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ABSTRACT

REGRESSION AND CLASSIFICATION FROM EXTICTION

Joseph Alexander Brown
University of Guelph, 2014

Advisor
Daniel Ashlock

Evolutionary Algorithms use the principles of natural selection and biolog­
ical evolution to act as search and optimization tools. Two novel Spatially 
Structured Evolutionary Algorithms: the Multiple Worlds Model (MWM) 
and Multiple Agent Genetic Networks (MAGnet) are presented. These evo­
lutionary algorithms create evolved unsupervised classifiers for data. Both 
have a property of subpopulation collapse, where a population/node receives 
little or no fitness implying the number of classes is too large. This property 
has the best biological analog of extinction.

MWM has a number of evolving populations of candidate solutions. The 
novel fitness function selects one member from each population, and fitness 
is divided between. Each of these populations meets with the biological def­
inition of a separate species; each is a group of organisms which produces 
offspring within their type, but not outside of it. This fitness function cre­
ates an unsupervised classification by partitioning the data, based on which 
population is of highest fitness, and creates an evolved classifier for that 
partition.

MAGnet involves a number of evolving agents spread about a graph, the 
nodes of which contain individual data members or problem instances. The 
agents will in turn test their fitness on each of the neighbouring nodes in the



graph, moving to the one where they have the highest fitness. During this 
move they may choose to take one of these problem instances with them. The 
agent then undergoes evolutionary operations based on which neighbours are 
on the node. The locations of the problem instances over time are sorted by 
the evolving agents, and the agents on a node act as a classifier.
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Chapter 1

Introduction

1.1 Outline

The starting point of this thesis is the K-means algorithm. This algorithm 
initially partitions data, then iteratively models each member of the partition 
by its mean value, and finally re-partitions the data based on these models, 
assigning data points to the partition elements based on the proximity to one 
of these mean values. An extension of this method is K-models which replaces 
the measure of “closest to a point” with “best fit to a model”. However, both 
of these methods have limitations in the models which can be represented 
and which models can be selected. Such limitations are overcome via the 
use of evolutionary operators acting on discrete structures and the models 
selection via fitness based reproduction.

Two novel Evolutionary Algorithms (EAs): the Multiple Worlds Model 
(MWM) and Multiple Agent Genetic Networks (MAGnet) algorithms are 
high order generalizations of this method. The hypothesis of this work is 
that interacting simultaneous modeling and classification of data, performed 
by an evolutionary algorithm, can yield useful exploratory depictions of par­
titions of data. Two algorithms are developed and tested on a variety of types 
of data. These are the multiple worlds model and MAGnet. As these models 
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CHAPTER 1. INTRODUCTION 2

are of high order, an intuitive sense of how the data is clustered is available to 
the human expert; they fulfill a need not seen in current Genetic Algorithms, 
Genetic Programming, Evolutionary Programming, or Evolutionary Strate­
gies; the ability to classify via solution. They End uses in various problems 
in modeling and regression, bioinformatics, and game theory. They are both 
spatially structured evolutionary algorithms and exhibit a behaviour which 
is much like an extinction event.

A number of introductory biology textbooks [73, 17] imply that the only 
significant cause of extinction is human intervention, such as: habitat loss, 
alien/introduced species, pollution, overexploitation, and climate change. 
However, evolution requires natural extinction events — called the back­
ground extinction rate [93]. Even mass extinctions can allow for evolution 
to flourish as they remove species from ecological niches allowing “windows 
of opportunity” for new species to take their place [74], Such extinction-like 
events have been modeled directly in evolutionary computation but have not 
been seen as emergent properties of the model.

Such emergent properties can be seen in both algorithms. In Multiple 
Worlds this involves a population in which the fitness falls off in comparison 
to the other populations. In MAGnet this consists of a node in the MAGnet 
graph with no remaining problem instances. These are both analogs to nat­
ural extinction, which introduces extinction into Evolutionary Computation 
in a natural way. In both cases these extinction-like events represent the 
algorithm reaching a conclusion about the natural number of categories for 
a problem.

1.2 Major Contributions

• A Generalization of the K-means algorithm, known as K-models. This 
generalization extends the model of the process from being a point, to 
any other structure. Demonstrated is this process with the selected
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models being lines.

• Definition of the Multiple Worlds Model of evolution. This is an evo­
lutionary framework which has multiple evolving populations where 
fitness is shared between populations, however, no genetic information 
is traded. This model allows for a process of adaptive radiation to clas­
sify data via a set of evolved classifiers. It is an analog to species and 
a process similar to extinction occurs during this evolutionary process. 
This framework is demonstrated for problems in partitioning regres­
sions, motif discovery in synthetic and biological DNA sequences, and 
a radio demographic model.

• Definition of the Multi Agent Genetic Network. This evolutionary al­
gorithm places multiple single instances of a problem on various nodes 
in a graph; the evolving agents are able to move these instances about 
the graph. This allows for a sorting of instances in the problem as well 
as the creation of a set of evolved classifying agents. This algorithm 
is demonstrated upon the iterated prisoner’s dilemma and lead to the 
production of a new prisoner’s dilemma agent know as Trifecta.

• A formalism for finite strategies in matrix games — Dominator theory. 
This theory takes into account the issues inherent in using Evolution­
ary Stable Strategies in order to speculate on how an Evolutionary 
Algorithm will progress.

1.3 Organization of the Thesis

The body of the thesis is organized as follows:
Chapter 2 examines the history of evolutionary thought in biology which 

are inspirations for the algorithms used in this dissertation. Chapter 3 
presents a number of evolutionary algorithms, how extinction has been rep­
resented, niche methods, and ensemble systems. Chapter 4, examines the
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K-models algorithm which is an extention to K-means which allows for other 
simple models to be cluster centres other than “closest to a point”. Chap­
ter 5 presents the Multiple Worlds Model of evolution. Chapter 6, 7 and 8 
present the applications for the Multiple Worlds Model of evolution. Chapter 
9 presents the Multi Agent Genetic Network. Chapter 10 demonstates the 
usefulness of this algorithm for the classification and agent discovery for the 
well known non-zero sum simultaneous game called the iterated prisoner’s 
dilemma. The formalism for dominators, a method for finding a finite state 
agent which scores optimally against a set of finite state agents, is outlined 
in Chapter 11. Finally, Chapter 12 gives a conclusion to the monograph, 
presenting the accomplishments and future directions of study into these 
algorithms.



Chapter 2

Biological History

The earliest ideas of both evolution and species come from the Greek philoso­
phers. Plato’s theory of forms set out, that all objects, which would neces­
sarily include life, are reflections of a set of essences, or edie. These edie, 
when seen in an imperfect reflection, account for all variation seen, much 
like a funhouse mirror would distort the look of an observer. Aristotle wrote 
four treaties on natural history: De anima, Historia animalium, De partibus 
animalium, and De generatiome animalium. The last monograph, on the 
generation of animals, makes mention of hybridization between dogs, foxes, 
and wolves. Further, speculation is made as to why mules would be unable 
to copulate when the hybridized offspring of other species do not have this 
problem.

Charles Darwin posited that “The fertilized germ of one of the higher 
animals ... becomes a far more marvelous object, for, besides the visible 
changes which it undergoes, we must believe it is crowded with invisible 
characters, proper to both sexes, to both the right and left side of the body, 
and to a long line of male and female ancestors separated by hundreds or even 
thousands of generations from the present time: and these characters, like 
those written on paper with invisible ink, lie ready to be evolved whenever 
the organization is disturbed by certain known or unknown conditions” [31].

5
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These invisible characters would later be found, yet Darwin’s idea about the 
germ coming from throughout the body, would be found to not be the case. 
The idea of the germ cell being taken from the entire organism was most 
famously rebuked by August Weismann, who in an experiment removed the 
tails of rats only to show that: “901 young were produced by five generations 
of artificially mutilated parents and yet there was not a single example of a 
rudimentary tail or any other abnormality of the organ” [108]. This furthered 
the notion that genetic material is not passed to offspring via a polling of 
the existing somatic cells, which are the differentiated cells of the body, but 
via a germ cell or gamete, a cell specialized for reproduction carrying traits 
existant from birth.

Work by Mendel [81] on pea plants is considered to be the first evidence 
of what would become known as genes in biology. His experiments with 
peas took two sets of pure breed plants of different varieties, e.g. tall plants 
and short plants. After these plants where hybridized together a medium 
sized plant was not discovered. Instead the plants were larger and smaller 
in a ratio of about 3:1. This average 3:1 ratio was found for a number of 
traits: height, colour, wrinkledness, position of flowers, etc. This implied the 
existence of a quantization of the traits; a trait would exist or would not exist. 
Secondly, when the second generation was created from these hybrid plants 
of the ones which showed the more dominant trait, they were found to keep 
the persistent trait with an average ratio of 2:1. Mendel stated that in the 
hybridization process, 1/4 carried the dominant trait, 2/4 carried both traits 
and displayed the dominant trait, and 1/4 had the non-dominant or recessive 
trait. This was further continued in the work to show how it would allow for 
the prediction of the results of hybridization over a number of generations 
and with a number of traits. This work lead to the use of Punnett squares 
as a visualization of the process, see Figure 2.1.

The discovery of DNA by Watson and Crick gave final form to Darwin’s 
invisible writing. These base pairs would give a code for forming new chem-
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Seed Aa

Seed Bb
B b

AB Ab 
aB ab

A
a

Figure 2.1: Punnett Square (dominant trait uppercase; regressive lowercase) 
— note 3:1 of the offspring have the dominant trait 

ical structures, leading into the central dogma of biology; a strand of DNA 
is changed into messenger RNA which then becomes proteins. With this, 
biology has given a motivating reasoning as to how strings of characters can 
represent solutions to problems via a decoding process into the phenotype. 
Further, it has shown how the manipulation of those strings create new forms 
and how those forms are evolved into better forms by the principles of natu­
ral selection, inheritance of traits, and efficient representation. Evolutionary 
Algorithms use principles of all these biological processes to inform, though 
it is not to say that it is not a low resolution copy of those natural processes.

However, the issue of the species problem, how a species arises and what 
is the definition, continued past Darwin’s era. The works of Dobzhansky 
[37] used the example of fruit flies. Drosophila pseudoobscura was one of the 
first uses of genetics to bring together the ideas of genetics with population 
biology, showing that the variations of genetics were much greater than an­
ticipated and that natural selection worked to aid in genetic diversity. The 
Systematics and the Origin of Species by Ernst Mayr [76] introduced the 
biological species concept, “species are groups of interbreeding natural popu­
lations that are reproductively isolated from other such groups” [77] which is 
called by Dobzhansky an isolating mechanism [36]. Further, his work specu­
lated that a species would diverge given isolation by geography. These new 
ideas of genetics, biological species, and natural selection became a consensus 
view of evolution known as the neo-Darwinian synthesis.

The biological inspiration of the Multiple Worlds algorithm is Darwin’s 
finches. Darwin’s finches, or Geospizine, are species found in the Galapagos
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archipelago, originally by Darwin, on the voyage of the H.M.S. Beagle (1831- 
1836). They are a common example of adaptive evolutionary radiation. The 
agents in the multiple agent genetic network are able to move through the 
network with instances of the problem they are meant to solve. This is a 
sorting behavior that both modifies the environment in which the agents 
reside and acts to find natural partitions in the data.

These birds were ignored by Darwin in On the Origin of Species [32] as 
they were not found to benefit the argument. Only in retrospective context 
did their evolutionary importance become clear. Darwin’s misclassification of 
the finches, due to the ornithological thinking during the period, complicated 
matters [104], The work of Lack [65] first gave evidence of the evolution of the 
Geospizine. The birds were seen to have developed numerous types of beaks 
in order to eat the various seeds in the islands: small beaks for cracking 
small seeds, big nut cracking beaks, a tool-using beak, and an interesting 
beak allowing for vampirism. Variations on islands where there was only 
one species were limited; the beaks would become general in order to eat a 
wide variety of seeds. When a number of species where on the same islands 
their beaks would specialize in order to eat different foods and thus avoid 
competition via niche specialization. The work of the Grants [48, 49, 50] 
conclusively proved this idea as they conducted multiple-year studies which 
involved both the tagging and monitoring of birds and the survey of the seeds 
available.

Biologist Thor Hanson gives another example using North American species:

The phrase birds of a feather flock together has been attributed 
to Plato, and in nature it is generally true. You don’t find coots, 
pigeons, or gallinules in a gaggle of geese, and a covey of quail 
does not contain emus ... But during the winter, Black-capped 
Chickadees attract a crowd. In the woods of Maine, they form 
the nucleus of mixed-species flocks ... The birds travel and forage 
together for much of the day gathering in the morning and moving
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through the woods in noisy, constantly shifting groups. This habit 
probably developed as a way to avoid or defend against predators 
like owls and hawks, but we wanted to know how these birds all 
managed to get along so well together. Food can be scarce in 
winter, and it seemed counterintuitive to invite a gang of hungry 
rivals to dinner when the cupboard was nearly bare. How does a 
mixed species flock avoid direct competition? [52]

His answer is based on behavioural changes as well as physical features 
as “[they] had enough data to see that nuthatches foraged mostly on the 
trunks, chickadees dominated the main branches, and kinglets spent their 
time flitting about in the side branches. It was a neat example of what 
ecologists call “niche partitioning”, using subtle variations in behavior to 
divide a resource among potential competitors” [52], Thus, behaviours is 
seen to have a role in the separation of species.

The biological inspiration of the Multiple Agent Genetic Networks come 
from the manipulation of resources by species in order to better their chances 
of survival. Humans are perhaps the most successful at this manipulation, 
e.g. agriculture. Homo sapiens are not the only organism which farms. 
Farmer ants, such as Cyphomyrmex wheeleri, have been known to become 
attached to specific species of fungi for millions of years, even where other 
food sources are available [80]. These species have experienced a form of 
‘lock-in’. When a new type of fungi is available to be cultivated a new 
species of ant will emerge.



Chapter 3

Evolutionary Algorithms

3.1 Introduction

Evolutionary Algorithms (EAs) are a general term for a form of biologically 
inspired algorithms based upon the ideas of evolution in biology, especially 
the ideas from genetics and molecular biology. Data structures are com­
monly referred to as strands of DNA, genes, alleles, or chromosomes. The 
manipulation of these various data structures is done via operators selected 
to mimic biological reproduction, or mutation. The ideas of genetic radia­
tion, adaptation, geography impacting on species, and niche specialization 
all appear. Note this does not necessary only mean using the ideas of the 
neo-Darwinian synthesis. Incorrect or misapplied biology sometimes makes 
for good algorithms, e.g. Larmarkian ideas of evolution inspired hybrid al­
gorithms incorporating local search techniques.

EAs are most commonly applied to optimization problems and prediction 
problems. However, examples from such as procedural content generation 
[71], robot control [87], and even works of art have been generated [24], 
The key theme is that some manner of evolutionary theory is used in the 
inspiration of the algorithms.

There are many different paradigms for EAs — that is to say it is not 
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one algorithm, which is then modified, but a set of various algorithms all 
with applications and methodological differences. The three founding types 
perhaps are Genetic Algorithms, Evolutionary Programming, and Evolution­
ary Strategies. Developed independently and originally, they have merged, 
blended and diversified, and are now developed concurrently.

Genetic Algorithms (GA) were Erst introduced by Holland [55] as a 
method to provide approximate solutions to problems via the principles of 
natural selection. They are an example of a type of EA and a number of 
good references for this technique are available, see [46, 82, 84, 5].

In a GA a possible solution to a given problem is represented as an easily 
modified data structure called a chromosome. The chromosomes relative 
ability on a problem is assigned a fitness. This fitness is to be maximized 
or minimized depending on the problem. For a number of generations the 
chromosomes undergo a breeding process. This process starts with selection. 
Selection takes the fitness scores and decides which members will undergo 
crossover, mutation, or survival. In crossover, e.g. Figure 3.1, two or more 
selected chromosomes have areas of their structures exchanged. In mutation 
a single area of the structure is edited in one parent, e.g. Figure 3.2. In 
survival a chromosome is moved to the new population unchanged. If some 
part of the generational best chromosomes are passed along via survival, 
those are declared to be elite. The new population can either be of the 
same size or population numbers can change between generations dependent 
upon other factors, such as maintaining a minimal fitness value. In a steady 
state algorithm, one new structure is generated at a time. Generational 
algorithms will create an entire new population from the old and replace the 
new population over the other.

Evolutionary Programming (EP) is a form of Evolutionary Algorithm 
invented by Lawrence Fogel to model prediction problems [44], Prediction 
problems find the next symbol most likely to occur in a sequence of symbols. 
The EP model manipulates finite state machines to predict the next symbol
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First Parent
Second Parent

First Child
Second Child

1010110000110101
0010100100110010
1010100100110101
0010110000110010

Figure 3.1: Two Point Crossover in a GA

Before Mutation 1010110000110101
After Mutation 1011110000110101

Figure 3.2: One Point Mutation in a GA

Figure 3.3: A Finite State Machine Predictor [44]
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on a transition, where fitness is typically the number of correct predictions. 
The Finite State Machines used in EP, such as in Figure 3.3, are uniquely 
defined by a state diagram and an initial state. The example has an input 
and output alphabet of 0 and 1. Given an initial state, upon the input of 
a value, the machine will change its internal state and provide the output 
value of the transition. The finite state machine population is changed via 
the application of a mutation operator alone, where the parent is replaced 
by a child only if the number of errors made by the child is reduced.

This type of machine is used in a online process; the problem instances 
are ongoing during the evolution of new machines. Therefore, the concept 
of a generation is flexible, and is dependent upon how many children can be 
created and tested on the past before the next symbols arrive. The muta­
tion operators for changing these children include: changing the connections 
between states, changing a transitional output, changing the initial state, 
adding a state, or removing a state.

Fogel [44] further speculates about the idea of a crossover operator which 
creates a machine, by looking at the majority logic of the population. Fo­
gel notes that this operator is only useful when the machines show a clear 
majority.

Evolutionary Strategies (ES) created by Rechenbreg [94, 95] and then 
continued by Schwefel [99, 100] primarily relied upon the genetic operations 
of selection and mutation. This technique was Erst used in order to create 
shapes with minimal drag in wind tunnels. In terms of the biological inspi­
ration they are perhaps more Larmarkian in their approach as it is meant 
to model the changes to a single individual over time more than a species. 
The best individual (sometimes individuals) is (are) kept and a number of 
mutated versions are created. The fitness operator is applied and the best 
individual is selected for mutation for the next generation.
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3.2 Spatially Structured Evolutionary Algo­

rithms

In an extension to the idea of an EA, multiple populations have been in­
troduced in an effort to locate multiple solutions to a problem as well as to 
provide better results, at least for some problems. Spatially Structured Evo­
lutionary Algorithms allow for parallel implementation, that is the topology 
of the genetic information can be distributed such that it matches the topol­
ogy of either the single cluster’s processing elements or a distributed network 
of elements. Each of these topologies [18, 28, 30] have various effects on 
how they distribute the workload, however the common elements are multi­
ple populations and the transfer of genetic materials between populations by 
either: exchanging members of the population or allowing breeding between 
populations. Further, using a spatial algorithm preserves diversity without 
the need for an explicit comparison of individuals used in nicheing [84] and 
other diversity preservation techniques [60].

Island models [109, 110] are a common type of spatially structured EA. In 
this model a number of subpopulations, thought of as populations on distinct 
islands, are evolved. Each subpopulation is evolved, subject to its own fitness 
evaluation, selection, and reproduction. In each generation there is a migra­
tion of individuals between islands. This allows for the parallelization of the 
entire population with low transfer cost; the transfer is made of chromo­
somes between populations, managed by a migration operator. Each island 
maintains its own genetic type, allowing for different evolutionary trajecto­
ries, and so areas of the search space can be explored. Migration allows for 
the trajectories to move towards a final common solution. When problem is 
separable, the problem can be decomposed into a number of non-interacting 
subproblems. As these different evolutionary trajectories commonly model 
different subproblems, island techniques are particularly suitable. Subpop­
ulations with non-trivial probability will find solutions to each of the sub-
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problems [109]. Migration then allows for the hybridization of subpopulation 
to conjoin in a general solution. An example, is the problem of maximizing 
the number of ones in a bit string. Each of the positions in the string are 
independent, in terms of their benefits to fitness, and there are many equally 
fit strings, especially with low fitness. As the island models are very likely to 
find differing trajectories, the migration creates different strings, which have 
portions of the solution which will then cross into the general solution.

Graph-based evolutionary algorithms [27] use a number of graphs as con­
nections in a steady state evolutionary algorithm. A vertex v is selected 
uniformly at random in the graph, and a neighbour is selected for breeding 
based on a local selection rule, e.g. roulette selection between the neighbours. 
The resultant offspring replaces the parent on v subject to a replacement rule, 
e.g. replace the parent if no worse than the parent. [27] looked at 26 differ­
ent graphs, including random graphs, fully connected, and toruses. ft then 
tested these graph’s effectiveness against 23 problem instances from One- 
Max, De Jongs Functions, Griewangk Function, Self Avoiding Walks, Plus- 
one-recall-store, DNA Barcodes, and Differential equation solution. Each of 
these problems looked at very different representation of the evolving struc­
ture, e.g. One-Max is a problem on binary strings and Plus-one-recall-store 
is represented by trees. The Endings showed that there can exist significant 
differences in the results depending on which graph is used dependent on 
the problem — there is not a singularly good graph. Further, a taxonomy 
of problems can be obtained via the performance on various graphs. The 
numerical problems were grouped together, as were the Self Avoiding Walk 
instances of various sizes.

Simulations of ring species [57] have also been implemented as an evo­
lutionary algorithm. Ring species are those which members are spatially 
located about a ring or line and are only allowed to interbreed with nearby 
neighbours. Members adjacent on the ring are close in terms of their ge­
netics, and have no issues in creating fertile offspring. Conversely, pairs of
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individuals with large distances on the ring are genetically divergent to the 
point where their unions are infertile. This method has been used as an 
alternative to Island models in order to provide a diverse set of solutions to 
the same problem.

Applications of ring species, first introduced in [9], were applied to the 
Tartus problem. Later, applications of this algorithm were made to a kind 
of finite state autometa known as a side effect machine [10], and to the self 
avoiding walk problem [8]. A block of competent individuals, i.e. the ‘found 
population’, are placed on a short arc of the ring. The simulation uses the 
same methods of crossover, and mutation as GAs. However, the selection is 
made based upon the neighbors of a location. Once a breeding pair is found, 
their offspring looks for a nearby empty node in the ring. If no nearby empty 
node exists, it replaces the individual at an occupied node, if its fitness is 
greater than or equal to that of the current occupant. This process continues 
for some number of breeding events until the ring is filled, or an adequate 
solution is located. An empty ring accepts any solution and so encourages 
exploration, but as the ring fills in the full portions require improvement to 
survive and the algorithm smoothy transitions into exploitation.

3.3 Symbolic Regression and Genetic Program­
ming

Regression is the approximation of a data set by choosing parameters for a 
model. That is, given a set of points D = (xi,x?,... ,xn,y) E Rn+1, find a 
function, y' = /(aq,a?2,... ,xn) such that the error, defined normally as

error2 = ^xl,X2„.„Xn)eD(y' ~ y)2,

is minimized.
Koza’s approach of Genetic Programming (GP) [64] uses a tree structure
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Figure 3.5: Crossover in a GP Tree

in order to represent a function. When GP is used in this fashion the process 
is called symbolic regression. The tree consists of function nodes drawn 
from a set of operations (see Figure 3.5) and terminal nodes which are values 
drawn from the domain of the function or constants. Each of these trees have 
a fitness — its ability to model the function measured by its error from the 
sample points. The trees have operators of crossover and mutation applied 
to them over a number of generations. The crossover is a binary operation, 
which mixes subtrees via a cut and paste method. The mutation is a unary 
operation which builds a new subtree from the mutation point.

One of the requirements when using a GP approach for symbolic regres­
sion is a set of operations, which are sufficient for representing the data set. 
Further, the selected operations must obey a closure property. An evolved 
function should never return a value outside of the domain, or contain an 
operation which can have an error based on an input, e.g. division by 0. 
Two methods can be used to avoid this: fitness penalities and operator se­
lection. In fitness punishment, if a function falls outside of the domain or 
can produce a value in error, then it is assigned an arbitrarily low fitness, or
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a punishment value is removed from the fitness. This approach is normally 
undertaken when the domain is ill-defined, or discontinuous. The evaluation, 
if punishment should occur, is often expensive as the GP trees are prone to 
isomorphic representations, e.g. the trees representing x — x, x * 0, x — c, 
where c is a constant, can all evaluate to 0 leading to a possible division by 
0. Conversely, the preferred approach is to avoid the problem by selecting 
operators which are bounded within the domain or have protections to avoid 
values which would be erroneous, e.g. a division by 0 returns 0. This limits 
the types of functions which can be applied to a problem.

Regression for complex systems, such as time varying systems, may re­
quire multiple differing functions. Work by Shengwu et al. [101] stated two 
methods can be used. The first is to add domain specific functions, which 
would allow large changes and discontinuity in a single function. Such op­
erators as floor, heaviside step, boxcar, or if-then statements can be used 
to create an arbitrarily accurate model. They caution this will increase the 
size of a final function, increase search space and make for a less human 
interpretable solution.

The second method is to change representation of the solution. In their 
paper [101], representation is a group of functions that are separated by dis­
continuity points. The evolutionary method changes both the points as well 
as the functions in order to regress upon multiple functions. This approach 
works well on the functions for which it was applied, finding both the dis­
continuity points and the regressors with low error. However, it is extremely 
limited. First, the number of discontinuity points must be known a priori, 
and the authors comment that finding the optimal number of points “is still a 
difficult problem” [101]. Secondly their approach is for finding what amounts 
to a single function for each portion of the data, not a number of functions 
in the same data set.

Most importantly the idea of the introduction of known discontinuity 
points leads to a problem in the parsimony of the final solution and to prob-
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lems in extending the method into higher dimensions. An example would be 
y = max^x2 — 5,2) (see Figure 3.6) a two dimensional version of an issue 
presented, using their method both sides of the parabola would have to be 
modeled independently on each side. A more parsimonious solution would 
have it modeled by a single function and the line modeled by another. The 
most parsimonious solution being the function y = max^x2 — 5, 2). However, 
it is not necessarily the right model of the data if one were interested in the 
reasoning for the model being used. For example, if this model was that of a 
protein which does cell repair and we were looking at levels based on temper­
ature, we might conclude from the two function model that there is a level of 
cell repair which is normal, and that there is a need for more of this protein 
when the temperature is in at an extreme high or low. Such requirement of 
parsimony is of course problematic and situationally dependent. We require 
enough simplicity to make an appropriate model.

Extending such an approach into multiple regression would require for 
a discontinuity point to be transformed into a discontinuity vector/plane, 
meaning that it will only work on hyperplane separable problems. This now 
introduces a much harder partitioning problem.

The idea, however, of changing the representation of a problem is well 
informed. The issue is to make this representation able to account for the 
discontinuity, while being expandable into high dimensional spaces where 
applications exist.

3.4 Extinction in EAs

Previous studies into the use of extinction in evolutionary algorithms have 
attempted to directly model the rate of extinction, rather than it being an 
emergent property of the model. Greenwood et al. [51] use a stochastic stres­
sor, which is applied to the population killing all those with fitness values 
below it, before allowing them to produce offspring. This allows for both pe-
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Figure 3.6: y = max(x2 — 5, 2) modeled by y = x2 — 5 and y = 2
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riods of limited interaction of the stressor and large extinction periods when 
the stressor is high. Further, study of this model by Fogel et al. [43] found it 
to be best on extreme ends of fitness landscapes, smooth and highly rugged. 
Extensions of this model have been made in Particle Swarm Optimizers [111] 
which would reinitialize velocity after a defined period. However, this model 
does not have much biological analog to species extinction as members of 
swarms have normally not been seen as different species, and simply reini­
tializing velocity would be biologically closer to a swarm being scared away 
from current locations; much like a farmer using bird poppers in a grape held 
to keep his crop.

The ideas of extinction in EAs also informs nicheing techniques. The goal 
of these techniques are to maintain diversity in the population by imposing 
a penalty on chromosomes which are close in terms of a metric placed on the 
gene space. Fitness sharing gives each of the chromosomes a fitness equal 
to the chromosome’s raw fitness divided by the numner of chromosomes in 
the area of its niche [45]. In crowding techniques new chromosomes are 
created which replace close neighbours to current members of the population 
[61]. The second feature of these techiques is that they will preserve multiple 
solutions to a problem in the same population. It should be noted that these 
multiple solutions are based off the same problem space, not subsections 
of it which is seen in ensemble systems, hence the created chromosomes 
maintain diversity. This is useful for multiobjective problems especially, and 
a mechanism for preventing crowding is used in the common NSGA-II [34],

As nicheing techniques commonly require that a metric be imposed on 
the genes, this is not always a simple process depending on the complexity 
of the chromosome, if the geneotype must have a translation process this 
becomes an even more difficult distance to define properly. Secondly, this 
distance must be calculated for all the members of the population pairwise, 
and this increases the time complexity of the algorithm.
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3.5 Ensemble Systems and Co-evolutions

The roots of ensemble systems are found in the ideas of partitioning the 
dataset in order to provide two, or more, classifiers [33]. This supervised 
method of classifier creation begins by breaking up the dataset with a hyper­
plane, and then creates classifiers for both partitions. The classification is 
made via finding which side of the hyperplane the data, to be classified upon, 
rests, and when in doubt a fc-nearest neighbours rule is followed. The devel­
oped classifier is then used inside of the partition in order to fully classify 
the data. A downfall of this method is the requirement of a good hyperplane 
selection, in order to give such classification. This requirement is overcome 
in ensemble systems by placing multiple classifiers over the same set of data.

Ensemble systems are a supervised classification method in which multi­
ple models have an average or vote taken as to the classification of points in a 
set of data [89]. This allows for a set of good classifiers to be taken in concert 
to provide a better accuracy than only one classifier alone. This process is 
an analog to the idea of bringing together a set of experts and asking their 
opinions on the data. For example, looking at the review process of a peer 
reviewed journal, more than one reviewer will be sent the same paper by an 
editor. These reviewers give a classification of the paper in question, such as 
accept or reject. The editor acts as the meta-classifier, looking at the reports 
provided from the reviewers to give a final classification of accept or reject. 
By having multiple reviewers, the goals are to remove bias of the individual 
reviewers, find mistakes, and prevent an unqualified reviewer from needlessly 
rejecting an article.

This is meta-level classification from a diverse set of classifying models, 
which need not necessarily be from the same family of classifiers, e.g. a 
decision tree, an expert system, and a support vector machine could be used 
in the meta-classification. The method requires classifiers, which are both 
good classifiers on their own and able to correct mistakes made by other 
members of the ensemble. That is the decisions made must be diverse.
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Two main methods are used in order to change the weights of the votes 
for the classifiers: boosting and bagging. In boosting, three classifiers are 
designed from a set of training data. The first is trained on a random subset of 
the training examples. The second is trained on an informative subset formed 
by showing examples to the first classifier by taking half of them, which are 
classified correctly and half of which are classified incorrectly. Finally, the 
third classifier is created by training on the examples where the two other 
classifiers disagree in their classifications. For a new sample, where the first 
two agree, their classification is returned, otherwise, classification is made 
by the third method. In bagging, or bootstrap aggregating, the pre-trained 
classifiers make a simple majority vote on the data.

By having a family of classifiers there is also the ability to have a confi­
dence of score associated. For example, if two of three classifications agree, 
we would have a confidence of two-thirds in our classifier. This does not 
necessarily imply that a point with high confidence is correct, no more than 
one with a low confidence is incorrect. However, with good selection of the 
underlying classifiers, this relation holds [86].

In terms of an evolutionary approach using these concepts the idea of 
ensemble systems using an island model has been developed [13]. This su­
pervised classifier system uses a number of GP populations acting as voting 
classifiers on the set of data which are evolved. This co-evolutionary system 
has been found to outperform bagging and in the majority of cases outper­
form boosting. Similar co-evolutions have been used in order to increase the 
classification via neural networks [88].



Chapter 4

K-models

Areas of this chaper first appeared as Ashlock, Brown, and Corns K-models 
Clustering, a Generalization [7].

4.1 Motivations

Clustering is an exploratory technique for tentatively classifying data. Clus­
tering algorithms are used to search for patterns in data, to reduce the size of 
a data set by selecting representatives of clusters, and to generate hypotheses 
about the character of a data set. This study introduces K-models clustering, 
a natural generalization of K-means clustering [70, 72, 19]. The similarity 
measure that places data items in the same K-means cluster is proximity 
according to a distance measure. K-models clustering modifies K-means by 
replacing proximity to a cluster center with minimal squared error according 
to K instances of a statistical model, where the instances of the model play 
the same roles that clusters do in K-means.

The name K-models has been used for specific techniques which replace 
the mean with expectation maximization and hidden Markov models [59]. 
However, the definition for K-models specified in the thesis does not require 
a particular model, rather it works on any model for which an error measure 
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can be computed and fitted. K-models can, in fact, mix very different models. 
K-models, as realized in this thesis, is a generalized framework for which the 
choice of model is a, possibly dynamic, choice. The common feature across all 
realizations is the iterative nature. That is, tentatively assign data members 
to a model, fit the model to the data members for which it is assigned, and 
reassign data members if a new model fits them better. As with the original 
K-means algorithm, iterations of fitting and reassignment are continued until 
no reassignment is required.

K-means selects a set of K initial cluster centers. It then iteratively as­
signs points to clusters according to proximity to a cluster centers and then 
recomputes cluster centers as the mean position of the cluster. This contin­
ues until points stop changing clusters and the final collection of clusters is 
reported. It is possible to take the point of view that the location of the 
cluster centers is a parameter estimation problem. Once this has been done, 
it is natural to ask what are the consequences of replacing the parameter 
estimation problem for good cluster centers with parameter estimation for 
some other statistical model. Here the model for least squares fit of a line in 
two dimensions is used to provide an arena for proof-of-concept for K-models. 
Linear regression is a widely known and extensively studied statistical model 
and provides behaviour very different from K-means.

Gaussian mixture models, selected with the expectation maximization 
(EM) algorithm [35, 112], are a popular model based clustering algorithm. 
K-models performs a very similar task — clustering points based on the 
quality of their fit with multiple statistical models derived from the data 
— but it does it in a very different way. The K-models algorithm is fast, 
comparable to traditional K-means for the case where the statistical model 
is a least-squares line. The EM-algorithm is famous for being slow. Both 
algorithms share the property that they can converge to local minima of their 
quality criteria. The speed of K-models permits this problem to be solved 
by sampling, as long as the statistical model being used can be computed
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quickly. A comparison of K-models with mixture models is an early priority 
for future research.

Multiclustering [1, 62] is an ensemble clustering technique that amalga­
mates the results of many samples of the K-means algorithm. It is trivial to 
swap some instance of K-models in place of K-means in this algorithm; if the 
data warrant it, the multiclustering technique could amalgamate information 
from many different types of K-models clustering.

4.2 Definition of K-models

The K-models algorithm is given in Algorithm I. As with K-means, the K in 
K-models denotes the number of clusters. A single design feature is different 
between K-means and K-models, the replacement of proximity to a cluster 
center with minimal squared error for a model. As a result K-models has an 
important commonality with K-means. The initial partition of the data is 
random but all other steps of the algorithm are deterministic. This means 
that the techniques for sampling initializations for the K-means algorithm 
can also be applied to K-models. We will call a choice of initial partition for 
the algorithm a sample of the algorithm.

Algorithm 1. K-models

Input: 1) A set S of points in Rn.

2) A desired number k of clusters.
3) A choice of statistical model.

Output: A category function C : S —> {0,k — 1}
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Details:
Partition the data randomly into k clusters.
Repeat

Fit a model to each cluster.
Assign points to clusters based on which 

model has the smallest squared error.
Until(No points change clusters).
Report final cluster assignment as C.

It is worth noting that if we use, as the statistical model, proximity to a 
point then K-means appears as a special case of K-models.

4.3 Experimental Design

Ten sets of data were constructed for evaluating K-models on two-dimensional 
data using the fitting of least squares lines for the statistical model. The first 
nine data sets are constructed using three sets of planted linear patterns with 
three different levels of noise. The sets of lines used are named in Table 4.1. 
For each line, fifty random samples are taken in the window —3 < x < 3 
with a Gaussian random variable added to the y coordinate. The noise levels 
a = 0, cr = 0.5, and a = 1.0 are used. A set of 1000 samples of the K-models 
algorithm for k = 3 are taken for each of these data sets.
The tenth data set is a set of 150 points sampled uniformly at random from 
a circle of radius five centered at the origin. A set of 100 samples of the 
K-models algorithm for k = 6 are taken for this data set. Since the data set 
does not fit a linear model well, the number of clusters is not critical but 
should be more than two to permit the lines to approximate circular arcs.
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Figure 4.1: Shown are the highest noise data sets for each of the three groups 
of lines used in the experiments, together with the lines discovered by the 
K-models algorithms.
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Table 4.1: Sets of lines used to create planted linear patterns.

Line set Lines
Parallel y = x — 8, y = x, y = x + 8
General y = — 3x + 8, y = 8x + 8, y = x
Transversal y = x — 6, y = x + 6, y = Qx

4.4 Results

The three data sets with planted linear patterns with the highest noise level 
are graphed in Figure 4.1 together with the set of three lines with lowest sum- 
of-square-error (SSE) found by the K-models algorithm. Table 4.2 gives, for 
the first nine data sets, the minimum SSE located and the number of times 
the clustering that yielded that SSE was found in 1000 trials. This latter is 
called “times correct” because the lowest SSE pattern closely reproduced the 
coefficient of the lines used to embed the linear patterns. It is interesting to 
note that the number of distinct clusterings found by the algorithm was quite 
small with most clusterings located many times. This is probably because of 
the presence of the planted linear patterns.

The data sets based on the parallel lines were the most difficult while the 
general lines were the easiest. This suggests that the K-models technique 
using fitted lines will scale well to higher dimensional data sets. When more 
dimensions are available the freedom of lines to fail to be parallel or which 
skew, increases. This in turn means that collections of lines have a lower 
chance of being parallel or in some other non-general configuration.

Figure 4.2 shows the data set obtained by sampling a circle together six 
lines located by applying the K-models algorithm. These lines are from the 
algorithm with the lowest SSE out of 1000 samples. Notice that the lines 
fitted by the algorithm are spaced equally about the circle, modeling equal 
arcs of the circles as lines. While necessarily imperfect, this is a reasonable 
treatment of the data.
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Table 4.2: Shown are the number of times in 1000 trials that the lowest SSE 
set of models were discovered and the value of the minimum SSE for each of 
the nine data sets with planted linear patterns.

Noise Level: (7 = 0 a = 0.5 (7=1
Parallel

Times Correct: 274 229 183
Best SSE 7.98E-9 19.1 76.6

General
Times Correct: 689 607 653

Best SSE 6.07E-8 17.5 68.4
Traversa

Times Correct: 541 584 488
Best SSE 1.18E-8 18.1 70.3

4.5 Discussion

One of the most striking features of this Erst test of a K-models algorithm is 
the large number of times the algorithm discovered the same clustering. The 
effect of adding noise to the data sets with planted linear patterns was visible 
but modest and the correct patterns were located in spite of the noise. In the 
noise-free data sets the algorithm correctly reconstructed, to eight decimal 
places, the coefficients of the lines that were sampled.

This study is a proof-of-concept for K-models. The planted linear pattern 
data, even at the highest noise level, are constructed to permit the algorithm 
to function efficiently. We note that the algorithm does function efficiently 
in this context. The circular data set is one without a planted linear pattern 
and the algorithm gives a sensible result for these data. In all the experiments 
the SSE statistic was used to select the best set of linear models and hence 
the best clustering. The strength of this statistic is addressed by the data 
displayed in Table 4.3. When the K-models algorithm found the correct set
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Figure 4.2: Shown are the results of applying K-models to 150 points ran­
domly samples from a circle of radius five centered at the origin for K = 6 

of linear models it found them with a substantial margin in SSE.
By defining the statistical model as “minimize distance to cluster centers” 

we can reproduce K-means as an instance of K-models. This shows that K- 
models is a natural generalization of K-means. This, in turn, means that the 
large body of research both examining and incorporating K-means is open for 
re-examination with the K-models technique; a plethora of potential future 
work.

While this study used least squares lines in two dimensions, any statistical 
model could have been used. It is also easy to use K-models on mixtures of
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Table 4.3: Shown are the best and second-best SSE, over 1000 samples, for 
the nine data sets with planted linear patterns.

Best and second best SSE
Pattern Type a = 0.0 a = 0.5 a = 1.0

Parallel 7.98E-9 431 19.1 440 76.6 488
General 6.07E-8 335 17.5 344 68.4 364

Transversal 1.18E-8 230 18.1 315 70.3 320

different types of statistical models: lines, planes, and hyperplanes of various 
dimensions. In this case, evolutionary computation could be used to select 
the set of models and initial data partition with SSE serving as a fitness 
function to be minimized.

When K-models is used, it yields a collection of K statistical models. If the 
data were transformed from their original form to a vector of squared-error 
values with respect to each of the models located, then the resulting transform 
functions as a kernel of the sort used in support vector machines[19]. It is also 
likely that the technique can be used for visualization or dimension-reduction.

K-models is a simple type of classification via a regression. When a 
reasonable statistical model is available for a set of data, K-models should 
be used rather than an evolutionary method. However, when such a model is 
not available or this is not known, evolutionary methods provide a technique 
for the creation of a partitioning regression model.



Chapter 5

Multiple Worlds Model 
(MWM) of Evolution

5.1 Algorithm Definition

The Multiple Worlds Model (MWM) of evolution is applied in situations 
where a number of distinct agents with interacting roles must be evolved, 
see Figure 5.1. The model begins with a number of populations, believed 
to be at least the correct number of interacting roles, with the goal that 
each population will model one such role. This is similar to how Darwin’s 
finches will evolve to exploit differing food sources. If a partitioning of roles 
or data exists, then the created agents should begin to meet those needs 
via specialization. If no such role partitioning occurs, or the number of 
populations is greater than the number of potential roles, then a subset of 
the populations should receive a low fitness or the populations should fight 
by creating similar agents. Specialization into roles is enabled by the fitness 
function.

As the populations are infertile by the interactions between species, there 
is no transfer of genetic material via a migration, such as that in the Island 
models. Instead each of the populations acts independently in terms of ge­
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netic operators and creation of new agent members of the population. The 
only interactions between species are made during the evaluation of the fit­
ness. This novel approach to the fitness evaluation is what sets the multiple 
worlds model apart from other spatially structured EAs. In other spatially 
structured EAs the evaluation is made in each population by its own popu­
lation members upon a problem. In multiple worlds, all of the populations 
are brought together for the evaluation.

In fitness evaluation, the populations are shuffled. The corresponding 
(Erst, second, ..., penultimate, last) members of each population are then 
grouped with one member from each population, formally a world. The score 
of each agent in a world is then computed where the points of fitness are only 
rewarded to the population member with the lowest error or best score on 
each of the objects being classified. The population in effect wins the fitness 
from the other populations. As a number of worlds are created, a fit agent 
is not only one which does well against the members of its own breeding 
group, but does well against other species in claiming a large share of finite 
amount of resources. This inter and intra-species fitness evaluation and non­
migration between species of genetic material is what causes specialization, ft 
models both interspecies competition for resources and intraspecies selection 
pressure via natural selection.

In this model the number of requisite classes is not necessarily needed a 
priori. Competition between species is often enough to force those species 
without a specialization out of existence. We call this property subpopulation 
collapse, a direct analog to an extinction event upon a species, where a 
population in this model receives a sufficiently low fitness. This is a signal 
that the selected starting number of populations was too large, and that a 
smaller number of populations is enough to specialize in order to fulfil all the 
roles in the data set.
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Initial populations for a round
Population 1 - Rectangles Population 2 - Ellipses Population 3 - Arcs

Select one member at random from each of the populations to from a world

World 1 World 2 World 3

- a fitness point is earned when that member best models the data

Data set of size 10

World 1 World 2 World 3

The models go back to their respective populations bringing this evaluation

Population 1 - Rectangles Population 2 - Ellipses Population 3 - Arcs

Apply selection and variation operators to form new populations
Population 1 - Rectangles Population 2 - Ellipses Population 3 - Arcs

Repeat till done

for some number of generations do
randomize the worlds
for all worlds do

for all datapoints do
award the point to the model with the best fitness 

end for
end for
for all populations do

Select breeding pairs based on fitness
Apply Crossover/Mutation

end for
end for

Figure 5.1: Demonstration and Pseudocode of the Multiple Worlds system
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Figure 5.2: Sample fitness evaluation of the one world drawn from the square 
and circle populations of regressive lines

5.2 Example Fitness Evaluation - Regression

In this section, we look at a sample fitness evaluation of a world. Taking 
two populations, which will be referenced as circle and square, the ordering 
of these populations is randomized. One regressive line is selected from the 
circle and square populations as seen in Figure 5.2; the circle straight line 
and the square curved line. Each point in the dataset is then measured to 
both of the lines; this distance will be referred to as either low or high. The 
points are then scored based on the lines. A line will score the points closest 
to it, e.g. point 3 is closer to the square line than the circle line; square wins 
the point. The number of won points is then given as the fitness of that line, 
i.e. circle scores 4 and square scores 3 in this example.

The square and circle populations now breed as per a normal genetic 
algorithm/programming, applying selection based of these scored points, un­
dergoing genetic operators.
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5.3 Parallelism

The Multiple Worlds Model, like the majority of SSEA, is well suited for par­
allel implementation. If we assume a number of processing elements equal to 
the number of populations in the model; holding all other parameters about 
the population the same; and having the dataset, which is available for each 
processing element in local memory, and all fitness evaluations assumed to 
have the same computational time, we can come to the following guidelines 
about its parallel implementation. The genetics of the populations are in­
dependent in terms of data and communication, hence each population’s 
selection and breeding can progress in a naturally parallel manner consis­
tent with island models. The time taken in the selection and breeding steps, 
caeteris paribus, takes the same amount of processing steps for each popula­
tion. Hence, the novel fitness evaluation is the only step where the issues of 
parallelism are required to be considered.

The fitness function can be broken down into two phases in a population: 
I) evaluation of the chromosome on each datapoint and 2) the finding maxi­
mum or minimum evaluation score of the chromosomes across a world. The 
first step, again, has no dependencies in data or processing; caeteris paribus, 
it should take the same time for each population. Hence, the only communi­
cation and processing dependencies are caused when finding the maximum or 
minimum evaluation score of the chromosomes across worlds. This is finding 
a maximum/minimum value over a number of processing elements equal to 
the number of populations. Finding this requires O(N) comparisons, were 
N is the number of populations, and communications, to evaluate and 
inform a population that it has won the point of fitness. The total number 
of communications for a single generation is therefore in the order of O(cN) 
were c is a constant defined as the number of datapoints. The size of these 
communications would be the population number and the evaluation of the 
model. There is no need to transfer the chromosome at any step.
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5.4 Experimental Overview

To examine the abilities of the multiple worlds model of evolution, there 
were three major experiments conducted in differing application domains. 
These selections show the evolutionary framework to have a diverse range 
of applications, real or discrete representations. The commonality in the 
problem is a set of multiple interacting roles are present in the data and 
there is a requirement to classify the data into which model is responsible. 
When such interacting roles are not present, i.e. the data fits under a single 
model, then MWM obviously should not be applied. It would be prudent to 
use a single population to optimize. However, MWM has a implicit tendency 
to find the number of roles which are present in the data.

The question as to if the applications presented are appropriate for evo­
lutionary methods is not within the scope of this research. The experiments 
are to show the utility of the framework for when a specific closed form or 
more exact modeling method is not known. There is the problem of “no-free 
lunch”; when a good problem specific model is available then a generalized 
framework, is of course, unsuited and undesirable. The method is unsu­
pervised in its classifications and exploratory in nature. The results are 
compared to a known partitioning in the first two experiments via the Rand 
index. However, the ability to determine if the final classification is suitable 
is dependent on the application domain expert.

The first experiment, Chapter 6, examines the utility of the MWM for the 
creation of partitioning regressions. This is a real valued dataset, which the 
MWM model is applied to simultaneously partition and model. In addition 
it discovers the correct number of classes in the data. This initial proof of 
concept was applied to sets of points with planted data, lines are used as the 
representation. Two of the data sets are used as positive examples of the 
technique. The first models a set of lines using lines, much like the K-models 
examples, the second applies the MWM to modeling planes with lines. The 
final data set is an intentionally bad choice in the model, representing spheres
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with lines, it shows a negative result.
A normal GA, with a number of genes in the chromosome set equal to 

the number of worlds in MWM, is examined for a simplified version of the 
problem. The GA has a number of benefits over MWM in terms of the 
settings: more fitness evaluations during the run, settings to encourage ex­
ploration of the space, etc. This first is to show that MWM meets a need 
beyond the basic methods, the ability to evolve multiple interacting agents. 
It demonstrates the issues with overburdening a single evolved chromosome 
with multiple models as it allows for a poor model to or positively be selected 
for due to a set of good models being in the same chromosome, i.e. genetic 
draft. Finally, this test shows the importance of having error represented in 
the fitness function when it is available. In this instance the distance of the 
evolved regression lines to the data which it represents is an explicit error 
measure. Further, the MWM model is able to discover the number of classes 
in the data, the GA does not allow for a collapse and will use the extra model 
to obtain low error when possible.

The biological motifs, the second experimental domain in Chapter 7, 
demonstrates MWM applied to a discrete problem. A number of various 
data creation methods with their known classifications are presented for the 
test set. The discrete example does not demonstrate the requirement for an 
explicit error term in order to provide a solution. No error term is apparent 
in the motifs. By having a number of populations which exceeds the number 
of classes, the system has an implicit error term. The evolutionary pressure 
of the competition between populations for resources forces the populations 
to specialize in a manner similar to as if a error term was present. When 
the number of populations is set equal to the number of known classes, this 
degraded the performance, holding all other parameters equal. The extra 
populations are, therefore, the cause of increased performance in modeling 
the natural partitions.

Examined is also the issues of representation in the modeling. A human
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readable model was selected for the MWM, partially in order to make the 
analysis of the discovered models understandable. This representation does 
cause some interesting effects to the ability for classification. First, the cre­
ated motifs for reverse complement data set the are themselves self reverse 
complements. In some instances where a population scores high on the Rand 
index but does not witness a collapse event there is an issue of a motif being 
a subset of another motif in the set of classifiers. The representation makes 
such issues appear. However, in the later event, as the representation is hu­
man readable, a domain expert with little effort could see such a subsetting 
and apply a correction, such as counting both motifs as being the same class.

Finally, the third experiment, Chapter 8, is a modeling of a group of 
radio stations competing for market share as they broadcast to the same 
listener base. This was selected for the pedagogical effect of having a social 
simulation example which demonstrates the training of agents for multiple 
roles without a need for having to specify the agent roles in the design of 
the simulation. Radio stations are modeled via a playlist, a string which 
contains the order of songs and advertisements. While all radio stations 
have the same representation, obviously, creating a single radio station type 
and broadcasting this on every station is not appropriate. This is not meeting 
market demand, each location on the dial would play the same music, and 
meeting with customer preferences would lead to the creation of a station 
averaged over the preferences of all listeners. This does not meet with our 
experience of having different stations playing different music. Further, radio 
listeners never have more than one channel on at time, as that would confuse 
the listener. The stations are in competition. Hence, multiple worlds is an 
appropriate model as this is a situation which has interacting distinct agents. 
An initial test is made as a benchmark to demonstrate that two listeners 
with violently opposed tastes will generate stations playing two completely 
different playlists. Without an explicit error term, much like the motifs, a 
number of populations greater than the number of actual types of listeners
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leads to the radio stations competing over the consumer base more than if 
there was the correct number of classes. The simplicity of the model also 
acts as a verification for the MWM — when listener profiles are dis/similar 
in enjoyment the resulting stations are dis/similar in terms of the playlists.



Chapter 6

Partitioning Regression

6.1 Lines Tests

The Multiple Worlds model of evolution was first applied to the problem of 
partitioning regression by Brown and Ashlock [25].

6.1.1 Function Stacks

Function Stacks [6] are a form of Genetic Programming based on Cartesian 
Genetic Programming [83]. Instead of the normal parse tree structure, a di­
rected acyclic graph is used. Each of the nodes takes arguments of either a 
value from the dataset or the output of a node with a higher index. The back­
ward links to the calculations allows the ability to avoid having to re-perform 
a calculation that has already been made. This can result in huge space (and 
hence execution time) savings. The motivation of using this structure is that 
the data structure is linear and of a fixed size removing the issue of program 
bloat. The lack of a need for repeated subtrees that recalculate values needed 
in multiple locations yields a space savings that makes data structures with 
a modest fixed size practical. In addition, standard methods of crossover and 
mutation for linear structures can be used rather than subtree crossover and 
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tree mutations, avoiding the disruptive character of these operators. We use 
the operators in 6.1. These operations are good at the creation of a linear 
regressor. These operations obey the closure property due to the use of a 
protected division, therefore the regressor created by the function stacks will 
always be a well defined function, : R" — R.

Table 6.1: Operations Used in the Nodes of the Function Stacks
Name Arity Definition

neg 1 negates X
sei 1 scales X by the ephemeral constant
sqt 1 square root of X
sqr 1 squares X
sin 1 sine of X
cos 1 cosine of X
add 2 adds X and Y
sub 2 subtracts Y from X
mul 2 multiplies X with Y
dup 2 divides X by Y, if Y = 0 then 0 is the result
max 2 argument maximum of X and Y
min 2 argument minimum of X and Y
wav 2 weighted average of X and Y with the 

weight given by the ephemeral constant

6.1.2 Rand Index

The Rand index [92] is a measure of similarity of partitions. When a correct 
partitioning is known, this calculation can be used as a quality measure. 
The Rand index produces a real value from the interval [0,1], where an exact 
match of the induced and actual partitions would score 1. The Rand index 
is calculated as follows: Let D be a set of data and let P and Q be two 
partitions of this data into classes. The Rand index comparing P and Q is 
the fraction of pairs from D that are either in the same class in both P and 
Q or are in distinct classes in both P and Q.
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6.1.3 Experimental Settings

The data sets used sampled 100 points of each of the three classes for a 
total of 300 data points. The first dataset, DATAONE, are points sampled 
from three skew lines in six dimensions (Fig. 6.1(a)). DATATWO are points 
sampled from six skew planes in six dimensions (Fig. 6.1(b)). DATATHREE 
are points sampled from three concentric spheres in three dimensions (Fig. 
6.1(c)). DATATHREE is a negative test case for the method; it is a set of 
data which has an insufficient set of operators to be modeled successfully. 
These figures show an estimate of the mean performance based on a large 
number of samples. For n samples these error bars would scale as It 
is therefore not surprising the best sample is outside of the estimate of the 
mean. This is one of the results of being able to run an arbitrarily large 
number of experiments, something not seen in biology.

The number of nodes/worlds was set to be 6 whereas the data sets pro­
vided 3 classes of data. This is to provide a basis to see if the system will 
provide a sub-population collapse or if it will be prone to a fight between 
populations to overfit the data.

The model of evolution used is tournament selection, which takes four 
members of the population, orders them by fitness, and replaces the bottom 
two with replicates of the top two that are subjected to crossover and mu­
tation. The crossover is a two-point crossover, which exchanges nodes. The 
mutation was chosen from three types probabilistically. The mutations are to 
change the operator on a node, change a single link between nodes, or change 
the ephemeral constant. The rate of change to the ephemeral constant was 
held steady at 40%, while the mutation to an operator and links where set 
to 20%/40%, 30%/30%, and 40%/20%. The process of evolution lasts for 
1000 generations which has been found to provide more than enough for the 
population to converge to a steady state. The population size was varied in 
20 member intervals between 20 and 100. To allow for use of the normal 
distribution in statistical tests the number of replicates was set to 30.
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(a) DATAONE

(b) DATATWO

(c) DATATHREE

Figure 6.1: Two dimensional projections of the data sets.
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Figure 6.2: DATAONE results with a 95% confidence interval about the 
mean and best value. Sorted by mean from smallest to largest. The data 
labels are read as P number in the population, M mutation levels of operator, 
link, and constant change rates.

6.1.4 Results

The regressors located in all cases are highly resistant to change in the popu­
lation and mutation types. Visible sub-population collapse events happened 
in the experiment using DATAONE and DATATWO. The Rand index scores 
were in the 0.8 range with the best replicate scoring 0.9 for DATAONE and 
0.85 for DATATWO, as shown in Figures 6.2 and 6.3. Some of the produced 
regressors were modeling less than 10 of the data points, showing that the 
number of populations selected to model the data was too large as expected.
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Figure 6.3: DATATWO results with a 95% confidence interval about the 
mean and best value. Sorted by mean from smallest to largest. The data 
labels are read as P number in the population, M mutation levels of operator, 
link, and constant change rates.

Even where the collapse did not happen within these data sets, the regressors 
created still kept like classes together, and each class of the three was usually 
modeled by two of the six regressors. While this is not the optimal situation, 
the removal of these like regressors, in terms of the created equation, as a 
post processing step would improve the Rand score.

DATATHREE did not have a prevalence of such events reaching a steady 
optimum just above a Rand index of 0.6, which is only slightly better than 
a completely random partition, see Figure 6.4. The concentric circles were 
given as a difficult set to model as the operations provided are insufficient to
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Figure 6.4: DATATHREE results with a 95% confidence interval about the 
mean and best value. Sorted by mean from smallest to largest. The data 
labels are read as P number in the population, M mutation levels of operator, 
link, and constant change rates.

fully model the data; they are meant for producing lines. In this instance the 
Rand index also suffers as the lines wish to model the circles by producing 
an approximation by multiple lines. As the Rand index tests the partitioning 
even a set of lines which is a fair approximation of the circle would gain a 
low score as the lines produced for the modeling of a circle would not share 
the same class. The addition of operations more suited to circles, such as 
distance to a given point, would allow for a sufficient modeling for this data 
set.

The starting number of populations was intentionally set to be larger 
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than the number of known classifications in order to explore if the properties 
of sub-population collapse would be evidenced. The evolved regressors not 
only were able to partition the data correctly into their classes but displayed 
sub-population collapse yielding a reasonable number of partitions. The final 
scored quite high on the Rand Index — which would be impossible without 
collapse.

The property of sub-population collapse is an answer to Shengwu et al.’s 
“difficult problem” of finding the number of classes or discontinuities in the 
data [101]. Rather than having a human decide it a priori, evolution naturally 
wants to find the appropriate number of partitions where the system will 
become stable and converge.

The creation of these regressors can allow for the classification of harder 
data sets. Once regressors are chosen, they can be used to perform an error 
transform. This transform maps a data point to the vector of the modeling 
error of multiple regressors on the data point. The transformed data should 
(i) be often far more separable than the original data, (ii) be coerced to have 
a higher or lower dimension, depending on the application, (iii) permit a 
simple classification of new data points that did not participate in selection 
of the regressors.

6.2 Comparison to a GA

For the remainder of the chapter we examine a test between a Genetic Al­
gorithm and the Multiple Worlds Model for regression on a set of crossing 
lines.

6.2.1 Experimental Settings

The GA and the MWM had the following settings. The settings for the GA 
bias it towards diversity (larger population/weaker tournament settings) and 
a longer evolutionary search (more fitness evaluations). The representation 
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of a GA is a chromosome consisting of n lines of a slope and intercept. 
The MWM had n populations of a chromosome of a single line’s slope and 
intercept. Both used the same operations for crossover, two-point. The 
mutation for the GA allows for up to n changes in order to be fair as MWM 
is allowed one per population. Fitness for the GA for a classification is defined 
as the minimum error loci in the chromosome. The fitness for a chromosome 
is the sum of the error on each of these points. Fitness for the MWM model 
is explained in the next section. The selection operation for both was a 
tournament selection which selected four chromosomes for MWM and seven 
for GA, and replaced the top two with the bottom two. Population size was 
set to 40 for MWM and WOO for the GA. The Number of generations was set 
to tOO for both, this gives the GA 2.5 times the number of fitness evaluations 
than MWM is allowed. Experiments were run for thirty replicates.

Both the MWM model and the GA were tested on a dataset produced by 
adding a Gaussian error term from points drawn from three crossing lines, 
with 50 data points drawn from each line. Chromosome/population sizes, 
hence the number of assumed classifications, was ranged from one less to one 
more, i.e. from two to four, than the number of actual known classes in the 
dataset.

6.2.2 Importance of an Error Term in Fitness Evalua­
tion

Initial tests using these settings for MWM produced findings with low Rand 
index scores and high error. This development was deemed to be caused by 
the fitness function only taking into account that a model only needs to beat 
the other models in the world. It does not need to provide a good model, 
only a better one than those about it. The fitness function was changed from 
being the number of points which a classifier in a world has the lowest error 
score, to being the number of points on which the model was closest divided 
by an error term for those points. The error term is the sum of the error
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Generations

Figure 6.5: Error of the best MWM model per generation. Two fitness 
functions are used, one which takes into account a reward for reducing error 
and another that does not take error into account.
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Table 6.2: Comparison between MWM and a GA for the three lines. Given is 
the number of Models assumed, the best Rand index value, and the number 
of unique solutions found.

N BEST RAND
MWM

BEST RAND 
GA

^SOLUTIONS 
MWM

^SOLUTIONS 
GA

2 0.712 0.704 10 I
3 0.991 0.982 30 I
4 0.982 0.973 30 8

on the points plus the number of points. Hence, a point with no error is 
scored as a full point of fitness, as the error increases the amount scored for 
a point is reduced; there is a reward for reduction in error. There is now an 
incentive to not only have the best model for a point, but to also model the 
point well. As seen in Figure 6.5, the fitness function taking into account the 
error, provides a significant improvement in the MWM ability to provide a 
model with low error to the points.

6.2.3 Results

When we take into account the error term in the fitness evaluation, MWM 
outperforms a normal GA on this simple problem. It produces both better 
Rand index scores for the best solution as well as increase to the diversity 
in the set of possible solutions, see Table 6.2. The lines found by MWM 
assuming four classes found a classification with the same Rand index score 
as the GA given the correct number of classes.

Presented in Figure 6.6 are the best classifications of the GA and MWM 
for the three lines crossing, assuming correctly that 3 lines exist in the data. 
Both produce a good classification of the set and the majority of the difference 
comes from the ambiguous data points at the crossing, which also explains 
why the classification does not score perfectly on the Rand index. When 
considering the assumption of four sets of data, the MWM algorithm shows 
how the property of sub-population collapse allows for a better classification.



CHAPTER 6. PARTITIONING REGRESSION 53

Looking at Figure 6.7(a) the extra classification set takes three datapoints 
from the proper classification and places a line across them. The MWM, 
Figure 6.7(b), has a collapsed population which does not capture a single 
point in the dataset. It is evident that one of the classifying lines has taken 
on slightly more error in order to protect a greater number of points from 
being stolen from another line. This protection causes the extra line to gain 
none of the points and have a zero fitness score. The fitness function balances 
the desires to classify the most points as well as the reduction of error. The 
GA by only wanting to reduce error will place this extra line in order to 
simply take a few of the points in a line with no error.
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x
(b) MWM

Figure 6.6: Comparison of the MWM v. GA on the three lines set assuming
correctly there are three models.
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(b) MWM

Figure 6.7: Comparison of the MWM v. GA on the three lines set assuming 
incorrectly there are four models.



Chapter 7

Motif Discovery

This section was drawn from the two publications Multiple Worlds Model 
[22] and More Multiple Worlds Evolution for Motif Discovery [23].

7.1 Motifs

The goal both to find motifs known to be present, and to apply the mo­
tif to unseen examples for the discovery of the resulting motifs which may 
have interesting biological contexts. For example, HIV-1 differs from the hu­
man genome in the NF-kB binding region, this allows for a targeted RNA 
interference pathway which can suppress the virus [105]. The problem of 
motif finding has been examined via numerous methods such as Greedy algo­
rithms [54], Expectation Maximization [15], Gibbs Sampling [68] [97], Hidden 
Markov Models [66], Evolutionary Computation [67][103], and others [69]. 
Sequence motifs allow a biologist to classify different organisms or species, 
End similar functions in differing organisms, or to find sequence alignments.

There are three major biological categories for which sequence motifs are 
used: deoxyribonuclec acid (DNA), ribonuclec acid (RNA), and proteins. 
DNA is the information storage molecule for most forms of life on earth, 
other forms are RNA viruses and protein based prions. Both DNA and RNA 
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are long polymer backbones of nucleotides consisting of a phosphate group 
stripped of one oxygen atom, a sugar known as ribose and one base. It 
is sufficient to name each nucleotide by the base as it is the only differing 
location. The amino acids in a base of DNA are cytosine (C), adeine (A), 
guane (G), and thymine (T). RNA replaces thymine with uracil (U). The 
pairs interlink in many cases to form a double strand — C bonds only with 
G and A bonds only with T or U. As a result, it is sufficient to only look 
at one strand in order to determine the structure. Proteins are defined by a 
sequence built from 20 amino acids.

Sequence motifs, in terms of their mathematical representation, are a set 
of strings which consist of symbols from a set of nucleotides or amino acids. 
To a biologist, a sequence motif is useful if it has a biological significance to 
a specific organism. Motifs can be expressed in a variety of methods, such 
as IUPAC, PROSITE, and TRANSFAC. We employ a simple degenerate 
expression. A motif in this expression is a string of bases and wild cards, 
which substitute for any one of a set of bases. For example, the expression

C - [AT] - G - [GAT]

would decode to accept the set of strings

{CAGG, GAGA, CAGT, CTGG, CTGA, CTGT}.

This degenerate representation is used as a backbone for lUPAC-code, which 
maps each of the 15 base combinations to a single letter. Therefore, the 
lUPAC-code is just a compression; the lUPAC-code is not used in this study 
as the degenerate expression allows for an easy comparison of the classifiers 
for which bases appear in wild cards. The PROSITE notation uses the 
lUPAC-codes with an extra operator that allows for repetitions of the same 
symbol to be represented. For example, the set of {AA,AAA,AAAA} would 
be represented by A(2,4).
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All these expressions are restrictive in terms of representational ability. 
Some biologists have stated that degenerate motifs are the same as regular 
expressions, which is false. Looking at the STOP codon provides one of the 
most simple expressions of the limitations of degenerate motifs. The set of 
{TAG,TAA,TGA}, also referred to as amber, ochre, and opal respectively, 
cannot be represented as a degenerate motif. The smallest consensus motif 
for STOP is T-[GA]-[GA], which includes TGG, or the codon of Trypto­
phan. The STOP codon cannot be represented by degenerate motifs, IU- 
PAC, or PROSITE. Degenerate motifs, IUPAC, and PROSITE do not have 
the representational ability of regular expressions; instead they assume an 
independence between symbols. To avoid this error, the representation could 
be extended to take a full codon as an atomic element. However, such a 
change to a codon-based representation would just push the problem to an 
assumption of independence between codons and would require a set of 43 
atomic symbols.

One representation which provides a visualization of the relation between 
bases in a motif is TRANSFAC. The TRANSFAC matrix representation uses 
a degenerate expression, and will give a frequency of occurrence of each base 
within sequences to produce the motif. The frequencies give more infor­
mation to the user about which strings are included or not included in the 
motif. TRANSFAC attempts to avoid the issue of the independence assump­
tion. The user can extract upper and lower bounds on occurance of symbols 
in relation to each other. This extraction method would allow for a range of 
dependence levels to be discovered. Futhermore, as TRANSFAC provides a 
degenerate motif to match against, the information in the relational matrix 
is likely not used in an application. Not using this relation matrix in appli­
cation would cause the same problems of an independance assumption as the 
other methods.

Given these flaws in the representation, the questions arise as to why 
these representations should be in use, and why tools should be made using
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such representations. First, there is the practical difficulty of changing a large 
number of databases which use one of these existing representations. Second, 
the current methods are human-readable; a biologist with little training in 
formal grammar can understand the use of these systems. Third, the as­
sumption might not be a flaw even if the data comes from a restricted set 
of regular languages with independence, or a very weak dependence between 
symbols.

7.2 Experimental Settings

The fitness measure for a motif must cause the maximal number of matches 
to occur, but must prevent motifs from only winning if they are more general. 
As the source of a motif from a population must be evaluated in terms of 
a world, a simple number of matches is not appropriate as a measure. In 
this case, the motifs would become just [CGAT] repeated. There must be 
some penalty for overgeneralization. To provide this penalty, the following 
method is used: the motif is tested against each string to be classified; the 
number of times the motif matches this string is found as well as the number 
of possible string which the motif would match. We will call this number the 
latitude of the motif, and the score of the motif upon the string is the number 
of matches over latitude. The motif with the highest score in a world wins 
that data point. This is to both encourage a motif to fit a number of points, 
as well as preventing a motif from gaining all the points by just placing a 
sufficiently general motif over the set of strings; [CGAT] as the most general 
motif has a high matching ability but a maximal latitude.

For example, if the motif to be matched was [CGAT]-C-[GA] and we had 
the string CCACG, then we would calculate the score as follows: first, the 
motif has a latitude of 8, as it matches the set of strings {CCG, CCA, GCG, 
GCA, ACG, ACA, TCG, TCA}. Second, it matches the string twice, with 
CCA from index one and ACG from index three. Hence, the final score for
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this motif on this string is |. A more exact motif would be [CA]-C-[AG], 
which would score |. More general would be [CGAT]-[CGAT]-[CGAT], which 
would score A 16

The populations each have 100 members consisting of degenerate motifs of 
size 3, 5, and 7, which where initialized randomly, with each symbol occurring 
in equal likelihood. For the self-driving finite state machines and the HLA 
sets, described below, also examined was a motif length of 9. The selection for 
breeding is a tournament which takes four members of the population, orders 
them based on their fitness, and replaces the bottom two with replicates of 
the top two. The copies then undergo mutation and crossover. The crossover 
operator is a two point crossover. It probabilistically selects two points in the 
motif and swaps the symbols between the selected positions. The mutation 
operator randomly assigns a new wildcard to each symbol within a motif with 
10% probability. To allow for statistical analysis of the results, 30 replicates 
with differing initial random generator seeds were run for each testing data 
set.

In all cases, one more than the actual number of classes of data is used. 
This is in order to examine the property of sub-population collapse and as 
will be explained is benefical to the algorithm’s solutions. If the score of a 
population is less than 10% of the total number of points we say that the 
sub-population has collapsed.

7.3 Data sets

This section looks at the various data sets used in order to test the MWM 
model for the discovery of motifs.

7.3.1 GC Content

This synthetic data set is modeled on random DNA strings, created in two 
classes, each of size 1000. The first set has approximately 40% GC content,
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the other has approximately 60% GC content. Sequences of length 250 with 
these exact percentages were created, randomly shuffled, and a prefix of 
length 150-250 was selected uniformly at random from the sequence. This 
prefix selection means that the GC content has a binomial distribution and 
the two classes overlap at the boundary.

7.3.2 Reverse Complement Motifs

The reverse complement data set consists of 1000 uniform random samples of 
DNA strings, each with an embedded motif. This data set represents DNA 
with a meaningful motif whose DNA strand is not known. The two classes 
of embedded motifs are the reverse complement of each other.

DNA is written from the 5’ end to the 3’ end. Two strands bond from 
end to end to form a double helix so the reverse complement of a stand is 
the strand which would bind in the double helix.

As an example:
(5’) CAT (3’)
(3’) GTA (5’) after complement
(5’) ATG (3’) after reverse

7.3.3 Self-Driving Markov Automata

A self-driving Markov automata is a finite state transducer with the same 
input and output sets, an example is shown in Figure 7.1. The automata 
has a probability associated with each state. This probability distribution 
determines which symbol is emitted as input/output. The machine begins at 
state zero and emits a symbol. This symbol is then used in a feedback loop 
to transition the machine into its next state and a new symbol is emitted. 
This process continues until a DNA state of the desired length is generated. 
If the probability distributions on the states were uniform, then the data gen­
erated would be indistinguishable from that generated by a single uniformly
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distributed random generator of DNA. Controlling the Entropy of the distri­
bution on each state acts as an effective method of creating a tuneable level 
of structure in the data.

The Shannon entropy [78] of a discrete distribution with probabilities 
p1,p2,... ,pm is given in Equation 7.1.

m

E = ~^pllog2{pi) (7.1)
i=l

If the discrete distribution is sampled a large number of times, then the 
Shannon Entropy is the average number of bits required in order to describe 
one of the samples. As the DNA alphabet has 4 symbols, a uniformly random 
sample would require 2 bits to represent a base. Distributions were created 
by generating four integers in the range 1-100 and then dividing by the sum 
of the integers to give a final probability of each of the four DNA bases. In 
order to get bounded entropy distributions, this process is repeated until one, 
which satisfies the bound, is discovered.

The datasets created had 3 and 4 classes respectively with 500 examples. 
A dataset of each number of classes was created with a maximum entropy 
level in the finite state machine generation of 1.4, 1.6, 1.8, and 2.0.

7.3.4 Self-Driving Finite State Machines

Self-Driving Finite State Machines are an extension of finite state machines. 
A Mealy FSM [79] is a transducer that operates over a finite alphabet of 
input symbols and responds from a finite alphabet of output symbols, as it 
traverses a finite number of states. It is defined as a Eve-tuple, (Q, I, Z, 6, co), 
where Q is the set of states, I is the set of inputs, Z is the set of output 
symbols, 5 is the state transition function, such that 6 : I x Q —> Q, and co 
is the output values, such that co : I x Q Z.

In order to make a machine self-driving, the output of a machine is fed
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Emission Probabilities Next State if
State F(C) F(G) F(A) pm C G A T

0 0.439 0.023 0.374 0.164 1 1 6 1
1 0.255 0.014 0.284 0.447 4 7 5 7
2 0.275 0.067 0.101 0.556 4 2 2 4
3 0.176 0.536 0.242 0.046 5 2 0 0
4 0.075 0.434 0.305 0.186 6 5 3 6
5 0.363 0.004 0.386 0.247 4 4 7 2
6 0.469 0.097 0.159 0.276 0 3 5 1
7 0.034 0.363 0.346 0.257 3 1 5 3

Example Outpu
TACTCTTAAGCGAATTAACAAGACC- 
GAACAGACTTCCGTTGTTTGACTGT- 
ACAGTGTGCAGCCCCCAGTGCAGCG- 
AACGAATTTCAACAGGTGAGATTTT

Figure 7.1: An example self-driving automata used to create strings with 
entropy 1.8. (top) and an example DNA string generated via the finite state 
machine (bottom).
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back into the input of the machine. Ergo, the output drives the input, cre­
ating a progressively longer output string. The sets are created by machines 
using C as the initial symbol to start the machine, taking {C,G,A,T} with an 
output alphabet of AU{C,G,A,T}U{C,G,A,T}2, i.e. the machine can output 
between zero and two bases per output. This makes the output outside of 
the space of regular expressions, as it can create languages which cannot be 
recognized by a deterministic FSM (see proof in Appendix A). The first 50 
bases of output of a machine are removed. This allows for the machine to 
produce a more settled output, similar to burning in a Markov chain.

A set of 50 different machines were created in order to allow tests on 
this system and others. Figure 7.2 shows the various data sets placed in a 
neighbour joining taxonomy based on the 3-mer spectrum string kernel. This 
is calculated by taking the normalized occurrences for each possible 3-mer as 
a 64-element descriptor. We selected a few examples for testing. The first are 
DSO and DS1, selected primarily as they were just labelled as the first two 
and hence made an initial testing bed for the software and analysis methods. 
The second are DS25 and DS37, which have a large distance between the 
3-mers. The third are DS25 and DS9, beside each other on the joining tree. 
The closer on the tree two sets are, the closer they are in terms of 3-mer 
distance, and therefore the more difficult the classifications should become.

7.3.5 Human Leukocyte Antigen

A major histocompatibility complex in humans is the human leukocyte anti­
gen system (HLA). A large number of genes related to the immune systems 
rests in this locus. The HLA class I antigens (A, B, C, D, E, E, F, and G) are 
peptides from inside the cell, which might contain viral peptides if present. 
These peptides are created from digested proteins which have been broken 
down by the proteasomes. Each of the peptides is a small polymer of about 
9 base in length. T-cells, also called CD8 positive cells, are hunter-killers of 
cells containing foreign antigens. The HLA class II antigens (DRA, DRB,
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Figure 7.2: Neighbour joining taxonomy based on the 3-mer spectrum string 
kernel distance on the generated self-driving FSM. Note the used data sets 
locations: DS25 and DS37 have the largest distance, DS25 and DS9 are 
beside each other in the tree.
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DQA1, DQB1, DPA1, DPB1, DMA, DMB, DOA, and DOB) are antigens 
which are outside the cell to the T-lymphocytes. These antigens act as a 
signal to stimulate T-helper cells to undergo mitosis; this stimulates anti­
body production by B-cells, and the production of antibodies to that specific 
antigen. The major histocompatibility complex gene products are involved 
in the pathogenesis of many diseases, including autoimmune problems.

The data set contains 500 examples from the HLA class I antigens and 
500 examples from the HLA class II antigens. This set was produced from 
data in the IMGT/HLA Database. This database is part of the international 
ImMunoGeneTics project and provides a specialist database for sequences of 
the human major histocompatibility complex. In addition to sequences, the 
database contains both information on how each sequence was derived and 
data on the validation of the sequences (http://www.ebi.ac.uk/imgt/hla/).

7.4 Results

7.4.1 GC Content

sub-population collapse is a rare event to be observed with the GC data set. 
Only two replicates in the size three motif, showed a reduction in the classes 
down to the correct number of two. As expected, those with a collapse event 
had much higher Rand index scores. The best motif set, as shown in Table 7.1 
clearly shows that the middle motif of [CGAT]-[CGAT]-[GA] has collapsed. 
The [CGAT] being the universal set is in many ways the motif making no 
guess. The 40% class is represented by [CAT]-[GT]-[AT] which has an AT 
richness compared to the motif of G-[CA]-[CG] which classifies the 60% GC 
content class.

The smaller sized motifs found better classifiers for the data, most likely 
as they have to account for less dependency between symbols. As we are 
looking for the number of hits over latitude, smaller variations on a smaller 
search space allow for cleaner classifications between the sets.

http://www.ebi.ac.uk/imgt/hla/
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Figure 7.3: 95% Confidence intervals and best value of Rand index for the 
GC content data set

The lower results in Rand index scores did not necessarily come from 
missclassihcation. In many of the cases it was evident that two populations 
were splitting a class as the third took all of the other class, which is a lack 
of a sub-population collapse, see Table 7.2. The species in this situation have 
found an equilibrium where they both have found an extremely small niche. 
The difference can be as small as a single base in the motif.

7.4.2 Reverse Complement Motifs

In general the motifs hover about 0.5 on the Rand index, see Figure 7.4. This 
basically means that the two classes are completely split between the created 
motifs. The embedded motifs are reverse complements and the remainder of 
the string is completely uniform, therefore, the only information for which
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Table 7.1: Best motif set found of size 3 with scores for the two classes of
40% and 60% GC content._________________________________________

Class Degenerate Motif and Fitness Score
[CAT]-[GT]-[AT] [CGAT]-[CGAT]-[GA] G-[CA]-[CG]

1 9 76 920
2 916 79 5

Total 925 155 920

Table 7.2: Examination of the levels of sub-population collapse in the GC 
dataset by presenting the number of populations with greater than 10% of 
the dataset out of 30 replicates.

Motif Length
Populations
1 2 3

3 0 2 28
5 0 0 30
7 0 4 26

Table 7.3: Best motif set found of size 5 with scores for the two classes for 
the Reverse Compelement Motif

Class Degenerate Motif and Fitness Score

1
2

[GA]-[GAT]-[CGA]-G-G
140
337

[CA]-G-[AT]-T-T
735
383

C-[GT]-[CA]-[AT]-C
125
280

Total 477 1118 405
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the generated motifs can classify with comes from the reverse complement. 
In general these generated motifs are close to the reverse complements of 
themselves, self complements. This explains why the classes are near equally 
split for the majority of replicates. The fitness difference between the motifs 
is therefore generated based upon latitude and random noise in the dataset.

Looking at the best motif found, see Table 7.10, this result is able to place 
the majority of the first embedded motif together, but has problems classify­
ing the other correctly. The high scoring motif does have a comparatively low 
latitude when compared to the others in the set. No sub-population collapse 
is evident, again as the random noise and latitude does this partition.

7.4.3 Self-Driving Markov Automata

As evidenced in the GC data, there is a large divergence between the best 
populations which have had some form of sub-population collapse to those 
which have not. The Self-Driving Markov data continues this trend of a 
collapse happening within the best scoring motif classifiers. In the three 
class Self-Driving Markov data, see Figure 7.5, there is again a large difference 
between the mean and best valued classifiers.

Looking at the best results in Table 7.4, each of the entropy levels, ex­
cluding 2.0, exhibit sub-population collapse. However, notice how the motifs 
in the maximum entropy 2.0 results have divided the classes correctly, ex­
cepting that the first and third motifs have shared the third class. The first 
motif, CTG, is a proper subset of the third motif, [CT]-[CGAT]-G. In this 
case we have two populations which are fighting over the same resources and 
have been able to reach an equilibrium on a limited resource. This leads 
to one species to be a specialist type of the other species, a nested degener­
acy. The first motif with a small latitude is able to resist collapse as it is 
extremely specialized. CTG must be a very good signifier of this class as it 
is able to support an entire population. [CT]-[CGAT]-G on the other hand 
is resistant to noise and it is able to pick up on the general content of CTG
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Table 7.4: Best motifs for the three class Self-Driving Markov data sets
Class Degenerate Motif and Fitness Score

Best motif set for 1.4 maximum entropy

1
2
3

[AT]-[GAT]-[C A] 
1
3
0

[AT]-[CA]-[CGA] 
2 

497 
18

[GA]-[CG]-[GT] 
497 

0 
18

T-[CGA]-[CAT] 
0 
0 

482
Total 4 499 515 482

Best motif set for 1.6 maximum entropy

1
2
3

[CT]-GT
357 

0
58

GAG 
56 

471 
0

G-[CG]-[CA] 
87 
16 
0

[CAT]-AT 
0 
13 

442
Total 415 527 103 455

Best motif set for 1.8 maximum entropy

1
2
3

A-[GT]-AG-[CAT] 
8 

374 
73

[GT]- [CG]-G- [GAT]- [CAT]
15
71

382

[C A]- [G AT]-C- [CG AT]- [GA] 
133

1
9

[CA]-[CGAT]-AGT 
344
54
36

Total 455 468 143 434
Best motif set for 2.0 maximum entropy

1
2
3

CTG 
5 

44 
213

[CGA]-C-[CAT] 
487 

0 
2

[CT]-[CGAT]-G
4
0

283

[CGAT]-[GAT]-[AT] 
4 

456
2

Total 262 489 287 462

CH
A

PTER 7. 
M

O
TIF D

ISCO
V

ERY



CHAPTER 7. MOTIF DISCOVERY 73

Table 7.5: Examination of the levels of sub-population collapse in the three 
classed Self-Driving Markov dataset by presenting the number of populations 
with greater than 10% of the dataset out of 30 replicates.

Motif Length Entropy
Populations

1 2 3 4
1.4 1 18 9 2

Q 1.6 1 9 16 4O 1.8 3 8 11 8
2.0 0 2 11 17
1.4 4 9 13 4
1.6 1 5 14 100
1.8 0 7 19 4
2.0 0 0 5 15
1.4 1 6 14 9

7 1.6 0 0 9 21
( 1.8 0 1 14 15

2.0 0 0 3 27

richness as well as perturbations in the class. The first motif by having such 
a low latitude is also able to gain members of the other classes. If this set of 
motifs was reduced by removing CTG, those points in class three are given 
[CT]-[CGAT]-G. Looking at the other motifs in the set, [CGA]-C-[CAT] and 
[CGAT]-[GAT]-[AT], while both are very similar in both the first and third 
symbols, the second symbols are inverses of each other.

The collapses become less predominate in the best motif classifiers as the 
entropy increases, from a total of 4 in 1.4 to that of 14 in 1.8. Increases 
in the size of motifs also lead to lower Rand scores, though this does not 
become statistically significant until a maximum entropy of 2.0. The number 
of collapses across the replicates, see Table 7.5, shows that smaller motifs are 
more likely to result in underestimating the number of classes. This table 
further confirms the previous result showing that less collapses happen as 
the entropy increases.

The four class data, Figure 7.6, again shows that the smaller motifs in
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Figure 7.6: 95% Confidence intervals and best value of Rand index for the 
Self-Driving Markov datasets with four classes



Table 7.6: Best motifs for the four class Self-Driving Markov data sets
Class | Degenerate Motif and Fitness Score

Best motif set for 1.4 maximum entropy

1
2
3
4

[CGAT]-[CGA]-CA-[CGA] 
77 

497 
0 
0

[GA]-G-[CA]-[CG]-[GAT] 
319

0
0
8

G-[CT]-[GA]-[AT] 
23 
0 
3 

484

[GAT]-T-[CAT]-[GA]-[AT] 
60
0

480
0

TGG-[AT]-A
21
3
17
8

Total 574 327 510 540 49
Best motif set for 1.6 maximum entropy

[GA]-[GAT]-A [CA]-[CGAT]-[GA] [CG]-[AT]-[CG] AGO [CGT]-[CA]-[CT]
1 0 0 486 13 1
2 93 0 4 397 6
3 89 0 0 4 407
4 440 6 36 0 18

Total 622 6 526 414 432
Best motif set for 1.8 maximum entropy

[AT]-G-[CGAT] A-[CGT]-T [CGT]-[AT]-[CT] [GT]-[GAT]-A A-[CGAT]-[GAT]
1 38 357 16 27 62
2 69 160 80 187 4
3 0 119 278 96 7
4 483 1 6 10 0

Total 590 637 380 320 73
Best motif set for 2.0 maximum entropy

A-[CGA]-[GA] [GAT]-[CAT]-[CT] [AT]-[CG]-[CGA] [GT]-[CG]-[CT] [CGT]-[CAT]-[CAT]
1 24 29 54 22 371
2 500 0 0 0 0
3 0 47 86 367 0
4 51 285 0 69 95

Total 575 361 140 458 466
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Table 7.7: Examination of the levels of sub-population collapse in the four 
classed Self-Driving Markov dataset by presenting the number of populations 
with greater than 10% of the dataset out of 30 replicates.

Populations
Motif Length Entropy 1 2 3 4 5

1.4 0 5 22 3 0
Q 1.6 0 3 12 13 2
O 1.8 0 4 12 12 2

2.0 0 0 6 18 6
1.4 0 2 11 16 1
1.6 0 2 4 20 4

0
1.8 0 1 7 15 7
2.0 0 0 2 11 17
1.4 0 2 15 11 2

7 1.6 0 1 8 13 8
( 1.8 0 0 2 19 9

2.0 0 0 2 9 19

general give better classifications; lengths 3 and 5 are both statistically sig­
nificant compared to length 7 motifs. The length 3 motifs are statistically 
significant against length 5 when the entropy level increases to 2.0. Length 5 
motifs find the best solution for maximum entropy of 1.4, length 3 motifs find 
the best otherwise. In general the size 4 classifier sets have less variance than 
the 3 class sets, as well as higher mean scores. The best classifiers, shown 
in Table 7.6, all have a sub-population collapse. The collapse is especially 
evident in the results for the 1.4 and 1.6 maximum entropy classes; the 1.6 
class having a collapsed motif classifier with a total score of 6 points. Exam­
ining the levels of collapse for all replicates, see Table 7.7, we have the same 
Endings as the three class data. That being that larger entropy sets have 
lower levels of collapse, and longer classifiers have less likelyhood of collapse.

In general, there is a decrease in the Rand index score of the classifiers 
as the size of the motif increases. This could be in part due to the fitness 
function. Looking at the number of matches over the latitude, a shorter
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motif, holding all else equal, will find more matches on a string. Secondly, 
as the length of a motif increases, it is more likely two different motifs will 
have the same fitness score on a string. This does not allow an evolutionary 
algorithm, which bases decisions on relative fitness of members, a clear path 
to a solution. Third, there is a reduction in the search space as the motif 
becomes shorter. The larger motifs can find the same results, with the end of 
the string being the wildcard [CGAT], however, this symbol is very unlikely 
for an evolved motif to contain as it causes a large increase to latitude. Thus, 
larger length motifs will be likely to avoid the same solution as smaller motifs. 
Subcollapsed motifs generally conform to either becoming extremely specific, 
giving them a low latitude, or become extremely general, giving them a high 
number of matching sequences.

Finally, a test was undertaken in order to see the difference in the gain 
between the best fitness score made by a motif in a set, and the second best 
fitness scoring motif. This fitness score again being the number of times a 
motif matches over the latitude of the motif. Each of the final sets of motifs 
for the 30 replicates was rerun over the data, saving the fitness score of each 
motif on each DNA string. For each DNA string the difference between the 
best fitness score and the second best fitness score was taken and then aver­
aged over all the strings. This gives the average gain in fitness between the 
classifiers, which acts as a measure of the separation between the classifiers. 
Looking at Table 7.8 the mean fitness gain decreases as the entropy increases. 
This result is statistically significant between 1.4, 1.6—1.8, and 2.0 for both 
number of classes and length. There is not a significant difference between 
1.6 and 1.8. As the motif length increases the mean fitness gain decreases, 
this finding being statistically significant. Finally, between the three and 
four class data, as the number of classes increases their is a decrease in the 
mean fitness again. This last result is to be expected as there is more motifs 
to compare fitness against.
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Table 7.8: Mean fitness gain between the best and second best classifications 
motifs using 30 replicates with 95% confidence intervals about the mean for 
the Self-Driving Markov automata datasets

Number of Classes — 3
Motif Length Entropy Mean with 95% CI

1.4 2.430980 ± 1.04582
Q 1.6 0.967062 ±0.361151
O 1.8 0.801203 ±0.253527

2.0 0.274499 ±0.111344
1.4 0.3409630 ± 0.288443
1.6 0.0947763 ±0.0210429

0 1.8 0.0936480 ± 0.0412531
2.0 0.0255115 ± 0.00703034
1.4 0.01508660 ±0.00589601

7 1.6 0.00585015 ±0.00210379
i 1.8 0.00523477 ±0.0018068

2.0 0.00257909 ±0.00101677
dumber of Classes — 4

Motif Length Entropy Mean with 95% CI
1.4 1.878950 ±0.68789

Q 1.6 0.542339 ±0.220126
O 1.8 0.643860 ±0.160495

2.0 0.275987 ±0.0927815
1.4 0.1017630 ±0.0354012
1.6 0.0589268 ± 0.0148564

0 1.8 0.0430679 ± 0.0124636
2.0 0.0213955 ± 0.00659435
1.4 0.01526320 ±0.00600413

7 1.6 0.00480588 ±0.00132744
i 1.8 0.00353933 ±0.00129723

2.0 0.00220744 ±0.000917727
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Table 7.9: Examination of the levels of sub-population collapse in the three 
classed Self-Driving Markov dataset by presenting the number of populations 
with greater than 10% of the dataset out of 30 replicates. Further listed is 
the number of perfect classifications — defined as a Rand score of 1.

DSO and DSI
Motif Length I 2 3 Prefect

3 5 14 If I
5 6 14 5 4
7 8 20 2 6
9 18 If I I

DS25 and DS37
Motif Length I 2 3 Prefect

3 12 17 I I
5 9 20 I 2
7 13 15 2 0
9 16 12 2 I

DS 9 anc DS25
Motif Length I 2 3 Prefect

3 If 13 6 0
5 10 16 4 0
7 10 19 I 2
9 19 10 I I

7.4.4 Self-Driving Finite State Machines

The tests for self-driving FSM gave excellent classification. In each of the 
test cases, each of the examples found at least one perfect classification for 
the 80 data points. This is surprising, given the representational ability of 
degenerate motifs as well as the method of generation allowing for languages 
outside of the bounds of regular languages. Examining the levels of sub­
population collapse in Table 7.9, it is clear that the correct number of classes 
is discovered, or a full collapse is more prone to occur. Specific Endings for 
each of the data sets are examined below.
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Figure 7.7: 95% Confidence intervals and best value of Rand index for the 
DSO v. DS1 data set with 3 populations.

These two data sets show an interesting relation to the length of the motif. 
In Table 7.9 the level of complete collapse increases monotonically with the 
number of symbols in the string. This may provide an explanation for the 
slow decrease in the confidence intervals about the mean as shown in Figure 
7.7. However, the number of correct size 2 is maximized for a length 7 motif; 
this is also the motif length with the most perfect classifications. The found 
motif sets are quite diverse, showing that for this motif length, there is a 
number of good motifs which divide the set into a natural partitioning. As 
these motifs are relatively distant in terms of their 3-mer string kernel, this 
natural split can be found.
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Figure 7.8: 95% Confidence intervals and best value of Rand index for the 
DS25 v. DS37 data set with 3 populations.

Examining DS25 and DS37 which are distant in terms of their 3-mer 
spectral kernel distance, this natural split becomes surprisingly harder to 
find. It is missing a perfect classification at a motif length of 7, though there 
are 3 classifications which only have a single point misclassified. The mean 
is robust to changes in motif length, as shown in Figure 7.8.

DS9 and DS25

As DS9 and DS25 are beside each other in terms of 3-mer kernel distance, 
this should be the hardest example to perfectly classify, especially when a 
short motif length is chosen. This is confirmed in Table 7.9 as it is not until
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Figure 7.9: 95% Confidence intervals and best value of Rand index for the 
DS9 v. DS25 data set with 3 populations.

a motif length of 7 that there is perfect classification. However, it should be 
noted that a classification found by length 3 was able to correctly split the 
set over 3 classifiers, twice. The length 5 motifs split a correct classification 
over 3 classifiers once, and one other classifier was only off by 1 misclassified 
point. As seen in Figure 7.9, the mean value is resilient to changes in the 
length of the motif, however, there is a slight decrease in length 9, the one 
with the most fully collapsed classifiers.

7.4.5 Human Leukocyte Antigen

A very interesting function of the Multiple Worlds Model is explored by using 
more worlds than the number of classes in the data set. This is found to be 
actually helpful in terms of the evolutionary process. As more populations
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Figure 7.10: 95% Confidence intervals and best value of Rand index for the 
HLA data set with 2 populations.
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Figure 7.11: 95% Confidence intervals and best value of Rand index for the 
HLA data set with 3 populations.
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Figure 7.12: 95% Confidence intervals and best value of Rand index for the 
HLA data set with 3 populations with the fitness function taking the square 
root of the latitude.



Table 7.10: Best motif set found for motifs of size 3, 5, 7, and 9 with classification scores for the two classes 
for the HLA data set with 3 populations.

Class Degenerate Motif and Fitness Score
Best motif set for length 3

I
II

[CG]-[CG]-C 
500 
61

[GA]-[GT]-[CGAT] 
0 

423

[CT]-[CAT]-[CGA] 
0 
16

Fitness 561 423 16
Best motif set for length 5

I
II

T-[GT]-[AT]-[CGT]-[CGT]
13

403

[GT]-[CAT]-[GA]-T-C
24
66

A-[CGA]-[CAT]-[CA]-T 
463 
31

Fitness 416 90 494
Best motif set for length 7

I
II

[CGAT]-[CGT]-[GAT]-[CAT]-[CG]-[AT]-G 
1

397

[GAT]-[CT]-[CA]-[GT]-[CG]-G-[CAT] 
19 

101

C-[CG]-[CGT]-[CGT]-[CGAT]-[GAT]-C 
480

2
Fitness 398 120 482

Best motif set for length 9

I
II

[CGT]-[CGA]-[CAT]-[CG]-[CAT]- 
[GAT] - [GA] - [AT] - [C GAT]

467
88

[AT]-[AT]-[CGAT]-[GAT]-T 
[CGT]-[CT]-[GA]-G

12
42

[CGA]-[CA]-[CAT]-[CT]-C- 
[GT]-[GT]-[CGA]-[AT] 

21
370

Fitness 555 54 391
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Table 7.11: Level of sub-population collapse in the two classed HLA data set 
with three populations. The number of populations with greater than 10% 
of the data set out of 30 replicates.

Motif Length 1 2 3
3 10 17 3
5 13 14 3
7 7 17 6
9 6 15 9

exist, we can see a statistically significant improvement in the mean results for 
motifs of length 3, 7, and 9 (see Figures 7.10 and 7.11). Having 3 populations 
increases the variance of the output. There is an improvement in the best 
classification for all motif sizes as the population increases. A motif size of 3 
or 7 gives the best classifiers in both cases. The change to the fitness function, 
see Figure 7.12, is found to have no positive effect upon the classifiers, and 
in all cases finds a worst classification, especially for the length 5 motif.

Looking at the sub-population collapse events for the 3 population data, 
it shows a propensity to favour the correct number of classes. In this situ­
ation, two. Note that as the mean takes into account instances where there 
is a collapse to a single population, i.e. only one motif is dominating the 
population, leading to no classification, the mean score greatly suffers com­
pared to the best value. Looking at length 5 and 9, we can see that they are 
more prone to getting the number of classes incorrect. Length 5 especially 
is prone to a full collapse; 9 is the inverse suggesting there are more classes 
available. For motif length of 9, this is relatively unsurprising. Using more 
symbols permits more ways to divide the set of data points, and increases 
the probability there are more local optima.

A classifier coming to the conclusion that the set has 3 classes is not 
necessarily incorrect. It could be the case that it is a good classifier. The 
Rand index will be penalized in such an instance, but not as much as if 
there was a misclassification which places members of each class in the same
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machine generated class. Looking at the best results for the HLA data as 
shown in Figure 7.10, we can see an instance, for the best classifier of size 7, 
where a classifier which states there is 3 classes has the best result. This is 
even more impressive when it is noted this classifier is the best classifier in 
general for all sizes. The two motifs which split class II are in many aspects 
similar; the fifth symbols are both [CG], the final symbol is a reciprocal, and 
the second string for symbols one and two is missing a base in its wildcard. 
This is a case where instead of a species pushing out another, the other was 
forced to decrease its latitude in order to be more specialized.

Looking at the best results of motif length 5, we can see another in­
stance where the collapsed population has specialized in order to gain a 
small foothold. We could remove this collapsed population, share its points 
between the two other classifiers and perhaps come to a better result. The 
results for length 3 show a very interesting collapsed population, which looks 
for a high content of Cs in the II data. Notice how the first classifier, which 
scores all of I, also looks for a high C content, whereas the motif which clas­
sifies a majority of II has almost no Cs in the wildcards. It would be a 
safe assumption that without this third classifier, these points would be ob­
tained by the classifier for I and not II. Hence, even though this population 
is collapsed, the resources it consumes are of value.



Chapter 8

Radio Demographics

This chapter examines a pedagogical example of MWM for its application to 
a simple model, suitable for an undergraduate evolutionary algorithms class. 
The model chosen is a set of radio stations attempting to provide a playset 
of songs to a group of listener profiles.

8.1 Demographic Modeling

The use of demographic models for broadcasts has been examined by their 
industry organizations, most prominently the Nielson ratings in the United 
States. These ratings are provided by the viewers, who are issued diaries 
to list the shows they have seen during a monitoring period. The diaries 
are issued based on demographic sections of the population. Such modeling 
has a number of flaws (see [63, 16, 91]); there is an issue with the choice of 
different demographic groups to how to classify an individual. There is also 
a response bias (the listeners may not report shows in diaries, or forget to fill 
one out, or their responses may vary based on memory), and new methods 
of transmission (such as recording of live TV for later viewing, downloading 
shows, cell phone viewings, and tablet devices) are not accounted for in these 
statistics, even if a broadcast is made live.

89
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Question 1: What are your feelings on Country Music?
-3 -2 -1 0 1 2 3

strong dislike dislike weak dislike neutral weak like like strong like

Table 8.1: Example survey question with response mapped on a Likert Scale

Table 8.2: Listener profiles of a Rocker, Pop-ularist, Country, and Talk Caller

Listener Type Advert Top40s Country Rock Talk
Rocker -1 -3 -2 3 2

Pop-ularist -1 3 -1 1 0
Country -1 0 3 1 -2

Talk Caller -1 -1 -1 -1 3

The model used in this approach is based off a profile of likes and dislikes 
for various content types. Advertisements are given a strict dislike value 
which is the same against all profiles. These profiles could easily be drawn 
from a seven point Likert scale [96], mapping each with a score in the range 
[—3,3] (e.g. Table 8.1 shows an example question for country music).

8.1.1 Representation

There are two groups which will be modeled by this study: radio listeners and 
radio stations. The listeners are represented as a specification of preferences 
in the form of numerical value of the enjoyment/dislike of each particular type 
of music, and a value for the dislike of advertisements. We assume that all 
listeners start as indifferent to the various radio stations. The radio stations 
are represented as a list of types of music they will play for a preset interval. 
An interval in this case could be a programming block, a time period, or the 
length of a song. Each programming block is deemed to be of a standardized 
length for the sake of simplicity.
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8.1.2 Fitness Evaluation

The fitness of a station is defined as the number of advertisements listened to 
by a data set of listeners. The content provided to a listener must be pleasing 
based upon their unique listener profile. The listeners to a radio station will 
refuse to listen to a station which only broadcasts advertisements. If they 
do not enjoy the content, then they are prone to change stations; the change 
will cost the station advertising revenue, and thus evolutionary fitness. The 
station must strike a balance between content and advertisement to be most 
fit.

The listener is defined by a happiness level and a listener profile as shown 
in Table 8.2. The happiness level is how pleased the listener currently is with 
the broadcast. The profile is a set of likes and dislikes of content types. A 
classic rocker, for example, might express a large benefit, from listening to 
classic rock, a small gain from talk (i.e. Shock Jocks), and a sharp decline 
from Top 40s music. All profiles dislike advertisements; listeners would prefer 
content. This happiness level is used to determine if a listener will change to 
another radio station subject to the distribution C(x) = I — 1+^_3., as shown 
in Fig. 8.1. When happiness is at a value of zero the listener is indifferent with 
half a chance to change stations. As the happiness increases from negative to 
positive six, the listener will saturate in terms of like or dislike, and will be 
certain to stay or change the channel. Because the listeners do not necessarily 
have the radio on at any given interval, there is always a null station choice 
with a constant happiness value of zero. This null station represents the 
choice of leaving the radio off.

In fitness evaluation, each listener starts on a random part of the dial. 
There is a number of time steps equal to the programming period of the 
stations. At the beginning of each time step, each listener generates a random 
number uniformly distributed in the range 0 < x < 1. If the number is less 
than the value of their current happiness, based on the station they have 
tuned into, they stay on that station. Otherwise, they change which station
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Figure 8.1: Graph of the happiness function — C(x) = 1 — — prob­
ability for changing stations lowers as the ‘like’ a listener has for a station 
increases.

they are on and continue the process of checking their happiness on a station 
until they stop on a station. Once they have decided which station they 
are going to listen to for this programming period, their like for the station 
is adjusted based on the programming choice of the station for the current 
time step. If it is an advertisement, then the station receives one point of 
advertising revenue (fitness).

The fitness of a radio station is the number of ad-revenue scores multiplied 
by the fraction of advertisements in their total programming block. This 
model feature represents the tendency of agents to simply not listen to the 
radio, or perhaps switch to an MP3 device, if they are offended by too many 
advertisements. This normalization of fitness removes the implausible Nash 
equilibrium in which all stations go to a constant advertisement format.

8.2 Experimental Settings

Each population used contains 100 members. These members consist of a 
stations playlist of size 12, selected as it is the number of five minute intervals 
in an hour. Five minutes is long enough to introduce and play song of average
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Parent 1
rock rock advert top40s advert advert

Parent 2
top40s countr rock advert countr rock

Child 1
rock rock advert advert countr rock

Child 2
top40s countr rock top40s advert advert

Mutation of Child 1
rock rock rock advert countr rock

Mutation of Child 2
top40s countr rock advert advert advert

Figure 8.2: Example of breeding (crossover and mutation) between the rep­
resentations of playlists. Parent one is the first radio station playlist of size 
six in light blue. Parent two is the second radio station playlist of size six in 
the darker red. A one-point crossover then occurs between the two parents at 
the third loci creating child one and two. The mutations of the children then 
happen in child one at the third position and the second child at position 
four, labelled in dark gray.
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length h Each slot in a playlists is initialized to one of the music types or 
advertisement with equal likelihood. The selection operation for breeding 
is a tournament which takes four members of the population, orders them 
based on their fitness, and replaces the bottom two with replicates of the top 
two. The copies then undergo mutation and crossover, e.g. Fig. 8.2. The 
crossover operator is a two point crossover; it probabilistically selects two 
points in the playlist and swaps the broadcast types between the selected 
positions. The mutation operator randomly assigns a new broadcast type 
to each time step in the playlist with 10% probability. This occurs for 5000 
generations.

8.3 Results

In order to allow for a comparison between outputs with multiple stations, 
there needs to be a way to cluster similar stations together. As we know that 
certain choices would be more likely — such as talk shows for a population 
with talk callers — the station with higher frequency of the first type of 
show is used as a standard of placing the stations into classes. Number of 
adverts in this case is not a good method of classification as the model will 
often produce stations with the same number of advertisements, and we are 
interested in seeing if there is behavioural differences.

8.3.1 Simple Test — as and /3s

In order to show the partitioning power of multiple worlds model a simple 
example was constructed. In this case we limit the content types to three: 
Advert, Song A, and Song B. Two profiles were created which are the dual 
in terms of their enjoyment of the stations, call them listener a and listener

XA distribution of song lengths created from over 70,000 American songs found a rela­
tively symmetric distribution in lengths with a mean of 242 seconds, i.e. about 4 minutes 
[107].
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(3. The mean frequencies of each type are compared:

Advert Song A Song B

STATION a 1.26667 10.3333 0.4

STATION [3 1.2 0.366667 10.4333

It is plainly visible from the means, the MWM creates two radio stations. 
The first appealing to the as by playing Song A exclusively, and the second 
appealing to the /3s by playing Song B. This simple experiment serves as a 
certificate that the system is functioning nominally.

8.3.2 Two Stations — Even Populations

In all cases the station profiles created show some similar trends. First, there 
is a length of content which is associated with positive feedback to one of 
the demographic groups which lasts for at least a quarter of the time. Often, 
there is then a quick switch into a content type of the other profile right before 
the appearance of an advertisement; the stations are attempting to get as 
many listeners as possible before the payoff. After all advertisements of the 
string have appeared, the string reverts to using any of the possiable values. 
Fitness has already been made or lost at this point and all selections for 
these locations will produce a string of equal fitness. The string is therefore 
epistatic; earlier changes are worth more than later changes. Further, there is 
an issue in the model that a listener can saturate their happiness by hearing 
a number of good songs in a row, they “stay on the dial” even for a set of 
bad content. The mean percentage of each of the play types is presented 
and commented upon. However, the strings of the playlists are far more 
informative. Figure 8.3 provides a graphic visualization of the play profiles.
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(c) Talk Caller v. Country (d) Popularist v. Rocker

Figure 8.3: Radio Station Time Allocations — Two Stations
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Talk Caller v. Rocker

Shock jocks take over when rockers and talk callers are the population of 
listeners. The power of talk radio swiftly gains an advantage early on in the 
strings, allowing for ads to be played. After advertisements have been played, 
the epistatic nature of the string and the saturation of happiness makes for 
stations which have a number of unexpected plays of country and top 40s, 
however in the station with most talk these are reduced. The stations in this 
model converge in their playlists, as both talkers and rockers both like talk 
radio. There is no instances of a sub-population collapse, and the stations 
are able to coexist.

Talk Caller v. Popularist

Popularists don’t mind talk shows, whereas talk callers are offended by any­
thing. Again we observe a large movement towards talk. The popularists 
bounce over the dial as the stations fight for dominance in the talk market 
— leading to strings of talk right at the start followed by a string of talk 
and top 40s. The top 40s are played in the time step right before an adver­
tisement in order to keep the audience tuned in. There are no instances of a 
sub-population collapse; two stations are perfectly happy to share the air.

Talk Caller v. Country

Country lovers have a strong dislike for talk, and talk callers dislike every­
thing else. The advertisement levels between the two diverse groups is re­
duced compared to the talker v. popularist, and even more than the talker v. 
rocker. Listeners are moving to a single station and holding position, making 
it far more profitable to be in a specialized market. There is a single collapse 
event in the runs, producing a final station with no advertisement revenue. 
The single focus of the station holds a listener to a station for advertisements 
without offending.
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Popularist v. Rocker

The stations above once again exibit a strong like for the same type of music 
in Rock. Hence, the like for rock presses out the top 40s music which would 
offend the audience. The station, unable to play more rock than the other 
resorts to differentiating itself by the choice of top 40s music. A divergence 
in the station profiles as the first station aims for more diversity. Station two 
becomes a rock station, playing only one third of the pop songs, with more 
allocations of shock jock talkers, who don’t offend the popularists. Both 
profiles dislike of Country music has suppressed this type of content to the 
point of nonexistence in the final population. Country only appears in the 
strings due to genetic drift in the population and due to the epistatic nature 
of the play string. The final populations show no evidence of collapse, and 
both stations are relatively profitable.

Popularist v. Country

An interesting result happens with the popularist and Country in that neither 
really gets their preferred music. A popularist dislikes country, a Country is 
not offended by top 40s but doesn’t enjoy it. This explains the higher ap­
pearance of Top 40s music in the first station. Both Country and popularists 
enjoyment of rock leads to a creation of rock stations. The final popula­
tions show two stations which have collapsed, as the rock profile is able to 
dominate the space.

Rocker v. Country

Station one targets rockers and plays half the number of top 40s selections and 
talk. Station two is able to play more ads by taking more country selections 
to make up for the offending shock jocks. The shock jocks allow for less rock 
to be played. The stations do not collapse and both are profitable.
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8.3.3 Three Stations — Even Populations

Increasing the number of stations in many cases has a settling effect on the 
strings into a spectrum between the two demographic groups. Instead of 
harsh divisions, the middle station is prone to trying to split the difference 
between the two extreme ends. In cases where the demographics have dislike 
of the others likes, the selections and breaking into different playlists be­
comes more pronounced than the two station examples. Figure 8.4 provides 
a graphic visualization of the play profiles.

Talk Caller v. Rocker

For these stations shock jocks again rule the airwaves. The three stations 
fighting for the profitable talk and rock markets. Playing rock music is 
inversely correlated with talk shows, an attempt is being made to specialize 
for the rockers, to pull them out of the talk only stations. The percentages 
for stations one and two for Rock and Talk are close to the two station model, 
Station three using a lower level of talk. There are no instances of collapse 
similar to the two station model; the demographic is able to support the 
three stations.

Talk Caller v. Popularist

As talk decreases, the stations move deeper into country and rock. Station 
one focuses on a strong mix of rock and talk, moving beyond the bounds set 
by the two-station model. The three-station model further diverges from the 
two-station model, as the number of collapses goes up to one. The support 
for more stations is weakening.

Talk Caller v. Country

The talk caller and Country listener are most dissimilar in terms of their 
likes, and this is evident in the modeling. Station one has progressed to an
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(c) Talk Caller v. Country (d) Popularist v. Rocker

Figure 8.4: Radio Station Time Allocations — Three Stations
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“all talk — all the time” format. Station three is now a country/rock station. 
Station two attempts to take the middle ground. This model has no collapse 
events by pressing to the extremes to capture the listeners.

Popularist v. Rocker

The popularists and rockers both end up creating a talk station with sight 
differences in the levels of rock and top 40s. Rock dominates the playlist, 
as both popularists and rockers gain enjoyment — talk is not seen to the 
same extent as in all cases if a talk choice was made, it would have been 
better to air a rock song. The amount of top 40s is what primarily gives a 
differentiation from between the stations. No stations are closed due to this 
listener demographic.

Popularist v. Country

The three radio station model also presses into becoming a rock station as 
both the popularist and Countryist enjoy rock. The stations press apart in 
terms of their playing of country and top 40s. Talk shows are pressed off 
the dial. No sub-population collapse events occur demonstrating that the 
demographic is able to support the number of stations.

Rocker v. Country

The Country station continues to play talk radio as an alternative to rock 
selections, with country maintaining a low presence. The number of adver­
tisements increases in the middling station to take on more revenue. The 
targeted rock station is able to play a smaller number of ads, showing the 
power which can be had from a single demographic. The three stations have 
a single sub-population collapse event showing a convergence in the profiles.
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8.4 Discussion

MWM can model just as easily other broadcast media, such as television 
and streaming internet programming. Another application can be seen in 
products where a large number of alternatives or imperfect substitute goods 
exist; these can be modeled in much the same fashion, with minor changes 
based on the application desired. For example, a set of restaurants could 
make investments such as location, price, food style, and atmosphere. A set 
of consumers would be positioned based on their preferences.

This study shows a very simplistic model of the radio stations and lis­
teners, and a number of changes can be made in order to better model the 
profiles. First, listener enjoyment is based on their entire history with the 
stations. It would be more realistic to have a memory window. That is a 
listener will remember perhaps only the last 3 songs from each station. This 
would prevent the saturation of listener to either the positive or negative side. 
Secondly, there is currently no decay in like or dislike over time. The model 
would be best served to have a decay in the values. Finally, the program­
ming is made in fixed length programming blocks — this should be allowed 
to change in a more dynamic method, quite often flipping through channels. 
This would permit an additional level of strategy based on where content 
block beginnings and endings are placed. The current string approach, how­
ever, allows for a simple examination of the results produced in order to show 
the method to be valid.

The introduction of additions to the fitness function allows for a multitude 
of different studies to be preformed. Payola/Plugola, the illegal inducements 
provided by record companies to stations for playing specific song titles [29], 
by companies for products to be ‘plugged’ outside of an advertisment block, 
and political opinions being espoused [85], can easily be introduced. The 
model could provide a multi-objective fitness to the station for payment 
from normal ads as well as side payments. In the case of political opinion, 
another parameter would be assigned to the listener for political affiliation.
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Countering this would be a probabilistic penalty; fines are received if the 
Payola/Plugola is discovered by the regulator.

Further, other restrictions, such as the Canadian content regulations [38], 
can be modeled through the addition of changes to the fitness model and the 
available contents. The final models would have to contain a set amount of 
content or a fitness penalty — a fine, would be applied. The selected content 
would provide less of an increase in the like of a listener as it appears more 
often.

The MWM has shown another application of the novel fitness determina­
tion taking into account the evaluation of fitness between populations where 
there is not an exchange in order to partition a space. It is interesting to 
note that these radio stations are not subject to the levels of sub-population 
collapse seen in other studies. This study is the first to use a fitness function 
which is not winner-take-all in terms of a point. In this case, a listener may 
provide fitness to both stations. Additionally, as the initial starting location 
on the dial is random, there is a propensity for the stations to be able to keep 
the listeners that they start with. In previous winner-take-all fitness func­
tions a larger number of collapses are seen. These previous works were also 
determinisitic models. This implies that the model perhaps is too forgiving 
to bad content, or that the number of listeners was large enough to support 
a number of radio stations. In order to apply this in the field to real radio 
broadcasts, case histories and human testing would be required in order to 
refine the parameters.

As a cartoon, this model system of a group of radio stations is suited for 
presentation to a classroom. The class themselves could be asked to come 
up with other listener types, could be polled to create a population, or could 
extend the model to include other factors as an assignment or final term 
project.



Chapter 9

Multi Agent Genetic Network 
(MAGnet)

9.1 Algorithm Definition

Multiple Agent Genetic Networks (MAGnet) is a spatially structured evo­
lutionary algorithm that sorts a collection of related problem instances into 
subsets through the use of evolving agents capable of moving problem in­
stances from one node of a network to another, see Figure 9.1. The spatial 
structure is given in the form of a network. Each node of the network contains 
a collection of problem instances.

The way that agents move about the network depends on their ability to 
solve the problem instances present at each node. Each agent in turn Ends 
its fitness on the problem instance currently present on the node where it is 
situated. The agent then has a chance to move to a location where it would 
have a higher fitness score based on a movement rate.

Each agent also has a problem briefcase which allows for the movement 
of the problem instances. It may, depending on the briefcase rate, pick up a 
problem instance on its current node and move that problem with it to the 
agent’s new location. The agent chooses the problem instance on which it 
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obtains the best score. The transport of problem instances using briefcases 
creates a sorting depending on the agent’s score. This sorting is a form of 
unsupervised learning of problem classes.

The fitness of an agent on a node, with no problems upon it, is defined 
to be the worst possible score. This is done to allow nodes to lose all their 
problem instances if the natural number of categories of problem instance is 
smaller than the number of nodes. The name subpopulation collapse in this 
model is used to describe the emptying of the collection of problem instances 
on a node.

After an agent moves, it will breed with the other agents on its new node. 
The agents on the node are re-evaluated, the incoming agent could have 
brought a new problem instance which changes the fitness, and a partner is 
selected. This breeding is done using normal genetic operators of crossover 
and mutation.

9.2 Example Agent Evaluation - Iterated Pris­
oner’s Dilemma Agents

In this section we look at a sample agent playing Iterated Prisoner’s Dilemma, 
explained subsequently. In this MAGnet there are only two nodes. Problem 
instances are other Iterated Prisoner’s Dilemma strategies. The agents are 
also Iterated Prisoner’s Dilemma playing strategies. As seen in Figure 9.2(a) 
there is an agent about to undergo an evaluation which is playing a strategy 
of Always Defect (ALLD). The problem instances on the first node are 2 
Tit-For-Tat(TFT) and 1 ALLD. The second has 3 ALLD.

In Figure 9.2(b) we can see the evaluation of fitness on both nodes: where 
the agent exists and the neighbouring connected node. On its own node the 
ALLD agent scores 1 point each v. the two TFT agents, and 1 point from 
the other ALLD. Note that the best scores are known to be 3 v. a TFT 
and 1 v. an ALLD. Therefore, 7 points of fitness were available, of which
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The black square is our selected model for 
this round

It evaluates its fitness on each of the connected nodes 
- it finds the problem instance it scores highest on the 

current node (the gray square)

The black square migrates to the node with 
highest fitness and brings with it the problem 

instance it is best, the gray square

The black square looks for other models on 
the node and on finding the white square 

undergoes genetic variation operators

for some number of generations do
for all agents do

find the adjacent node which the agent has the best fitness
if we probabilistically select to move a problem then

find the problem on the current node which the agent has its highest 
fitness

end if
move the agent and the problem to the node where the agent has the 
highest fitness
if there are others upon that node then

select a breeding partner and apply crossover/mutation
end if

end for
end for

Figure 9.1: Demonstration and Pseudocode of the MAGnet system
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Agent is ALLD

2 TFT
1 ALLD

Fitness - (1+1+1 )/7
Best against ALLD 1/1 Fltness (1 +1 +1 )/3

0 TFT
3 ALLD

2 TFT
1 ALLD

0 TFT
3 ALLD

(a) (b)

Agent moves with Best problem ALLD Crossover And Breeding

2 TFT
- ALLD

0 TFT
+ ALLD

2 TFT
0 ALLD

0 TFT
4 ALLD

(d)

Figure 9.2: Example MAGnet agent move

the agent only got 3. On the other node, it scores maximum fitness when 
evaluated against an ALLD, it scores 3/3 fitness points. Hence, the new node 
is better for the agent. Remember, if this neighbouring node had no problem 
instances, it would be counted as having the lowest possible fitness score by 
hat.

This agent has probalistically been selected to move a problem instance, 
so it finds the problem instance for which it has the highest fitness upon on 
its current node. That is ALLD.

In Figure 9.2(c) the selected agent now moves, taking the problem in­
stance of ALLD with itself. The number of ALLD instances on the first node 
is reduced by one on the node it is leaving, and increments on the new node.

Finally, we have finished our agent’s move in Figure 9.2(d). The agent is 
now on the new node and we know its fitness score is high for the problem 
instances on this node. If there is any other agents on the node it will select 
one at random, when these other agents came to this node on their turns 
they had high fitness for this set of problems, and undergo a crossover. If 
there is no other agents then it will mutate slightly.
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9.3 Parallelism

MAGnet in many ways has its roots in the idea of breaking both data and 
processing over a network. In term of communications, if we assume the num­
ber of processing elements equals the number of nodes and the worst case of 
a fully connected graph of N nodes, we come to the following evaluation of 
the communications. For each agent there is a broadcast of the chromosome 
to each of the other nodes requiring O(N) communications, followed by an 
evaluation of the best node to move onto, requiring O(N) comparisons and 
O(N) communications. Following this, the best node now knows to keep 
the chromosome which is has just been sent. A problem instance will then 
be passed from the originating node to the new node, in 0(1) communica­
tions. This entire process is on the order of O(N) communications of a data 
structure no larger than a chromosome.

As for the algorithm progresses there is an issue of data starvation as 
the nodes remove problem instances, especially in a subpopulation collapse 
event. In the worst case it will become a sequential process - though this 
degenerate case implies that there is only a single class for all points in 
the model, which is a useful result that informs us that a single population 
method is more suitable. There is a few interesting efficiencies to be gained 
depending on the topology of the algorithm’s network, especially when the 
number of processing elements is less than the number of nodes.

The first is that nodes of three or more edges away are independent in 
terms of both data and processing, as nodes only share with neighbours. Two 
agents with this distance between them could be evaluated in parallel. Thus, 
a well chosen mapping of the internal algorithmic network topology to that of 
the arrangements of processing elements could yield large performance gains. 
Though, how such mapping could be done is beyond the scope of this present 
work.
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9.4 Experimental Overview

MAGnet aims to provide a framework for exploratory discovery of links be­
tween problem instances, giving a model which represents the instances on a 
node. The well-known mathematical game of iterated prisoners dilemma is 
selected as an application area for the experiments. This selection was made 
as previous trails using evolutionary algorithms have shown wildly varied re­
sults in the levels of cooperation and the agents generated. These differences 
occur based on the representation, used for an agent, the selected payoffs, 
which variation operations where used, how the players were selected to be 
played with each other in the population. This wild variance is not see in 
analytical approaches to the game, such as evolutionary stable strategies, 
which demonstrate that playing the move your opponent made last round, 
tit-for-tat, is how a rational agent will play. This is based on the assumptions 
of an infinite number of rounds in a game between players, all players face 
every other player, that players can only change a deterministic strategy with 
a single mutation to currently existing and infinitely growing population. No 
practical evolutionary algorithm can meet with these requirements, hence the 
apparent disconnect of a multitude of agent types flourishing in the evolved 
populations.

No longer is tit-for-tat the best strategy for all situations. The best play 
is dependent on who you are playing against. This matches with a com­
mon sense understanding that a player who always uses the same sequence 
of moves, will play poor, relative to a player who exploits weaknesses in 
opponents plays.

The problem MAGnet attempts to solve is how the opponents are re­
lated in terms of their behaviors and what style of play scores well against 
these opponent groups. Fingerprinting is another technique which allows for 
measuring behaviors of an agent. However, there are instances where a fin­
gerprint is difficult or impossible to compute, and it provides no specification 
of a good play method which will defeat the fingerprinted player (s).
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In order to demonstrate the utility of MAGnet on this problem two series 
of experiments were conducted. First there was a demonstration of the sys­
tem on a small fully connected graph. This was to demonstrate that MAGnet 
will give a similar placement of agents in the fingerprint space. A set of com­
monly used agents are first examined and a new agent is discovered. This 
new agent is then examined for other properties, such as how it too can 
be exploited. A larger set of agents was then examined to demonstrate the 
behaviour based links.

A second series of experiments on choice of the graph is then examined. 
Differing the graph implies a change of what behaviours are seen in the final 
agents, and what conclusions can be made about behavioural links in the 
problem instances. MAGnet, by declaring a node without problem instances 
to be no longer part of the graph can remove pathways between nodes, mak­
ing for disconnected regions if the initial graph is sparse. Further, it has 
implications for distribution of a MAGnet over an actual computer network, 
where each node is a different processing element.



Chapter 10

Iterated Prisoner’s Dilemma

The results from this chapter were first presented in Multiple Agent Genetic 
Networks for Iterated Prisoner’s Dilemma [21], and Examination of Graphs 
in Multiple Agent Genetic Networks for Iterated Prisoner’s Dilemma [20].

10.1 The Prisoner’s Dilemma

The prisoner’s dilemma is a classic two player simultaneous game. It was 
developed by Merrill Flood and Melvin Dresher in the 1950s working at the 
RAND cooperation. The game has been studied extensively for its diverse 
uses in modeling problems in economics [53], biology [102], psychology [98], 
and political science [14] [90].

A motivating story is a police investigation of two suspects in a robbery 
case. The police have enough evidence to convict both of the suspects on a 
lesser charge of breaking and entering, and require at least one of the suspects 
to become a witness in order to convict the other in the robbery charge. 
Both are placed in separate interrogation rooms and are given the choice to 
either squeal on the other, which is a defection, or to keep silent, which is a 
cooperation. Both of the suspects are given this choice simultaneously and 
the jail time given to one will not cause an equal reduction in the jail time
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Player 
Cooperate

B
Defect

. Cooperate Player A „ r ,y Defect
C,C 
T,S

S,T 
D,D

where S < D < C < T and T + S < 2C.

Figure 10.1: Prisoner’s Dilemma

of the other, i.e. the game is non-zero sum. There are four outcomes: both 
squeal, the first suspect squeals on the second, the second squeals on the first, 
and neither squeal. These are associated with jail terms, or payoffs. This 
payoff matrix is found in Figure 10.1. The temptation payoff (T) is received 
for defecting when there is a sucker (S). A cooperation payoff (C) is received 
when both cooperate, and a defection payout (D) when both defect. Being a 
sucker is the worst outcome and suckering someone is the best result. For the 
iterated version, the iterated prisoner’s dilemma (IPD), it is further required 
that alternatively being the sucker and suckering someone provides a payout 
of less than cooperating twice. A commonly used set of numerical utility 
scores, when maximizing, obeying these properties are T = 5, C = 3, D = 1, 
and S = 0.

Assuming two rational players the Nash equilibrium is that they both 
squeal to the police and receive the second to worst payoff. The dilemma 
comes from the obvious Pareto optimal solution of both staying quiet. The 
iterated game provides interesting behaviours, as agents are able to form 
cooperative networks. There becomes an incentive to work with another 
player so long as the game length is unknown1.

Axelrod[14] claims that strategies for IPD that work well against different 
agents have four properties:

xIn the case that the game length is known, it can be found that both will defect for 
the entire game. The reasoning is that in the last move of the game, there is the Nash 
equilibrium to defect. Knowing that the last move will be defect from both players means 
that the game can be seen as having one less round. This line of reasoning then propagates 
back to the first round. Both players defect for the entire game.



CHAPTER 10. ITERATED PRISONER’S DILEMMA 113

1. Don’t be envious — trying to score higher than another player means 
that you are aiming to destroy them and players will respond in kind.

2. Don’t be the first to defect — also known as being nice. If both players 
refuse to defect first then they will both have the highest mutual score.

3. Reciprocate both cooperation and defection — if there is a defection 
then it should be responded to quickly in order to show that advantage 
cannot be taken, however one should then be quick to forgive a defection 
when receiving cooperation in order to prevent a long string of mutual 
defection.

4. Don’t be too clever — the moves should be signals to the player as to 
how to act. Complicated systems lead to confusion.

10.1.1 Agents

The agents used in this study are shown below as FSM:
Always Cooperate (ALLC):

Initial: C
State If C If D

1 C— 1 C— 1

Always Defect (ALLD):
Initial: D
State If C If D

1 D— 1 D— 1

Tit-for-Tat (TFT):
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Initial: C
State If C If D

1 C— 1 I)— 1

Psycho (PSYCHO):
Initial: D
State If C If D

1 I)— 1 C— 1

Tit-for-Two-Tats (TF2T):

Initial:
State

C
If C If D

1 C— 1 C— 2
2 C— 1 I)— 2

Two-Tits-for-Tat (2TFT):

Initial:
State

C
If C If D

1 C— 1 I)— 2
2 I)— 1 I)— 2

Fortress-3 (FORTS'):
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Fortress-5 (FORTS'):

Initial:
State

D
If C If D

1 I)— 1 D-> 2
2 I)— 1 C-> 3
3 C— 3 D-> 1

Initial:
State

D
If C If D

1 I)— 1 D- 2
2 I)— 1 D- 3
3 I)— 1 C-> 4
4 C— 4 D- 1
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Initial: D
State If C If D

1 I)— 1 I)— 2
2 I)— 1 1)— 3
3 I)— 1 I)— 4
4 I)— 1 C— 5
5 C—1 I)— 1

It has been recently brought to the author’s attention that the naming 
convention used for the Fortress types differs from that of the originator [12], 
The fortress number is based on the number of defections before the hand­
shake, rather than the other convention of the number of states required to 
implement the minimal representation of the FSM. The conversion between 
the two conventions is simply to add one to the number of defections to 
get the number of states required for a minimal representation; one state to 
remember each of the defections and a cooperation state.

10.2 Evolution of IPD Agents

10.2.1 Representation

Representation of the agents which play iterated prisoner’s dilemmas in an 
evolutionary algorithm has been shown to also affect the types of agents 
which present themselves [6] [11] [58]. Finite state machines (FSM) have been 
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found to be more cooperative than many other representations. Further, a 
number of previous studies, e.g. [40] [41] [12] [106], have used evolution of FSM 
as a basis for the creation of agent types.

The representation used for the IPD players in this study is a Mealy 
FSM [79]. Mealy FSMs are transducers that operate over a finite alphabet of 
input symbols and responds from a finite alphabet of output symbols, as it 
traverses a finite number of states. It is defined as a five-tuple, (Q, I, Z, 6, iv), 
where Q is the set of states, I is the set of inputs, Z is the set of output 
symbols, 5 is the state transition function, such that 6 : I x Q Q, and w is 
the output values, such that lv : I x Q Z. As the sizes of agents are fixed, 
the data structure used to encode this five-tuple is a state transition table. 
This table stores the action and transition for C and D inputs for each state, 
and an inital action. The machine begins in state one after the inital action 
is presented.

10.2.2 Evolutionary Operators

As the method with which we are constructing the agents is evolutionary in 
nature, the operators must be defined on the population. The evolution of 
FSM is controlled by a crossover operation and a set of mutation operators. 
First is a crossover operation, which is two-point. The crossover exchanges 
entire states with their transitions and outputs intact between the two ma­
chines. There are three defined mutation operations: change a initial state 
(10%), change a transition (40%), and change an action (50%). The first ex­
periment will only look at the transition exchanges, which means that state 
actions were held constant and could only be shifted by a crossover action 
between different agents. The second type of mutations allows for a bet­
ter search of the available space and is more in line with the Evolutionary 
Programming method of manipulation of FMS [44],
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Table 10.1: Table of the best and worst possible scores for a machine playing 
a 100 move IPD.

Type Best Worst
ALLC 500 300
ALLD 100 0
TFT 300 104
2TFT 300 50
TF2T 400 108
PSYCHO 500 0
FORT3 392 0
FORT4 390 0
FORT5 388 0

10.2.3 Fitness Evaluation

Using the raw fitness score is misleading in this application. For example, the 
best score when facing an ALLD is less than the worst score when facing an 
ALLC. The raw numbers would bias the sub-populations to want to contain 
ALLC, against which any agent can score well. Axelrod has a similar problem 
with using the ‘raw’ score as a fitness measure, as he states that a “better 
standard of comparison is how well you are doing relative to how well someone 
else could be doing in your shoes ... This is the proper test of successful 
performance” [14], In order to remove this bias, we normalize the score on 
each of the types of machines.

Equation (10.1) provides the normalization function for a single type. It 
will produce a value in [0,1] where 0 is the worst score and 1 is the best.

f ztn€SSiype
SCOTCfype WOT stlype 
l)CSLype WOT Stfype

(10.1)

Table 10.1 shows the best and worst possible scores over 100 runs of 
each of the testing agents which is used to normalize the agents. These 
scores do not assume that the agents playing have knowledge of the length 
of the game. If they did they might defect in the last round. The agents 
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in this study do not posses enough states to count to 100, the number of 
rounds of play used in fitness evaluation. The normalization values for this 
study were created by exact methods (i.e. it is known that ALLD scores 
optimally on ALLC, etc.) on the well known-agent types as described in 
Section 10.1.1. The problem of finding these values for an arbitrary problem 
instance might impede generalization of the results. The required numbers 
can be estimated in cases where an analytical method is not feasible by using 
a heuristic approach, e.g. by an evolutionary algorithm. The total fitness of 
an agent is the average of the fitness it obtains against all the agents on a 
node. This will produce a score from [0,1].

10.3 Agents Tested

Two sets of IPD agents form the basis for the studies. The first set of agents 
is: ALLC, ALLD, TFT. These are the most commonly used in studies of IPD 
and will be referred to as the canonical agents. The second experimental 
set, the expanded agent set, includes: ALLC, ALLD, TFT, 2TFT, TF2T, 
PSYCHO, FORT3, FORT4, FORT5. This is a more comprehensive test of 
the MAGnet’s ability to sort agent types. FORT 3-5, are also all coprime 
making the implementation of a dominator without at least their product of 
states, see proof in Section ??, in the machine impossible. These machines 
should split well based on their behaviours.

10.4 Association Diagrams

In these results we look at the generality of solutions to problem instances, 
and therefore must have a method to describe over the course of multiple runs, 
if two problems have similar solutions. In each run of a MAGnet we call two 
problem instances A and B associated at the xth level if there exists a sub­
population node where the number of both problem types is greater or equal
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to x, i.e. |A| > x and \B\ > x. This can also be presented as a percentile 
of the number of problem instances which are in the populations. When 
association value is examined over multiple runs it forms a diagram which 
can imply the existence of general solutions to a subset of problems. These 
diagrams, Figures 10.5, 10.6, 10.8, 10.9 and 10.10, use white to represent an 
association found between two problem instances in one-hundred runs of the 
MAGnet system and black means there is no association found. Note that 
these results are not corrected for sub-population collapse. This means that 
the colour of all squares will lighten when the sub-populations collapse to 
one node. When a general solution exists it typically yields an image with 
an overall lighter shade.

10.5 Inital Trials

10.5.1 Experimental Settings

A population of twenty-five IPD agents represented by finite state machines, 
stored as their translation tables, were used for the population of evolving 
agents. Ten problem instances of each IPD strategy were distributed ran­
domly among the nodes when the network is initialized. We use a fully 
connected network in this inital trial. The number of nodes in the network 
was varied between 2 and 4. The number of states in the evolving agent 
machines was set to 2, 4, and 6.

10.5.2 Canonical Agents

The evolution of the population of agents in K-4/6 yielded a new agent which 
has been named Trifecta, after the horse racing bet which the first three 
horses must be selected in correct order. Trifecta, Fig 10.2, can very quickly 
make a decision of which of the three canonical agents it is matched against 
and play accordingly. It makes a probing defection on the first round. In the
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second round, if receiving a cooperation, it knows it must be facing a ALLC 
and continues to defect. Otherwise, it will respond with a cooperation in 
round two. If it receives a cooperation it knows it is facing a TFT, otherwise 
it is an ALLD.

The discovery of this agent, an optimal solution for all three problem 
cases, prevented the MAGnet from sorting the problem cases. In each repli­
cate of the algorithm, sub-population collapse to a single node occurred, 
sub-population collapse thus suggests a general solution able to play well 
against all problem instances has evolved. Trifecta is such a general solution 
for the problem instances ALLC, TFT, and ALLD. It uses the smallest num­
ber of suboptimal moves possible to sort out the problem cases. Trifecta is, 
however, a special purpose solution for this set of problem cases and would 
probably not do well in a general tournament. In particular it is not nice. It 
uses an initial defection to determine if the opponent is ALLC or not.

Upon seeing that there was a optimal solution located via the MAGnet 
approach yielding a sub-population collapse we now can make a further evo­
lutionary study in order to verify the results. Tests on the set {ALLC, ALLD, 
TFT} where made using a GA. The GA is steady state with a population of 
36 machines with the 12 least fit being replaced with the offspring created 
using the fit 24 parents. The selection is fitness proportional to the score 
gained in a round robin tournament with the set to be dominated. Each 
game lasted 150 rounds for 30 replicates. These one again yielded Trifecta 
(Fig.l0.2(a)) in 18/30 runs with the number of states set to 3 and 24/30 
when the number of states was increased to 4. One interesting discovery 
is that there is another version of Trifecta which has state 2 returning to 
itself and not back to state 1 (Fig. 10.2(b)). While both types will solve the 
problem as optimals solution to the given set, what is interesting is the final 
structure. In the second Trifecta state 2 is a sink and plays the strategy of 
TFT. It should therefore be more robust when meeting a new opponent not 
within this set; it defaults to playing TFT.
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In order to have a test on the robustness of Trifecta and its mutant 
(Fig. 10.2), once again we can turn to evolution. Looking at the results 
of the GA we can find the optimal player against the two types to look for 
functional differences via the best scores. The given 3 states first yields a 
best average value of 3.333 meaning it is being exploited (an average score 
greater than 3 implies that a defection was successful) and the second gives a 
best average value of 2.993 showing it is able to resist exploitation. Looking 
at the machines created gives the reasoning behind this exploitation. The 
first version of Trifecta the evolved machines will play (CDD)*. The initial 
cooperation move ensures that the machine does not enter the always-defect 
loop. Looking at the path (1,3,2), there is a D/C response used to determine 
TFT which allows an opponent to defect twice while the opponent responds 
once. The evolved machine is harmed once for the ability to do harm twice. 
The second version of Trifecta does not contain this loop making it robust 
against new opponents.

10.5.3 Expanded Agent Set

The outcome of the second experiment showed interesting properties of MAG­
net. It exhibited both the ability to find the relative difficulty of a problem 
and correlation between problems.

Fig. 10.3 shows the number of non-empty sub-population nodes in the 
final state of the MAGnet system after the agents have finished sorting the 
problem cases. Note that as the number of states used in the finite state 
machines increases the number of sub-population collapses increases. Larger 
machines are able to model and defeat more complex collection of players. We 
would expect them to have more general solutions which the sub-population 
collapses detect.

Fig. 10.4 shows the overall associations found via MAGnet. In Fig. 
10.5 the association is shown for a majority, or at the 6th level. Fig. 10.6 
shows the much stricter correlation of having ten of both problems are on
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the same node; the 10th level. We will now examine these associations for 
the remainder of this section.

The various modifications of Tit-for-Tat are highly correlated via MAGnet 
forming a noticeable square in all of the visual representations. They also 
form a visible association with the Fortress types. Those playing a TFT 
like style will defect the requisite number of times and will exploit a single 
cooperate returned by the Fortresses.

Psycho and Always-cooperate show an association. Both are highly ex­
ploitable by a defector; ALLC and PSYCHO is beaten optimally by ALLD. 
ALLD to a lesser extent shows that it is close to these problems in terms 
of solution for this reasoning. The Fortresses group also is connected with 
ALLD when the number of states is higher.

The TFT group is not linked to ALLD as they are able to defend against 
defection and best scores against them come from being cooperators. This 
would imply that ALLC would be closer to this group. However, ALLC 
being highly exploitable proves the difference and it is not grouped with 
the retaliating TFT. An optimal player against the TFT group will want to 
cooperate and not be able to fully exploit a cooperator.

Fortress-5 requires five states to represent and, as such, it does not asso­
ciate well with other problems until the number of states in the machine is 
increased to six. For two states the machine only correlates with Fortress-4, 
which is also not able to be represented in two states. It is an example of 
a hard problem being found with the use of the MAGnet system. None of 
the populations will wish to work on such a problem and therefore there is 
no reason for it to be moved. The initial scattering remains till the end of 
the run. This effect is not as visible looking at lower association levels but 
becomes apparent as the level increases or when the number of states in the 
machine is increased. While Fortress-4 and 5 both would seem to act as a 
ALLD given a low number of states, the machines giving the classification 
are penalized due to the normalization of the fitness. This allows MAG-
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net to differentiate between functionally different yet observationally similar 
machines.

Fig. 10.4 provides an overall look of the classification as discovered via 
MAGnet. This account closely shows the same divisions that are found via 
other existing techniques such as finger printing[3][2]. This shows that the 
technique of MAGnet is doing well at making classifications between the 
various player types and should be expanded for other agent types. We 
have seen that MAGnet gives a classification to the problem instances via 
the creation of players. It uses the experiences of all of these players to 
move about the problem instances and classify. If we look into the output 
players on each node we notice the most fit on a node is a good suboptimal 
approximation for the problem instances on that node. We are classifying 
and solving using the same method.

10.6 Trials on Graphs

10.6.1 Experimental Settings

It is assumed the reader has some familiarity with graph theory. This section 
gives only a short review of the necessary properties to understand the results, 
see [47] for a good reference. A simple graph G(V, E) is a non-empty set V 
of vertexes or nodes and a set E of unordered pairs of elements of V, called 
edges. Two distinct nodes, iq and v?, are said to be neighbours if (iq, v2) G E. 
The number of edges in E which contain a vertex is called the degree. A 
graph is connected if there is a pathway via the edges from any vertex to 
any other vertex. The graphs selected are all connected graphs with thirty- 
two vertexes, hence, the examination is on the type of connections, and not 
on the number of nodes. Two values are examined to measure the graphs’ 
connections: regularity and diameter. If all vertexes in a graph have the 
same degree it is said to be regular. If the common degree of a graph is k, 
then the graph is said to be k-regular. The diameter of a graph is the largest
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number of edges in any shortest path between any of the vertexes. It can be 
considered as the shortest path along the graph.

Fig. 10.7 presents the five graphs used for the experiments. The least 
connective is the Cycle graph C-32. This graph has a regularity of 2, the 
lowest, and a diameter of 32, the highest. Also selected are two Petersen 
graphs, P-(16,l) and (16,5). P-(16,l) is a two-cycle graph of size sixteen 
with a connection between each of the nodes in the outer cycle with the inner 
cycle. P-(16,5) similarly has two connected groups, the first is a cycle graph 
of sixteen nodes, the second inner graph is also a cycle but with each fifth 
vertex connected. Hence P-(16,l) and (16,5) both have the same regularity 
of 3, however, their diameters are 9 and 6 respectively. The hyper cube of 
dimension five, H-5, has a regularity of 5 and a diameter of 5. The final 
graph selected is the complete graph of thirty-two vertexes, K-32, which acts 
as the baseline as K-5 was used in the previous work. K-32 has the highest 
regularity of the selected graphs, 31, and lowest diameter with 1.

A population of three times the number of nodes, i.e. ninety-six, was 
created of finite state machines represented by their transition tables. These 
evolving agents are initialized at random, and distributed about the nodes at 
random. The agents have a space of 6 states, which is not enough memory 
to overcome the hundred rounds in the game. Evolution takes place when an 
agent moves to a new node. The chance to move an agent was set to 100% and 
the chance that an agent takes a problem instance to their new location was 
set to 50%. A tournament selection which compares two randomly selected 
agents on a node and returns the more fit of the pair was used as the selection 
mechanism. The operations of crossover and mutation are always applied if 
there is a breeding step. The MAGnet is run for one-hundred replicates. 
Thirty-two problem instances of each type of IPD player where randomly 
distributed around the graph. This is in order to show that the associations 
provide a true sorting and not variations caused by random chance.
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10.6.2 Canonical Agents

In almost all cases for the complete graph there is a collapse to a single node 
of all problem cases. There is no ability for MAGnet to separate this graph 
into disconnected sub-graphs; problems all can drop to the single node and 
Trifecta can emerge. This differs from the test made on the graph K-4 which 
found that it would always collapse onto a single node. This is in part due 
to the size of the graph of thirty-two nodes rather than five which allows 
for a greater chance of two or three nodes spliting the space. Note that the 
outcome on the main diagonal is as expected, a high relation of a node with 
itself. Looking at H-5 we see that it classifies each of the agent types into 
their own node. It allowed for a full separation between the nodes. Looking 
at the individual runs for H-5, small families of just TFT, ALLC, and ALLD 
nodes occur. In a few cases nodes join TFT and ALLC, the nice players, 
with ALLD going off to its own nodes. The levels of TFT on such nodes are 
always slightly higher than the ALLC in order to prevent the ESS from being 
disrupted. As an evolutionary algorithm does not require a replacement if 
the score is strictly higher, both TFT and ALLC will score the same against 
a nice opponent. This forms a random walk on the levels of TFT and ALLC 
which can be exploited over the population by a ALLD. This explains the 
darker links between them and the darker main diagonal between K-32 and 
H-5.

For the cycle graph and the two Peterson graphs there is no informative 
association produced via MAGnet. The reason for this is the properties of 
sub-population collapse based on the regularity and degree of the graphs in­
volved. All of these graphs have a low regularity. If a node loses all of its 
problem instances, which will probabilistically be likely to happen given the 
types of agents, then it is in effect removed from the graph; the node has 
the worst possible fitness score and no agent would choose to move to that 
location. A node undergoing such a collapse reduces the degree of all neigh­
bouring nodes, and given a few of these nodes occurring will break down
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the graph into a number of disjoint subgraphs. These subgraphs will then 
independently sort the instances given the agents and instances in each sub­
graph. When a graph is fully connected or has a high regularity, their is little 
chance of such a disjoint graph occurring. Hence, we see more association as 
the nodes removed do not change the graph’s connectedness.

Looking at individual runs in the first experiment, however, tells an in­
teresting story when it comes to why these associations are not available. 
Looking at the results for the Peterson and Cycle graphs, a large number of 
nodes still have problem instances, but these nodes are all of a distance of two 
or more away of any other node with problems. That confirms the idea of a 
breakdown in the graphs via the sub-population collapse. On the individual 
remaining nodes there is a large number of a few problem instances of the 
same type, and usually one or two with a more sizable amount of all the types 
in a close to equal proportion. This seams to imply that Trifecta has been 
created on the large nodes and has drawn them together. However, other 
nodes have been ‘stranded’ as all of their neighbours flood into them. The 
diameter plays a smaller role in this than the degree of regularity. There are 
a few cases in which neighbours stay joined with problem instances. Those 
problem instances are for the most part the same type of player. This would 
develop an equilibrium in which the agents would either not move as both of 
the nodes are equally fit, or in the case of having a single difference, would 
mutate into each other creating an oscillation of agents and problem cases 
between the two nodes.

As an additional test of the system, the number of problem instances 
was doubled to sixty-four and the accepted level of association was halved to 
25% before the Peterson graphs and the Cycle graph displayed the ability to 
classify the problem instances. This is demonstrated in Figure 10.9.
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10.6.3 Expanded Agent Set

The second testing set shows very similar properties for each of the graphs 
as shown with the smaller canonical set. Looking at the levels of association, 
Fig 10.10, the complete graph K-32 presents an outcome which is close to 
K-4, though it highlights more hard connections between the two, due to the 
greater number of nodes. It cleans out some of the noise seen in K-4, due to 
random chance fluctuations of being placed on the same graph. H-5 shows 
a cleaner separation than K-32 on some of the agent types. For example, 
there is a very stark difference visible between 2TFT and TF2T/TFT via 
the H-5 graph not seen in K-32. This is interesting as there is a method of 
exploiting 2TFT by making a defection on every other move. This ability for 
exploitation is not seen in TF2T or TFT. PSYCHO is also separated more 
from ALLD, and ALLC and ALLD are more separated.

The fortresses stand alone, being not even associated with themselves. 
The handshaking strategies seem to be more resistant to being discovered by 
this behavioural technique of classification. Seeing as how they were orig­
inally discovered via a deep evolution, and they protect their behaviours 
closely, this is not surprising that MAGnet is having a hard time associating 
them to themselves. An agent would have to learn the hidden secret hand­
shake in order to score. This was perhaps easier on a smaller graph than the 
thirty-two nodes presented to the agents in this case.

Looking at the higher diameter graphs, again the associations move to 
nothing. This is most likely due to the sub-population collapse effect cutting 
the graph into disjoint subsets which will be unable to properly provide a 
classification. Looking at the individual runs confirms this, as the nodes have 
been cut off from their neighbours. The cycle graph seems to show the most 
chaos in how it is sorted after the run. The runs in general show that the 
fortresses are being classified with each other and themselves but they are 
very likely to be on small disjoint nodes with only a few of them. This could 
be due to long deep evolution required, and the strategy for playing against
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them not easily emerging.
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2
3

(b) Type B

If C

C— 2
I)— 3

If D
I)— 2
I)— 1
C—2

D
If D

I)— 2
I)— 2
C— 2

Figure 10.2: Trifecta agent types. Note the difference in the final state 
between returning and a TFT like state. The first can be exploited by a play 
of (CDD)*, the second will drop into the TFT state and is more defensive.
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States Non-Empty 
sub-p opulations

States Non-Empty 
sub-p opulations

2 1 3 2 1
2 96 4 2 91 9 0
4 71 29 4 30 53 17
6 64 36 6 20 57 23

A) 2 Nodes (b) 3 Nodes

(c) 4 Nodes

States Non-Empty sub-populations
4 3 2 1

2 85 15 0 0
4 13 32 44 11
6 4 21 52 23

Figure 10.3: Study of the sub-population Collapse Effect. Number of non­
empty sub-populations remaining (nodes with problem instances) at end of 
evolution for a beginning number of initial nodes.

FORT3
TFT ALLC

FORT4
_ > 2TFT

PSYCO
FORT5 _ ?

ALLD TF2T
\__ J

Figure 10.4: Associated groups found by MAGnet
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ALLC 
ALLD 
TFT 
2TFT 
TF2T 
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FORT3 
FORT4 
FORT 5

ALLC 
ALLD 
TFT 
2TFT 
TF2T 
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FORT3 
FORT4 
FORT 5

(a) 2 Nodes, 2 States (b) 2 Nodes, 4 States
ALLC 
ALLD 
TFT 
2TFT 
TF2T 
PSYCHO 
FORT3 
FORT4 
FORT 5

ALLC 
ALLD 
TFT 
2TFT 
TF2T 
PSYCHO 
FORT3 
FORT4 
FORT 5

(c) 2 Nodes, 6 States (d) 3 Nodes, 2 States
ALLC 
ALLD 
TFT 
2TFT 
TF2T 
PSYCHO 
FORT3 
FORT4 
FORT 5

ALLC 
ALLD 
TFT 
2TFT 
TF2T 
PSYCHO 
FORT3 
FORT4 
FORT 5

(e) 3 Nodes, 4 States (f) 3 Nodes, 6 States
ALLC 
ALLD 
TFT 
2TFT 
TF2T 
PSYCHO 
FORT3 
FORT4 
FORT 5

ALLC 
ALLD 
TFT 
2TFT 
TF2T 
PSYCHO 
FORT3 
FORT4 
FORT 5

(g) 4 Nodes, 2 States (h) 4 Nodes, 4 States
ALLC 
ALLD 
TFT 
2TFT 
TF2T 
PSYCHO 
FORT3 
FORT4 
FORT 5

(i) 4 Nodes, 6 States

Figure 10.5: Number of Associations at the 6th Level where White is 100/100
and Black is 0/100
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FORT3 
FORT4 
FORT 5

ALLC 
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FORT3 
FORT4 
FORT 5

(c) 2 Nodes, 6 States (d) 3 Nodes, 2 States
ALLC 
ALLD 
TFT 
2TFT 
TF2T 
PSYCHO 
FORT3 
FORT4 
FORT 5

ALLC 
ALLD 
TFT 
2TFT 
TF2T 
PSYCHO 
FORT3 
FORT4 
FORT 5

(e) 3 Nodes, 4 States (f) 3 Nodes, 6 States
ALLC 
ALLD 
TFT 
2TFT 
TF2T 
PSYCHO 
FORT3 
FORT4 
FORT 5

ALLC 
ALLD 
TFT 
2TFT 
TF2T 
PSYCHO 
FORT3 
FORT4 
FORT 5

(g) 4 Nodes, 2 States (h) 4 Nodes, 4 States
ALLC 
ALLD 
TFT 
2TFT 
TF2T 
PSYCHO 
FORT3 
FORT4 
FORT 5

(i) 4 Nodes, 6 States

Figure 10.6: Number of Associations at the 10th Level where White is
100/100 and Black is 0/100
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(d) Hypercube of Dimen­
sion Five — H-5

(e) Example Fully Connected 
Graph — K-16 (Used is K-32)

Figure 10.7: Graphs used for the MAGnet experiments from least to most 
regularity

ALLC 
ALLD 
TFT

(a) C-32 (b) P-(16,l) (c) P-(16,5) (d) H-5 (e) K-32

Figure 10.8: Association at the 50% level (16-problem instances on the same 
node out of 32) for the set of canonical agents: ALLC, ALLD, TFT.
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ALLC 
ALLD 
TFT ■ 00

(b) P-(16,l) (c) P-(16,5)

Figure 10.9: Association at the 25% level (16-problem instances on the same 
node out of 64) for the set of canonical agents with increased number of 
problem instances.

ALLC 
ALLD 
TFT 
2TFT 
TF2T 
PSYCHO 
FORT3 
FORT4 
FORT-5

ALLC 
ALLD 
TFT 
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TF2T 
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FORT3 
FORT4 
FORT-5

ALLC 
ALLD 
TFT 
2TFT 
TF2T 
PSYCHO 
FORT3 
FORT4 
FORT-5

(a) C-32 (b) P-(16,l)
ALLC 
ALLD 
TFT 
2TFT 
TF2T 
PSYCHO 
FORT3 
FORT4 
FORT-5

ALLC 
ALLD 
TFT 
2TFT 
TF2T 
PSYCHO 
FORT3 
FORT4 
FORT-5

(c) P-(16,5)

(e) K-32

(d) H-5
ALLC 
ALLD 
TFT 
2TFT 
TF2T 
PSYCHO 
FORT3 
FORT4 
FORT-5

(f) K-4, 6 states

Figure 10.10: Association at the 50% level (16-problem instances on the same 
node out of 32) for the five graphs using the second larger set of agent types. 
Presented in 10.10(f) is K-4 with 6 states from the previous work to allow 
for comparison tool. Settings for K-4 can be found in [21], and differ from 
these tests.



Chapter 11

Dominators

The results from this chapter were first presented in Domination in Iterated 
Prisoner’s Dilemma [26].

11.1 Evolutionary Stable Strategies

Evolutionary Stable Strategies [75] have been shown not to be stable for 
a number of evolutionary algorithm populations [42] [39] [12]. This failure is 
most notably caused by the evolutionary algorithms having finite population, 
compared to the infinite expansion required for the determination of an ESS. 
Also ESS only allow for an organism to persist if it has a strictly higher 
fitness than the others in the population. However, the majority of EAs 
allow for those which are equally fit to persist in the population. Dominators 
are an alternative description of the properties which an ESS is trying to 
model, which can be used when the assumptions required to have an ESS 
fail. Dominators will present given a finite population of a set of agents, 
where the evolution tend towards.

f36
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11.2 Domination

We now begin our look at the idea of domination starting with the definition. 

Remark 11.2.1. Let v(S,T) denote the average value a finite state strategy 
S receives playing against a set of finite state strategies T for an indefinitely 
long number of iterations.

Definition 11.2.2. A finite state strategy S is a dominator of a set of finite 
state strategies T, denoted by Q(<S, T), if and only if there does not exist a 
finite state strategy S' such that:

v(S,T) < v(S',T)

Definition 11.2.3. A finite state strategy S is a self dominator if and only 
if Q(5,5).

Definition 11.2.4. A finite state strategy S is nice if and only if S never 
defects first.

Note that unlike classical dominant strategies, there is no concept of a 
strict dominance. Dominators in finite state machines are in actuality a po­
tentially infinite set, which can be described as an equivalence class with a 
minimal machine. Note that some areas of these machines may not be ac­
cessed by those dominated. However, it could be exploited or allow exploita­
tion of other machines. For example, O(ALLC,TFT) and Of TFT, TFT) 
implies that in a world consisting of only people playing TFT a cooperator 
can exist harmoniously as ALLC is indistinguishable in terms of behaviours. 
Yet, ALLC is the most exploitable player type, as no matter how many times 
you stab it in the back it will continue to cooperate. TFT never exploits oth­
ers and therefore, it will ignore large areas of functionality of another nice 
player. This property becomes useful when we wish to define behaviours. 
The set of all dominators can be represented by grouping equivalent domina-
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tors of a given set of strategies into an equivalence class which is represented 
with a single machine with a minimal number of states.

This idea of a dominator allows for a formalization of properties which a 
IPD playing finite state machine can have. Axelrod’s idea of nice is easily 
represented as the set of all dominators of the singleton set of Tit-for-Tat. 
Note that we assume scores are those resulting after a large number of plays, 
effectively the asymptotic score.

Theorem 11.2.5. A state strategy S is nice if and only if S is a dominator 
of the singleton set containing Tit-for-Tat.

Proof. Tit-for-Tat is nice but will defect given a single defection. If S is a 
nice strategy then it will receive C in each round playing TFT. If S is not nice 
it will defect receiving T; it may then at some point return to cooperation 
receiving S. As T + S < 2C and D < C this is not optimal and it cannot 
be a dominator. Otherwise, S defects forever at a certain iteration. Then S 
and Tit-for-Tat will at least tie on round (a? J since the first defection where:

T + (x-l)D = xC (11.1)

On the (a? J + 1 round it receives D. As D < C the machine plays non 
optimally on the (a?J + 1 round and beyond and cannot be a dominator. 
Therefore, the only dominators are nice. □

This proof is interesting beyond giving a formation for nice. It shows 
that the payoff values for finite state machines matter in terms of the domi­
nators which will be expressed. This gives a gives a rigourous foundation for 
investigation of the empirical findings by Ashlock and Kim [4] that changes 
to the payoffs will result in differing final sets of agents being created. In a 
co-evolutionary algorithm of IPD agents, a single member of the population 
will have a high fitness by creating the dominator of the current population.
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By changing the payoffs there may be a change in dominators, which leads 
to differing final populations dependant on payoff.

As we have the property of nice we can also imply the existence of and 
give a formalization for anti-nice.

Definition 11.2.6. A finite state strategy S is anti-nice if and only if S 
never cooperates first.

Theorem 11.2.7. A finite state strategy S is anti-nice if and only if S is a 
dominator of the singleton set containing Always Defect.

Proof. Always Defect is anti-nice as it will never cooperate. If S is anti-nice 
it will score D on each round of play. Otherwise, S will cooperate during a 
iteration and score S. As S < D it cannot be a dominator of Always Defect 
and the only dominators of Always Defect will hence be anti-nice. □

These proofs give examples as to how the notion of dominator can be 
used in order to formalize behavioural concepts of IPD agents in a single 
mathematical framework.

11.3 Domination of Common Agents

The set of {ALLC, ALLD, TFT} is dominated by Trifecta (Fig. 10.2). 
This player type has some interesting properties. Trifecta while a domina­
tor, is not a self dominator and will act as a ALLD when playing itself. 
Further, D(Trifecta,ALLD) so it is anti-nice. Note that it not true that 
Of Trifecta, TFT) or Q(Trifecta,ALLC), showing the existence of a Domina­
tor of a set which does not dominate the singletons.

While both types will solve the problem of dominating the given set, 
interesting is the two final structures. In the Trifecta type B (Fig. 10.2(b)) 
state 2 is a sink and plays the strategy of TFT. It is therefore more robust 
when meeting an opponent not within the dominated set. Examining the
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Type A (Fig. 10.2(a)) version of Trifecta the dominating machines will play 
(CDD)*. The initial cooperation move ensures that the machine does not 
enter the always-defect loop. Looking at the path (1,3,2), there is a D/C 
response used to determine TFT which allows an opponent to defect twice 
while the opponent responds once. It is harmed once for the ability to do 
harm twice. The Type B has a dominator of TFT and not containing this 
loop makes it robust against new opponents which it has not encountered as 
it will play a TFT.



Chapter 12

Conclusions

12.1 Discussion

K-models, a generalization of the K-means algorithm, is a starting point for 
partitioning regression, that is the ability to classify using models to fit a set 
of data. K-means has shown itself to be a widely used in a variety of areas 
for clustering data types, making it a good method to generalize. Where 
a different statistically model is known, K-models gives a more meaningful 
representation and model to the data. However, where the model is not 
immediately determinable, evolutionary methods can provide a solution to 
the issue of breaking down a set of data via a meaningful set of models.

With this end in mind, two novel EAs have been developed, Multiple 
Worlds and Multiple Agent Genetic Algorithms. Both have the ability to 
make classifications for partitioning, regression, and model discovery. There 
use in modeling regressions has developed into partitioning regression which 
uses regression in order to act as a mean of partitioning. There intended use 
in bioinformatics has produced results. In modeling of demographics there 
has been an examination of a pedagogical example, with a more detailed 
model this could provide useful in real world applications. Finally, they 
provide interesting divisions of game playing agents, and have discovered 

141
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new agent types, such as Trifecta.
The creation of these algorithms have lead to the rethinking of a variety of 

issues in Game Theory leading to a new formalization known as Dominator 
Theory. It allows for a better formalism of a number of known properties 
in IPD, such as nice. It does not make assumptions about the population 
of the system being infinitely large and expanding, problems which preclude 
the use of ESS for analysis of evolutionary algorithm populations.

The process of sub-population collapse shows itself to be a valuable pro­
cess for the discovery of the number of categories within a data set. This 
is especially evident when there is not a direct error reward as used in the 
MWM v. GA comparison. In cases such as the HLA motif finding, the dif­
ference between having a good classifier is achieved by using a number of 
classes is one more than the actual. The addition of this extra class provides 
a similar benefit as the error term. Both error terms and extra classes for 
the populations not only to be just better than the other populations, but 
also better at the problem. The error term is an explicit requirement of a 
need to do well on the problem, the extra population is an implicit method 
which forces the populations to hold onto their own niches of the data. This 
extra class, however might be a subset of a class in the system.

12.2 Future Directions

12.2.1 Multiple Model Representations

K-models has only been examined in cases where there is the same model for 
each group. The algorithm tests off all points on their error to a model, then 
adjusts each model independently. Hence, there is no limitation on having a 
single model represent the data. A combination of models could be applied 
when there is known statistical differences. This also has implications for 
MWM having multiple representations.

Again, the type of model has been set as static between the populations
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for MWM. There is no transfer of genetic material between the populations, 
only a test of fitness between them which amounts to an objective function. 
If we can give the same objective function or at least a fairly compaired 
objective function, then there is no limitation on having each population 
having the same representation. Multiple different representations could be 
attempted, and if the number of representation times was larger than the 
number of classes in the data they could represent, then there is an implicit 
test on which representation is better on the data using sub-population col­
lapse as a discriminator.

MAGnet, as there is genetic transfer between members would be more 
difficult to incorporate a change in the model. However, if the crossover 
operation is removed or limited to models with the same representation, 
treating each representation like a species, or only mutation is allowed, such 
as seen in ES and EP, then it would be possible to have multiple models 
moving about the network, sorting problem instances.

12.2.2 MWM Collapse Analysis

We have looked at some of the properties of a collapse in MWM and how 
it allows in many cases for a suitable number of partitions to be found. 
Expansions should be made in order to allow the algorithm to automatically 
rest art/diverge when there is too powerful a collapse event, such as only 
having a single population take all of the points with a model of high error. 
This would be an explicit creation of a new species where there is a niche 
available. Further, analysis of resultant classifiers should be automated or 
formalized to see if a collapse is a result of the model or just a fluke. For 
motif Ending we found motif classified which were subclassifications of other 
good motifs. Note that the degenerate motifs have a structure which makes 
such sub classifiers likely, each loci forms a poset under the ‘or’ relation, so 
such issues are representation dependant.
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12.2.3 Cooperative Coevolution with MWM

MWM to this point has been used for the evolution of interacting models 
which test their fitnesses against each other. However, a slight change can 
be made for a co-evolutionary version of MWM which would allow for a 
design with multiple cooperating parts — a shared fitness for a world. Each 
of the model segments would evolve based on a fitness evaluation, yet the 
interactions with the other parts would have an implicit effect on the direction 
of the evolution. Unlike a chromosome with multiple loci, the loci being 
evolved separately avoids some of the issues of genetic draft, where an allele 
may increase its frequency by being connected to a gene which is undergoing 
a positive selection, as seen in the MWM v. GA exercise.

For example, an artistic application of such a model would be the creation 
of fractals with iterative applications. Feeding the output of an escape value 
from a fractal into another fractal equation produces a iterated fractal. Each 
of these fractal equations would be an evolving population, and the combined 
fitness of the world, determined by an objective fitness evaluation based on 
the final escape values, would be given to each of the segments. This is a 
cooperative rather than competitive use of the system.

12.2.4 Error Transform

The creation of regressors can allow for the classification of harder data sets. 
Once regressors are chosen, they can be used to perform an error transform. 
This transform maps a data point to the vector of the modeling error of 
multiple regressors on the data point. The transformed data should (i) be 
often far more separable than the original data, (ii) be coerced to have a 
higher or lower dimension, depending on the application, (iii) permit a simple 
classification of new data points that did not participate in selection of the 
regressors. Industrial process data is one possible real world application for 
such techniques.
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12.2.5 Motif Finding and Biological Data

Previous application of the MWM to motif finding centred on the discov­
ery of motifs in biological data. It has been found that models taking into 
account short substring motifs were found more often than those with a re­
verse complement. This is due to the representational problems of using the 
chromosome of a degenerate motif expression. Representation of a motif in 
an evolving structure will need to be examined further in order to allow the 
system to examine such sequences. Such use of different representations may 
allow for a better final classification via an error transform.

In terms of biological data an application can be seen in the classification 
of sequences in tetrahymena. This organism is an eukaryotic ciliate. One of 
the most interesting biological features of this model organism is the exis­
tence of a nuclear dimorphism — that is, it has two cell nuclei, one of them 
being a MAC (macronucleus) created as somatic expansion, decompression, 
of a small germline MIC (miconucleus). Both have great structural and ge­
netic differences. During the expansion of a MIC into a MAC, two types of 
sequences are present: internal eliminated sequences, which are removed and 
are not present in the MAC, and sequences which code for the MAC.

12.2.6 Dominator Theory

Dominator theory should be expanded to discover other properties which can 
be defined by a optimal player. Further, the current dominators looked at 
have been based on a single agent against a set of agent types. This could be 
generalized to a single agent against a multiset, or a set of agents against a 
set. Further, dominators are now defined on an average score over an infinite 
game. As is seen in the proof about dominating TFT, the payoffs based on 
the number of rounds for which game runs can affect the outcome of what is 
a dominate strategy. A generalization to dominators could take into account 
games of a finite number of moves k, which would be called a fc-dominator.
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12.2.7 Other Matrix Games

IPD has been the focus of this study as it is a well known matrix game. 
However, a wide variety of matrix games exist, and in general few have been 
examined for strategic player types such as Tit-for-Tat or Fortresses in IPD. 
Such games as Hawk-Dove, Chicken, or Rock-paper-scissors(-lizard-Spock), 
etc. when played iteratively may have interesting properties and players. 
Both MAGnet and Dominator Theory could be applied in the search for 
player types and the determination of their behavioural properties.
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Appendix A

Proof that Self-Driving FSMs 
can create non-regular 
languages where output 
symbols are multiple input 
symbols

Lemma A.0.1. A language is regular if and only if there exists a determin­
istic finite state machine (FSM) which accepts the language.

See [56] for proof.

Theorem A.0.2. A self-driving finite state machine allowing for the output 
of more than one symbol can create non-regular languages.

Proof. We will prove via contradiction using Lemma A.0.1. Take the self­
driving machine defined by Q = {^o}, I = {C, G}, Z = {C,GG}, 5 = 
{(qo,C) = q0,(q0,G) = q0}, and w = {(q0,C) = GG,(q0,G) = C}, with 
initial state qo and input string C. See Figure A.l for the state machine 
diagram.
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C/GG, G/C

Figure A.l: A single state self-driving machine with multiple outputs which 
creates a non-regular language as an output.

This creates a string G2C2G22C22G23C23... G2k C2k ... where k is a pos­
itive integer. Assume there exists a deterministic finite state machine which 
can recognize this string. This machine requires the FSM to count a string 
of Gs and then Cs of length 2k. As k tends to infinity, then it would have to 
count an arbitrarily large string, which would require more than any finite 
number of states. As a FSM has finite states there exists a contradiction 
based on the definition of a FSM. Hence, no such machine can exist. As no 
FSM can recognize this string, then the language created by this self-driving 
FSM must be non-regular as per the contrapositive of Lemma A.0.1. There­
fore, there exists a non-regular language created by a self-driving FSM. □

It is interesting that this self-driving machine is of only one state, hence 
extremely simple in terms of the number of unique stings it can produce, 
yet it would require an infinite number of states to recognize. However, if 
a non-deterministic machine was allowed to take multiple input symbols, as 
inputs, then self-driving machines could be recognizable by a finite number 
of states.
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