
Gin: Genetic Improvement Research Made Easy

Alexander E.I. Brownlee
Computing Science and Mathematics

University of Stirling
Stirling, UK

sbr@cs.stir.ac.uk

Justyna Petke
Department of Computer Science

University College London
London, UK

j.petke@ucl.ac.uk

Brad Alexander
School of Computer Science

University of Adelaide
Adelaide, Australia

brad@cs.adelaide.edu.au

Earl T. Barr
Department of Computer Science

University College London
London, UK

e.barr@ucl.ac.uk

Markus Wagner
School of Computer Science

University of Adelaide
Adelaide, Australia

markus.wagner@adelaide.edu.au

David R. White
Department of Computer Science

The University of Sheield
Sheield, UK

d.r.white@sheield.ac.uk

ABSTRACT

Genetic improvement (GI) is a young ield of research on the cusp

of transforming software development. GI uses search to improve

existing software. Researchers have already shown that GI can

improve human-written code, ranging from program repair to opti-

mising run-time, from reducing energy-consumption to the trans-

plantation of new functionality. Much remains to be done. The cost

of re-implementing GI to investigate new approaches is hindering

progress. Therefore, we present Gin, an extensible and modiiable

toolbox for GI experimentation, with a novel combination of fea-

tures. Instantiated in Java and targeting the Java ecosystem, Gin

automatically transforms, builds, and tests Java projects. Out of

the box, Gin supports automated test-generation and source code

proiling. We show, through examples and a case study, how Gin

facilitates experimentation and will speed innovation in GI.

CCS CONCEPTS

· Software and its engineering → Software notations and

tools; Search-based software engineering;

KEYWORDS

Genetic Improvement, GI, Search-based Software Engineering, SBSE

ACM Reference Format:

Alexander E.I. Brownlee, Justyna Petke, BradAlexander, Earl T. Barr, Markus

Wagner, and David R. White. 2019. Gin: Genetic Improvement Research

Made Easy. In Genetic and Evolutionary Computation Conference (GECCO

’19), July 13ś17, 2019, Prague, Czech Republic. ACM, New York, NY, USA,

9 pages. https://doi.org/10.1145/3321707.3321841

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speciic permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’19, July 13ś17, 2019, Prague, Czech Republic

© 2019 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-6111-8/19/07. . . $15.00
https://doi.org/10.1145/3321707.3321841

1 INTRODUCTION

Genetic improvement (GI) is a young ield of software engineering

research that uses search to improve existing software. GI aims to

improve both functional, notably bug ixing, and non-functional

properties of software, such as runtime or energy consumption.

The intersection of automated program repair (APR) and GI has had

the greatest impact to date, from the release of the GI-based tool

GenProg [27] to successful integration of APR into commercial de-

velopment processes [19, 20]. Non-functional improvement (NFI) is

the branch of GI that, as its name suggests, improves non-functional

properties without, in contrast to APR, needing an implicit spec-

iication or a user-provided test oracle, since it can use its input

program as its functional oracle. NFI has also had signiicant indus-

trial impact Ð BaraCUDA, a widely used sequence mapping tool,

accepted GI-evolved patches in 2015 [24].

GI abounds with open problems. GI searches the space of pro-

gram variants created by applying mutation operators. The richness

of this space depends on the power and expressivity of the muta-

tion operators; we have not yet identiied mutation operators that

simultaneously deine a rich and dense search space. Given a set

of operators, the GI space is usually vast and sparsely populated

by variants that meet a speciication or that a human might write.

Eiciently traversing GI spaces under a resource bound remains an

open problem. A key subproblem here is how to eiciently integrate

testing program variants into the search.

Working to close these problems requires experiment-driven

innovation; experimentation necessitates engineering, some novel,

but much that is not. The time researchers currently take to build a

GI substrate Ð either writing from scratch or inding, adapting, and

binding together existing tools Ð involves reimplementing many

wheels, like parsing and program transformation. This is because

existing work relies on bespoke tools that are not designed for

reuse or modiication. For example, some tools require expertise

in programming languages, such as Lisp [37], that many software

engineering researchers do not often use. The lack of shared tooling

is hampering GI research, especially into NFI; it hinders reproduca-

bility and slows innovation.

The potential beneits of a shared, tooling substrate for GI ex-

perimentation are enormous. We need look no further than the

impact such tooling has had on other areas of computer science. The

Evolutionary Computation Library ECJ [29] is a general-purpose,

https://doi.org/10.1145/3321707.3321841
https://doi.org/10.1145/3321707.3321841

GECCO ’19, July 13–17, 2019, Prague, Czech Republic A. Brownlee et al.

extensible framework for evolutionary computation (EC); anecdo-

tally, its release facilitated experimentation and reproduction in

EC [29]. SimpleScalar [9] is an open source set of tools for simula-

tion of modern processor architectures. Prototyping processors in

hardware is simply prohibitive for most academics; SimpleScalar

is the simple and eicient testbed on which academic research in

computer architecture rested for over a decade [17]. A more re-

cent example is Google’s TensorFlow[5], a library for numerical

computation and large-scale machine learning. It has democratized

machine learning, leading to an explosion of papers1 and, anecdo-

tally [7], providing a key capability for some AI startups.

To reproduce this success and accelerate research in GI, we in-

troduce Gin, an experimental substrate for GI. We have instantiated

Gin in Java for the Java ecosystem. We chose Java to facilitate the

application of GI to a prominent object-oriented language and be-

cause Java is a lingua franca for software engineers, so its adoption

gives Gin a large set of potential contributors and users. Further,

Java also allows Gin to leverage powerful of-the-shelf tooling, such

as JavaParser [11], JUnit [12] and Sureire [13].

Gin is necessarily both extensible and modiiable because it must

not constrain scientiic inquiry into GI. Thus, Gin is a toolbox, rather

than a framework, which is only extensible. GI aspires to automate

code improvement tasks. This goal, coupled with GI’s open prob-

lems, has a number of immediate consequences for Gin’s design:

Ginmust build and scale to industrial code and it must smoothly and

easily support adding new search strategies, sampling strategies,

and mutation operators.

To smoothly run tests on program variants, Gin understands the

two currently dominant Java build systems Ð Maven and Gradle;

as outlined in Section 2.6 it builds such projects automatically, ob-

viating shell commands. To scale, Gin utilises dynamic compilation,

which recompiles only changed classes and their dependencies, and

online classloading. These features allow it to modify, recompile,

and execute large-scale systems within a single virtual machine

(see Section 2.3).

Out of the box, Gin supports an array of program transforma-

tions and two representations of code Ð ASTs and token streams.

Both representations are extremely lexible and support operations

at multiple granularities (subtrees or grammatical units); in con-

trast with other approaches, Gin presents the raw representation,

without iltering, to a mutation operator. These uniltered represen-

tations free researchers to deine custom operators (see Section 3.1),

like one that considers comments. Gin’s design carefully separates

search from applying transformations and evaluating itness, which

involves building and testing a variant. As a consequence of this

separation, one need only specify a sequence of transformations

to deine a new search strategy. Gin also provides a sampling fea-

ture that reports the test case results for the single application of

any operator (Section 3.3). With the notable exception of De Souza

et al. [14], which uses dynamic analysis to consider intermediate

execution state, all GI work thus far assumes Boolean test cases

in their itness evaluation. Gin is the irst to record the expected

and actual results, allowing researchers to deine more ine-grained

itness functions and smooth the search space landscape.

1Over 8000 citations in Google Scholar for the cited article.

In addition to its feature set for general GI, Gin is the irst to

support two innovative features for NFI Ð built-in proiling and

automated test generation. A key to scaling GI is narrowing its

search to code fragments. APR has successfully used fault localisa-

tion for this purpose. In NFI, the natural analog is proiling. Thus,

proiling [39] is integral to Gin, freeing researchers to narrow the

search for nonfunctional improvements to, for instance, the most

time-consuming methods. GI usually relies on testing to measure

the itness of evolved software variants [32]. In NFI, one can always

use the original program as a test oracle and use it to automate test

case generation. Gin leverages this insight to be the irst GI tool to

incorporate an automated test case generation tool (EvoSuite [15]).

A university course on GI has already been delivered using the

irst release version of Gin, demonstrating Gin’s ease of use and

lexibility (Section 3.6). This paper makes two principle contribu-

tions: the design and architecture of Gin and its instantiation in

Java for the Java ecosystem. Gin is open source and available online

http://github.com/gintool/gin/.

2 ARCHITECTURE

Figure 1 presents a high-level overview of Gin’s two main pipelines,

and a UML class diagram of the core classes is given in Figure 2.

Gin’s core functionality is divided between the manipulation of

source code, and unit test execution. Tools that can be used inde-

pendently of source editing and evaluation, such as test generation

and proiling, are grouped together in the gin.util package and

omitted from the class diagram.

The pipelines in Figure 1 give two example uses of Gin: prepro-

cessing to identify code of interest within a project, and search

space analysis. A complete proiling pipeline is provided by the gin

.util.Profiler class, which will output ‘hot methods’ as suitable

targets for improvement.

The analysis of GI search spaces is of increasing research inter-

est [8, 26, 35] and Gin facilitates this process: the toolkit includes

several examples of search space tools that sample and enumerate

the space of program edits. Adding new edit types and reusing this

code is straightforward. Gin will sample the patch space, running

the speciied tests against each patch and record the result: whether

the patch is valid, the result of compilation, the test output, run

times, and error details. Test suites can be generated in any manner

for use in Gin, provided they are in JUnit format. Most previous

GI work only considered Boolean test case results during itness

evaluation; by recording more detailed test output, Gin supports

the implementation of more ine-grained itness functions.

A major use case of Gin is to apply GI to improve code: Gin delib-

erately delegates the design of search algorithms to the user, but a

simple example of a local search algorithm is included. As the code

examples in Section 3 shows, it is straightforward to incorporate

Gin features into other search algorithms and applications.

2.1 Patch-Edit Model and Representation

Following standard practice in GI [28], the basic representation

used by Gin is a patch to be applied to the source code. Each patch

is a list of edits, and each edit is the application of a single operator

to the target source code.

http://github.com/gintool/gin/

Gin: Genetic Improvement Research Made Easy GECCO ’19, July 13–17, 2019, Prague, Czech Republic

EvoSuite

Test Suite Profiling

Target Method

Method Tests

Patch Sampling Dynamic Compilation jUnit Patch Profile

Search Space Analysis

Preprocessing

Generated Test Suite

Project Test Suite

Project Source Target Methods

Method Tests

Figure 1: Gin Pipelines

Patch

(from gin)

add(Edit[0..1])

apply(): String[0..1]

SourceFile

(from gin)

Edit

(from edit)

apply(SourceFile[0..1]): SourceFile[0..1]

LineEdit

(from line)

DeleteLine

(from line)

lineToDelete: Integer

StatementEdit

(from statement)

SwapLine

(from line)

sourceLine: Integer

destinationLine: Integer

ModifyNodeEdit

(from modifynode)

TestRunner

(from test)

TestRunner(java.io.File[0..1], String[0..1], String[0..1], UnitTest[*])

test(Patch[0..1], Integer): UnitTestResultSet[0..1]

UnitTest

(from test)

setTimeoutMS(Long)

UnitTestResult

(from test)

getPassed(): Boolean[0..1]

getTimedOut(): Boolean[0..1]

getExceptionType(): String[0..1]

getExecutionTime(): Long

CacheClassLoader

(from test)

IsolatedTestRunner

(from test)

runTest(UnitTest[0..1]): UnitTestResult[0..1]

LocalSearch

(from gin)

main(String[*])

SourceFileLine

getLine(Integer): String[0..1]

removeLine(Integer): SourceFileLine[0..1]

insertLine(Integer, String[0..1]): SourceFileLine[0..1]

getLinesInTargetMethod(): Integer[*]

SourceFileTree

replaceNode(Integer, com.github.javaparser.ast.Node[0..1]): SourceFileTree[0..1]

removeStatement(Integer): SourceFileTree[0..1]

insertStatement(Integer, Integer, com.github.javaparser.ast.stmt.Statement[0..1]): SourceFileTree[0..1]

getNode(Integer): com.github.javaparser.ast.Node[0..1]

getStatementIDsInTargetMethod(): Integer[*]

getNodeIDsByClass(Boolean, Class<? extends Node>[*]): Integer[*]

sourceFile

0..1

edits*

tests

*

test
0..1

classLoader

0..1

sourceFile
0..1

testRunner

0..1

Figure 2: Gin core classes. Attributes are omitted and only a subset of method signatures are shown for simplicity. Also note

that several Edit implementations and supporting utility classes are omitted.

The original source code is loaded into a SourceFile object. There

are two subclasses of SourceFile: SourceFileLine focused on line-

level edits and SourceFileTree focused on edits to the Abstract

Syntax Tree (AST). Each line in the source ile and each node in

the AST is allocated a unique ID; these IDs are referenced by edits,

simplifying the problem of resolving patches containing multiple

edits to the same location(s). For example, if an edit applies to a

particular ID, but that ID no longer exists due to a previous delete,

the edit will gracefully degrade to a no-op.

SourceFile is immutable: any methods that modify the source

return amodiied copy rather than changing the internal state of the

SourceFile. Thus a patch is a sequence of edits, each producing a

new SourceFile, which simpliies the implementation of new edits:

an edit must simply accept a SourceFile and return a new one with

the edit applied.

Gin includes subclasses of the Edit class that implement line

and node operators commonly used in the literature, and examples

of more ine-grained operators that replicate operators commonly

found in the mutation testing domain (see Section 2.2). Edits may

GECCO ’19, July 13–17, 2019, Prague, Czech Republic A. Brownlee et al.

be targeted to speciic locations. For example, a copy may copy a

statement or line from anywhere in the source, but limit its target

location to locations of a certain type, or within a given method.

SourceFile can be instantiated with a target method or methods,

and will then provide a list of locations limited to those methods.

SourceFile provides methods for manipulating source:

Accessors return lists of IDs corresponding to a given lan-

guage construct, e.g. an if statement or all block statements.

Getters return a copy of a line or AST node speciied by an ID

Setters update the source ile by deleting, inserting, or replac-

ing at a speciied location.

Convenience methods perform common tasks, for example

selection of a random statement.

SourceFile also provides methods to generate the modiied Java

source for compilation and execution.

2.2 Operator Sets

Gin currently implements four sets of Edit operators:

(1) Line edits: Delete, Replace, Copy, Swap, Move.

(2) Statement edits: Delete, Replace, Copy, Swap, Move.

(3) Constrained (Matched) statement edits: Replace, Swap.

(4) Micro edits: BinaryOperatorReplacement.

The irst two represent canonical transformations from the GI

program optimisation and program repair literature respectively.

The line edits can be found in the work of Petke and Langdon,

particular in the GISMOE tool [24, 25, 33, 34]. The statement edits

were irst used in the seminal GenProg [27] automated program

repair tool, and the others are proposed in this paper.

Constrained edits limit the canonical transformations to com-

patibility within the Java grammar: for example, swapping a ‘do

statement’ with another ‘do statement’; the intuition behind such

operators is that they are more likely to make replace and swap

operations between related program sites, and are less likely to

lead to program disruption. A more reined analogue to constrained

edits can be found in ARJA [42], a Java APR tool, which limits

replacements to program elements that are both structurally and

type-compatible. The fourth type are similar to the micro-mutations

of [18], and numerous examples in the mutation testing literature

(such as [30]). For example, binary operators replacement will con-

sider replacing == with !=.

Providing implementations of all these operators within one

toolkit simpliies experimental comparisons and analysis. Gin is

designed so that adding new operators is simple: an example of one

of the existing implementations is given Section 3.

2.3 Dynamic Class Loading and Test Execution

Once source code has been edited, it must be evaluated. Gin invokes

test cases using JUnit and provides the information needed to target

functional objectives and run-time performance. It reports the wall

clock and CPU time of test execution over multiple measures, and

returns details of the unit test outcome: whether the test passed, the

expected and actual results, and details of any encountered errors,

such as exceptions.

Compilation and test execution is performed entirely within

memory to improve performance: there are no external command

invocations and no JVMs are created. To achieve this, Gin uses a

custom fork of the InMemoryCompilation project [40] to generate

bytecode for the modiied class, before loading the class in a custom

ClassLoader that łoverlaysž the existing class hierarchy so that

JUnit loads the modiied class. This dynamic loading supports both

individual source iles and iles contained within a larger project.

This complexity is hidden from the user, who instantiates and

invokes the TestRunner with a patch, a reference to the original

source ile, and a list of unit tests. A collection of UnitTestResult

objects is then returned indicating the outcome of the tests and the

execution time. The existing utility classes for sampling and local

search demonstrate how this can be done in practice with just a

few lines of code (examples in Section 3).

2.4 Test Suite Generation

Test suites play a critical role in determining the outcome of GI

[38, 41]. By standardising on JUnit for testing, Gin can exploit the

unit test suite provided with a project; such suites usually provide

good coverage, and are used by developers to test realistic use-cases

for the code. In addition, automated test suite generation is provided

via integration with the EvoSuite [2] tool. In the case of NFI, this

test generation can be used to produce an independent oracle.

In order to facilitate experimentation, we have preconigured

EvoSuite to produce deterministic results. Moreover, the imple-

mented TestCaseGeneratorworks out-of-the-box forMaven projects,

modifying the pomile automatically to add necessary dependencies

and modifying the output directory for Maven’s test task. Semi-

automated test case generation is supported for Gradle.

2.5 Proiling

The search space for software transformation is vast [26], and re-

stricting the subspace explored by any improvement or repair algo-

rithm is therefore critical in reducing search run-time. One of the

main innovations of the GenProg repair tool [27] was to use fault

localisation to reduce the size of the search space. Similarly, Gin

provides a proiling capability to identify those parts of the software

most exercised by the project’s unit tests; we make the assumption

that the provided unit tests are representative of real-world use, or

at least they exercise the code where improvement is to be targeted.

As Gin accepts a JUnit test suite as input, it is straightforward for

a developer to provide a test suite that can guide Gin’s improve-

ments. For example, if a particular part of a project is known to be

problematic, a small test suite can be provided to Gin that includes

tests extensively targeting the problematic code surface. If reducing

execution time is the goal, this may simply require providing the

existing performance tests that many projects include.

As detailed in Section 2.6, Gin will automatically integrate with

popular Java build tools, and the proiler gin.util.Profiler uses

this facility to invoke and proile a project’s unit tests. First, Gin

invokes the entire test suite via the build tool’s API, and parses

the test reports to produce a list of tests, their containing classes,

parameters, and whether they passed or failed. It then proiles

individual tests by invoking them via the build tool API whilst

enabling CPU sampling via the hprof proiler. The hprof proiler is

somewhat dated, but it is suicient for most projects; it is included

in the Java 8 SDK that Gin requires, and at run-time provides a

Gin: Genetic Improvement Research Made Easy GECCO ’19, July 13–17, 2019, Prague, Czech Republic

sample of the call stack every 10ms, which enables Gin to provide

a list of frequently used methods. We use hprof as opposed to

VisualVM and other alternatives due to its simplicity and batch

operation: VisualVM is an interactive tool but Gin’s proiling is

automated; alternative proilers either are similarly interactive or

not freely available.

The proiles are parsed by Gin and combined into a simple CSV

ile for use by researchers or later stages of Gin’s pipeline; this

component is standalone and can be used for projects outside of GI.

For each method, a count giving the number of times the method

is seen at the top of the call stack is provided, along with a list of

all unit tests where the method was seen at the top of the call stack

during proiling. In order to provide the list of calling unit tests, Gin

proiles each method individually rather than the whole suite: this

is a time-intensive process that can take many hours for very large

projects, but need only be run a single time. A sample of a project’s

unit tests may be requested instead. The proiler is separate from

the core of Gin and therefore easily bypassed by researchers who

do not require it.

2.6 Build Tool Integration

One of the goals of Gin is to enable systematic experimentation on

real-world code; this requires the ability to compile, package and

test a diverse set of large projects. Fortunately, the Java ecosystem

has converged to a small number of build tools that support these

requirements and provide functionality through APIs. In particular,

the Gradle [3] and Maven [1] build tools are very popular and

used by over 95% of developers responding to one recent survey

[4]; Gradle is the default build tool of the Android ecosystem, and

almost all the GitHub projects we have examined during empirical

workwith Gin use one of the two tools. This standardisation enables

Gin to accept most Java projects without modiication, and run tasks

without resorting to simply invoking shell commands.

Despite their popularity, the documentation of the APIs for

both Gradle and Maven is somewhat sparse, and requires a certain

amount of experimentation and reverse engineering; most of what

we learnt during the process has subsequently been captured in

the gin.util.Project class, which can be used outside of Gin to

examine and manipulate projects, lowering the overhead for other

researchers. For example, the Project class will provide the class-

path for a project, ind a particular source ile within a project’s ile

hierarchy, provide a standard method signature for a given method,

provide a list of project tests, or run a unit test given its name.

The Project class is used by the Profiler and other parts of Gin to

interrogate and manipulate a project, and thus support for a new

build tool can be added by modifying just this class.

Gin can infer the necessary classpath and dependencies for run-

ning unit tests from a Maven or Gradle project, or these can be

speciied manually.

3 IN PRACTICE

We now demonstrate the simplicity and extensibility of Gin with

code examples for common use-cases.

1 public class ReplaceStatement extends StatementEdit {

2

3 public int sourceID;

4 public int destinationID;

5

6 public ReplaceStatement(SourceFileTree sf, Random r) {

7 sourceID = sf.getRandomStatementID(false, r);

8 destinationID = sf.getRandomStatementID(true, r);

9 }

10

11 public SourceFile apply(SourceFileTree sf) {

12 Statement source = sf.getStatement(sourceID);

13 Statement dest = sf.getStatement(destinationID);

14 return sf.replaceNode(dest, source.clone());

15 }

16

17 }

Listing 1: Implementing an edit in Gin

1 public class MatchedReplaceStatement extends

ReplaceStatement {

2 public MatchedReplaceStatement(SourceFileTree sf,

3 Random r) {

4 super(0, 0);

5 destinationID = sf.getRandomStatementID(true, r);

6 sourceID = sf.getRandomNodeID(false,

7 sf.getStatement(destinationID).getClass(), r);

8 }

9 }

Listing 2: Extending an existing edit in Gin

3.1 Implementing New Edits

Whilst Gin contains canonical edit operators from the literature and

some novel operators, development of such operators remains an

area of active research; implementation of new edit types in Gin is

therefore made as simple as possible. Code for a ReplaceStatement

is given in Listing 1. An edit must provide:

• a constructor returning a random instance of the edit; we

use methods in SourceFile to select two random statement

IDs. The boolean argument to getRandomStatementID speci-

ies whether the ID should be within the target method

• an apply() method to apply the edit on a given SourceFile.

Here, the method replaces the statement at destinationID

with a clone of the statement at sourceID.

Listing 2 shows an implementation of the matched equivalent of

a replace statement edit. This extends the existing ReplaceStatement

edit, constraining the source statement to be of the same type as

the destination statement.

3.2 A Simple Search Algorithm

A condensed version of the local search example provided in Gin

is given in Listing 3. The search starts with a single-edit random

patch and at each step a random edit is removed or a new randomly-

generated edit is added. If the new patch ofers an improvement,

it is retained and the process repeated. The only important code

GECCO ’19, July 13–17, 2019, Prague, Czech Republic A. Brownlee et al.

1 private Patch search() {

2 // start with the empty patch

3 Patch bestPatch = new Patch(sourceFile);

4 long bestTime = testRunner.test(bestPatch, 10).

totalExecutionTime();

5

6 for (int step = 1; step <= NUM_STEPS; step++) {

7 Patch neighbour = neighbour(bestPatch, rng);

8 UnitTestResultSet rs = testRunner.test(neighbour

,10);

9 if (rs.getValidPatch() && rs.getCleanCompile() &&

10 rs.allTestsSuccessful() &&

11 rs.totalExecutionTime() < bestTime) {

12 bestPatch = neighbour;

13 bestTime = rs.totalExecutionTime();

14 }

15 }

16

17 return bestPatch;

18 }

19

20 public Patch neighbour(Patch patch, Random rng) {

21 Patch neighbour = patch.clone();

22

23 if (neighbour.size() > 0 && rng.nextFloat() > 0.5) {

24 neighbour.remove(rng.nextInt(neighbour.size()));

25 } else {

26 neighbour.addRandomEdit(rng, allowableEditTypes);

27 }

28

29 return neighbour;

30 }

Listing 3: Local search in Gin

not shown is the instantiation of SourceFile with a source ile and

target method, and TestRunner with a working directory, classpath

and list of tests. Local search can also be invoked from the terminal,

assuming the test class ExampleTest:

java gin.LocalSearch examples/Example.java

Additional arguments allow the user to specify more unit tests,

a classpath, target methods, operators and so on. The search can

also be invoked programmatically: a call to localSearch = new

LocalSearch("examples/Example.java") will create the local search

object for the speciied target source ile, and then Patch result =

localSearch.search(); will run the search, returning a reference

to a Patch object with the best patch found.

Extension of this search algorithm to a population-based evolu-

tionary algorithm is simple. The only additions required are selec-

tion (which can use the existing time and unit test methods to rank

solutions) and a concept of crossover, which can be performed at

the Patch level, recombining diferent combinations of edits.

3.3 Sampling and Enumeration

Essential to search space analysis is the ability to systematically

generate variants of the original program code. Gin gives examples

for sampling and enumerating the search space and writing results

to a comma-separated ile (e.g. Figure 3): the intention is that these

can easily be modiied or extended to suit experimental needs. The

user only needs to provide method names and associated unit tests

in a ile, which could simply be the Proiler’s output ile. We provide

a helper abstract Sampler class for sampling and enumerating edits,

as well as three sub-classes:

EmptyPatchTester will run all unit tests through Gin, and

save results to a ile.

RandomSampler will make a number of random edits, test

the resulting source, and return the result.

DeleteSampler will enumerate all possible DeleteLine and

DeleteStatement edits for a method, test the resulting source,

and save results to a ile.

3.4 Proiling and Generating Tests

Test suites can be created and a proiler invokedwith single terminal

commands. To generate new test cases:

java -cp build/gin.jar gin.util.TestCaseGenerator

-projectDir examples/maven-simple -projectName my-app

-classNames com.mycompany.app.App -generateTests

To proile a test suite:

java -cp build/gin.jar gin.util.Profiler -p my-app

-d examples/maven-simple/ .

Results are written to profiler_output.csv.

3.5 Implementing an Enumerator

Consider an enumerator to exhaustively apply an edit at every

possible location in a code region, perhaps to perform landscape

analysis. Taking the example of DeleteEdit, Listing 4 gives the

requisite source code.

The code here accepts a single class example program, but could

be extended to large projects with a few lines specifying theworking

directory, classpath etc. In the example, we specify an array of

UnitTests to be applied to the modiied code. We set a number of

repeats for each test.We then create SourceFileTree and TestRunner

objects to perform the analysis. We create an empty patch and test

that as a baseline. Finally, we get a list of all statement IDs in the

source, and enter a loop that creates and tests a DeleteStatement

for each statement. The results are written to ile by an auxiliary

method.

3.6 Case Study - An Application in Teaching

The ease with which Gin can be deployed and modiied has been

demonstrated by its use in teaching. In 2017 and 2018 two of the

authors used the irst release version of Gin as a vehicle to teach

concepts in GI to two moderately sized classes of students (26 and

51 students respectively) in a fourth year Search Based Software

Engineering course. In each class a group assignment2 required

students to:

(1) Download, build and run Gin;

(2) Run Gin using the LocalSearch method to improve the run-

time of four example programs;

2The assignment material is publicly available at https://github.com/anon-sbse-
teacher/project and https://github.com/markuswagnergithub/SBSEcourse/.

https://github.com/anon-sbse-teacher/project
https://github.com/anon-sbse-teacher/project
https://github.com/markuswagnergithub/SBSEcourse/

Gin: Genetic Improvement Research Made Easy GECCO ’19, July 13–17, 2019, Prague, Czech Republic

Figure 3: Example output from a sampling run, split into three rows to save space

1 public static void main(String[] args) {

2

3 UnitTest[] ut = {

4 new UnitTest("TriangleTest","testInvalidTriangles"),

5 ...

6 };

7

8 int reps = 1;

9

10 SourceFileTree sf = new SourceFileTree(

11 "examples/simple/Triangle.java",

12 Collections.singletonList(

13 "classifyTriangle(int,int,int)"));

14

15 TestRunner tr = new TestRunner(

16 new File("examples/simple"), "Triangle",

17 "examples/simple", Arrays.asList(ut));

18

19 // Start with the empty patch

20 Patch patch = new Patch(sf);

21

22 // Run empty patch and log

23 UnitTestResultSet rs = tr.test(patch, reps);

24 writeResults(rs, 0);

25

26 int patchCount = 0;

27 for (int id : sf.getStatementIDsInTargetMethod()) {

28 patchCount++;

29 patch = new Patch(sf);

30 patch.add(new DeleteStatement(sf.getFilename(),id));

31

32 rs = tr.test(patch, reps);

33 writeResults(rs, patchCount);

34 }

35 }

Listing 4: Implementing a delete enumerator. This

is the complete code excepting some straightforward

processing in writeResults() to write out the results to

a CSV ile.

(3) Write a qualitative and quantative analysis describing the

type and distributions of patches in the best-performing

programs;

(4) Extend Gin to minimise the length of the best patches; and

(5) Apply Gin to their own benchmark program and analyse the

results.

Each group produced a report outlining the indings from steps

2-4. There were 12 group reports submitted for the irst cohort and

13 group reports for the second. All groups were able to quickly

deploy Gin, run the four benchmarks in step 2 and reliably produce

better variants of the example programs. In step 3 students were

required to modify the Gin implementation. Students used a variety

of approaches, ranging from brute-force enumeration of edit subsets

to greedy algorithms through to search heuristics such as A*.

Students were able to modify Gin with some ease, with some

groups simply extending the local search example code while others

went so far as to implement patch minimisation. The extended

implementations were able to verify both the preservation of code

structure and application performance.

In step 4 groups used a variety of benchmarks and showed an

awareness of code features that were amenable to the set of GI op-

erators used in this assignment. Students sought out examples that

were amenable to optimisations such as invariant hoisting and re-

moval of redundant code. Some submissions also demonstrated the

efectiveness of Gin in improving program performance when po-

tentially useful raw materials (such as redundant conditionals) are

introduced into code. In summary, Gin serves well in an educational

setting because it presents so few barriers to experimentation.

4 RELATED WORK

Genetic improvement tools can be divided into two categories: those

that focus on improvement of functional (FI), and non-functional

software properties (NFI). The tools in the irst category mainly

come from the ield of automated program repair (APR). The canon-

ical example of these is GenProg [27], the irst GI tool scaling to

large real-world instances.

Early work in APR focused on ixing C and C++ programs; only

more recently have other languages, such as Java, been considered.

For example, Martinez and Monperrus released ASTOR, a program

repair library for Java that implements several program repair ap-

proaches [31]. It allows for the addition of new tools, but does not

facilitate more ine-grained extension, such as the addition of a

single mutation operator or search strategy.

Genetic improvement has also been used to add new features

to software. Such work has also mostly focused on C code; for

example, the FI tool used by Barr et al. [6] in their automated

software transplantation work is available online.

GECCO ’19, July 13–17, 2019, Prague, Czech Republic A. Brownlee et al.

Several NFI frameworks have been developed, though few have

been made open source. One of the largest is by Langdon et al. [21ś

24], and focuses on runtime improvement of C and C++ programs.

Depending on the particular variant of their framework, line-level

or expression-level changes are possible. The locoGP [10] frame-

work developed by Cody-Kenny et al. evolves entire Java AST’s and

acts as an of-the-shelf optimisation tool, while allowing limited

customisation via its itness function.

Several attempts have beenmade to provide a more extensible set

of tools for optimising software using GI. GrammaTech’s software

evolution library (SEL) [36] enables the programmatic modiication

and evaluation of extant software. Its API deines software objects

using the Common Lisp Object System (CLOS) to provide a uni-

form interface, allowing it to manipulate many software artifacts,

ranging from C source code, compiled assembler to limited sup-

port for Java. It also allows for addition of new mutation operators.

However, modifying the framework presents a steep learning curve,

particularly for those not familiar with Lisp. A Genetic Program-

ming microframework, MicroGP, has been used as a basis for a

language-independent GI framework, but the source code is no

longer available. Perhaps the work mostly closely sharing the goals

of Gin is the Python GI framework PyGGI [16].

5 CONCLUSION

GI is a maturing research topic, with multiple examples of real-

world deployment and a growing diversity of methods. We believe

shared tooling is essential to further advance in this area. As such,

we have described Gin, a platform for GI experimentation in Java.

Gin ofers great extensibility, yet remains simple to use. It inte-

grates with the industry-standard Gradle and Maven build tools,

allowing experimentation with real-world software projects. Gin

also integrates with established tools such as EvoSuite to automati-

cally generate unit tests, as well as SureFire and hprof for proiling.

As a further contribution, we have captured the experience our

team have gained in integrating with Gradle and Maven builds

in gin.util.Project class, which can also be used in isolation for

researchers interested in other aspects of software experimentation.

We now call for participation: researchers are encouraged to

download the tool from http://github.com/gintool/gin/, and ex-

periment with the example programs we have included. Anyone

working in GI is also encouraged to report bugs, raise feature re-

quests, and contribute documentation, examples and additional

features to the platform via our GitHub project.

Immediate plans for future development of the platform include

more seamless automated integration of generated tests with Gra-

dle; further edit operators, search methods and objective functions;

more landscape sampling and enumeration tools, and additional

use-case scenarios.

DataAccess Statement.The source code of Gin can be obtained

from https://github.com/gintool/gin.

ACKNOWLEDGMENTS

The work in this paper was part funded by the UK EPSRC [grants

EP/J017515/1 and EP/P023991/1]; and Australian Research Coun-

cil Project DE160100850. We are also grateful to the developers

of JavaParser for promptly ixing a bug discovered during Gin’s

development.

REFERENCES
[1] [n. d.]. Apache Maven Project. https://maven.apache.org. ([n. d.]). Accessed:

2019-01-20.
[2] [n. d.]. EvoSuite: Automatic Test Suite Generation for Java. ([n. d.]). http:

//www.evosuite.org/
[3] [n. d.]. Gradle Build Tool. https://gradle.org. ([n. d.]). Accessed: 2019-01-20.
[4] [n. d.]. The State of Java in 2018. https://www.baeldung.com/java-in-2018. ([n.

d.]). Accessed: 2019-01-20.
[5] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jefrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geofrey Irving, Michael Isard, et al.
2016. Tensorlow: a system for large-scale machine learning.. In OSDI, Vol. 16.
265ś283.

[6] Earl T. Barr, Mark Harman, Yue Jia, Alexandru Marginean, and Justyna Petke.
2015. Automated software transplantation. In Proceedings of the 2015 International
Symposium on Software Testing and Analysis, ISSTA 2015, Baltimore, MD, USA,
July 12-17, 2015, Michal Young and Tao Xie (Eds.). ACM, 257ś269. https://doi.org/
10.1145/2771783.2771796

[7] James E Bessen, Stephen Michael Impink, Robert Seamans, and Lydia Re-
ichensperger. 2018. The Business of AI Startups. Boston Univ. School of Law, Law
and Economics Research Paper 18-28 (2018).

[8] B. R. Bruce, J. Petke, M. Harman, and E. T. Barr. 2018. Approximate Oracles
and Synergy in Software Energy Search Spaces. IEEE Transactions on Software
Engineering (2018), 1ś1. https://doi.org/10.1109/TSE.2018.2827066

[9] Doug Burger and Todd M Austin. 1997. The SimpleScalar tool set, version 2.0.
ACM SIGARCH computer architecture news 25, 3 (1997), 13ś25.

