Skip to main content

Mobile Robot Sensor Fusion Using Flies

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2611))

Abstract

The “Fly algorithm” is a fast artificial evolution-based image processing technique. Previous work has shown how to process stereo image sequences and use the evolving population of “flies” as a continuously updated representation of the scene for obstacle avoidance in a mobile robot. In this paper, we show that it is possible to use several sensors providing independent information sources on the surrounding scene and the robot’s position, and fuse them through the introduction of corresponding additional terms into the fitness function. This sensor fusion technique keeps the main properties of the fly algorithm: asynchronous processing. no low-level image pre-processing or costly image segmentation, fast reaction to new events in the scene. Simulation test results are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Louchet. From Hough to Darwin: an individual evolutionary strategy applied to artificial vision. In Proceedings of Artificial Evolution 99, Dunkerque, France, November 1999.

    Google Scholar 

  2. P. Collet, E. Lutton, F. Raynal, and M. Schoenauer. Individual gp: an alternative viewpoint for the resolution of complex problems. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honovar, M. Jakiela, and R. E. Smith, editors, Genetic and Evolutionary Computation Conference GECCO99. Morgan Kaufmann, San Francisco, CA, 1999.

    Google Scholar 

  3. Amine M. Boumaza and Jean Louchet. Dynamic flies: Using real-time parisian evolution in robotics. In Egbert J. W. Boers, Stefano Cagnoni, Jens Gottlieb, Emma Hart, Pier Luca Lanzi, Gunther R. Raidl, Robert E. Smith, and Harald Tijink, editors, Applications of Evolutionary Computing, volume 2037 of LNCS, pages 288–297, Lake Como, Italy, 18 April 2001. Springer-Verlag.

    Chapter  Google Scholar 

  4. R.C. Jain, R. Kasturi, and B.G. Schunck. Machine Vision. McGraw-Hill, New York, 1994.

    Google Scholar 

  5. R. M. Haralick. Using perspective transformations in scene analysis. Computer Graphics and Image Processing, (13):191–221, 1980.

    Article  Google Scholar 

  6. R. C. Gonzalez and R. E. Woods. Digital Image Processing. Wiley, 1992.

    Google Scholar 

  7. J. Holland. Adaptation in Natural and Artificial Systems. Univ. of Michigan Press Press, 1975.

    Google Scholar 

  8. Jean Louchet, Maud Guyon, Marie-Jeanne Lesot, and Amine Boumaza. Dynamic flies: a new pattern recognition tool applied to stereo sequence processing. Pattern recognition letters, 23:335–345, 2002.

    Article  MATH  Google Scholar 

  9. O. Khatib. Real time obstacle avoidance for manipulators and mobile robots. The International Journal of Robotics Research, 5(1):90–99, Spring 1986.

    Article  MathSciNet  Google Scholar 

  10. Y. Koren and J. Borenstein. Potential field methods and their inherent limitations for mobile robot navigation. In Procedings of the IEEE Conference On Robotics and Automation, ICRA’91, pages 1398–1404, Sacramento, California, April 7–12 1991.

    Google Scholar 

  11. C. I. Connolly and R. Grupen. On the applications of harmonic functions to robotics. Journal of Robotic and Systems, 10(7):931–946, October 1993.

    Article  MATH  Google Scholar 

  12. C. I. Connolly, J. B. Burns, and R. Weiss. Path planning using laplace’s equation. In The Proceedings of IEEE Internetioal Conference on Robotics and Automation, ICRA’90, pages 2102–2106, May 1990.

    Google Scholar 

  13. B. H. Horn. Robot Vision. McGraw Hill, 1986.

    Google Scholar 

  14. Cumuli project: Computational understanding of multiple images, http://www.inrialpes.fr/cumuli.

  15. J. Holland. Adaptation in Natural and Artificial Systems. MIT Press, 1992.

    Google Scholar 

  16. D. E. Goldberg. Genetic Algorithms in Search, Optimisation and Machine Learning. Addison Wesley, Reading, MA, 1989.

    Google Scholar 

  17. D. H. Ballard and C. M. Brown. Computer Vision. Prentice Hall, 1982.

    Google Scholar 

  18. R. C. Eberhart and J. A. Kennedy. New optimizer using particle swarm. In Proc. Sixth Int. Symposium on Micro Machine and Human Science, Nagoya, pages 39–43, Piscataway, NJ, 1995. IEEE Service Center.

    Google Scholar 

  19. P. V. C. Hough. Method and means of recognizing complex patterns. U.S. Patent no3, 069 654, 18 December 1962.

    Google Scholar 

  20. J. Louchet. Using an individual evolution strategy for stereovision. Genetic Programming and Evolvable Machines. Kluwer, to appear, 2001.

    Google Scholar 

  21. E. Lutton and P. Martinez. A genetic algorithm for the detection of d geometric primitives in images. In The Proceedings of the International Conference on Pattern Recognition, ICPR’94, pages 526–528, Los Alamitos, CA, October 9–13 1994. IEEE Computer Society.

    Google Scholar 

  22. M. C. Martins and H. P. Moravec. Robot evidence grid. Technical report, The Robotics Institute, Carnegie Mellon University, March 1996.

    Google Scholar 

  23. M. Millonas. Swarms, phase transitions and collective intelligence, artificial life iii. In C.G Langton, editor, Santa Fe Institute Studies in the Sciences of Complexity, volume XVII. Addison Wesley, Reading, MA, 1994.

    Google Scholar 

  24. I. Rechenberg. Evolution strategy. In J.M. Zurada, R.J. MarksII, and C.J. Robinson, editors, Computational Intelligence imitating life, pages 147–159. IEEE Press, Piscataway, NJ, 1994.

    Google Scholar 

  25. G. Roth and M. D. Levine. Geometric primitive extraction using genetic algorithm. In Proceedings of the IEEE Conference on Computer vision ans Pattern Recognition, CVPR’92, Piscataway, NJ, 1992. IEEE Press.

    Google Scholar 

  26. R. Salomon and P. Eggenberger. Adaptation on the evolutionary time scale: a working hypothesis and basic experiments. In Springer Lecture Notes on Computer Science, number 1363, pages 251–262. Springer-Verlag, Berlin, 1997.

    Google Scholar 

  27. P.K. Ser, S. Clifford, T. Choy, and W.C. Siu. Genetic algorithm for the extraction of nonanalytic objects from multiple dimensional parameter space. Computer Vision and Image Understanding, vol. 73 no. 1, Academic Press: Orlando, FL, pages 1–13,1999.

    Google Scholar 

  28. C. K. Tang and G. Medioni. Integrated surface, curve and junction inference from sparse 3-d data sets. In ICCV98, pages 818–823, Piscataway, NJ, 1998. IEEE Computer Society Press.

    Google Scholar 

  29. John S. Zelek. Complete real-time path planning during sensor-based discovery. In IEEE/RSJ International Conference on Intelligent Robots and systems, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boumaza, A.M., Louchet, J. (2003). Mobile Robot Sensor Fusion Using Flies. In: Cagnoni, S., et al. Applications of Evolutionary Computing. EvoWorkshops 2003. Lecture Notes in Computer Science, vol 2611. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36605-9_33

Download citation

  • DOI: https://doi.org/10.1007/3-540-36605-9_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00976-4

  • Online ISBN: 978-3-540-36605-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics