Skip to main content

Evolution in Nanomaterio: The NASCENCE Project

  • Chapter
  • First Online:
Inspired by Nature

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 28))

  • 761 Accesses

Abstract

This chapter describes some of the work carried out by members of the NASCENCE project, an FP7 project sponsored by the European Community. After some historical notes and background material, the chapter explains how nanoscale material systems have been configured to perform computational tasks by finding appropriate configuration signals using artificial evolution. Most of this exposition is centred around the work that has been carried out at the MESA+ Institute for Nanotechnology at the University of Twente using disordered networks of nanoparticles. The interested reader will also find many pointers to references that contain more details on work that has been carried out by other members of the NASCENCE consortium on composite materials based on single-walled carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashby, W.R.: Design for a Brain, the Origin of Adaptive Behaviour. Chapman & Hall Ltd. (1960)

    Google Scholar 

  2. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning ways for your mathematical plays, volume 4. AMC 10, 12 (2003)

    MATH  Google Scholar 

  3. Bose, S.K., Lawrence, C.P., Liu, Z., Makarenko, K.S., van Damme, R.M.J., Broersma, H.J., van der Wiel, W.G.: Evolution of a designless nanoparticle network into reconfigurable boolean logic. Nat. Nanotechnol. 207, 1048–1052 (2015). doi:10.1038/NNANO.2015.207

    Article  Google Scholar 

  4. Broersma, H., Gomez, F., Miller, J.F., Petty, M., Tufte, G.: Nascence project: nanoscale engineering for novel computation using evolution. Int. J. Unconvent. Comput. 8(4), 313–317 (2012)

    Google Scholar 

  5. Broersma, H..J., Miller, J.F., Nichele, S.: Computational matter: Evolving computational functions in nanoscale materials. In: A. Adamatzky (ed.) Advances in Unconventional Computing Volume 2: Prototypes, Models and Algorithms, pp. 397–428 (2016)

    Google Scholar 

  6. Ciresan, D.C., Meier, U., Masci, J., Schmidhuber, J.: A committee of neural networks for traffic sign classification. In: International Joint Conference on Neural Networks (IJCNN), pp. 1918–1921 (2011)

    Google Scholar 

  7. Clegg, K., Miller, J., Massey, M., Petty, M.: Practical issues for configuring carbon nanotube composite materials for computation. In: Evolvable Systems (ICES), 2014 IEEE International Conference on, pp. 61–68 (2014)

    Google Scholar 

  8. Clegg, K.D., Miller, J.F., Massey, M.K., Petty, M.C.: Travelling salesman problem solved ‘in materio’ by evolved carbon nanotube device. In: Parallel Problem Solving from Nature - PPSN XIII - 13th International Conference, Proceedings, LNCS, vol. 8672, pp. 692–701. Springer (2014)

    Google Scholar 

  9. Codd, E.F.: Cellular Automata. Academic Press (1968)

    Google Scholar 

  10. Conrad, M.: The price of programmability. In: R. Herken (ed.) The Universal Turing Machine A Half-Century Survey, pp. 285–307. Oxford University Press (1988)

    Google Scholar 

  11. Cook, M.: Universality in elementary cellular automata. Complex Systems 15(1), 1–40 (2004)

    MATH  MathSciNet  Google Scholar 

  12. van Damme, R., Broersma, H., Mikhal, J., Lawrence, C., van der Wiel, W.: A simulation tool for evolving functionalities in disordered nanoparticle networks. IEEE Congress on Evolutionary Computation (CEC 2016), 24–29 July 2016, Vancouver, Canada pp. 5238–5245 (2015)

    Google Scholar 

  13. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer (2003)

    Google Scholar 

  14. Farstad, S.: Evolving cellular automata in-materio. In: Master Thesis Semester Project, Norwegian University of Science and Technology, Supervisor: Stefano Nichele, Gunnar Tufte. NTNU (2015)

    Google Scholar 

  15. Greff, K., van Damme, R., Koutník, J., Broersma, H., Mikhal, J., Lawrence, C., van der Wiel, W., Schmidhuber, J.: Unconventional computing using evolution-in-nanomaterio: Neural networks meet nanoparticle networks. The Eighth International Conference on Future Computational Technologies and Applications, Future Computing (2016)

    Google Scholar 

  16. Harding, S., Miller, J.F.: Evolution in materio: A tone discriminator in liquid crystal. In: In Proceedings of the Congress on Evolutionary Computation 2004 (CEC’2004), vol. 2, pp. 1800–1807 (2004)

    Google Scholar 

  17. Harding, S., Miller, J.F.: Evolution in materio. In: R.A. Meyers (ed.) Encyclopedia of Complexity and Systems Science, pp. 3220–3233. Springer (2009)

    Google Scholar 

  18. Harding, S.L., Miller, J.F.: Evolution in materio: evolving logic gates in liquid crystal. Int. J. Unconvention. Comput. 3(4), 243–257 (2007)

    Google Scholar 

  19. Harding, S.L., Miller, J.F., Rietman, E.A.: Evolution in materio: exploiting the physics of materials for computation. Int. J. Unconvention. Comput. 4(2), 155–194 (2008)

    Google Scholar 

  20. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology. Control and Artificial Intelligence. MIT Press, Cambridge, MA, USA (1992)

    Google Scholar 

  21. Jaeger, H.: The echo state approach to analysing and training recurrent neural networks-with an erratum note. In: German National Research Center for Information Technology GMD Technical Report Bonn, Germany 148, 34 (2001)

    Google Scholar 

  22. Korotkov, A.: Coulomb Blockade and Digital Single-Electron Devices, pp. 157–189. Blackwell, Oxford (1997)

    Google Scholar 

  23. Kotsialos, A., Massey, M.K., Qaiser, F., Zeze, D.A., Pearson, C., Petty, M.C.: Logic gate and circuit training on randomly dispersed carbon nanotubes. Int. J. Unconvention. Comput. 10, 473–497 (2014)

    Google Scholar 

  24. Koza, J.: Genetic Programming: On the Programming of Computers by Natural Selection. MIT Press, Cambridge, Massachusetts, USA (1992)

    MATH  Google Scholar 

  25. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NIPS 2012), p. 4 (2012)

    Google Scholar 

  26. Laketić, D., Tufte, G., Lykkebø, O.R., Nichele, S.: An explanation of computation–collective electrodynamics in blobs of carbon nanotubes. In: Proceedings of 9th EAI International Conference on Bio-inspired Information and Communications Technologies (BIONETICS), in press. ACM (2015)

    Google Scholar 

  27. Laketić, D., Tufte, G., Nichele, S., Lykkebø, O.R.: Bringing Colours to the Black Box–A Novel Approach to Explaining Materials for Evolution-in-Materio. In: Proceedings of 7th International Conference on Future Computational Technology and Applications. XPS Press (2015)

    Google Scholar 

  28. Langton, C.G.: Computation at the edge of chaos: phase transitions and emergent computation. Physica D Nonlin Phenomena 42(1), 12–37 (1990)

    Article  MathSciNet  Google Scholar 

  29. Lykkebø, O., Nichele, S., Tufte, G.: An investigation of square waves for evolution in carbon nanotubes material. In: Proceedings of the 13th European Conference on Artificial Life (ECAL2015), pp. 503–510. MIT Press (2015)

    Google Scholar 

  30. Lykkebø, O., Tufte, G.: Comparison and evaluation of signal representations for a carbon nanotube computational device. In: Evolvable Systems (ICES), 2014 IEEE International Conference on, pp. 54–60 (2014)

    Google Scholar 

  31. Lykkebø, O.R., Harding, S., Tufte, G., Miller, J.F.: Mecobo: A hardware and software platform for in materio evolution. In: O.H. Ibarra, L. Kari, S. Kopecki (eds.) Unconventional Computation and Natural Computation, LNCS, pp. 267–279. Springer International Publishing (2014)

    Google Scholar 

  32. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Computat. 14(11), 2531–2560 (2002)

    Article  MATH  Google Scholar 

  33. Massey, M.K., Kotsialos, A., Qaiser, F., Zeze, D.A., Pearson, C., Volpati, D., Bowen, L., Petty, M.C.: Computing with carbon nanotubes: optimization of threshold logic gates using disordered nanotube/polymer composites. J. Appl. Phys. 117(13), 134903 (2015)

    Article  Google Scholar 

  34. Miller, J.F., Downing, K.: Evolution in materio: looking beyond the silicon box. In: Proceedings of NASA/DoD Evolvable Hardware Workshop pp. 167–176 (2002)

    Google Scholar 

  35. Miller, J.F., Harding, S.L., Tufte, G.: Evolution-in-materio: evolving computation in materials. Evolution. Intelligen. 7, 49–67 (2014)

    Article  Google Scholar 

  36. Mohid, M., Miller, J.: Evolving robot controllers using carbon nanotubes. In: Proceedings of the 13th European Conference on Artificial Life (ECAL2015), pp. 106–113. MIT Press (2015)

    Google Scholar 

  37. Mohid, M., Miller, J.: Solving even parity problems using carbon nanotubes. In: Computational Intelligence (UKCI), 15th UK Workshop on. IEEE Press (2015)

    Google Scholar 

  38. Mohid, M., Miller, J.: Evolving solution to computational problems using carbon nanotubes. Int. J. Unconvention. Comput. 11, 245–281 (2016)

    Google Scholar 

  39. Mohid, M., Miller, J., Harding, S., Tufte, G., Lykkebø, O., Massey, M., Petty, M.: Evolution-in-materio: A frequency classifier using materials. In: Proceedings of the 2014 IEEE International Conference on Evolvable Systems (ICES): From Biology to Hardware., pp. 46–53. IEEE Press (2014)

    Google Scholar 

  40. Mohid, M., Miller, J., Harding, S., Tufte, G., Lykkebø, O., Massey, M., Petty, M.: Evolution-in-materio: Solving bin packing problems using materials. In: Proceedings of the 2014 IEEE International Conference on Evolvable Systems (ICES): From Biology to Hardware., pp. 38–45. IEEE Press (2014)

    Google Scholar 

  41. Mohid, M., Miller, J., Harding, S., Tufte, G., Lykkebø, O., Massey, M., Petty, M.: Evolution-in-materio: Solving function optimization problems using materials. In: Computational Intelligence (UKCI), 2014 14th UK Workshop on, pp. 1–8. IEEE Press (2014)

    Google Scholar 

  42. Mohid, M., Miller, J., Harding, S., Tufte, G., Massey, M., Petty, M.: Evolution-in-materio: solving computational problems using carbon nanotube-polymer composites. Soft Comput. 20, 3007–3022 (2016)

    Article  Google Scholar 

  43. Nagel, L., Pederson, D.: Simulation program with integrated circuit emphasis. Memorandum ERL-M382, University of California, Berkeley (1973)

    Google Scholar 

  44. Neumann, J.V.: First draft of a report on the edvac. Tech. Rep., University of Pennsylvania (1945)

    Google Scholar 

  45. Nichele, S., Laketić, D., Lykkebø, O.R., , Tufte, G.: Is there chaos in blobs of carbon nanotubes used to perform computation? In: Proceedings of 7th International Conference on Future Comp. Tech. and Applications. XPS Press (2015)

    Google Scholar 

  46. Nichele, S., Lykkebø, O.R., Tufte, G.: An investigation of underlying physical properties exploited by evolution in nanotubes materials. In: Proceedings of 2015 IEEE International Conference on Evolvable Systems, IEEE Symposium Series on Computational Intelligence, in press. IEEE (2015)

    Google Scholar 

  47. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming. Lulu Enterprises, UK Ltd (2008)

    Google Scholar 

  48. Rasmussen, S., Baas, N.A., Mayer, B., Nilsson, M., Olesen, M.W.: Ansatz for dynamical hierarchies. Artific. Life 7(4), 329–353 (2001)

    Article  Google Scholar 

  49. Sak, H., Senior, A.W., Beaufays, F.: Long short-term memory based recurrent neural network architectures for large vocabulary speech recognition. CoRR (2014). arXiv:1402.1128

  50. Sekanina, L.: Design methods for polymorphic digital circuits. In: Proceedings of the 8th IEEE Design and Diagnostics of Electronic Circuits and Systems Workshop DDECS, pp. 145–150 (2005)

    Google Scholar 

  51. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence, K.Q. Weinberger (eds.) Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pp. 3104–3112 (2014). http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks

  52. Turing, A.M.: On computable numbers, with an application to the entscheidungs problem. Proc. London Mathemat. Soc. 42(2), 230–265 (1936)

    MATH  Google Scholar 

  53. Wasshuber, C.: Computational Single-Electronics. Springer (2001)

    Google Scholar 

  54. Wasshuber, C.: Single-Electronics–How it works. How it’s used. How it’s simulated. In: Proceedings of the International Symposium on Quality Electronic Design, pp. 502–507 (2012)

    Google Scholar 

  55. Wasshuber, C., Kosina, H., Selberherr, S.: A simulator for single-electron tunnel devices and circuits. IEEE Trans. Comput. Aided Des. Integ. Circ. Syst. 16, 937–944 (1997)

    Article  Google Scholar 

  56. Wolfram, S.: Universality and complexity in cellular automata. Physica D Nonlin. Phenom. 10(1), 1–35 (1984)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement number 317662. It is with great pleasure that the author of this chapter thanks all the members of the NASCENCE project for the wonderful collaboration in this adventurous endeavour, and in particular Julian F. Miller for his inspiration and positive attitude. Happy birthday, Julian!

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajo Broersma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Broersma, H. (2018). Evolution in Nanomaterio: The NASCENCE Project. In: Stepney, S., Adamatzky, A. (eds) Inspired by Nature. Emergence, Complexity and Computation, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-67997-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67997-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67996-9

  • Online ISBN: 978-3-319-67997-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics