Skip to main content

Improving Image Filter Efficiency: A Multi-objective Genetic Algorithm Approach to Optimize Computing Efficiency

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2024)

Abstract

For real-time applications in embedded systems, an efficient image filter is not defined solely by its accuracy but by the delicate balance it strikes between precision and computational cost. While one approach to manage an algorithm’s computing demands involves evaluating its complexity, an alternative strategy employs a multi-objective algorithm to optimize both precision and computational cost.

In this paper, we introduce a multi-objective adaptation of Cartesian Genetic Programming aimed at enhancing image filter performance. We refine the existing Cartesian Genetic Programming framework for image processing by integrating the elite Non-dominated Sorting Genetic Algorithm into the evolutionary process, thus enabling the generation of a set of Pareto front solutions that cater to multiple objectives.

To assess the effectiveness of our framework, we conduct a study using a Urban Traffic dataset and compare our results with those obtained using the standard framework employing a mono-objective evolutionary strategy. Our findings reveal two key advantages of this adaptation. Firstly, it generates individuals with nearly identical precision in one objective while achieving a substantial enhancement in the other objective. Secondly, the use of the Pareto front during the evolution process expands the research space, yielding individuals with improved fitness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://docs.python.org/3/library/time.html.

  2. 2.

    https://camstreamer.com/live/streams/14-traffic.

References

  1. Ahmadi, M.H., Hosseinzade, H., Sayyaadi, H., Mohammadi, A.H., Kimiaghalam, F.: Application of the multi-objective optimization method for designing a powered stirling heat engine: Design with maximized power, thermal efficiency and minimized pressure loss. Renewable Energy 60, 313–322 (2013) . https://doi.org/10.1016/j.renene.2013.05.005,https://www.sciencedirect.com/science/article/pii/S0960148113002504

  2. Arcuri, A., Yao, X.: A novel co-evolutionary approach to automatic software bug fixing. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 162–168 (2008). https://doi.org/10.1109/CEC.2008.4630793

  3. Biau, J., Wilson, D., Cussat-Blanc, S., Luga, H.: Improving image filters with cartesian genetic programming. In: Proceedings of the 13th International Joint Conference on Computational Intelligence (IJCCI 2021), ECTA, vol. 1, pp. 17–27. INSTICC, SciTePress (2021). https://doi.org/10.5220/0010640000003063

  4. Bruce, B.R., Petke, J., Harman, M.: Reducing energy consumption using genetic improvement. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO 2015, pp. 1327–1334. Association for Computing Machinery, New York (2015). https://doi.org/10.1145/2739480.2754752,https://doi.org/10.1145/2739480.2754752

  5. Cortacero, K., et al.: Evolutionary design of explainable algorithms for biomedical image segmentation. Nat. Commun. (2023)

    Google Scholar 

  6. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  7. Deb, K., Goel, T.: Controlled elitist non-dominated sorting genetic algorithms for better convergence. In: Eckart, Z., Lothar, T., Kalyanmoy, D., Artemio, C.C., David, C. (eds.) Evolutionary Multi-Criterion Optimization, pp. 67–81. Springer, Berlin (2001). https://doi.org/10.1007/3-540-44719-9_5

    Chapter  Google Scholar 

  8. Deb, K., Goel, T.: A hybrid multi-objective evolutionary approach to engineering shape design. In: Eckart, Z., Lothar, T., Kalyanmoy, D., Artemio, C.C., David, C. (eds.) Evolutionary Multi-Criterion Optimization, pp. 385–399. Springer, Berlin (2001). https://doi.org/10.1007/3-540-44719-9_27

    Chapter  Google Scholar 

  9. Harding, S., Graziano, V., Leitner, J., Schmidhuber, J.: Mt-cgp: Mixed type cartesian genetic programming. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, GECCO 2012, pp. 751–758. Association for Computing Machinery, New York (2012). https://doi.org/10.1145/2330163.2330268,https://doi.org/10.1145/2330163.2330268

  10. Harding, S., Leitner, J., Schmidhuber, J.: Cartesian Genetic Programming for Image Processing, pp. 31–44. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6846-2_3

  11. Harding, S.L., Miller, J.F., Banzhaf, W.: Self-Modifying Cartesian Genetic Programming, pp. 101–124. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-17310-3_4

  12. Harman, M., Jia, Y., Langdon, W.B.: Babel pidgin: Sbse can grow and graft entirely new functionality into a real world system. In: Le Goues, C., Yoo, S. (eds.) Search-Based Software Engineering, pp. 247–252. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-09940-8_20

    Chapter  Google Scholar 

  13. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn (2018)

    Google Scholar 

  14. Jafarian, F., Amirabadi, H., Sadri, J.: Application of multi-objective optimization algorithm and artificial neural networks at machining process (March 2013)

    Google Scholar 

  15. Kalkreuth, R., Rudolph, G., Krone, J.: More efficient evolution of small genetic programs in Cartesian Genetic Programming by using genotypie age. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 5052–5059. IEEE (Jul 2016). https://doi.org/10.1109/CEC.2016.7748330,https://ieeexplore.ieee.org/document/7748330/

  16. Khan, G.M., Miller, J.F., Halliday, D.M.: Evolution of cartesian genetic programs for development of learning neural architecture. Evol. Comput. 19(3), 469–523 (2011) https://doi.org/10.1162/EVCO_00043

  17. Langdon, W.B., Harman, M.: Evolving a cuda kernel from an nvidia template. In: IEEE Congress on Evolutionary Computation, pp. 1–8 (2010). https://doi.org/10.1109/CEC.2010.5585922

  18. Langdon, W.B., Harman, M.: Optimizing existing software with genetic programming. IEEE Trans. Evol. Comput. 19(1), 118–135 (2015). https://doi.org/10.1109/TEVC.2013.2281544

    Article  Google Scholar 

  19. Matthews, B.: Comparison of the predicted and observed secondary structure of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Structure 405(2), 442–451 (1975). https://doi.org/10.1016/0005-2795(75)90109-9,https://www.sciencedirect.com/science/article/pii/0005279575901099

  20. Miller, J.F.: An empirical study of the efficiency of learning boolean functions using a cartesian genetic programming approach. In: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation, GECCO 1999, vol. 2, pp. 1135–1142. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1999)

    Google Scholar 

  21. Miller, J.F.: What bloat? cartesian genetic programming on boolean problems. In: 2001 Genetic and Evolutionary Computation Conference Late Breaking Papers, pp. 295–302 (2001). https://www.elec.york.ac.uk/intsys/users/jfm7/gecco2001Late.pdf

  22. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Genetic Programming. pp. 121–132. Springer, Berlin Heidelberg (2000). doi: https://doi.org/10.1007/978-3-642-17310-3_2

  23. Miller, J.F.: Cartesian genetic programming. Springer (2011)

    Google Scholar 

  24. Miller, J.F.: Cartesian genetic programming: its status and future. Genetic Program. Evolvable Mach. 1–40 (2019)

    Google Scholar 

  25. Miragaia, R., Fernández, F., Reis, G., Inácio, T.: Evolving a multi-classifier system for multi-pitch estimation of piano music and beyond: an application of cartesian genetic programming. Appl. Sci. 11(7), 2902 (2021)

    Article  Google Scholar 

  26. Petke, J., Haraldsson, S.O., Harman, M., Langdon, W.B., White, D.R., Woodward, J.R.: Genetic improvement of software: a comprehensive survey. IEEE Trans. Evol. Comput. 22(3), 415–432 (2018). https://doi.org/10.1109/TEVC.2017.2693219

    Article  Google Scholar 

  27. Petke, J., Harman, M., Langdon, W.B., Weimer, W.: Using genetic improvement and code transplants to specialise a c++ program to a problem class. In: Nicolau, M., et al. (eds.) Genetic Programming, pp. 137–149. Springer, Berlin Heidelberg, Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44303-3_12

    Chapter  Google Scholar 

  28. Srinivas, N., Deb, K.: Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994). https://doi.org/10.1162/evco.1994.2.3.221

    Article  Google Scholar 

  29. White, D.R., Arcuri, A., Clark, J.A.: Evolutionary improvement of programs. IEEE Trans. Evol. Comput. 15(4), 515–538 (2011). https://doi.org/10.1109/TEVC.2010.2083669

    Article  Google Scholar 

  30. Whitley, D., Rana, S., Heckendorn, R.: The island model genetic algorithm: On separability, population size and convergence. J. Comput. Inform. Technol. 7 (1998)

    Google Scholar 

  31. Wu, F., Weimer, W., Harman, M., Jia, Y., Krinke, J.: Deep parameter optimisation. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO 2015, pp. 1375–1382. Association for Computing Machinery, New York (2015). https://doi.org/10.1145/2739480.2754648

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Cussat-Blanc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Biau, J., Cussat-Blanc, S., Luga, H. (2024). Improving Image Filter Efficiency: A Multi-objective Genetic Algorithm Approach to Optimize Computing Efficiency. In: Smith, S., Correia, J., Cintrano, C. (eds) Applications of Evolutionary Computation. EvoApplications 2024. Lecture Notes in Computer Science, vol 14634. Springer, Cham. https://doi.org/10.1007/978-3-031-56852-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56852-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56851-0

  • Online ISBN: 978-3-031-56852-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics