
Hindawi Publishing Corporation
Applied Computational Intelligence and Soft Computing
Volume 2010, Article ID 409045, 19 pages
doi:10.1155/2010/409045

Research Article

Adaptive Representations for Improving Evolvability, Parameter
Control, and Parallelization of Gene Expression Programming

Nigel P. A. Browne and Marcus V. dos Santos

Department of Computer Science, Ryerson University, ON, Canada M5B 2K3

Correspondence should be addressed to Nigel P. A. Browne, nbrowne@acm.org

Received 15 September 2009; Revised 6 December 2009; Accepted 11 February 2010

Academic Editor: Oliver Kramer

Copyright © 2010 N. P. A. Browne and M. V. dos Santos. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Gene Expression Programming (GEP) is a genetic algorithm that evolves linear chromosomes encoding nonlinear (tree-like)
structures. In the original GEP algorithm, the genome size is problem specific and is determined through trial and error. In
this work, a method for adaptive control of the genome size is presented. The approach introduces mutation, transposition,
and recombination operators that enable a population of heterogeneously structured chromosomes, something the original
GEP algorithm does not support. This permits crossbreeding between normally incompatible individuals, speciation within a
population, increases the evolvability of the representations, and enhances parallel GEP. To test our approach, an assortment of
problems were used, including symbolic regression, classification, and parameter optimization. Our experimental results show
that our approach provides a solution for the problem of self-adaptive control of the genome size of GEP’s representation.

1. Introduction

Evolutionary computation (EC) is a machine learning
technique that uses processes often inspired by biological
mechanisms to obtain a solution to a given problem.
Applying an EC algorithm to a problem begins by defining
how potential solutions are represented, which is known
as the problem representation. A problem representation
is defined by the type of input data (the Terminal Set)
used to generate a solution, the desired number, and types
of outputs and the operations (the Function Set) used to
transform the inputs into the output values. An important
step in applying an EC methodology to a particular problem
is the specification of parameters that define the problem
representation and control the algorithm. Finding appropri-
ate parameter values that yield satisfactory results usually
requires carefully developed heuristics or expert knowledge.
In EC algorithms, the concept of a population of candidate
solutions, or individuals, is used to represent a pool of
possible solutions to a particular problem. The encodings, or
genomes, used to represent a solution vary depending on the
EC methodology. It can be as simple as binary code, or as
complex as a full fledged programming language. The Gene

Expression Programming (GEP) algorithm [1], developed by
Candida Ferreira, is an EC algorithm which uses separate
encodings for the genotype and phenotype.

This work introduces novel enhancements to the Gene
Expression Programming (GEP) algorithm that enable flexi-
ble genome representations, endow self-adaptive characteris-
tics, increase the diversity within a population, and enhances
the parallelization of the algorithm. The following issues are
particularly relevant to the work presented here.

(1) Evolvability. The structure of the problem represen-
tation does not vary during a run, as it is restricted
to the initial values for the head domain length and
number of genes. This constrains the algorithm to
narrow bands of exploration and reduces its ability
to produce meaningful change or a paradigm shift
within a population.

(2) Crossbreeding and Speciation. In GEP, genetic opera-
tions and transformation are restricted to identically
structured genomes, preventing different species, or
disparately structured genomes, from evolving and
competing within a population.



2 Applied Computational Intelligence and Soft Computing

(3) Distributed Evolution. Parallelization is restricted by
the inability for disparate populations to interact,
slowing the exploration of the search space.

(4) Parameter Tuning and Self-Adaptation. The GEP
algorithm lacks a self-adaptation mechanism and
thus requires additional time and resources to sys-
tematically evaluate different control parameter sets
and subjecting the algorithm to operator biases.

To address the evolvability of the problem representation,
we developed two new operators to permit the structure
of the GEP genome to be changed during a run. We call
these new operators the Adaptive Chromosome Size (ACS)
Mutation operator and the Head Insertion Sequence (HIS)
Transposition operator.

The problems of speciation and genome interactions
between disparately structured individuals were solved by
replacing the canonical GEP recombination operators with
modified versions that permit dissimilarly structured indi-
viduals to interact.

From the beginning of our explorations we wanted
to improve the performance of the GEP algorithm when
distributed. We quickly realized that transferring individuals
between separate GEP populations was severely limited
by the inability for structurally different individuals to
recombine. This issue was eliminated by the introduction of
our modified recombination operators.

Finally, to enable parameter tuning in the GEP algorithm,
we designed our HIS and ACS mutation operators to
eliminate the two critical parameters of the GEP algorithm:
the head size and the number of genes. Additionally, the HIS
and ACS mutation operators were designed to permit the
algorithm to self-adaptively tune the optimal chromosome
structure.

Our proposed methodology was empirically evaluated
using an assortment of problem classes and complex-
ity levels. Symbolic regressions evaluated were kinematics
problems, a series of polynomial regressions, and the
“Sunspot Problem”. The classification problem tested was
the LiveDescribe dataset from the The Center for Learning
Technology at Ryerson University. Finally, the effectiveness of
the proposed methodology for optimizing parameters was
evaluated using the De Jong test functions [2].

The effectiveness of the proposed changes were evaluated
by comparing the performance of the enhanced GEP algo-
rithm against the original GEP algorithm. Additionally, the
symbolic regression results were compared to the adaptive
distributed GEP algorithm developed by Park et al. [3]. The
results obtained using an application developed during the
course of this work, known as Syrah, and the results were
validated using the K-Fold method with 10 folds.

The specific contributions of this work are as follows:

(1) development of the Head Insertion Sequence (HIS)
operator to self-adaptively tune the head size param-
eter in the GEP algorithm and to enable the structure
of the individual to evolve during a run,

(2) creation of the Adaptive Chromosome Size (ACS)
Mutation operator that self-adaptively tunes the

number of genes of an individual in a GEP popula-
tion, Therefore allows the genome structure to evolve.

(3) addition of new recombination operators to the GEP
algorithm to enable structurally dissimilar genomes
to interact, therefore enabling individuals to be trans-
ferred between separate GEP populations without
any genomic structural constraints. This feature is
particularly important to parallel GEP systems, as it
permits unrestricted migration.

Following this introduction, we present the background
material related to this work in Section 2, our methodology
in Section 3, the results and discussions of our experiments
in Section 4, and finally, in Section 5, the conclusion and
potential future work.

2. Background

In this section we present the relevant existing research
that pertains to the key issues addressed by this work,
including: the canonical Gene Expression Programming
algorithm, the evolvability of the problem representation,
genome crossbreeding and speciation, distributed evolution,
parameter control and, self-adaptation.

2.1. Canonical GEP Algorithm. The Gene Expression Pro-
gramming (GEP) algorithm was first published by Ferreira
in 2001 [1]. Like other EC methodologies, GEP derives
its inspiration from biological processes and has been
successfully applied to a variety of problems [4–9].

A significant difference in GEP is the separation of
the phenotype and genotype. Many existing methodologies,
such as Genetic Programming [10] and Genetic Algorithms
[11], use a single representation for both the genotype and
the phenotype. By separating the representation, the GEP
algorithm is able to benefit from the speed of operating on a
linear genotype and the flexibility offered by the tree-based
phenotype. It also permits the physical representation to
affect the genetic code of the individual, as is found in nature.

In the GEP algorithm, each individual or candidate
program is referred to as a chromosome. Every chromosome
in the population represents a syntactically correct program,
because of the underlying nature of the chromosome’s
encoding and representation.

2.1.1. Chromosome Encoding. In GEP the genome or chro-
mosome consists of a linear, symbolic string of one or more
genes, with each gene coding for an expression tree (ET).
A gene has two well-defined, adjacent regions called head,
containing symbols that code for internal or leaf nodes of the
encoded ET, and tail, containing terminal symbols (the leaf
nodes) of the encoded ET. In canonic GEP, both the number
of genes and the head size of a gene are input parameters for
the algorithm. The tail size t is a function of the head size h,
and is determined as follows:

t = h(nmax − 1) + 1, (1)



Applied Computational Intelligence and Soft Computing 3

Gene 1

0 1 2 3 4 5 6
∗ a / a b a a

Head Tail

ET encoded
by gene 1

Gene 2

0 1 2 3 4 5 6

− ∗ a b b a b

Head Tail

ET encoded
by gene 2

Linking function
+

∗

a /

a b

−

∗ a

b b

Figure 1: Chromosome with two genes: head size 3, tail size 4.

where nmax denotes the maximum arity found in the function
set (Like in genetic programming, the function set is also a
parameter to the GEP algorithm.).

In the case of multigenic chromosomes, all ETs are
connected by their root node using a linking function. In
the GEP system presented in this work we used the addition
operator as the linking function. To illustrate, Figure 1 shows
an example of a chromosome and the respective tree it
encodes.

2.2. Evolvability. Evolvability refers to the ability of a genome
to change over time and to occasionally produce offspring
that are more effective at a particular problem (and thus
perform an effective search) [12, 13]. For evolutionary
computation, this becomes significant for representations,
such as GEP, that separate the phenotype from the genotype.
In the case of this work, we focus on the evolvability of the
structure of the genotype (the encoding of the genome). This
is particularly important in the case of GEP, since the genome
structure of the canonical algorithm is fixed throughout a
run and controlled by two problem-specific parameters.

Lopes and Weinert [14] proposed an enhanced GEP
algorithm called EGIPSYS that varied the length of the head
domain on a genome-level basis. The individuals, however,
were composed of a fixed number of equal-length genes.
This contrasts with the approach presented here, where each
individual may have any number of genes and each gene may
have a unique head length. Additionally, EGIPSYS neither
implemented the one-point recombination operator nor
introduced operators to vary a chromosome’s length. It also
restricted the operation of the gene recombination operator
to like-sized individuals. All of these issues are resolved in the
method presented here.

