Skip to main content

Adversarial Evolution and Deep Learning – How Does an Artist Play with Our Visual System?

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11453))

Abstract

We create artworks using adversarial coevolution between a genetic program (hercl) generator and a deep convolutional neural network (LeNet) critic. The resulting artificially intelligent artist, whimsically named Hercule LeNet, aims to produce images of low algorithmic complexity which nevertheless resemble a set of real photographs well enough to fool an adversarially trained deep learning critic modeled on the human visual system. Although it is not exposed to any pre-existing art, or asked to mimic the style of any human artist, nevertheless it discovers for itself many of the stylistic features associated with influential art movements of the 19th and 20th Century. A detailed analysis of its work can help us to better understand the way an artist plays with the human visual system to produce aesthetically appealing images.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Hercule LeNet (all images in Figs. 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13).

References

  1. Galanter, P.: Computational aesthetic evaluation: past and future. In: McCormack, P., d’Inverno, M. (eds.) Computers and Creativity. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31727-9_10

    Chapter  Google Scholar 

  2. McCormack, J., Bown, O., Dorin, A., McCabe, J., Monro, G., Whitelaw, M.: Ten questions concerning generative computer art. Leonardo 47(2), 135–141 (2014)

    Article  Google Scholar 

  3. Dawkins, R.: The Blind Watchmaker: Why the Evidence of Evolution Reveals a World Without Design. Norton, New York (1986)

    Google Scholar 

  4. Sims, K.: Artificial evolution for computer graphics. ACM Comput. Graph. 25(4), 319–328 (1991)

    Article  Google Scholar 

  5. Kowaliw, T., Dorin, A., McCormack, J.: Promoting creative design in interactive evolutionary computation. IEEE Trans. Evol. Comput. 16(4), 523–536 (2012)

    Article  Google Scholar 

  6. Secretan, J., et al.: Picbreeder: a case study in collaborative evolutionary exploration of design space. Evol. Comput. 19(3), 373–403 (2011)

    Article  Google Scholar 

  7. Machado, P., Correia, J., Romero, J.: Expression-based evolution of faces. In: Machado, P., Romero, J., Carballal, A. (eds.) EvoMUSART 2012. LNCS, vol. 7247, pp. 187–198. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29142-5_17

    Chapter  Google Scholar 

  8. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: high confidence predictions for unrecognizable images. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 427–436 (2015)

    Google Scholar 

  9. Baluja, S., Pomerlau, D., Todd, J.: Towards automated artificial evolution for computer-generated images. Connection Sci. 6(2), 325–354 (1994)

    Article  Google Scholar 

  10. Ekárt, A., Sharma, D., Chalakov, S.: Modelling human preference in evolutionary art. In: Di Chio, C., et al. (eds.) EvoApplications 2011. LNCS, vol. 6625, pp. 303–312. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20520-0_31

    Chapter  Google Scholar 

  11. Correia, J., Machado, P., Romero, J., Carballal, A.: Feature selection and novelty in computational aesthetics. In: Machado, P., McDermott, J., Carballal, A. (eds.) EvoMUSART 2013. LNCS, vol. 7834, pp. 133–144. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36955-1_12

    Chapter  Google Scholar 

  12. Saunders, R., Gero, J.S.: Artificial creativity: a synthetic approach to the study of creative behaviour. In: Computational and Cognitive Models of Creative Design V, pp. 113–139. Key Centre of Design Computing and Cognition, University of Sydney (2001)

    Google Scholar 

  13. Machado, P., Romero, J., Manaris, B.: Experiments in computational aesthetics: an iterative approach to stylistic change in evolutionary art. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution. Natural Computing Series, pp. 318–415. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-72877-1_18

    Chapter  Google Scholar 

  14. Greenfield, G., Machado, P.: Simulating artist and critic dynamics – an agent-based application of an evolutionary art system. In: Proceedings of the International Joint Conference on Computational Intelligence (IJCCI), Funchal, Madeira, Portugal, pp. 190–197 (2009)

    Google Scholar 

  15. Li, Y., Hu, C.-J.: Aesthetic learning in an interactive evolutionary art system. In: Di Chio, C., et al. (eds.) EvoApplications 2010. LNCS, vol. 6025, pp. 301–310. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12242-2_31

    Chapter  Google Scholar 

  16. Correia, J., Machado, P., Romero, J., Carballal, A.: Evolving figurative images using expression-based evolutionary art. In: 4th International Conference on Computational Creativity (ICCC), pp. 24–31 (2013)

    Google Scholar 

  17. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  18. Nguyen, A., Clune, J., Bengio, Y., Dosovitskiy, A., Yosinski, J.: Plug & play generative networks: conditional iterative generation of images in latent space. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3510–3520 (2017)

    Google Scholar 

  19. Soderlund, J., Blair, A.: Adversarial image generation using evolution and deep learning. In: IEEE Congress on Evolutionary Computation (2018)

    Google Scholar 

  20. Blair, A.: Learning the Caesar and Vigenere Cipher by hierarchical evolutionary re-combination. In: IEEE Congress on Evolutionary Computation, pp. 605–612 (2013)

    Google Scholar 

  21. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2323 (1998)

    Article  Google Scholar 

  22. Rooke, S.: Eons of genetically evolved algorithmic images. In: Bentley, P.J., Corne, D.W. (eds.) Creative Evolutionary Systems, pp. 339–365. Morgan Kauffmann, San Francisco (2002)

    Chapter  Google Scholar 

  23. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR), pp. 1–15 (2015)

    Google Scholar 

  24. Blair, A.D.: Transgenic evolution for classification tasks with HERCL. In: Chalup, S.K., Blair, A.D., Randall, M. (eds.) ACALCI 2015. LNCS (LNAI), vol. 8955, pp. 185–195. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14803-8_15

    Chapter  Google Scholar 

  25. Blair, A.: Incremental evolution of HERCL programs for robust control. In: Genetic and Evolutionary Computation Conference (GECCO) Companion, pp. 27–28 (2014)

    Google Scholar 

  26. Soderlund, J., Vickers, D., Blair, A.: Parallel hierarchical evolution of string library functions. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 281–291. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_26

    Chapter  Google Scholar 

  27. Vickers, D., Soderlund, J., Blair, A.: Co-evolving line drawings with hierarchical evolution. In: Wagner, M., Li, X., Hendtlass, T. (eds.) ACALCI 2017. LNCS (LNAI), vol. 10142, pp. 39–49. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51691-2_4

    Chapter  Google Scholar 

  28. Krizhevsky, A.: Learning multiple layers of features from tiny images. Master’s Thesis, Computer Science, University of Toronto (2009)

    Google Scholar 

  29. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  30. Barnsley, M.: Fractal Image Compression. AK Peters, Natick (1993)

    MATH  Google Scholar 

  31. Schmidhuber, J.: Low-complexity art. Leonardo 30(2), 97–103 (1997)

    Article  Google Scholar 

Download references

Acknowledgment

Thanks to Jacob Soderlund, Darwin Vickers and Tanakrit Udomchoksakul for contributing code, and to Jeff Clune, Ken Stanley, Yoshua Bengio, Oliver Bown and Gary Greenfield for fruitful discussions. This research was undertaken with the support of Akin.com, as well as resources from the National Computational Infrastructure (NCI), which is supported by the Australian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Blair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Cite this paper

Blair, A. (2019). Adversarial Evolution and Deep Learning – How Does an Artist Play with Our Visual System?. In: Ekárt, A., Liapis, A., Castro Pena, M.L. (eds) Computational Intelligence in Music, Sound, Art and Design. EvoMUSART 2019. Lecture Notes in Computer Science(), vol 11453. Springer, Cham. https://doi.org/10.1007/978-3-030-16667-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16667-0_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16666-3

  • Online ISBN: 978-3-030-16667-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics