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Abstract—The inductive learning of a fuzzy rule-based 
system (FRBS) with high interpretability is made difficult by 
the presence of a large number of features that increases the 
dimensionality of the problem being solved. The difficult 
comes from the exponential growth of the fuzzy rule search 
space with the increase in the number of features considered.  

 
In this work we tackle this problem, the FRBS learning with 

high interpretability for high-dimensionality problems. We 
propose a genetic-programming-based method, where the 
evolved DNF fuzzy rules compete in order to obtain an FRBS 
with high interpretability (few rules and few antecedent 
conditions per rule) while maintain a good performance.  

I. INTRODUCTION 

One of the most important areas for the application of the 
Fuzzy Set Theory are Fuzzy Rule-Based Systems (FRBSs). 
FRBSs have been successfully applied to various fields such as 
control, modelling and classification. While the main goal in 
the design of FRBSs has been the performance maximization, 
their interpretability has also been taken into account in some 
recent studies [4]. 

Regarding to the interpretability of linguistic FRBSs, the 
difficult comes from the exponential growth of the fuzzy rule 
search space with the increase in the number of features 
considered. Usually human users do not want to check 
hundreds of fuzzy rules, the number of fuzzy rules is closely 
related to the interpretability of FRBSs. On the other hand, the 
rule length is also closely related to the interpretability of 
FRBSs. 

This problem can be tackled following different ideas, a) 
compacting and reducing the rule set as a postprocessing 
approach (eliminating redundant rules) (see [7] and [8]), and b) 
carrying  out a feature selection process, that determines the 
most relevant variables before or during the FRBS inductive 
learning process. The feature selection approach reduces the 
fuzzy rule search space and increases the efficiency of the 

learning. Several feature selection process have been proposed 
involved in the learning of FRBSs  [9], [10], [11], [12], [13]. 

In this work we tackle this problem, the FRBS learning with 
high interpretability for high-dimensionality problems.  

We propose a genetic-programming (GP) based method, 
where the evolved DNF fuzzy rules compete in order to obtain 
an FRBS with high interpretability (few rules and few 
antecedent conditions per rule) while maintain a good 
performance.  

The GP is an extension to the inspiration of GA, where the 
main problem of GA concerning the fixed problem definition 
is avoided by using variable-length trees instead of fixed-sized 
individuals. The definition of context-free grammars for rule 
construction, together with the use of a competition 
mechanism between rules which allows for obtaining a 
reduced fuzzy rule set, with few antecedent conditions per rule 
and high-generalization capability, can allow the learning of 
interpretable FRBSs using GP. 

The behaviour of the proposed method is examined on the 
Wisconsin Breast Cancer database, and compared with 
different learning approaches. 

In order to do that, the paper is organized as follows. Details 
of our proposal are shown in Section II. Section III shows the 
results of the experiments using the Wisconsin database. 
Finally, conclusions are presented in Section IV. 

 
II. LEARNING FUZZY RULE-BASED SYSTEMS USING 

GENETIC PROGRAMMING 
The first feature of our proposal is the coding approach used. 

It encodes one DNF fuzzy rule per individual in the 
population. This coding approach is the same used by the 
Michigan and Iterative Rule Learning approaches [2], but the 
method will work in a different way.  

In the FRBS learning we are not interested in obtaining only 
the better evolved rule, we want to obtain the rule set which 
better covers all the search space. Therefore, it is necessary to 
maintain different groups of individuals in the population, 



exploring each different space part. Each group is referred to 
as species and the search space being explored by a species is 
referred to as a niche. The maintaining of the diversity of the 
population is important for the formation of niches. Moreover, 
the individuals must not be allowed to converge into a single 
niche and must be forced to explore different parts of the 
search space.  

Several approaches have been designed to carry out this task 
(crowding, fitness sharing, …) in GAs [1]. These approaches 
are based in two main principles:  

1) The parents should be among the most similar individuals 
to the offspring. 

2) The estimate of some similarity measure between 
individuals.  

However, these ideas present problems when used with GP, 
since the parents and the offspring could be totally different 
due the variable-length nature of the individuals. Furthermore, 
is much more complex to calculate how one individual is 
similar to another individual in GP. To solve these problems, it 
is necessary to use an approach which does not take into 
account the individual structure. In our method, the approach 
used is the so called Token Competition [14]. Token 
competition is applied in our method to evolve different 
multiple rules for prediction of each class in the data set as 
well as to preserve the diversity in the evolution. 

The concept is as follows: In the natural environment, once 
an individual has found a good place to live, it will try to 
exploit this niche and prevent other newcomers from sharing 
the resources, unless the newcomer is stronger than it is. The 
other individuals are hence forced to explore and find their 
own niches. In this way, the diversity of the population is 
increased. 

Based on this mechanism, it is assumed that each record in 
the training set can provide a resource called a token, for 
which all chromosomes in the population will compete to 
capture. If a individual (rule) can match the record, it sets a 
flag to indicate that the token is seized. Other weaker 
individuals then, cannot get the token. The priority of receiving 
tokens is determined by the strength of the individuals. The 
individuals with a high fitness score can exploit the niche by 
seizing as many tokens as it can. The other ones entering the 
same niche will have their strength decreased because they 
cannot compete with the stronger ones. The fitness score of 
each individual is modified based on the tokens it can seize. 
The modified fitness is defined as: 

Modified_fitness = raw_ fitness ×  count / ideal (1)

where raw_fitness is the fitness score obtained from the 
evaluation function, count is the number of tokens that the 
individual actually seized and ideal is the total number of 
tokens that it can seize, which is equal to the number of 
records that the individual matches. 

From another point of view, each individual contributes to 
the system by covering several records. If a example has 
already been covered by one individual, then another 
individual covering the same example will make no 

contribution to the system. Thus the fitness of the latter 
individual should be discounted. 

As a result of token competition, there exist individuals that 
cannot seize any token. These individuals are redundant as all 
of its example are already covered by other stronger individual 
and, hence, they can be replaced by new individuals. The 
introduction of these new individuals can inject a larger degree 
of diversity into the population and provide extra changes for 
generating good ones. To create the new individuals, we can 
use seeds to generate better individuals. One possible seeds are 
those examples which tokens have not already been taken, i.e, 
examples which are not yet covered by any existing 
individuals, and thus introducing new ones covering them can 
improve the system. To create a new individual, a seed is 
randomly selected, and then an individual is generated to cover 
the seed. 

Another important point of interest is the evaluation of the 
individuals, that is, the definition of a proper fitness function 
that allows good individuals to get high scores and hence have 
their tokens available. For that, our departure point are the 
following four well known measures:   

1) True positives (tp): The number of examples that are 
covered by the individual and have the same consequent that 
the predicted by the individual. 

2) False positives (fp): The number of examples that are 
covered by the individual but have a different consequent that 
the predicted by the individual. 

3) True negatives (tn): The number of examples that not are 
covered by the individual and do not have the same consequent 
that the predicted by the individual. 

4) False negatives (fn): The number of examples that not are 
covered by the individual but have the same consequent that 
the predicted by the individual. 

Note that true positives and true negatives correspond to the 
correct predictions made for the individual being evaluated, 
whereas false positives and false negatives correspond to 
wrong predictions made by the individual. From the previous 
definitions, two measures can be constructed: 

1) Confidence: It measures the accuracy of a individual, that 
is, the confidence of the consequent to be true under the 
antecedents. 

 confidence ( )fptp
tp
+

=  × ( )tnfn
tn
+

  (2) 

2) Support: It measures the generalization capacity of an 
individual. An individual can have high accuracy but may be 
formed by chance and based on a few training examples. If 
support is below a user-defined minimum threshold 
(min_support), the confidence should not be considered to 
avoid the waste of effort to evolve those individuals with a 
high confidence but cannot be generalized. 
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In our experiments, the definitions showed in (2) y (3) have 
been used. Finally, both measures are combined to form the 
fitness function in (4). 

 
raw_fitness = support,        if support < min_support 

raw_fitness = support × confidence,           otherwise (4)

 
Once the previous conditions have been completely 

clarified, we show an explanation of the principal 
components/steps  of the proposed method. 

 
 grammar definition  
 data base definition 
 genetic operators 
 population evolution 
 rule base simplification 

 
1. First step, it consists of the definition of a grammar 
according to the problem to be solved. This grammar must 
specify the structure of a rule, which is in the form “if 
antecedents then consequent”. An example of the grammar for 
a classification problem with two features (X1, X2), three labels 
per feature (Low, Medium, High) and three classes (C1, C2, 
C3), is given in Table I. Clearly, this example grammar, 
enables also the learning of DNF-type fuzzy rules in which 
each input variable takes as value a set of linguistic terms 
whose members are joined by a disjunctive operator. This 
structure uses a more compact description that improves the 
interpretability. 

TABLE I 
GRAMMAR EXAMPLE  

start  [If] antec [then] conseq. 
antec  descriptor1 [and] descriptor2. 
descriptor1  [any]. 
descriptor1  [X1 is] label. 
descriptor2  [any]. 
descriptor2  [X2 is] label. 
label  {member (?a, [L, M, H, L ∨ M, L ∨ H, 

M ∨ H, L ∨ M ∨ H])}, [?a]. 
conseq  [Class is] descriptorClass. 
descriptorClass  {member (?a, [C1, C2, C3])}, [?a]. 

