiss 
#in #out #stat 

Functional 
set Sub-

circuit A 
Sub-

circuit B 
Sub- 

circuit C Total 

#100 
cases 

 

Bbara 4 2 10 0-5, 6, 10,15 32 28 3 60 7 79 

Bbtas 2 2 6 2-7, 10, 11, 15, 
16 15 4 3 19 24 28 

dk15 3 5 4 0,1, 6, 7, 10, 11-
16 20 33 2 53 11 66 

dk16 2 3 27 0-6, 8, 10, 11, 
13, 14, 15 265 40 5 305 1 285 

dk27 1 2 7 0- 6, 10, 15 11 5 3 16 28 20 
dk512 1 3 14 2-6, 9-14, 16 25 22 4 47 31 58 
Lion9 2 1 9 0-6, 10,15 29 21 4 50 7 25 

Shiftreg 1 1 8 0-13,15 13 5 3 18 21 9 
Tav 4 4 4 0-6, 10,15,16 3 23 2 26 9 29 
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6 Conclusions 
 

This paper proposes a new approach to evolve sequential logic circuits. The basic 
idea of this approach is to use the strength of genetic algorithm at both state 
assignment and circuit design stages. The standard genetic algorithm has been used 
in order to identify the optimal state assignment for the given problem. The 
extrinsic evolvable hardware with rudimentary evolutionary strategy has been 
applied to synthesise the combinational parts of the sequential circuit. Former 
results are associated with an evolutionary process in which each evolved FSM 
benchmark circuit is built and tested in software using computer simulations. The 
implemented GA is able to design logic circuits with size and complexity, which 
have not been demonstrated in published work so far on structural genetic and 
evolutionary algorithms. This automated approach has the added advantage of 
reduced dependency on the designers’ knowledge and experience. The proposed 
method to synthesise the sequential logic circuits has been tested on the standard 
benchmarks. It can be concluded that not enough work has been done in this 
direction and it is necessary to investigate the evolution of sequential logic circuits 
more closely. Future work will concentrate on the development of a tool to evolve 
large state machines without excessive use of memory or CPU time. Further, the 
optimisation could be tailored to target area, power dissipation or both. 
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