[10] Brendan Cody-Kenny, Edgar Galván López, and Stephen Barrett. 2015. locoGP:
Improving Performance by Genetic Programming Java Source Code. In Genetic
and Evolutionary Computation Conference, GECCO 2015, Madrid, Spain, July
11-15, 2015, Companion Material Proceedings, Sara Silva and Anna Isabel Esparcia-
Alcázar (Eds.). ACM, 811ś818. https://doi.org/10.1145/2739482.2768419

[11] JavaParser Community. 2019. JavaParser Ð For Processing Java Code. http:
//javaparser.org. (2019). [Online; accessed 6-February-2019].

[12] JUnit Community. 2019. JUnit Webpage. https://junit.org/junit5/. (2019). [Online;
accessed 6-February-2019].

[13] Maven Sureire Community. 2019. Maven Sureire Plugin. https://
maven.apache.org/sureire/maven-sureire-plugin/. (2019). [Online; accessed
6-February-2019].

[14] Eduardo Faria de Souza, Claire Le Goues, and Celso Gonçalves Camilo-Junior.
2018. A Novel Fitness Function for Automated Program Repair Based on Source
Code Checkpoints. (2018).

[15] Gordon Fraser and Andrea Arcuri. 2011. Evosuite: automatic test suite generation
for object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering. ACM,
416ś419.

[16] Jinhan Kim Gabin An and Shin Yoo. 2018. Comparing Line and AST Granularity
Level for Program Repair using PyGGI. In Genetic Improvement Workshop, co-
located with ICSE 2018.

[17] Daniel Gracia Perez, Gilles Mouchard, and Olivier Temam. 2004. MicroLib: A
Case for the Quantitative Comparison of Micro-Architecture Mechanisms.

[18] Saemundur O Haraldsson, John R Woodward, Alexander EI Brownlee, and David
Cairns. 2017. Exploring Fitness and Edit Distance of Mutated Python Programs.
In European Conference on Genetic Programming. Springer, 19ś34.

[19] Saemundur O. Haraldsson, John R. Woodward, Alexander E. I. Brownlee, and
Kristin Siggeirsdottir. 2017. Fixing bugs in your sleep: how genetic improvement
became an overnight success. InGenetic and Evolutionary Computation Conference,
Berlin, Germany, July 15-19, 2017, Companion Material Proceedings, Peter A. N.
Bosman (Ed.). ACM, 1513ś1520. https://doi.org/10.1145/3067695.3082517

[20] Yue Jia, Ke Mao, and Mark Harman. 2018. Finding and ixing software bugs auto-
matically with SapFix and Sapienz. https://code.fb.com/developer-tools/inding-
and-ixing-software-bugs-automatically-with-sapix-and-sapienz/. (2018). [On-
line; accessed 6-February-2019].

[21] William B. Langdon and Mark Harman. 2010. Evolving a CUDA kernel from an
nVidia template. In Proceedings of the IEEE Congress on Evolutionary Computation,
CEC 2010, Barcelona, Spain, 18-23 July 2010. IEEE, 1ś8. https://doi.org/10.1109/
CEC.2010.5585922

[22] William B. Langdon and Mark Harman. 2015. Optimizing Existing Software
With Genetic Programming. IEEE Trans. Evolutionary Computation 19, 1 (2015),
118ś135. https://doi.org/10.1109/TEVC.2013.2281544

[23] William B. Langdon, Mark Harman, and Yue Jia. 2010. Eicient multi-objective
higher order mutation testing with genetic programming. Journal of Systems and
Software 83, 12 (2010), 2416ś2430. https://doi.org/10.1016/j.jss.2010.07.027

[24] William B. Langdon, Brian Yee Hong Lam, Justyna Petke, and Mark Harman.
2015. Improving CUDA DNA Analysis Software with Genetic Programming.

http://github.com/gintool/gin/
https://github.com/gintool/gin
https://maven.apache.org
http://www.evosuite.org/
http://www.evosuite.org/
https://gradle.org
https://www.baeldung.com/java-in-2018
https://doi.org/10.1145/2771783.2771796
https://doi.org/10.1145/2771783.2771796
https://doi.org/10.1109/TSE.2018.2827066
https://doi.org/10.1145/2739482.2768419
http://javaparser.org
http://javaparser.org
https://junit.org/junit5/
https://maven.apache.org/surefire/maven-surefire-plugin/
https://maven.apache.org/surefire/maven-surefire-plugin/
https://doi.org/10.1145/3067695.3082517
https://code.fb.com/developer-tools/finding-and-fixing-software-bugs-automatically-with-sapfix-and-sapienz/
https://code.fb.com/developer-tools/finding-and-fixing-software-bugs-automatically-with-sapfix-and-sapienz/
https://doi.org/10.1109/CEC.2010.5585922
https://doi.org/10.1109/CEC.2010.5585922
https://doi.org/10.1109/TEVC.2013.2281544
https://doi.org/10.1016/j.jss.2010.07.027

Gin: Genetic Improvement Research Made Easy GECCO ’19, July 13–17, 2019, Prague, Czech Republic

In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
2015, Madrid, Spain, July 11-15, 2015, Sara Silva and Anna Isabel Esparcia-Alcázar
(Eds.). ACM, 1063ś1070. https://doi.org/10.1145/2739480.2754652

[25] William B. Langdon and Justyna Petke. 2017. Software is not fragile. In First
Complex Systems Digital Campus World E-Conference 2015. Springer, 203ś211.

[26] William B. Langdon, Nadarajen Veerapen, and Gabriela Ochoa. 2017. Visualising
the Search Landscape of the Triangle Program. In Genetic Programming - 20th
European Conference, EuroGP 2017, Amsterdam, The Netherlands, April 19-21, 2017,
Proceedings (Lecture Notes in Computer Science), JamesMcDermott, Mauro Castelli,
Lukás Sekanina, Evert Haasdijk, and Pablo García-Sánchez (Eds.), Vol. 10196.
96ś113. https://doi.org/10.1007/978-3-319-55696-37

[27] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012.
GenProg: A Generic Method for Automatic Software Repair. IEEE Trans. Software
Eng. 38, 1 (2012), 54ś72. https://doi.org/10.1109/TSE.2011.104

[28] Claire Le Goues, Westley Weimer, and Stephanie Forrest. 2012. Representa-
tions and operators for improving evolutionary software repair. In Genetic and
Evolutionary Computation Conference, GECCO ’12, Philadelphia, PA, USA, July
7-11, 2012, Terence Soule and Jason H. Moore (Eds.). ACM, 959ś966. https:
//doi.org/10.1145/2330163.2330296

[29] Sean Luke. 2017. ECJ then and now. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion. ACM, 1223ś1230.

[30] Yu-Seung Ma, Jef Ofutt, and Yong Rae Kwon. 2005. MuJava: an automated
class mutation system. Software Testing, Veriication and Reliability 15, 2 (2005),
97ś133.

[31] Matias Martinez and Martin Monperrus. 2016. ASTOR: a program repair library
for Java (demo). In Proceedings of the 25th International Symposium on Software
Testing and Analysis, ISSTA 2016, Saarbrücken, Germany, July 18-20, 2016, Andreas
Zeller and Abhik Roychoudhury (Eds.). ACM, 441ś444. https://doi.org/10.1145/
2931037.2948705

[32] Justyna Petke, Saemundur O. Haraldsson, Mark Harman, David R. White, Wood-
ward, and John R. Woodward. 2017. Genetic Improvement of Software: a
Comprehensive Survey. IEEE Transactions on Evolutionary Computation (2017).
https://doi.org/10.1109/TEVC.2017.2693219

[33] Justyna Petke, Mark Harman, William B. Langdon, and Westley Weimer. 2014.
Using Genetic Improvement and Code Transplants to Specialise a C++ Program
to a Problem Class. In Genetic Programming - 17th European Conference, EuroGP

2014, Granada, Spain, April 23-25, 2014, Revised Selected Papers (Lecture Notes
in Computer Science), Miguel Nicolau, Krzysztof Krawiec, Malcolm I. Heywood,
Mauro Castelli, Pablo García-Sánchez, Juan J. Merelo, Víctor Manuel Rivas Santos,
and Kevin Sim (Eds.), Vol. 8599. Springer, 137ś149. https://doi.org/10.1007/978-
3-662-44303-312

[34] Justyna Petke, William B Langdon, and Mark Harman. 2013. Applying genetic
improvement to MiniSAT. In International Symposium on Search Based Software
Engineering. Springer, 257ś262.

[35] Joseph Renzullo, Stephanie Forrest, Westley Weimer, and Melanie Moses. 2018.
Neutrality and Epistasis in Program Space. In Genetic Improvement Workshop,
co-located with ICSE 2018.

[36] Eric Schulte. 2014. Neutral Networks of Real-World Programs and their Application
to Automated Software Evolution. Ph.D. Dissertation. University of New Mexico,
Albuquerque, USA. https://cs.unm.edu/ eschulte/dissertation.

[37] Eric M. Schulte, Zachary P. Fry, Ethan Fast, Westley Weimer, and Stephanie For-
rest. 2014. Software mutational robustness. Genetic Programming and Evolvable
Machines 15, 3 (2014), 281ś312. https://doi.org/10.1007/s10710-013-9195-8

[38] Edward K. Smith, Earl T. Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the cure
worse than the disease? overitting in automated program repair. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2015, Bergamo, Italy, August 30 - September 4, 2015, Elisabetta Di Nitto, Mark
Harman, and Patrick Heymans (Eds.). ACM, 532ś543. https://doi.org/10.1145/
2786805.2786825

[39] Oracle Systems. 2019. HPROF: A Heap/CPU Proiling Tool. https://
docs.oracle.com/javase/7/docs/technotes/samples/hprof .html. (2019).

[40] Nguyen Kien Trung. 2019. In Memory Java Compiler. https://github.com/trung/
InMemoryJavaCompiler. (2019).

[41] Yingfei Xiong, Xinyuan Liu, Muhan Zeng, Lu Zhang, and Gang Huang. 2018.
Identifying patch correctness in test-based program repair. In Proceedings of
the 40th International Conference on Software Engineering - ICSE '18. ACM Press.
https://doi.org/10.1145/3180155.3180182

[42] Yuan Yuan and Wolfgang Banzhaf. 2018. ARJA: Automated repair of java pro-
grams via multi-objective genetic programming. IEEE Transactions on Software
Engineering (2018).

https://doi.org/10.1145/2739480.2754652
https://doi.org/10.1007/978-3-319-55696-3_7
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1145/2330163.2330296
https://doi.org/10.1145/2330163.2330296
https://doi.org/10.1145/2931037.2948705
https://doi.org/10.1145/2931037.2948705
https://doi.org/10.1109/TEVC.2017.2693219
https://doi.org/10.1007/978-3-662-44303-3_12
https://doi.org/10.1007/978-3-662-44303-3_12
https://doi.org/10.1007/s10710-013-9195-8
https://doi.org/10.1145/2786805.2786825
https://doi.org/10.1145/2786805.2786825
https://docs.oracle.com/javase/7/docs/technotes/samples/hprof.html
https://docs.oracle.com/javase/7/docs/technotes/samples/hprof.html
https://github.com/trung/InMemoryJavaCompiler
https://github.com/trung/InMemoryJavaCompiler
https://doi.org/10.1145/3180155.3180182

	Abstract
	1 Introduction
	2 Architecture
	2.1 Patch-Edit Model and Representation
	2.2 Operator Sets
	2.3 Dynamic Class Loading and Test Execution
	2.4 Test Suite Generation
	2.5 Profiling
	2.6 Build Tool Integration

	3 In Practice
	3.1 Implementing New Edits
	3.2 A Simple Search Algorithm
	3.3 Sampling and Enumeration
	3.4 Profiling and Generating Tests
	3.5 Implementing an Enumerator
	3.6 Case Study - An Application in Teaching

	4 Related Work
	5 Conclusion
	Acknowledgments
	References