 
2. Secondly, the data base (DB) is defined, fixing the 
parameters of the fuzzy sets associated with the labels present 
in the grammar. In our experiments, we have divided each 
feature definition interval in a uniform form, using triangular 
fuzzy sets.  
3. Once the grammar and the DB are properly defined, an 
initial  population of rules is randomly generated, according to 
the grammar production rules. In each iteration, individuals are 

selected to evolve offspring by one of the next three genetic 
operators: 

1) Crossover: Produces one child from two parents. A part 
in the first parent is selected and replaced by another part in 
the second one. Both parts are randomly selected but under the 
constraint that the offspring produced must be valid according 
to the grammar. 

2) Mutation: A part of the rule is selected and replaced by a 
randomly generated part. The new part is generated by the 
same derivation mechanism as in the population creation. 
Since the offspring have to be valid according to the grammar, 
a selected part can only mutate to another part with a 
compatible structure. 

3) Dropping Condition: Due the probabilistic nature of GP, 
redundant constraints may be generated in the rule. Thus, it is 
necessary to generalize the rules, to represent the actual 
knowledge in a more concisely form. Dropping condition 
selects randomly one condition in the antecedent part and then 
turns it into “any”. The attribute in the condition is no longer 
considered in the rule, hence, the rule can be generalized.  

This operator forces the feature selection in the rules, 
allowing us to get rules with a small number of variables per 
antecedent. 
4. In each iteration, the number of new individual evolved 
equals the population size, thus the number of individuals in 
the population is doubled. At this moment, the token 
competition is carried out in order to maintain the diversity on 
the population. As a result of token competition, some 
individuals have their fitness modified to zero, hence they 
must be replaced by another which matches to uncovered 
records. If all the records are already covered, these individuals 
are eliminated from the population. Finally, the population size 
is set to half its current size. 

As we can see, the size of the final population can be smaller 
than the initial one. This shows that the proposed method is 
available to get reduced and compact fuzzy rule sets, which 
contains only the necessary rules to cover the whole training 
set. Therefore, we can see how our method is clearly orientated 
to get FRBS with high interpretability without a significant 
performance loss. 

5. Rule base simplification. Once the evolutionary process 
has finished, a post-processing step is carried out for 
eliminating redundant rules.  

During the rule base learning process it may occur that the 
algorithm learn two rules, where one is included in the other. 
For example, consider the two rules showed in (5). 

R1: If X1 is Low then Class is C1 

R2: If X1 is Low ∨ Medium then Class is C1 
(5)

As we can see, the second rule includes the first one, hence, 
it does not make sense to keep both of them in the rule set. In 
this case, the logic solution is deleting the first rule because the 
examples that it covers, are also covered by the second rule. 

Both rules can exist in the population, if the R1 rule always 
had entered before the R2 rule to the token competition 



process, as if both would have done it in inverse order, R1 
would have modified its fitness to zero because all its 
examples would have already been covered by the R2 rule and, 
therefore, R1 would be eliminated. 

This process aims at increasing the interpretability of the 
previously learned FRBS, by deleting redundant rules. 

III. EXPERIMENTAL STUDY 
In order to analyze the behaviour of the proposed method, an 

experimental study has been carried out using the Wisconsin 
Breast Cancer database. 

This data base has been obtained from the University of 
Wisconsin Hospitals. The examples consist of the visual 
evaluation of the nuclear characteristics of the samples 
obtained by Fine Needles Aspirates (FNAs). Each samples is 
characterized by nine features in the range [1-10], where an 1 
corresponds to a normal state while an 10 is associated to the 
most abnormal state. Finally, each sample has assigned one of 
the two next classes: benign or malignant (represented 
numerically as 2 and 4, respectively, in data sets). The 
measured variables are as follows: 

1) Clump Thickness 
2) Uniformity of Cell Size 
3) Uniformity of Cell Shape 
4) Marginal Adhesion 
5) Single Epithelial Cell Size 
6) Bare Nuclei 
7) Bland Chromatin 
8) Normal Nucleoli 
9) Mitosis 
 
The original data set is partitioned using 10-fold cross-

validation procedure. The initial data set T, is randomly 
divided into 10 disjoint sets of equal size T1,...,TN. We 
maintain the original class distribution (before partitioning) 
within each set when carrying out the partition process. We 
then conduct 10 pairs of training and test sets. 

Our method (from now on called FRBS_GP) has been 
compared to other two fuzzy rules learning techniques and 
with a decision tree method (C4.5): 

1) Wang & Mendel: In [15], it is proposed a fuzzy control 
rules learning method, which Chi et al. extend in [16], [5] for 
classification problems.  

This method generates a fuzzy rule for each example in the 
training set. It does not carry out any feature selection process. 
This method is used in our study in order to show the 
behaviour of a method without feature selection in a high 
dimensionality problem. 

2) Ravi et al.: In [12] a process for deriving fuzzy rules for 
high-dimensionality classification problems is proposed. This 
approach extracts a more reduced set of features from the 
original ones by the Principal Component Analysis (PCA). 
After that, a fuzzy rule learning process is carried out 
following the method proposed in [6] which divides the pattern 
space in several fuzzy subspaces, learning a rule for each one. 

Finally, a modified threshold accepting algorithm [13] is used 
to build a compact rule subset with a high classification power, 
from rule set obtained in the previous stage. 

3) C4.5: It is a classification algorithm proposed by Quinlan 
[17] as an extension of his previously proposed ID3 algorithm. 
It is based on information theory and it also include a feature 
selection method. This algorithm uses Divide-and-Conquer 
method and the criterion called information gain for 
constructing a decision tree, which can be later transformed 
into a crisp rule set. 

We have used 5 linguistic labels per variable in all the 
experiments and all the data partitions have been normalised to 
the [0-1] interval. The specific parameters of Ravi et al. 
method are shown in Table II, while the FRBS_GP parameter 
values are in Table III. Finally, it is important point out that 
our method learns DNF-type fuzzy rules. 

TABLE II 
RAVI ET AL. PARAMETERS 

RAVI 
PCA Threshold = 90% (reduces the original feature space 

from 9 to 5 features) 
MTA U = 0.95%, thresh = 0.035, thrtol = 10-8, acc = 10-6, 

old = 9999, and itrmax = 100, WNCP = 10 and WS = 1 

TABLE III 
FRBS_GP PARAMETERS 

FRBS_GP 
Iter = 100, pop_size = 20, Pcrossover = 0.5, Pmutation = 0.4,   
Pdrop = 0.1, min_support = 0.01 

 
The results are showed in Table IV. In this table, the first 

column indicates the name of the algorithms, the second one  
shows the average rule number (#R); the third one, the average 
antecedent variables per rule (#Var), the fourth, the average 
antecedent conditions number per rule (#Cond); and the last 
two columns stand for the correct percentage with training 
(%Tra) and test (%Test) examples respectively. In this table, 
the subscripts in our proposal, are related to the fuzzy 
reasoning method (FRM) used, so FRBS_GP1 correspond to 
the classical FRM (max-min) and the FRBS_GP2 with the 
normalised sum [3]. 

TABLE IV 
WISCONSIN RESULTS 

Method #R #Var #Cond %Tra %Test 
WM 296.5 9 9 100 66.335 

RAVI 44.77 5 5 98.9263 86.2123 
C4.5 25 4.46 5.08 99.69 94.43 

FRBS_GP1 7.77 1 2.22 92.88 93.92 
FRBS_GP2 7.77 1 2.22 94.133 93.90 

 
Analyzing Table IV, we can point out the following 

considerations: 



 The method that does not use feature selection (WM) 
learns a big number of rules showing overfitting on the 
training set. 

 Our method learns the rule set with lower number of 
variables and labels per rule (average 1 and 2.2 
respectively) than the remaining ones. It also learns rule 
bases with a few number of rules. Therefore it 
introduces a high interpretability level. 

 
 Analysing the performance of our approach, with find a 

similar behaviour between training and test, without 
overfitting. In comparison with the other approaches, 
we find a good performance in test, better than Ravi’s 
method and similar to C4.5. Regarding to the training 
performance, it is far from the other methods due to the 
fitness function does not use any measure based on the 
global classification performance.  

 
  In Table V we show an example consisting of a rule set, 
learned by our method for the Wisconsin Breast Cancer 
classification problem.  

TABLE II 
LEARNED RULE SET EXAMPLE  

R1: If X2 is L1 then Class 2, cert = 0.97 
R2: If X2 is (L2 or L3 or L4 or L5) then Class 4, cert = 0.81 
R3: If X6 is (L1 or L3 or L4) then Class 2, cert = 0.86 
R4: If X6 is (L2 or L5) then Class 4, cert = 0.84 
R5: If X7 is L1 then Class 2, cert = 0.96 

IV. CONCLUSIONS 
In this work, we have proposed a genetic-programming-

based method to obtain FRBSs with a high interpretability. 
Since the GP individuals are represented by variable-length 
trees, they can naturally allow for the absence of any input 
feature, getting rules with fewer antecedents conditions. On the 
other hand, the use of a niche formation mechanism to increase 
the diversity into the population, makes the rules compete 
among themselves giving out a fewer number of rules with a 
high-generalization capability.  

The effectiveness of the method is shown by an example, 
and the results are promising. Therefore, we consider this 
approach can be an interesting alternative for the learning of 
interpretable FRBSs for high-dimensionality problems. 
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