In an attempt to improve the evolvability of the individu-
als in GEP, Yue et al. [15] proposed a crossover strategy called
Valid Crossover Strategy which would crossover all individ-
uals in a population and create the subsequent population
from the n-best valid chromosomes. This approach seemed
to help the evolution of the solution, but not the evolution of
the structure itself.

Several different strategies for improving the GEP algo-
rithm were presented by Tang et al. in [16]. A feature of
interest that they developed was an adaptive mutation mech-
anism, which was essentially a fitness proportional mutation
rate. On an individual basis, the mutation rate applied
to a chromosome was inversely proportional to its fitness.
Thus, highly fit individuals would have a lower mutation
rate applied to them, reducing the number of potentially
disruptive changes to chromosome. Conversely, poorly fit
individuals were more likely to have significant mutation
performed on their chromosomes. The implementation
of the Adaptive Chromosome Sizing Mutation Operator
introduced in this work uses the idea of a fitness proportional
mutation rate to preferentially mutate the number of genes in
poorly fit individuals.

In this work we introduce new operators to improve
the evolvability of GEP genomes. The new operators are
the HIS transposition and ACS mutation operators, which
allow the structure of a GEP genotype to change over
time. The evolution of the genotype occurs in parallel, but
fundamentally linked, to the exploration of the search space
for a particular problem. The two evolutionary processes are
interconnected because changes in the genotype can permit
the algorithm to explore regions of the search space that may
be inaccessible to other genome structures.

2.3. Crossbreeding and Speciation. The concept of cross-
breeding and speciation embraced in this work is that
of interactions between disparately structured, but funda-
mentally compatible, genomes. The idea of crossbreeding
specifically refers to the ability for any individual, regardless
of structure (or species), to reproduce and create viable
offspring. The ability to crossbreed any individual permits a
more genetically diverse population and enabled unrestricted
exploration of the search space by the algorithm.

Speciation, on the other hand, can have several different
interpretations. In particular, it can refer to the ability for
“subpopulations” to exist within a single main population
for the purpose of “niching” [17]. Speciation and niching
has been used to promote diversity within a population,
prevent (or limit) convergence, and address multimodal
problems where different areas of the solution space require
different individuals [13]. Two methods for using speciation,
or niching, are Crowding [2] and Fitness Sharing [18].

The EGIPSYS algorithm [14] permitted different-sized
chromosomes within a population, which other systems,
such as canonical GEP, AdaGep [19], and PGEP-O [3], do
not support. However, unlike our proposed methodology, all
individuals in an EGIPSYS population were required to have
the same number of genes. This contrasts with our proposed
methodology, which supports (and, in fact, encourages)
populations consisting of individuals that have both differing
head domain lengths and gene counts.

Park et al. introduced a parallel system, PGEP-O [3],
which attempted to dynamically tune specific parameters
of the GEP algorithm. In the work, the individuals were
constrained by the genome restrictions of canonical GEP;
that is, only identically structured individuals were able



4 Applied Computational Intelligence and Soft Computing

to interact and exist within a single population or island.
This methodology was limited because the transfer of
individuals between islands, or migration, could only occur
between islands with identical gene counts and head domain
sizes. The methodology presented in this work eliminates
these constraints by creating operators that do not restrict
the interaction of genomes with fundamentally different
structures.

The contributions presented in this work enable cross-
breeding between disparately structured individuals in a GEP
population, a feature unavailable in canonical GEP. This
enables evolution of different species within a population,
and while specifically implementing niching is beyond the
scope of this work, it could be examined in the future.

2.4. Distributed Evolution. The intrinsic parallel nature of
EC can often be further exploited by distributing a given
EC algorithm. Parallelization techniques can generally be
classified by their granularity, defined as either fine grained
or coarse-grained models. Fine-grained techniques com-
monly have low computational requirements, but higher
communication needs, and are well suited for multiprocessor
systems. Coarse-grained models, on the other hand, tend to
be computational intensive but have lower communication
requirements and are better suited to discrete computational
nodes. The Island Model is a coarse-grained technique
that was introduced in [20] and has been shown to be
fault tolerant [21]. The distributed system implemented to
validate our methodology uses the Island Model.

The exchange of genetic material between islands, or
demes, is referred to as migration. The structure of the
connections between islands, or the topology, is bounded
by the cases of isolated islands (no migration) and fully-
connected (migration to all other demes) [22]. Additionally,
dynamic topologies have been suggested [23]. In addition to
the topology, the rate of migration, number of migrants, and
the migration policy control the flow of individuals between
islands [24]. One aspect of a migration policy is whether
the migration occurs synchronously (migrations occur in
specific intervals with specific partners) or asynchronously
(migrations occurred whenever a deme has a migrant to
exchange) [25]. Interested readers are directed to [23, 24, 26–
30] for more detailed information regarding migration.

The PGEP-O system [3] is another example of a parallel
GEP algorithm which used two island groups. The first island
group was a standard Island Model implementation, in
which a single population of individuals was evolved on each
island. The second island group used the first group’s island
as their “individuals” in an attempt to use a GA to optimize
the parameter settings of the island populations. Since the
two island groups were needed, PGEP-O could only operate
in a distribute mode. Additionally, since Park et al. did
not address the interaction of differing genome structures,
migration between the islands could only occur between like-
structured populations. This limited the algorithm’s ability to
explore the search space.

Lin et al. proposed a fine-grained parallel GEP system
[31] which exploited niching to improve the performance of

the GEP algorithm. Based on their reported algorithm and
data, they used a shared pool of like-structured individuals
and empirically determined the GEP algorithm’s parameter
values.

A multiobjective parallel GEP system, PGEP-AP [32],
also used the Island Model with migration. In addition to
the standard migration mechanism PGEP-AP used a separate
elitist population to store the best individuals from the
various subpopulations.

The PED-GEP algorithm introduced in [33] used a
measure of diversity to guide evolution among parallel
clients; however, the details of their parallelization lacked
further specifics.

Du et al., in [34], demonstrated a parallel GEP imple-
mentation that used Estimation of Distribution to improve
the performance of the GEP algorithm. This system used
asynchronous migration with a fully connected Island
Model; that is, each island (population) could potentially
interact with any other island.

Our approach to the distribution of the GEP algorithm
was to use a fullyconnected coarse-grained model with
random migration and to remove the restrictions placed
on the migration mechanism by canonical GEP’s inability
to support dissimilarly structured chromosomes in a single
population. By permitting unrestrained migration, popula-
tions in a parallel setting are now able to freely exchange
candidate solutions to enhance the solution quality and
diversity.

2.5. Parameter Control and Self-Adaptation. Most Evolu-
tionary Computation algorithms require a set of control
parameters, which influence the process evolution to be
configured based on the particular problem being explored.
The process of setting these parameters often requires
complex heuristics, “rules of thumb”, or specific knowledge
from a domain expert. Thus, it is desirable to automatically
tune the parameter values prior to executing the algorithm
or to self-adaptively tune the parameters during the run.

In problem solving and optimization, the impossibility
theory of “No Free Lunch” [35] has been postulated and
roughly states that without a priori knowledge of a problem
(to tailor the methodology to it) no single problem-solving
method is inherently better for all problem classes [36].
This has implications for any evolutionary algorithm and
parameter control method, especially those with attempt to
optimize the parameters prior to executing an evolutionary
run and then use static values throughout the run [37].
Additionally, it has been shown [38] that optimal parameter
values can vary throughout a single run. This implies that,
while it may be impossible to determine optimal values for
all problems and situations, it should be possible to evolve
values that are “good enough”. Additionally, it implies that
methodologies that are able to optimize their parameter
values dynamically have an inherent advantage over those
that do not.

The PGEP-O system presented in [3] approached the
issue of parameter control as a separate optimization prob-
lem that ran in parallel to the main evolutionary algorithm.



Applied Computational Intelligence and Soft Computing 5

This system used a parallel GEP implementation, using the
Island Model, to evolve solutions to the target problem
and a genetic algorithm (GA) running on a separate client
to optimize the two GEP parameters. The head size and
gene count parameters were optimized by using trial values
on each GEP island and then reporting back to the GA
parameter optimizer. This approach, while successful, suf-
fered from several issues that are remedied by our proposed
methodology. The PGEP-O algorithm required additional
resources, since the parameter optimization was a separate
calculation. Additionally, the GA optimizer had to wait for
an entire run to complete before it was able to execute
a new generation, which is problematic for long-running
evolutions.

The DM-GEP algorithm [33] introduced a dynamic
mutation rate operator in an attempt guide evolution. DM-
GEP divided the execution of a run into three stages, the
initial stage; the metaphase stage, and the anaphase stage.
Each stage was then assigned a specific mutation rate and
the mutation rate used in each generation was progressively
scaled, by a fixed amount, from one value to the next. In this
manner, the number of generations executed in a run was
directly related to the mutation rates. This approach did not,
strictly speaking, tune the mutation parameter and was not
self-adaptive, but did dynamically alter the rate and showed
improvement over the standard GEP implementation.

Bautu et al. introduced in [19] an algorithm, called
AdaGEP, for automatically controlling the number of genes
of a GEP representation. The approach involved adding to
the genome a bit array that maps each bit to a gene in the
chromosome. The bit in each position of the array indicates
if whether gene would be included in the translation to
an expression tree during the fitness evaluation. Specific
genetic operators were designed to operate on this bit array,
thus evolving an optimal mask. The AdaGEP algorithm
was limited by the fact that the total number of genes in
any chromosome could never change. Thus, there was little
benefit to using that method versus using automatically
defined functions, or homeotic genes, in GEP’s jargon, to
evolve the execution order of the genes. Additionally, the
size of individuals in the algorithm’s population could never
change, so that, even if fewer genes were required, the genetic
operators would still be performed on the full chromosome.

The work presented in [15] included a method to vary
the mutation and crossover rates during a run, based on
the Cloud Model [39]. This methodology improved the
performance of the GEP algorithm, but was only applied to
like-structured genomes.

Eiben et al. stated in their “Parameter Control in Evolu-
tionary Algorithms” survey [37] that determining successful
values for algorithm parameters in EC is a “grand challenge”
problem.

The approach to parameter control and self-adaptation
presented in this work was accomplished using multiple
techniques which work together to self-adaptively tune GEP
parameters. To tune the head domain length and number of
genes, we developed the HIS transposition and ACS muta-
tion operators. In addition to these operators, we created
new recombination operators which allowed structurally

disparate (and normally incompatible) genomes to be able
to crossbreed and create viable offspring, which permits
individuals with different head domain length and gene
count parameters to compete within a single population.

3. Methodology

This section introduces the proposed enhancements to the
GEP algorithm to address the issues identified in Section 1,
to wit the evolvability of the problem representation, genome
speciation and crossbreeding, distributed evolution, and
parameter control and self-adaptation in the canonical
GEP algorithm. The section will introduce our proposed
enhancements, the details of the implementation of the
framework used for evaluation, and the experiments used to
validate our hypothesis.

3.1. Proposed GEP Algorithm Enhancements. To address the
issues of evolvability, crossbreeding, distributed evolution,
and parameter control found in canonical GEP, our proposed
modifications to GEP include several new operators and
also modifications to the existing recombination operators.
The new operators introduced in the following section offer
solutions to the problems of evolvability and the control of
two critical parameters in GEP. The modified recombination
operators were developed to permit speciation within a GEP
population and to enhance distributed GEP populations.

The original version of the GEP algorithm required that
two critical parameters, the length of the head domain and
the number of genes in the chromosome, to be set to fixed
values prior to the execution of a run. These parameters
are generally domain and problem specific, which further
exacerbates the problem of finding “good” values (not even
particularly optimal ones) for the parameters. By developing
new operators which permit genome structure changes, we
enabled the head domain length and number of genes to be
implicitly tuned during a run. Our algorithm enhancements
also permit each gene in a chromosome to have a unique
head domain length. This extra feature enables the length of
the gene to vary, and thus the length of the function encoded
by that gene.

In addition to parameter control, our approach improves
the evolvability, or the ability of the structure of the
genome to evolve, by removing the fixed-length chromosome
restrictions in canonical GEP and allowing the number
of genes to vary during a run. Chromosome evolvability
was specifically addressed by designing the new operators
to increase the capacity of the genome for extracting and
exploiting the underlying structure of the fitness function
under consideration.

The new operators for parameter control and enhancing
evolvability are presented in Sections 3.1.1 and 3.1.2.

3.1.1. Adaptive Chromosome Size Mutation Operator. In
Algorithm 1 we present the pseudocode for the Adaptive
Chromosome Size (ACS) mutation operator used in our
enhanced GEP algorithm. The ACS operator mutates the
number of genes in a chromosome, potentially increasing or



6 Applied Computational Intelligence and Soft Computing

Data: Chromosome
Result: Mutated chromosome
begin

/∗Calculate the decay rate ∗/
decayRate = 1−(gen+maxGen∗factor)/maxGen

/∗Calculate the mutation rate,

inverse to the fitness ∗/
muP = (1-chr.Ftn/bestFtn)
/∗Adjust the mutation rate if it is

below the minimum ∗/
if muP < minRate then

muP = minRate
end
/∗Apply the decay to the mutation

rate ∗/
muP = muP ∗ decayRate
/∗Determine if mutation will occur

∗/
if RandProbability() ≤ to muP then

/∗ Randomly decide to grow or
shrink ∗/

growChromosome = DoCoinToss()
if growChromosome then

/∗Grow the chromosome by

adding a new gene ∗/
insertionPoint = GetRnd(0, chr.NGenes)
InsertGeneAt(insertionPoint)

else
/∗Shrink the chromosome by

deleting a gene, but only

if we have at least two

genes ∗/
if chr.NGene > 1 then

deletionGene = GetRnd(1,
chr.NGenes)
DeleteGeneAt(deletionGene)

end
end

end
end

Algorithm 1: ACS mutation operator pseudocode.

decreasing the total number of genes when it is applied. The
ACS operator is applied to the entire population during each
generation.

The AcsGeneMutation(· · · ) method takes a chromo-
some (chr) as a parameter and mutates it according to the
following procedure. Initially, it calculates the decayRate,
which is used to decrease the operator’s application as the
run progresses. In the decayRate calculation the factor is a
user-defined value that scales the decayRate and is set to 0.2
for all experiments. This scales the decayRate to zero for the
final 20 percent of the run.

Next, the algorithm calculates the probability of muta-
tion muP. The probability of mutation is inversely propor-
tional to the individuals fitness when compared to the best
fitness in the current generation. If the muP is less than the

user-defined minimum mutation rate, minRate, then muP is
set equal to minRate. The mutation rate, muP, is then scaled
by decayRate to arrive at the final muP value. The operator
then generates a random probability using RandProbability
() and compares it to muP to determine whether the
AcsGeneMutation will be applied to the chromosome. Next,
the operator performs a coin toss using DoCoinToss () to
determine whether a gene should be added or removed.
When a gene is added, the operator selects an insertion point,
insertionPoint, at a random position in the sequence of genes
of the chromosome.

It then calls the worker method, InsertGeneAt(· · · ),
to insert a randomly created gene at the insertion point.
When a gene is removed, the operator first verifies that there
is more than one gene (chr.NGenes) in the chromosome.
It then randomly selects a gene in the chromosome using
the GetRnd(· · · ) method and calls the DeleteGeneAt(· · · )
method to remove the gene from the chromosome.

The mutation operator always uses a step size equal to
one. Thus, it modifies a single gene in the chromosome
during each application of the operator. Alternative step sizes
were not investigated, but will be examined in future work.

3.1.2. HIS Transposition Operator. To dynamically tune
the size of a gene, we introduced a new transposition
operator called head insertion sequence transposition, HIS
transposition, for short. The transposable elements (also
called transposons) in this case are fragments of the genome,
located in the head of a gene, that can be activated and
jump to (possibly) another gene head in the chromosome.
Two features make this operator different from the canonic
transposition operators used in GEP, to wit that

(i) the transposable element is necessarily located in the
head of a gene,

(ii) during transposition the transposon is cut from the
place of origin (instead of copied, like in canonic
transposition in GEP), thus shortening the length of
the respective gene, and then inserted in the place
of destination located necessarily in the head of
(possibly) another gene, thus elongating the gene
length at the target site.

Specifically, the HIS transposition operator works as follows.
Initially the operator randomly chooses the chromosome, the
start and end sites of the transposon, and the target site.
As mentioned above, these start and end sites are located
in the head of a gene. Moreover, transposons contain at
most three elements. Next, the operator cuts the transposon
from the site of origin, making the necessary arrangements
to maintain the structural integrity of the gene. That is,
if the transposon locates in the middle of the head of a
gene, then the left and right remaining segments of the head
are concatenated, thus forming the new gene head. Next,
the operator inserts the transposon at the target site, thus
elongating the head of the gene. Notice that the gene heads
at the place of origin and at the target site have now changed;
the latter is now longer by, say, k elements, and the former
is k elements shorter. Finally, using (1), the operator adjusts



Applied Computational Intelligence and Soft Computing 7

the respective new tail sizes of those genes. If the tail requires
extra material, it is taken from the remaining genetic material
in the source gene’s tail.

3.1.3. Recombination Operators for Nonuniform Chromo-
somes. The notion of species is not present in canonic GEP,
as all chromosomes have the same structure; that is, all
individuals in a population have the same gene head size,
same gene tail size, and the same number of genes. The
possibility of different species within a single GEP population
is highly desirable feature for the parallelization of the
algorithm, particularly when using a migration mechanism
in a distributed setting. By modifying the existing GEP
recombination operators to handle genomes with different
structures, our enhanced GEP algorithm now supports
crossbreeding and speciation within both a single population
and distributed islands.

To support different-sized chromosomes created by ACS
mutation and HIS transposition operations, we created
modified versions for the one-point and two-point recombi-
nation operators used in GEP. These operators also facilitate
integrating individuals with differing genome structures (i.e.,
a differing number of genes and head domain lengths) into
a target population during migration, when distributed.
Recombination via these operators works as follows: initially
the first positions for the head and tail sections of the
two-parent chromosomes are paired (see Figure 2). Then
the crossover point (or points, in the case of two-point
recombination) is randomly chosen from the overlapping
sections of the chromosome. Then the crossover point
locates either in the head of a gene or in the tail. If it falls in
the head, then the genetic material is exchanged (the strands
swapped) at the crossover point (see Figure 2(a)). For this
case, there is no need to adjust the structure (tail size) of
the gene containing the crossover point. If it locates in the
tail of a gene, then we use the following process to exchange
the genetic material of the genes where the crossover point is
located. First we exchange the genetic material at the point of
crossover. Then, we verify that the tail sizes of the resulting
genes comply with the respective resulting head sizes. If the
tail size of a recombined gene is s elements shorter than the
allowed size, then we append to it s elements from the tail
of the other parent gene, thus making the final tail size of
the recombined gene compliant with its head size (notice the
strand added to O1 in Figure 2(b)). On the other hand, if the
tail size of the recombined gene is s symbols longer than the
allowed size, then we cut its s last symbols out (notice the
strand removed from O2 in Figure 2(b)).

The rest of genetic material is exchanged as in normal
crossover, with a caveat: for the case of GEP-RNC (GEP with
real number constants [7]), if the crossover point locates
in the tail of a gene, the genetic material in the domain of
constants (Dc) is exchanged as normal and the lengths of
the Dc domains are adjusted. If the crossover point falls in
the Dc domain, then recombination proceeds via the same
procedure used for the tails, as illustrated in Figure 2(b).
The arrays containing the gene’s real number constants are
exchanged in their entirety [40].

P1

P2

O1

O2

h

h

h

h

t

t

t

t

Crossover point

h

h

h

h

t

t

t

t

h

h

t

t

(a)

P1

P2

O1

O2

h

h

h

h

t

t

t

t

Crossover point

h

h

h

h

t

t

t

t

h

h

t

t

Symbols added
from P1

Symbols
removed

(b)

Figure 2: One-point recombination of two chromosomes, P1 and
P2, containing 3 and 2 genes, respectively; h and t denote the
head and tail portions of each gene, respectively. In Figure 2(a) the
crossover point locates in the head of a gene. In Figure 2(b) the
crossover point locates in the tail of a gene.

Analogous to GEP, our recombination operators also
produce two children from the parents, with one child having
the same length as one of the parents, and the other child
having the same length as that of the other parent.

3.2. Syrah Implementation. In this study, a parallel capable
GEP system called Syrah, which dynamically tunes the
number of genes and gene size, was developed. To test this
system, a suite of nontrivial symbolic regressions was used
and the quality of the models was benchmarked against
models obtained via a canonic GEP system and competing
methodologies.

Syrah’s system requirements differ from GEP-RNC (GEP
with real number constants [7]) in regards to the genetic
operators it uses, which are detailed in Sections 3.1.1, 3.1.2,
and 3.1.3.

In Syrah’s implementation, tournament selection with
elitism was used. Many GEP implementations use Roulette
Wheel selection, but as long as elitism is used, various
selection methods will produce equally good results [7].

When the Syrah system is operating in parallel, it uses
a coarse-grained model (or Island Model [20]) to distribute
the populations. Syrah uses the proposed genetic operators
to permit disparate genome structures to be integrated into a
given population during a migration event.



8 Applied Computational Intelligence and Soft Computing

3.2.1. Development and Runtime Environments. All com-
ponents of the research system Syrah were written in
C# using the Microsoft.Net Framework version 3.5 and
developed using Microsoft Visual Studio 2008. Data storage
and management was accomplished using Microsoft SQL
Server 2005 running on Microsoft Windows XP Professional.
The client computers also used the Microsoft Windows XP
Professional operating system.

3.2.2. Parallelization. Different methods and techniques exist
for operating an EC algorithm in parallel. Generally parallel
techniques can be divided into two categories: fine grained
and coarse grained [24]. Fine-grained techniques involve
parallelizing the evaluation of the test cases and usually have
more intensive communication requirements. Alternatively,
coarse-grained techniques distribute populations and have
lower communication requirements, but higher computa-
tional needs. Our experimental system uses a common
coarse-grained technique known as the Island Model [20]
to distribute populations to discrete computational nodes.
The Island Model implemented in Syrah is a fullyconnected
topology that supports random-random migrations, mean-
ing that a migration event can (randomly) involve any node
in the system. Details regarding migration can be found in
[22–24, 26, 27, 29, 41].

The network communication between nodes was imple-
mented using the HTTP v1.1 protocol over an SSL connec-
tion. The server node is designed to listen for client requests
on port 443, the standard port used by SSL web servers.
Additionally, the communication between the client and the
server is always initiated by the client. This combination of
techniques was selected so that the communication would
be relatively secure and to facilitate communication between
the client and server, when the client was located behind a
firewall. This was done to circumvent firewall issues in the
original network used for testing.

Finally, based on [21], the nodes do not implement
any special handling for detecting and preventing network
topology faults. When a client is unable to complete a run
(i.e., the host was restarted, network failure, etc.), the client is
simply to starts a new run when it rejoins the Syrah topology.

3.2.3. Population Initialization. With the use of our recom-
bination operators, the population is able to support indi-
viduals with different chromosome sizes. To take advantage
of this feature, the population is seeded with randomly
sized chromosomes. Both the number of genes and the head
domain length of each gene are varied during this phase.
The number of genes in each individual is randomly selected
between 1 and 10. During the creation of the chromosome,
each gene selects a random head domain length between 5
and 15. These values were empirically determined during
initial testing and were found to provide good genetic
diversity. Additionally, we selected the random initialization
method over a “ramped half-and-half” method [10] as a
result of early experimentation.

The elements of the head are selected from a weighted
bag. If the function set is smaller than that of the terminals,

then the probability of selecting a function is 1/2; otherwise
they are equally weighted.

3.3. Experimental Design. An assortment of problems, of
varying types and difficulty, were selected to evaluate the
performance of our approach. The problems were selected
from three areas to which Evolutionary Computation is
commonly applied:

(i) symbolic regression, or the automatic synthesis of
functions,

(ii) classification, or generating boolean results (or
labels) from a set of input values,

(iii) parameter optimization, or the automatic discovery
of parameter values which produce a maximum
and/or minimum for a given function.

3.3.1. Validation of Results. Each experiment was performed
using K-Fold validation with 10 folds and 30 runs per fold.
Each experiment consisted of two sets: a baseline set and
an adaptive set. The baseline runs were executed using the
standard GEP-RNC algorithm implemented as a part of the
Syrah system with parameter control disabled. The adaptive
runs were then executed in the same manner, but using the
methodologies outlined previously.

Each experiment was executed using the Syrah frame-
work’s parallel mode, which uses the Island Model to
distribute the populations to separate computational nodes.
The experiments used 32 islands that were executed on
16 dual-core Intel computers, running the Windows XP
Professional operating system. The Syrah system supports
migration between the islands But to facilitate the statistical
analysis of the results, these experiments were run without
this feature.

The baseline experiments were performed repeatedly
using the values presented in Table 1. During the adaptive
evolution runs, the number of genes and the size of the head
domain were tuned using our new operators. The details of
the initial chromosome lengths can be found in Section 3.2.3.

3.3.2. Symbolic Regression Experiments. The first three prob-
lems selected were the same problems used by Park et
al. in [3]. These were selected so that the performance
of this methodology could be compared to an existing
(parallel) GEP-based self-adaptive approach. The fourth
experiment was a regression of a sawtooth wave, while the
fifth experiment was a more difficult time series analysis
problem. The baseline experiments all produced poor results
for gene counts of 1 through 3, which required 900 (3 × 10
folds× 30 runs per fold) runs to determine.

Experiment 1. The first problem evaluated was a kinematics
symbolic regression that modeled the movement of a verti-
cally fired object. The kinematic equation for the position of
the object at time t is defined by the following equation:

S(t) = S0 +V0t +
at2

2
. (2)



Applied Computational Intelligence and Soft Computing 9

Table 1: Common experiment run parameters.

Parameter
Problem

Symbolic Regression & Parameter Optimization Classification

Selection method Elitist Tournament Elitist Tournament

Number of generations 100 175

Population size 100 75

Initial head size 5–15 5–15

Initial number of genes 1–10 1–10

One point recombination rate 0.5 0.5

Two point recombination rate 0.1 0.1

Gene recombination rate 0.1 0.1

Mutation rate 0.07 0.07

Minimum ACS mutation rate 0.05 0.05

IS transposition rate 0.1 0.1

RIS transposition rate 0.1 0.1

HIS transposition rate 0.1 0.1

Gene transposition rate 0.1 0.1

Function set F1 F2

Linking function + +

K-Fold validation 10 folds 10 folds

Evolutionary Clients (Syrah) 31 31

F1 = {+,−,∗, /}, F2 = {+,−,∗, /, sqrt, exp, sin, cos, tan, floor, ceiling, OR, AND,<,>,≤,≥,==, ! =}.

If we use an initial velocity, V0 = 25 m/s, and an initial
position of S0 = 0 and assume that the acceleration is equal
to earth’s gravity, a = −9.8 m/s2, then we can simplify the
equation as

S(t) = 25t +
−9.8t2

2
= 25t − 4.9t2. (3)

For this experiment, fifty data points were sampled from the
interval t = 0.1 to t = 5 and used as the test cases.

Experiment 2. Our second experiment extended the first,
using two independent variables instead of one. Modifying
(2) with the same assumptions as in Experiment 1, but with
an independent initial velocity, gives:

S(t) = vt − 4.9t2. (4)

The test cases for this experiment were generated using V0

values of 20, 25, and 30. The values of t were the same as in
the first experiment.

Experiment 3. The third symbolic regression experiment
used a fourth-order polynomial that was used in [3] and
similar to the ones used in [1, 7]:

y = −2.5x4 + 4.6x3 + 3x2 + 2x + 1. (5)

The algorithm attempted to evolve the function from 10
equally spaced samples taken from values of the Polynomial
(5), in the interval x = [1, 10].

Experiment 4. The fourth experiment was a regression of a
sawtooth wave, which has been used as a benchmark in other
works [42]. The function is defined by

F(x) =
n∑

i=0

(
1
i

sin(i x)
)

: n = 1, . . . , 9. (6)

The dataset consisted of 250 equally spaced data points in
the range x = [−8, 8]. This range was selected instead of the
40 points in [−1, 1] used in [42] after discovering that the
algorithm required a more challenging set of inputs.

Experiment 5 (Wolfer Sunspot Time Series Prediction). The
final experiment attempted to create a predictive model using
100 observations from the well-known Wolfer Sunspot Series
[43]. The data were formatted for time series analysis, using
a delay time of 1 and an embedding dimension of 10. This
dataset has also been used to evaluate other GEP systems,
including those in [7] and [14].

3.3.3. Classification Experiment. Classification is a common
and important task for evolutionary computation algo-
rithms. The classification experiment performed in this work
used a large, real-world classification problem from the The
Centre for Learning Technology (CLT) at Ryerson University.

The evaluation of the classification experiments was
accomplished using the “Hits with Penalty” method, as
described in [7].

The LiveDescribe project [44] is a software application
developed by the Center for Learning Technology (CLT) at
Ryerson University to added video descriptions (for the deaf)
to video content. The project had originally used a manual
process to select regions of dialog versus nondialog, so that



10 Applied Computational Intelligence and Soft Computing

descriptive video captions could be programmatically added
to the non-dialog sections. Since the process of selecting the
nondialog regions was a manual and user-intensive process,
the CLT modified their application using a human-designed
classifier system. This system was, on average, 70% effective.

The dataset consists of six real-value inputs and a single
boolean output. Part of what makes this dataset a challenge is
its size. The initial dataset consisted of approximately 90,000
records. The input variables are audio metrics and include
RMS standard deviation, RMS average, a measure of audio
entropy, zero crossing above to below, zero crossing left skew,
and a zero crossing low-energy measurement. These inputs
were sampled once for every 1 second of audio.

3.3.4. Parameter Optimization Experiments. The five param-
eter optimization test functions were selected from the the
well-known De Jong test functions [2]. These test functions
were originally selected by De Jong to test the effectiveness of
a given EC algorithm over a broad class of problems. While
attempts have been made to improve the test set, it remains
the de facto standard for parameter optimization validation.
The five functions are presented here in their original form,
but were modified (where necessary) to change them all to
maximization functions, which allows for simpler evaluation
with the GEP algorithm.

De Jong F1: Sphere Model. The first function in the De
Jong test set is a three-dimensional parabola that is convex,
unimodal, and continuous. The function has a maximum of
78.6 at (x1, x2, x3) = (±5.12,±5.12,±5.12):

f (x) =
3∑

i=1

x2
i : −5.12 ≤ x ≤ 5.12. (7)

De Jong F2: Rosenbrock’s Function. The second function in
the De Jong test set was first proposed by Rosenbrock [45]
and is commonly referenced in optimization literature. This
function is nonconvex, unimodal, and continuous, with a
maximum of 3905.93 at (x1, x2) = (−2.048,−2.048):

f (x) = 100× (x2
1 − x2

)2
+ (1− x1)2 : −2.048 ≤ x ≤ 2.048

(8)

De Jong F3: Step Function. The third De Jong test function
is a five-dimension step function that is discontinuous, non-
convex, unimodal and, piecewise constant. De Jong original
selected this function to test the ability for algorithms to
handle discontinuities [2]. This function is restricted to
−5.12 ≤ x ≤ 5.12 for testing. This function has a known
maximum of 25 when the inputs are held at 5.12:

f (x) =
5∑

i=1

xi : −5.12 ≤ x ≤ 5.12. (9)

De Jong F4: Quadratic Function with Noise. The fourth test
function in the De Jong collection is a noisy quadratic
function that is continuous, unimodal, convex, and haing a

Table 2: Summary of symbolic regression experimental results.

Exper. Ours Comparison

Number Length Fitness Length Fitness

11 254 99.984% 266 99.496%

21 87 99.983% 282 99.907%

31 155 99.735% 470 96.187%

42 62 99.987% 185 99.966%

52 55 99.179% 186 98.936%

1: Compared to PGEP-O.
2: Compared to canonical distributed GEP.

high dimensionality. The function uses a Gaussian function
to add noise. The function was limited to −1.28 ≤ x ≤ 1.28.
This experiment used alternative values for the number of
generations and the population size of 350 generations and
500 individuals in the population.

The maximum of this function is approximately 1248.2
and occurs when all inputs are equal to ±1.28:

f (x) =
30∑

i=1

i× x4
i + Gauss(0, 1) : −1.28 ≤ x ≤ 1.28. (10)

De Jong F5: Shekel’s Foxholes. This is a two-dimension
function that is continuous, nonquadratic, and non-convex,
with 25 local maximums and was originally suggested by
Shekel [46]. This version [47] of the function has maximum
of approximately 499.002:

f
(
x, y

)=500

− 1

0.002+
∑24

j=0 1/
[

1+i+(x−a(i))6 +
(
y−b(i)

)6
] ,

(11)

where

a(i) = 16× (i mod 5− 2),

b(i) = 16×
(⌊

i

5

⌋
− 2
)
− 65.523 ≤ x ≤ 65.523.

(12)

4. Results and Discussion

This section presents the results of the experiments outlined
in Section 3 that were used to validate our enhancements
to the GEP algorithm that address the issues identified in
Section 1.

4.1. Symbolic Regression Results. Table 2 shows a summary of
the experiment results, including the best individual’s fitness
and chromosome size (Note that the size of a chromosome
(i.e., the length of the chromosome string) depends on its
number of genes and the head size of each gene). The best
fitness is expressed as a percentage of the number of fitness
cases solved. The visualized results and performance of the
experiments are shown by Figures 3, 2, 4, 5, 6, 7, 8, 9, 10, 11
and 12.



Applied Computational Intelligence and Soft Computing 11

1009080706050403020100

Generations

Minimum size
Maximum size

Average size
Best fitness

0

50

100

150

200

250

300

350

400

450

500

Si
ze

49600

49650

49700

49750

49800

49850

49900

49950

50000

B
es

t
fi

tn
es

s
Figure 3: Symbolic regression Experiment 1: chromosome sizes
and best fitness.

1009080706050403020100

Generations

Minimum size
Maximum size

Average size
Best fitness

0

50

100

150

200

250

300

350

400

450

Si
ze

149700

149750

149800

149850

149900

149950

150000

B
es

t
fi

tn
es

s

Figure 4: Symbolic regression Experiment 2: chromosome sizes
and best fitness.

4.1.1. Discussion of Symbolic Regression Experiments. There
are two figures for the first four experiments performed.
The first figure of each pair shows the minimum, maximum,
and average chromosome lengths in the population for each
generation with respect to the generation number in the
run. The other figures display a surface visualization of the
distribution of the chromosome lengths in the population,
with respect to the generation number in the run. For the
final experiment, the surface plot was omitted because of the
rapid convergence to a narrow range of chromosome lengths.
Figure 11 compares the evolved model’s performance to
the target data. Since K-Fold validation was used, every
tenth data point in Figure 11 was previously unseen by the
model.

1009080706050403020100

Generations

Minimum size
Maximum size

Average size
Best fitness

0

50

100

150

200

250

300

350

400

450

500

Si
ze

−4000

−2000

0

2000

4000

6000

8000

10000

B
es

t
fi

tn
es

s

Figure 5: Symbolic regression Experiment 3: chromosome sizes.

30

20

10

0

N
u

m
be

r
of

in
di

vi
du

al
s

100

75

50

25

0

Generations
50

150
250

350
450

Size
0

5

10

15

20

Figure 6: Symbolic regression Experiment 1: chromosome size in
the population.

The figures show that while the algorithm was optimizing
the chromosome length it would initially explore a wide
search space, then focus on a band of neighboring chromo-
some sizes.

A significant result was that the best solutions found
using our new operators evolved better individuals with
smaller representations than the PGEP-O system presented
in [3] and the canonical GEP algorithm. It is interesting
to note that the best chromosomes evolved for the two
most difficult problems were significantly smaller than those
evolved by the PGEP-O. Specifically, during the second
and third experiments, the best evolved individuals were
approximately 30% to 33% of the size of the individuals
evolved using the PGEP-O methodology. Similarly, in Exper-
iments 4 and 5, where our methodology was compared to a
distributed canonical GEP algorithm (based on Syrah), our
methodology produced results 33% and 30% the size of the
alternative’s results.

The results of the experiments, as shown in Table 2, show
that our new operators are significantly more efficient and
produced better results for symbolic regression problems.
This may have been because our populations were evolving
smaller solutions and were able to explore the search space
more effectively.



12 Applied Computational Intelligence and Soft Computing

50
40
30
20
10

0

N
u

m
be

r
of

in
di

vi
du

al
s

100

75

50

25

0

Generations
50

150

250
350

450

Size
0

5

10

15

20

Figure 7: Symbolic regression Experiment 2: chromosome size in
the population.

30

20

10

0

N
u

m
be

r
of

in
di

vi
du

al
s

100

75

50

25

0

Generations
50

150
250

350
450

Size
0

5

10

15

20

Figure 8: Symbolic regression Experiment 3: chromosome size in
the population.

4.2. Classification Results. Table 3 shows the results of the
classification experiments. These include the chromosome
size and the best fitness found, expressed as a percentage
of the number of fitness cases solved. The visualized results
and performance of the experiments are shown by Figures 13
and 14.

4.2.1. Discussion of Classification Experiments. As stated in
Section 3, the full LiveDescribe dataset consisted of approx-
imately 90,000 entries, each with 6 real number variables
and grouped into two classes. One of the challenges of this
experiment was the computational resources required to
evolve candidate solutions.

The two methods both evolved individuals with similar
performance, with both systems evolving a classifier capable
of successfully identifying 80%-81% of the fitness cases.
This is a substantial improvement over the original, human-
written classifier (developed by the CLT at Ryerson [44]),
which was able to correctly classify approximately 70% of
the fitness cases. After discussions with the CLT lab, it is
believed that 85% may be the practical limit for identifying
non-dialog sections of video using the current variable set.
The CLT is currently working to modify its data acquisition
software to collect additional parameters.

Examining the solutions evolved by our enhanced algo-
rithm and canonical GEP, it is important to note that our
methodology evolved a solution 32.1% the size of the one
evolved by the standard algorithm. Since the size of the
candidate solution’s genome has a direct impact on the eval-
uation of the fitness cases (and live data, once implemented
in the real world), the reduction in representation size may

1009080706050403020100

Generations

Minimum size
Maximum size

Average size
Best fitness

0

50

100

150

200

250

300

350

400

450

Si
ze

225900

225910

225920

225930

225940

225950

225960

225970

225980

B
es

t
fi

tn
es

s

Figure 9: Symbolic regression Experiment 4: chromosome sizes
and best fitness.

160140120100806040200

Generations

Minimum size
Maximum size

Average size
Best fitness

0

50

100

150

200

250

300

350

400

450

500

Si
ze

79600

79700

79800

79900

80000

80100

80200

80300

80400

B
es

t
fi

tn
es

s
Figure 10: Symbolic regression Experiment 5: chromosome sizes
and best fitness.

improve the overall performance of the system, even after
considering the additional computation requirements of our
new operators.

The small number of classes in this experiment may
have been possible limitation. With only two possible classes,
the evolutionary process may not have been significantly
challenged. However, it is felt that the number of test
cases may have offset this. In the future, more complex
classification problems should be investigated.

What the summary of results do not show is the number
of additional epochs (and thus processing time) required to
evaluate different values for the head domain length and
number of genes for the canonical GEP algorithm that was
used for comparison.



Applied Computational Intelligence and Soft Computing 13

Table 3: Summary of classification experimental results.

Ours Canonical GEP

Total Len. Genes Avg. Gene Len. Fitness Total Len. Genes Gene Len. Fitness

247 8 30.9 81.08% 770 10 77 80.31%

9080706050403020100

Time

Target
Model

−20

0

20

40

60

80

100

120

140

160

Su
n

sp
ot

s

Figure 11: Symbolic regression Experiment 5: Target versus Model.

100
80
60
40
20

0

N
u

m
be

r
of

in
di

vi
du

al
s

100

75

50

25
0

Generations
50

100
150

200

250

Size
0

20

40

60

80

100

Figure 12: Symbolic regression Experiment 4: chromosome size in
the population.

4.3. Parameter Optimization Results. Table 4 shows a sum-
mary of the results of parameter optimization experiments.
Included in the summary are the maximum value found, the
number of genes used by the best solution, the average gene
length (static for canonical GEP), and the total genome size.
The visualized results and performance of the experiments
are shown by Figures 15, 16, 17, 18, 19, 20, 21, 22, 23 and 24.

4.3.1. Discussion of Parameter Optimization Experiments.
The results of the parameter optimization experiments show
that both our methodology and canonical GEP are effective
at evolving either optimal or near-optimal solutions to the
problems in the De Jong test suite. As seen in previous
experiment series, our enhancements enabled the algorithm

1009080706050403020100

Generations

Minimum size
Maximum size

Average size
Best fitness

0

50

100

150

200

250

300

350

400

450

Si
ze

890

900

910

920

930

940

950

B
es

t
fi

tn
es

s

Figure 13: LiveDescribe experiment: chromosome sizes and best
fitness.

30

20

10
0

N
u

m
be

r
of

in
di

vi
du

al
s

100

75

50

25
0

Generations

25
100

175
250

325
400

Size
0

5

10

15

20

25

30

Figure 14: LiveDescribe experiment: chromosome size in the
population.

to consistently evolve solutions which were significantly
smaller than those evolved by canonical GEP.

The solutions evolved by our enhanced algorithm in
Experiments 2 and 3 were remarkably smaller than those
found by canonical GEP. Specifically, they were 5.4% and
6.5% the size of those found by standard GEP.

Both methodologies had difficulty with the high-
dimension problem found in parameter optimization
Experiment 4. However, our enhanced GEP algorithm
evolved a slightly better result and had a representation
size 54.6% the size of the one evolved by the standard
algorithm. It is believed that the difficultly of this problem
and the inability of the algorithm to locate the optimal
parameter values contributed to the evolved size of the
genome. Similarly, the numerical results of Experiment 1
were comparable, but the solutions evolved using the HIS



14 Applied Computational Intelligence and Soft Computing

Table 4: Summary of parameter optimization experimental results.

Exper. Ours Canonical GEP

Number Total Len. Avg. Gene Len. Maximum Total Len. Gene Len. Maximum

1 105 35 78.30 231 77 78.51

2 10 5 3904.62 184 92 3902.40

3 25 5 25 385 77 25

4 426 14.2 1233.87 780 26 1125.61

5 22 11 499.002 94 47 499.002

1009080706050403020100

Generations

Minimum size
Maximum size

Average size
Best fitness

0

20

40

60

80

100

120

140

160

180

200

Si
ze

40

45

50

55

60

65

70

75

80

B
es

t
fi

tn
es

s

Figure 15: Parameter optimization Experiment 1: chromosome
sizes and best fitness.

1009080706050403020100

Generations

Minimum size
Maximum size

Average size
Best fitness

10

20

30

40

50

60

70

80

90

100

Si
ze

500

1000

1500

2000

2500

3000

3500

4000

B
es

t
fi

tn
es

s

Figure 16: Parameter optimization Experiment 2: chromosome
sizes and best fitness.

operator and our other enhancements were 45.5% the size
of standard GEP’s solutions.

The results of the final parameter optimization exper-
iment were closer to what we had observed during the
Symbolic Regression and Classification experiments, with
our evolved solutions being approximately 23.4% the size

1009080706050403020100

Generations

Minimum size
Maximum size

Average size
Best fitness

0

50

100

150

200

250

Si
ze

8

10

12

14

16

18

20

22

24

26

B
es

t
fi

tn
es

s

Figure 17: Parameter optimization Experiment 3: chromosome
sizes and best fitness.

350300250200150100500

Generations

Minimum size
Maximum size

Average size
Best fitness

100

200

300

400

500

600

700

800

900

1000

Si
ze

0

200

400

600

800

1000

1200

1400

B
es

t
fi

tn
es

s

Figure 18: Parameter optimization Experiment 4: chromosome
sizes and best fitness.

of those evolved by canonical GEP. In this case, both
methodologies successfully found the maximum value of
Shekel’s foxholes.

All of the parameter optimization experiments have
shown that our enhancements retained GEP’s problem



Applied Computational Intelligence and Soft Computing 15

1009080706050403020100

Generations

Minimum size
Maximum size

Average size
Best fitness

10

20

30

40

50

60

70

80

90

100

Si
ze

492

493

494

495

496

497

498

499

500

B
es

t
fi

tn
es

s
Figure 19: Parameter optimization Experiment 5: chromosome
sizes and best fitness.

50
40
30
20
10

0

N
u

m
be

r
of

in
di

vi
du

al
s

100

75

50

25
0

Generations 50
100

150

200

Size
0

5

10

15

20

25

30

35

40

Figure 20: Parameter optimization Experiment 1: chromosome
size in the population.

solving ability while allowing it to evolve smaller genomes.
While the De Jong functions have been reported [48] to not
be an effective test set, they have been repeatedly shown to
provide a good metric of the effectiveness of algorithms for a
broad range of optimization problems.

A possible limitation is that it is not currently possible
to use the ACS mutation operator with our current experi-
mental setup. Since we have not used Automatically Defined
Functions (ADFs) [1], we must use a fixed number of genes,
one per parameter requiring optimization. While we were
still able to obtain good results, we can only speculate that
using ADFs and allowing the number of “normal” genes to
evolve (similarly to our symbolic regression and classification
experiments) would enhance the solutions of more difficult
parameter optimization problems.

4.4. General Discussions. Reviewing the results of our exper-
iments, we see that our enhancements to the GEP algo-
rithm consistently produced smaller solutions (sometimes
significantly so) than canonical GEP. Since the representation
size of a genome has a direct impact on the evaluation
of the fitness cases, the reduction in representation size
may improve the overall performance of the system, even
after considering the additional computation requirements

50
40
30
20
10

0

N
u

m
be

r
of

in
di

vi
du

al
s

100

75

50

25
0

Generations
50

100

Size
0

5

10

15

20

25

30

35

40

Figure 21: Parameter optimization Experiment 2: chromosome
size in the population.

100
80
60
40
20

0

N
u

m
be

r
of

in
di

vi
du

al
s

100

75

50

25

0

Generations 50
100

150
200

250

Size
0

20

40

60

80

100

Figure 22: Parameter optimization Experiment 3: chromosome
size in the population.

80
60
40
20

0

N
u

m
be

r
of

in
di

vi
du

al
s

300

225
150

75
0

Generations
0

200
400

600
800

1000

Size
0

10

20

30

40

50

60

70

Figure 23: Parameter optimization Experiment 4: chromosome
size in the population.

60
50
40
30
20
10

0

N
u

m
be

r
of

in
di

vi
du

al
s

100

75

50

25
0

Generations 25
50

75

100

Size
0

5

10

15

20

25

30

Figure 24: Parameter optimization Experiment 5: chromosome
size in the population.



16 Applied Computational Intelligence and Soft Computing

of our new operators. This was indirectly observed during
the classification experiments while waiting for the two
methodologies to complete their evolutionary runs. When
our enhanced algorithm was running, it was noticeably faster
than when the standard GEP algorithm was processing the
same problem.

The control of the number of genes and the head size
of each gene was an implicit part of our GEP run and,
thus, we did not require separate clients for optimization.
This reduced the overall computational resources required to
evolve solutions.

For all of the parameter optimization experiments the
ACS mutation operator was disabled and, thus, we were
unable to evaluate its potential effectiveness for this class
of problems. The operator was disabled because of the
evaluation method used. Since our GEP implementation
did not use ADFs, it required one gene per parameter to
optimize. It is possible that, if we implemented automatically
defined functions and used the ACS mutation operator to
evolve the number of “normal” genes, we would see different
results.

The decision to randomly initialize the genes that were
inserted during the ACS mutation phase appears successful.
However, it would be interesting to investigate the use of gene
cloning, or other methods, in the future.

We observed that the insertion point in the ACS mutation
operator for classification and symbolic regression problems
was not important because we used a commutative linking
function during testing. The insertion point, however, may
have been significant because of the way the gene would mix
within the population during recombination. Additionally,
since the Gene Transposition operator was used, good genes
could be reordered within the chromosome. Had we used a
noncommutative linking function or homeotic (ADF) genes,
the insertion location could have had a greater impact.

Based on the results of our experiments, our new
operators were able to successfully self-adaptively tune the
two critical parameters of the GEP algorithm, the head
domain length, and the number of genes. While our new
operators have additional computational costs associated
with them, it is hoped that they are offset by the shorter
time required to evaluate the fitness functions, because of the
smaller representations it evolved.

Our new recombination operators have also been empir-
ically shown to permit crossbreeding and speciation within
a single GEP population. They have also been shown to be
effective in a distributed environment. However, additional
research into the effects of our operators on migration is
required.

5. Conclusion

This work presented enhancements to the Gene Expression
Programming algorithm that enabled flexible genome
representations, endowed self-adaptive characteristics,
assisted with maintaining diversity within a population
and enhanced the parallelization of the algorithm. In
particular, the enhancements addressed issues of evolvability,

crossbreeding and speciation, parameter control, and
parallelization in canonical GEP.

Through a series of experiments that used an assortment
of problem classes, including symbolic regression, classifi-
cation, and parameter optimization, we have shown that
our proposed methodology produced better results and,
generally, smaller genome representations than the canonical
GEP algorithm and the PGEP-O system [3] (for symbolic
regression).

Specifically, the contributions presented in this work
were

(1) creation of a new transposition operator, the Head
Insertion Sequence (HIS), which self-adaptively tunes
the head domain length of a gene,

(2) development of a new mutation operator, the
Adaptive Chromosome Size (ACS) mutation, which
mutates the number of genes in an individual to tune
the-gene count parameter,

(3) addition of new GEP recombination operators to
permit structurally dissimilar individuals to interact.
which removed the structural constraints imposed
when transferring an individual from one population
to another and permitted both crossbreeding and
speciation.

Our enhancements to the GEP algorithm also simplified
its use, by implicitly controlling the head domain length
and number of genes throughout an evolutionary run. By
removing the need to set these two critical GEP parameters
prior to executing a run, the level of “expert knowledge”
required to use GEP is reduced and allows EC novices to use
the algorithm more effectively.

The simplification of the algorithm’s configuration and
the implicit parameter control of the two critical parameters
are still subject to the concept of “No Free Lunch” [35].
The “No Free Lunch” theorem states that without a priori
knowledge of a problem all potential solution methods are
equal. While the values of the parameters evolved during
a run may not be optimal for all problem types, they are
frequently “good enough” and “No Free Lunch” is partially
offset by the ease of using the new algorithm. This was seen
during our experimental verification of the algorithm and
when comparing our methodology to canonical GEP. To
determine the GEP experimental baselines, several runs with
different head domain length and number of gene parameter
values were required, to obtain usable results. Comparatively,
with our enhanced algorithm we only needed to start a run
sequence and let the algorithm evolve the parameters.

While our enhancements to the GEP algorithm have
proven to be successful, they are not without costs and
limitations. Since we have added extra operators to enable
our metaevolution of the parameters, we also have added
additional computational overhead. In particular, the ACS
mutation operator has significant overhead when it generates
a new gene from random elements. The overhead associated
with the new operators may be partially offset by the reduced
size of the solution representations (as experienced during



Applied Computational Intelligence and Soft Computing 17

our trials), but further experimentation and analysis are
required to confirm this.

Another side effect of our self-adaptive method is that we
have increased the search space available to the algorithm.
This is both a benefit and a liability, since the algorithm
can traverse the entire space defined by any combination
of head domain length and number of genes. This allows
the algorithm to find novel solutions, but also increases
the number of potential solutions dramatically, possibly
increasing the search time and allowing the algorithm to get
stuck in at a nonoptimal solution.

When developing the enhancements to the GEP algo-
rithm, the possibility of introducing bloat, or the excessive
creation of introns to protect a genome’s functionality, was
a major concern. By eliminating the fixed chromosome
size (which was necessary to remedy the issues we saw
with GEP), the potential for the genome representation
and size to grow unchecked became a possibility; even
with the parameter control inherent in the new operators.
One conjecture for not observing bloat is that the HIS
Transposition operator, which is responsible for controling
the head size, restructures the genome by adding sections
from one domain to another, instead of simply inserting or
deleting material. This does not account for the effect of the
ACS mutation operator, which mutates the number of genes
in a chromosome. However, the selection pressure from the
Tournament Selection with Elitism selection method may
have provided resistance to unnecessary gene additions. It is
possible that in more difficult problems (that require longer
runs or larger datasets) we may begin to observe bloat and
need to take steps to measure and constrain it.

Related to the previous topic of bloat and introns is the
matter of genetic diversity within a population. Our current
research did not include any specific mechanisms to measure
the diversity of individuals within a population (either in
a single population or distributed multipopulation setting),
but the genome length statistics, recorded during the experi-
ments, can be used as a simple metric. Using the surface plots
of the chromosome lengths (found in Section 4), we can
suppose that our methodology maintains a level of genetic
diversity throughout a run. While the populations were
initially very diverse and chaotic, as the runs progressed, the
outliers were reduced and a narrower band of chromosome
sizes (and thus diversity) was maintained.

Overall, our enhancements have been shown to be
effective at addressing the issues of evolvability, crossbreeding
and speciation, parameter control, and parallelization in the
canonical GEP algorithm.

5.1. Future Work. Though our enhancements have been
effective, there is still work that can be done to further our
understanding of them, their relationship and application to
Evolutionary Computation in general, and the workings of
the GEP algorithm itself.

A detailed study of the effects of our enhancements on
the levels of genetic diversity in a population would aid
in understanding the mechanisms that make the operators
effective. Additionally, applying the “Nonsynonymous to

Synonymous Substitution Ratio (Ka/Ks)” [49] to study the
rate of evolution, in conjunction with a diversity study, could
show where further improvements could be made in the GEP
algorithm.

Applying our enhancements to Automatically Defined
Functions (ADFs) in GEP could potentially provide inter-
esting results and bears further investigation. This could be
particularly useful for difficult or complex parameter opti-
mization problems, since, when using GEP-PO, the number
of genes must always equal the number of parameters
being optimized. Using ADFs would allow the number of
normal genes to be adaptively tuned using the ACS mutation
operator.

Further research into the potential of unrestrained
chromosome growth, or bloat, and selection pressure in our
enhanced GEP algorithm would be interesting, as we did not
observe significant bloat during our experiments. In evolu-
tionary computation, any algorithm or representation that
allows unrestrained growth and yet demonstrates resistance
to bloat warrants further investigation.

The impact of our operators on migration and the
exchange of genetic material in distributed setting requires
further study. In particular, a thorough examination of
our system when running in a distributed, multi-island
settings with different connection topologies and migration
strategies would be useful for determining the optimal
configuration (if possible).

While the enhancements presented in this work enabled
crossbreeding and the evolution of different species within a
population, we did not specifically implement any niching
methods. This could prove to be an interesting avenue of
exploration in the future, as it could enhance the algorithm’s
performance with multimodal problems.

Finally, adapting our enhancements to neuroevolution,
or the evolution of neural networks, using GEP (such as the
GEP-nets algorithm [7]) has great potential. This is because
our enhancements could permit size and structure changes
to the evolved neural networks, allowing a more dynamic and
complicated structure to be evolved.

References

[1] C. Ferreira, “Gene expression programming: a new adaptive
algorithm for solving problems,” Complex Systems, vol. 13, no.
2, pp. 87–129, 2001.

[2] K. A. De Jong, Analysis of the behavior of a class of genetic
adaptive systems, Ph.D. dissertation, University of Michigan,
1975.

[3] H.-H. Park, A. Grings, M. V. dos Santos, and A. S. Soares,
“Parallel hybrid evolutionary computation: automatic tuning
of parameters for parallel gene expression programming,”
Applied Mathematics and Computation, vol. 201, no. 1-2, pp.
108–120, 2008.

[4] K. Zhang, S. Sun, and H. Si, “Prediction of retention times for
a large set of pesticides based on improved gene expression
programming,” in Proceedings of the 10th Annual Conference
on Genetic and Evolutionary Computation (GECCO ’08), pp.
1725–1726, ACM, Atlanta, Ga, USA, July 2008.

[5] Z. Xie, X. Li, B. Di Eugenio, P. C. Nelson, W. Xiao,
and T. M. Tirpak, “Using gene expression programming to



18 Applied Computational Intelligence and Soft Computing

construct sentence ranking functions for text summarization,”
in Proceedings of the 20th International Conference on Com-
putational Linguistics (COLING ’04), p. 1381, Association for
Computational Linguistics, Morristown, NJ, USA, 2004.

[6] J. Venter and A. Hardy, “Generating plants with gene expres-
sion programming,” in Proceedings of the ACM International
Conference on Computer Graphics, Virtual Reality and Visuali-
sation in Africa (AFRIGRAPH ’07), pp. 159–167, ACM, 2007.

[7] C. Ferreira, Gene Expression Programming: Mathematical Mod-
eling by an Artificial Intelligence, Springer, Berlin, Germany,
2nd edition, 2006.

[8] M. Ostaszewski, P. Bouvry, and F. Seredynski, “Multiobjective
classification with moGEP: an application in the network
traffic domain,” in Proceedings of the 11th Annual Genetic and
Evolutionary Computation Conference (GECCO ’09), pp. 635–
642, ACM, 2009.

[9] J. Yin, L. Huo, L. Guo, and J. Hu, “Short-term load forecasting
based on improved gene expression programming,” in Pro-
ceedings of the 7th World Congress on Intelligent Control and
Automation (WCICA ’08), pp. 5647–5650, Chongqing, China,
June 2008.

[10] J. Koza, Genetic Programming: On the Programming of
Computers by Means of Natural Selection, The MIT Press,
Cambridge, Mass, USA, 1992.

[11] D. E. Goldberg, Genetic Algorithms in Search, Optimization,
and Machine Learning, Addison-Wesley, Reading, Mass, USA,
1989.

[12] J. Reisinger, K. O. Stanley, and R. Miikkulainen, “Towards an
empirical measure of evolvability,” in Proceedings of the Work-
shops on Genetic and Evolutionary Computation (GECCO ’05),
pp. 257–264, ACM, Washington, DC, USA, June 2005.

[13] K. O. Stanley, Efficient evolution of neural networks through
complexification, Ph.D. dissertation, The University of Texas at
Austin, Austin, Tex, USA, 2004.

[14] H. S. Lopes and W. R. Weinert, “Egipsys: an enhanced gene
expression programming approach for symbolic regression
problems,” International Journal of Applied Mathematics and
Computer Science, vol. 14, no. 3, pp. 375–384, 2004.

[15] J. Yue, T. Chang-Jie, Z. Hai-Chun, et al., “Adaptive gene
expression programming algorithm based on cloud model,” in
Proceedings of the 1st International Conference on BioMedical
Engineering and Informatics (BMEI ’08), vol. 1, pp. 226–230,
May 2008.

[16] C. Tang, L. Duan, J. Peng, H. Zhang, and Y. Zong, “The
strategies to improve performance of function mining by
gene expression programming: genetic modifying, overlapped
gene, backtracking and adaptive mutation,” in Proceedings of
the 17th Data Engineering Workshop, 2006.

[17] O. M. Shir and T. Back, “Niching methods: speciation theory
applied for multi-modal function optimization,” in Algorith-
mic Bioprocesses, pp. 705–729, Springer, Berlin, Germany,
2009.

[18] J. H. Holland, Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control and
Artificial Intelligence, University of Michigan Press, Ann Arbor,
Mich, USA, 1975.

[19] E. Bautu, A. Bautu, and H. Luchian, “AdaGEP—an adaptive
gene expression programming algorithm,” in Proceedings of
the 9th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC ’07), pp. 403–
406, 2007.

[20] M. Gorges-Schleuter, “Explicit parallelism of genetic algo-
rithms through population structures,” Parallel Problem Solv-
ing from Nature, pp. 150–159, 1991.

[21] J. I. Hidalgo, J. Lanchares, F. Fernández de Vega, and D.
Lombraña, “Is the island model fault tolerant?” in Proceedings
of the 9th Annual Genetic and Evolutionary Computation
Conference (GECCO ’07), pp. 2737–2744, ACM, London, UK,
July 2007.

[22] E. Cantú-Paz and D. E. Goldberg, “Efficient parallel genetic
algorithms: theory and practice,” Computer Methods in
Applied Mechanics and Engineering, vol. 186, no. 2–4, pp. 221–
238, 2000.

[23] J. Berntsson and M. Tang, “Dynamic optimization of
migration topology in internet-based distributed genetic
algorithms,” in Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO ’05), pp. 1579–1580, ACM,
Washington, DC, USA, June 2005.

[24] E. Cantu-Paz, Efficient and Accurate Parallel Genetic Algo-
rithms, Kluwer Academic Publishers, Dordrecht, The Nether-
lands, 2000.

[25] E. Alba and J. M. Troya, “Analyzing synchronous and
asynchronous parallel distributed genetic algorithms,” Future
Generation Computer Systems, vol. 17, no. 4, pp. 451–465,
2001.

[26] Z. Skolicki and K. De Jong, “The influence of migration sizes
and intervals on island models,” in Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO ’05), pp.
1295–1302, ACM, Washington, DC, USA, June 2005.

[27] Z. Skolicki and K. De Jong, “The importance of a two-level
perspective for island model design,” in Proceedings of IEEE
Congress on Evolutionary Computation (CEC ’07), pp. 4623–
4630, 2007.

[28] S.-K. Oh, C. T. Kim, and J.-J. Lee, “Balancing the selection
pressures and migration schemes in parallel genetic algo-
rithms for planning multiple paths,” in Proceedings of IEEE
International Conference on Robotics and Automation, vol. 4,
pp. 3314–3319, 2001.

[29] S.-C. Lin, W. F. Punch III, and E. D. Goodman, “Coarse-grain
parallel genetic algorithms: categorization and new approach,”
in Proceeedings of the 6th IEEE Symposium on Parallel and
Distributed Processing, pp. 28–37, Dallas, Tex, USA, October
1994.

[30] E. Alba and J. M. Troya, “Influence of the migration policy
in parallel distributed GAs with structured and panmictic
populations,” Applied Intelligence, vol. 12, no. 3, pp. 163–181,
2000.

[31] Y. Lin, H. Peng, and J. Wei, “A niching gene expression
programming algorithm based on parallel model,” in Pro-
ceedings of the 7th International Symposium on Advanced
Parallel Processing Technologies (APPT ’07), vol. 4847 of Lecture
Notes in Computer Science, pp. 261–270, Guangzhou, China,
November 2007.

[32] J. Wu, C. Tang, T. Li, S. Qiao, Y. Jiang, and S. Ye, “Parallel
multi-objective gene expression programming based on area
penalty,” in Proceedings of the International Conference on
Computer Science and Information Technology (ICCSIT ’08),
pp. 264–268, Singapore, August-September 2008.

[33] Q. Liu, T. Li, C. Tang, Q. Liu, C. Li, and S. Qiao, “Multi-
population parallel genetic algorithm for economic statistical
information mining based on gene expression programming,”
in Proceedings of the 3rd International Conference on Natural
Computation (ICNC ’07), vol. 3, pp. 461–465, August 2007.

[34] X. Du, L. Ding, and J. Jia, “Asynchronous distributed par-
allel gene expression programming based on estimation of
distribution algorithm,” in Proceedings of the 4th International
Conference on Natural Computation (ICNC ’08), vol. 1, pp.
433–437, Jinan, China, October 2008.



Applied Computational Intelligence and Soft Computing 19

[35] D. H. Wolpert and W. G. Macready, “No free lunch theorems
for optimization,” IEEE Transactions on Evolutionary Compu-
tation, vol. 1, no. 1, pp. 67–82, 1997.

[36] Y. C. Ho and D. L. Pepyne, “Simple explanation of the no-free-
lunch theorem and its implications,” Journal of Optimization
Theory and Applications, vol. 115, no. 3, pp. 549–570, 2002.

[37] A. E. Eiben, Z. Michalewicz, M. Schoenauer, and J. E. Smith,
“Parameter control in evolutionary algorithms,” Studies in
Computational Intelligence, vol. 54, pp. 19–46, 2007.

[38] T. Back, “Self-adaptation in genetic algorithms,” in Proceedings
of the 1st European Conference on Artificial Life, pp. 263–271,
MIT Press, 1992.

[39] M. Hai-Jun, LI De-Yi, and S. Xue-Mei, “Membership clouds
and membership cloud generators,” Journal of Computer
Research and Development, pp. 15–20, 1995.

[40] C. Ferreira, “Q&a from personal correspondence,”
http://www.gene-expression-programming.com/Q&A03.asp.

[41] J. Branke, A. Kamper, and H. Schmeck, “Distribution of evolu-
tionary algorithms in heterogeneous networks,” in Proceedings
of the Genetic and Evolutionary Computation Conference
(GECCO ’04), vol. 3102 of Lecture Notes in Computer Science,
pp. 923–934, Seattle, Wash, USA, June 2004.

[42] R. I. McKay, X. H. Nguyen, J. R. Cheney, M. Kim, N.
Mori, and T. H. Hoang, “Estimating the distribution and
propagation of genetic programming building blocks through
tree compression,” in Proceedings of the 11th Annual Genetic
and Evolutionary Computation Conference (GECCO ’09), pp.
1011–1018, ACM, 2009.

[43] T. W. Anderson, The Statistical Analysis of Time Series, John
Wiley & Sons, New York, NY, USA, 1971.

[44] T. C. for Learning Technology (CLT) at Ryerson University,
“Livedescribe video description software,” September 2009,
http://www.livedescribe.com/.

[45] H. Rosenbrock, “An automatic method for finding the greatest
or least value of a function,” The Computer Journal, vol. 3, pp.
175–184, 1960.

[46] J. Shekel, “Test functions for multimodal search techniques,”
in Proceedings of the 5th Annual Princeton Conference on
Information Science and Systems, 1971.

[47] J. Alami, A. E. Imrani, and A. Bouroumi, “A multipopulation
cultural algorithm using fuzzy clustering,” Applied Soft Com-
puting Journal, vol. 7, no. 2, pp. 506–519, 2007.

[48] L. D. Whitley, K. E. Mathias, S. B. Rana, and J. Dzubera,
“Building better test functions,” in Proceedings of the 6th
International Conference on Genetic Algorithms, pp. 239–247,
1995.

[49] T. Hu and W. Banzhaf, “Nonsynonymous to synonymous
substitution ratio ka/ks: measurement for rate of evolution
in evolutionary computation,” in Proceedings of the 10th
International Conference on Parallel Problem Solving from
Nature, pp. 448–457, Springer, 2008.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


